

# MATLAB as a Financial Engineering Development Platform Delivering Financial / Quantitative Models to the Enterprise

Eugene McGoldrick





# **MATLAB – Development Environment for Financial Services**

- Development Environment has increasing number of productivity tools built into the base product
  - Test Harness modeled on JUnit, customizable and extensible
  - Support for version control
    - Subversion
    - GIT
    - API available to support other version control systems
  - GUI development tools
    - Guide
    - App Designer
  - Performance analysis tools
    - Profiler
    - Code Analyzer



#### **MATLAB** in the Enterprise

- Goals:
  - Enable customers to rapidly develop and deploy MATLAB applications onto the desktop.
  - Seamlessly integrate MATLAB generated components into other languages, applications and enterprise production systems.



#### **Integrating MATLAB into production systems**





# Share with non-MATLAB Users: MATLAB Compiler



- Package as a standalone executable
- Package as an Excel Add-in
- Package as a Map Reduce Application to run in Apache Hadoop



#### **MATLAB Compiler Workflow**







#### **MATLAB** in the Enterprise

- Goals:
  - Enable customers to rapidly develop and deploy MATLAB applications onto the desktop.
  - Seamlessly integrate MATLAB generated components into other languages, applications and enterprise production systems.



# Share with non-MATLAB Users: MATLAB Compiler SDK





#### MATLAB Compiler SDK Workflow





#### **MATLAB Production Server**

- Directly deploy MATLAB programs into production
  - Centrally manage multiple MATLAB programs & MCR versions
  - Automatically deploy updates without server restarts
- Scalable & reliable
  - Service large numbers of concurrent requests
  - Add capacity or redundancy with additional servers
- Use with web, database & application servers
  - Lightweight client library isolates MATLAB processing
  - Access MATLAB programs using native data types





# **Calling Functions**





#### **Production Deployment Workflow**





#### **Central Management**

#### Centrally run and manage numerical algorithms

- Simplifies applications
  - Analytics run within datacenter
  - UI and business functionality
- Simplifies change management
  - Independent update of numerical algorithms





### **Benefits of the MATLAB Production Server**

- Enterprise class framework for running packaged MATLAB programs
- Server software
  - Manages packaged MATLAB programs & worker pool
- Manages MATLAB Runtime libraries for multiple releases
  - MATLAB Compiler Runtime (MCR) for various versions of MATLAB from R2012b onward live on the server.
  - Compiled MATLAB analytics from different versions of MATLAB from R2012b onward can co-exist on the server.
- Lightweight client library for .NET and Java frameworks, C/C++, and Python are supported.
- Reduces the Total Cost Of Ownership for building and supporting in-house financial analytics development and deployment.



#### Flexible System to Manage

- Licensed on workers/worker threads not on Broker process
- Infinitely configurable to take advantage of existing inhouse hardware
- Hosted Analytics platform that is installed in house enabling rapid updating and deployment of analytics/models
- Accessed by any front end application by means of thin client communications library, or through JSON/Restful interface



# **MATLAB Production Server ... Customer Configurations (1)**

- Request Broker and 24 worker processes
- Can have multiple instances of the MATLAB Production Server
  - 2 request brokers and twelve worker servers
  - 3 request brokers and eight worker servers
  - 4 request brokers and six worker servers
  - 6 request brokers and four worker servers
- Increase capacity by increasing number of servers and combining them
  - One request broker and 48 worker processes





## **MATLAB Production Server ... Customer Configurations (2)**





#### **Easy Integration**

- IT can efficiently integrate models/analytics in to production system
- Seamless integration into .NET and Java development environments ... only a few lines of code required
- Time to deploy greatly reduced
  - Only need to supply function signature from Quant to IT for implementation into Enterprise system
  - Updates easily implemented and redeploy new model version



#### Integration Example ... Java

- Reference client library
- Define function signatures
- Define connection (server & CTF)

MATLAB Function

function B = BlackScholes(CP,S,X,T,r,v)

Enterprise Application
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;;

public interface BlkSchInterface
{ double BlackScholes(string C, double S, double X, double T, double r, double v); }

MWClient client = new MWHttpClient();
BlkSchInterface blksch\_1 = client.CreateProxy(new URL("http://192.168.240.220:9910/BlkSch1"), BlkSchInterface);
double optionprice = blksch\_1.BlackScholes("c", BasePrice.Value, 1, 1, 1, Volatility.Value));



# Integration Example .....NET

- Reference client library
- Define function signatures
- Define connection (server & CTF)

| MATLAB Function |  |
|-----------------|--|
|                 |  |
|                 |  |

function B = BlackScholes(CP,S,X,T,r,v)

 $\begin{array}{l} d2=d1\text{-}v^*\text{sqrt}(T);\\ \text{if } CP=='c'\\ B=(S^*\text{normcdf}(d1)\text{-}X^*\text{exp}(\text{-}r^*T)^*\text{normcdf}(d2))\text{-}\text{noise}; \end{array}$ 



#### **JSON/Restful API**

- Easy API to use
- No client library required

#### **MATLAB** Function

function B = BlackScholes(CP,S,X,T,r,v)

d2=d1-v\*sqrt(T); if CP=='c' B = (S\*normcdf(d1)-X\*exp(-r\*T)\*normcdf(d2))-noise;

#### **Enterprise Application**

var cp = parseFloat(document.getElementById('coupon\_payment\_value').value); var np = parseFloat(document.getElementById('num\_payments\_value').value); var ir = parseFloat(document.getElementById('interest\_rate\_value').value); var vm = parseFloat(document.getElementById('facevalue\_value').value);

// A new XMLHttpRequest object
var request = new XMLHttpRequest();

//Use MPS RESTful API to specify URL
var url = "http://localhost:9910/BondTools/pricecalc";

//Use MPS RESTful API to specify params using JSON
var params = { "nargout":1,"rhs": [vm, cp, ir, np] };

request.open("POST", url);

#### //Use MPS RESTful API to set Content-Type

request.setRequestHeader("Content-Type", "application/json");

request.send(JSON.stringify(params));



# Where we are today with MATLAB Production Server

# R2016a



Improved throughput and overall performance

**1.5 Gb/sec transfer rate** for 1 through 1000 concurrent users

**50 µsec latency** for 1 through 1000 concurrent users





# MATLAB Development to Production Workflow





# **Reduce Cost of Building and Deploying In-House Analytics**

- Single development environment for model development and testing.
- Quants/Analysts/Financial Modelers do not have to rewrite code in another language.
- IT can efficiently integrate models/analytics in to production system
- Time to deploy greatly reduced
  - Only need to supply function signature from Quant to IT for implementation into Enterprise system
  - Updates easily implemented and redeploy new model version



# Separation of Roles in Building and Deploying In-House Analytics





# **Desktop and Server Based Excel Add-ins**

Desktop Excel Add-ins with compiler

XLA





#### Sharing algorithms across the organization





# Web Applications - Using JAVA, C# client libraries

Architecture



HTML & JavaScript front end





#### **Integration with Databases**

- Optimize numerical processing within databases
  - Request MATLAB analytics directly from database servers
  - Trigger requests based upon database transactions
- Minimize data handling using Database Toolbox





#### **Integration with Databases**

- Native in database JSON/Restful call
- ORACLE, MS SQL Server, SAS support this in database





# **MATLAB Components in Production Databases**

MATLAB Production Server can provide predictive analytics in the database

- Oracle (Java, .NET)
- Microsoft SQL Server (.NET)
- Microsoft Access (.NET)
- Netezza (JAVA)
- SAS (JAVA)
- Teradata (JAVA)
- Thin client with MPS
  - Java and .NET supported
- Central repository for models ... Simplifies change management





## **MATLAB Big Data Analytic Components - Hadoop**



# Compiler generated Hadoop components on each node of Hadoop Grid



#### **MATLAB Production Server Use Cases**



**Enterprise Service/Messaging Buses**