

MATLAB for Data Analytics and Machine Learning

Ad-hoc Desktop data analysis

Suite of Shared MATLAB Analytics

Enterprise Integration for Real-time analytics

Sundar Umamaheshwaran Amit Doshi Application Engineer-Technical Computing

Data Analytics Workflow

Building algorithms, math models

Making business decisions

Integrated Analytics- Success Stories

- 1. Taking Business Decisions Using Historical Data
- 2. Condition Monitoring On Live Data
- 3. Taking Analytics To Embedded Device

Success Story 1: Daimler - Data Driven Fuel Cell Vehicle Design

Challenge

- Understand vehicle usage patterns
- Plan hydrogen refueling infrastructure
- Understand how driving patterns affect vehicle performance

Solution

- Connect to data using Database Toolbox
- Use MATLAB to explore data and identify insights
- Visualize data on charts and maps and share via automated reports and web applications

Results

Millions of miles of drive files translated into meaningful insights

Vehicle health & troubleshooting

Planning hydrogen fuel-station locations

Optimized engine control systems based on how people drive

Success Story 2: Safran Online Engine Health Monitoring Solution

- Monitor Systems
 - Detect failure indicators
 - Predict time to maintenance
 - Identify components
- Improve Aircraft Availability
 - On time departures and arrivals
 - Plan and optimize maintenance
 - Reduce engine out-of-service time
- Reduce Maintenance Costs
 - Troubleshooting assistance (isolate faulty element)
 - Limit secondary damage

Desktop

- Ad-hoc data analysis
- Analytics to predict failure

Compiled Shared

- Suite of MATLAB Analytics
- Shared with other teams
- Proof of readiness

Enterprise Integration

- Real-time analytics
- Integrated with maintenance and service systems

Success Story 3: iSonea Cloud and Embedded Analytics

Challenge

 Develop an acoustic respiratory monitoring system for wheeze detection and asthma management

Solution - Analytics in cloud and embedded

- Captures 30 seconds of windpipe sound and processes the data locally to clean up and reduce ambient noise
- Invokes spectral processing and pattern-detection analytics for wheeze detection on iSonea server in the cloud
- Provides feedback to the patient on their smartphone

Results

Eliminates error-prone self-reporting and visits to the doctor

Aeronautics

Automotive

Retail

Finance

Industrial Automation

Oil & Gas

Predictive Maintenance

Retail Analytics

Prognostics

Fleet Analytics

Health Monitoring

Operational Analytics

Risk Analysis

Supply Chain

Mfg Process Analytics

Asset Analytics

Healthcare Analytics

Medical Devices

Healthcare Management

Logistics

Example 1: Predictive Maintenance of Turbofan Engine

Background:

- Sensor data from 100 engines of the same model
- The manufacturer recommends that we perform maintenance after every 125 flights

Questions:

- Are we wasting money by doing maintenance more often than needed?
- Is there a better way to identify when servicing is needed so we can be smarter about scheduling our maintenance.

- Data provided by NASA PCoE
- http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

Example 2: Sensor Data Analysis and Classification

Dataset courtesy of:

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012 http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Data Analytics Workflow: Data Acquisition

Business Systems

Smart Connected Systems

Data Acquisition

- Engineering, Scientific, and Field
- Business and Transactional

Data Analytics

- Data Pre-processing
- Feature Extraction
- Building algorithms, math models
- Making business decisions

Analytics Integration

- Integrate algorithms with IT
- Analytics run on Embedded targets

Business Systems

Smart Connected Systems

Analytics Integration

· Integrate algorithms with IT

· Analytics run on Embedded targets

· Data Pre-processing

Building algorithms, math models
Making business decisions

- Feature Extraction

Data Analytics Workflow: Data Acquisition

Data Analytics Workflow: Data Acquisition

· Making business decisions

Servers and Databases

Data Analytics Workflow: Data Analytics

Business Systems

Smart Connected Systems

Data Acquisition

- Engineering, Scientific, and Field
- · Business and Transactional

Data Analytics

- Data Pre-processing
- Feature Extraction
- Building algorithms, math models
- Making business decisions

Analytics Integration

- Integrate algorithms with IT
- Analytics run on Embedded targets

Example 1: Predictive Maintenance of Turbofan Engine

Background:

- Sensor data from 100 engines of the same model
- The manufacturer recommends that we perform maintenance after every 125 flights

Questions:

- Are we wasting money by doing maintenance more often than needed?
- Is there a better way to identify when servicing is needed so we can be smarter about scheduling our maintenance.

- Data provided by NASA PCoE
- http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

Why perform predictive maintenance?

- Example: faulty braking system leads to windmill disaster
 - https://youtu.be/-YJuFvjtM0s?t=39s
- What could have caused this?
 - No scheduled maintenance OR
 - Edge case scenarios might not taken into account OR
 - Anything else
- Things under control:
 - Carry on maintenance

Types of Maintenance

- Reactive Do maintenance once there's a problem
 - Example: replace car battery when it has a problem
 - Problem: unexpected failures can be expensive and potentially dangerous
- Scheduled Do maintenance at a regular rate
 - Example: change car's oil every 5,000 miles
 - Problem: unnecessary maintenance can be wasteful; may not eliminate all failures
- Predictive Forecast when problems will arise
 - Example: certain GM car models forecast problems with the battery, fuel pump, and starter motor
 - Problem: difficult to make accurate forecasts for complex equipment

Data Analytics Workflow: Data Analytics

Monitoring Equipment Health

- We have clean data. How can we use these signals to determine if the equipment is in normal conditions?
 - Control Charts
- Challenge:
 - Number of signals -14
 - Difficult to say when do we have a problem
 - Is 1 sensor going outside the bounds for 1 point a problem?
 - 5 sensors for 3 points?
 - 10 sensors for 20 points?
 - Control charts become difficult to use in these cases, so we will bring in dimension reduction techniques to help us.

>> controlchart(sensorData.LPCOutletTemp,'chart','i')

Business Systems

Smart Connected

Data Analytics Workflow: Data Analytics

Principal Components Analysis – what is it doing?

Summary: Data Analytics for Predictive Maintenance of Turbofan

Example 2: Sensor Data Analysis and Classification

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012 http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Why Machine Learning?

Machine Learning Workflow

Train: Iterate till you find the best model using historical data

Predict: Integrate trained models into applications

Different Types of Machine Learning

Summary: Machine learning for Sensor Data Classification

- •K-Mean clustering
- Naïve Bayes
- •SVM
- Classification Trees
- •KNN
- Neural Networks
- Evaluation metrics

$$-Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

■ROC

Learn Further: MATLAB for Machine Learning

Classification

Build models to classify data into different categories.

Regression

Build models to predict continuous data.

Clustering

Find natural groupings and patterns in data.

Algorithms: support vector machine (SVM), boosted and bagged decision trees, k-nearest neighbor, Naïve Bayes, discriminant analysis, neural networks, and more

» Get started with introductory examples

Applications: credit scoring, tumor detection, image recognition

Algorithms: linear model, nonlinear model, regularization, stepwise regression, boosted and bagged decision trees, neural networks, adaptive neuro-fuzzy learning, and more

» Get started with introductory examples

Applications: electricity load forecasting, algorithmic trading

Algorithms: k-means, hierarchical clustering, Gaussian mixture models, hidden Markov models, self-organizing maps, fuzzy c-means clustering, subtractive clustering, and more

» Get started with introductory examples

Applications: pattern mining, medical imaging, object recognition

Go to MATLAB Help → 🚳

- Functions
- Classes
- Examples and How-To
- Concepts

Data Analytics Workflow: Analytics Integration

Data Acquisition

Engineering, Scientific, and Field

· Business and Transactional

- · Data Pre-processing
- Feature Extraction
- Building algorithms, math models
- · Making business decisions

Smart Connected

Analytics Integration

- Integrate algorithms with IT
- Analytics run on Embedded targets

Integrate analytics with your enterprise systems

MATLAB Compiler and MATLAB Coder

Summary: Data Analytics Workflow

Business Systems

Smart Connected Systems

Data Acquisition

- Engineering, Scientific, and Field
- Business and Transactional

Data Analytics

- Data Pre-processing
- Feature Extraction
- Building algorithms, math models
- Making business decisions

Analytics Integration

- Integrate algorithms with IT
- Analytics run on Embedded targets

MATLAB: Single Platform

Key Takeaways: Data Analytics with MATLAB

- No need to be an expert in everything...... and if you can still develop & test faster!
- Direct access to sensors/HW (& aggregators)
- Integrated workflow from a single environment

Standalone

Excel

- Access → Rapid/Iterative Analysis → Deployment
- Leverage parallel computing to scale-up your analytics to large datasets

Hadoop

Eliminate need to recode by deploying/embedding algorithms into sensors or production

MATLAB

MathWorks Services

Consulting

- Integration
- Data analysis/visualization
- Unify workflows, models, data

www.mathworks.com/services/consulting/

Training

- Classroom, online, on-site
- Data Processing, Visualization, Deployment, Parallel Computing

www.mathworks.com/services/training/

Questions?