

MATLAB for Use in Finance Portfolio Optimization (Mean Variance, CVaR & MAD) Market, Credit, Counterparty Risk Analysis <u>and beyond</u>

Marshall Alphonso Marshall.Alphonso@mathworks.com

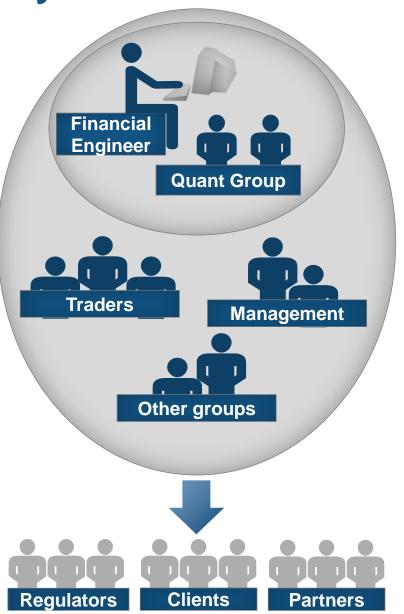
Senior Application Engineer MathWorks

Agenda

📣 Introduction: Knowing your risk

Overview of the MATLAB Solution

- Connect to financial data sources
- Perform financial modeling & analysis
- Share results & deploy applications


Finance Application Examples

- Portfolio Construction using Frameworks
- Evaluating Risks
- Constructing your own Portfolio Management Framework

Challenges in Financial Analysis

- Volatile markets
 - Ever-changing needs
- Lack of computing power
 Large data, large models
- Increased transparency
 - More auditing and regulation
 - More sharing with colleagues

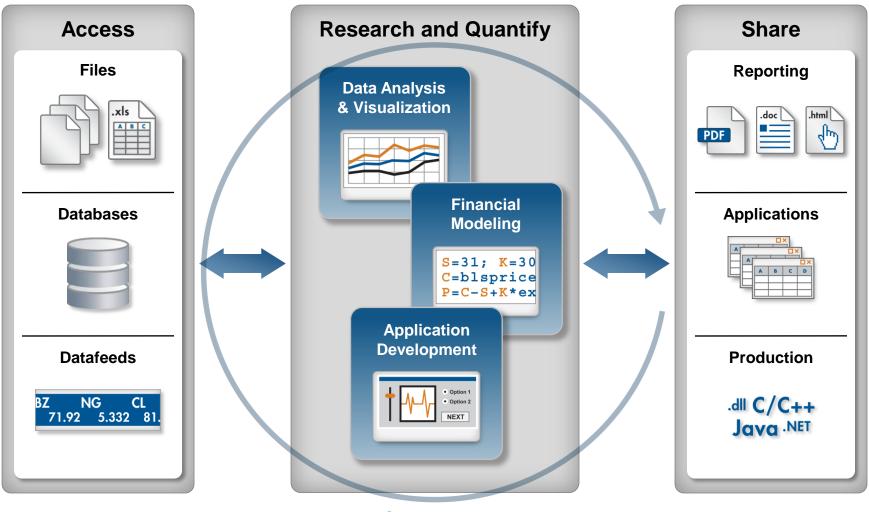
Challenges Faced During Model Development

Traditional Approach	Challenge
Off-the-shelf software	Inability to customize
Third-party consulting	Lack of transparency
Spreadsheets, Excel	Subpar computational speed, limited data size
In-house development with traditional languages	Long development time
Combination of the above	Inefficiencies in Integration & Automation

Who uses MATLAB in Financial Services?

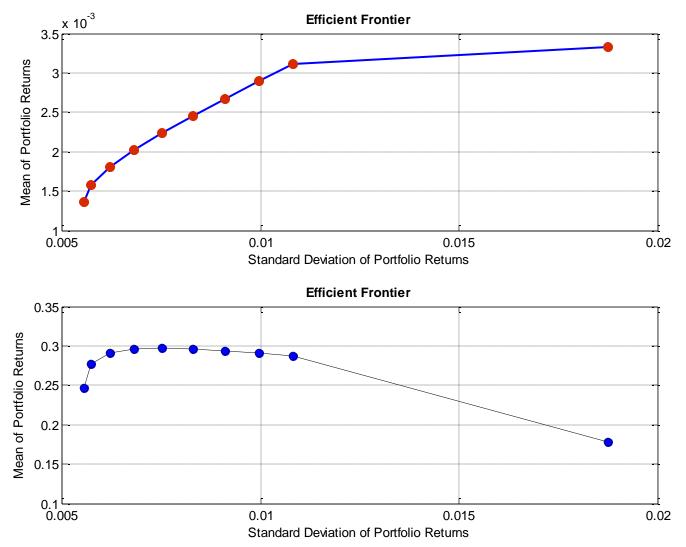
- The top 15 assetmanagement companies
- 9 of the top 10 U.S. commercial banks
- 12 of the top 15 hedge funds
- The reserve banks of all
 OECD member countries
- The top 3 credit rating agencies

Agenda


Introduction: Knowing your risk

Overview of the MATLAB Solution

- Connect to financial data sources
- Perform financial modeling & analysis
- Share results & deploy applications
- Finance Application Examples
 - Macroeconomic modeling & forecasting
 - Cash flow hedging & scenario analysis
 - Credit risk assessment


Computational Finance Workflow

Automate

Portfolio Optimization

Modeling Market Risk Factor Time Series

Need model that captures:

- Correlation & overall volatilities
- Time-varying volatility
- Fat-tailed distributions

Candidate model: Geometric Brownian Motion

- Correlation & overall volatilities
- Time-varying volatility
- Fat-tailed distributions

Market Risk Using Copulas, GARCH & EVT "Forecasting risk factors"

Need model that captures:

Time-varying volatility

- Fat-tailed distributions
 Generalized Pareto
- Factor Correlations

Market Risk Using Copulas & Extreme Value Theory "Asymmetric GARCH using a GJR Model"

Model returns using a asymmetric GARCH Model

Similar to QGARCH, The Glosten-Chris Hughton-Runkle GARCH (GJR-GARCH) model by Glosten, Jagannathan and Runkle (1993) also models asymmetry in the ARCH process. The suggestion is to model $\epsilon_t = \sigma_t z_t$ where z_t is i.i.d., and $\sigma_t^2 = K + \delta \sigma_{t-1}^2 + \alpha \epsilon_{t-1}^2 + \phi \epsilon_{t-1}^2 I_{t-1}$ where $I_{t-1} = 0$ if $\epsilon_{t-1} \ge 0$, and $I_{t-1} = 1$ if $\epsilon_{t-1} < 0$.

- Estimate a Marginal CDF Kernel + Pareto Tails
- Fit a Student-T Copula and induce correlation amongst the simulated residuals
- Estimate a VaR & CVaR

The GARCH Model "Non-symmetric, Non-Gaussian residuals"

$$\mathbf{AR} \qquad \qquad \mathbf{Y}_{t} = C + \sum_{i=1}^{R} \phi_{i} y_{t-i} + \sum_{j=1}^{M} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t} \qquad \qquad \mathbf{ARMA}$$
$$\sigma_{t}^{2} = \kappa + \sum_{i=1}^{P} G_{i} \sigma_{t-i}^{2} + \sum_{j=1}^{Q} A_{j} \varepsilon_{t-j}^{2}$$
$$\varepsilon_{t} = \sigma_{t} z_{t}$$
$$z_{t} \sim N(0,1) \qquad \qquad \qquad \mathbf{GARCH} \qquad \mathbf{ARCH}$$

Credit Classification "Logistic Regression Vs. TreeBagger"

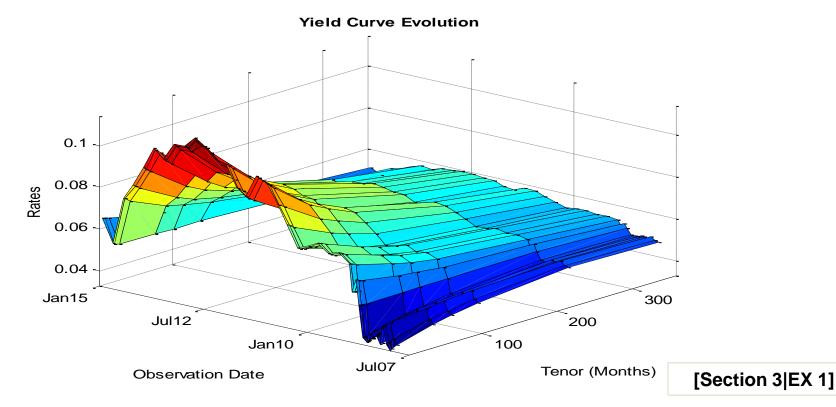
L	ogistic:	Training	g Set] Ac	tual Vs E	Estimated	d Credit	Ratings	
CCC -	2.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	 15.00%
В -	1.43%	3.71%	2.29%	0.00%	0.00%	0.00%	0.00%	
BB -	0.00%	4.29%	16.29%	5.14%	0.29%	0.00%	0.00%	 10.00%
BBB -	0.00%	0.00%	3.71%	12.86%	3.71%	0.00%	0.00%	
A -	0.00%	0.00%	0.00%	1.71%	9.14%	4.00%	0.00%	 5.00%
AA -	0.00%	0.00%	0.00%	0.00%	2.86%	9.14%	1.14%	0.0070
AAA -	0,00%	0,00%	0,00%	0,00%	0,00%	1 <u>,</u> 43%	14 <mark>,86%</mark>	0.00%
	دى دى	\$	$\mathcal{B}_{\mathcal{D}}$	22	Y	A A	Z	 0.00%
	S		42	BBB		Y	AA	

Logistic: [Testing Set] Actual Vs Estimated Credit Ratings

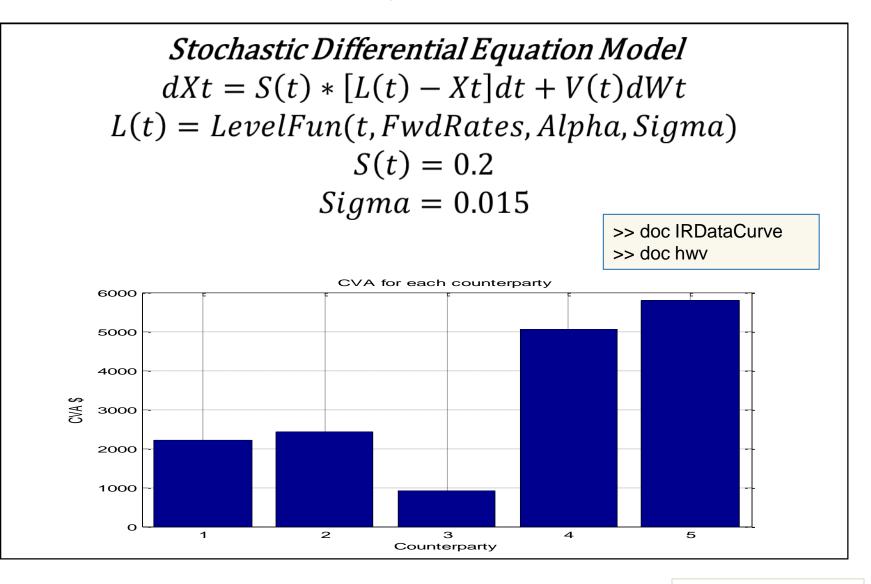
CCC -	2.65%	0.39%	0.00%	0.00%	0.00%	0.00%	0.00%	_	15.00%
B -	1.09%	2.40%	1.06%	0.00%	0.00%	0.00%	0.00%		10.0070
BB -	0.00%	5.70%	17.06%	5.42%	0.03%	0.00%	0.00%	_	10.00%
BBB -	0.00%	0.00%	3.07%	14.57%	3.38%	0.00%	0.00%		10.0070
A -	0.00%	0.00%	0.00%	2.21%	10.36%	1.62%	0.00%		5.00%
AA -	0.00%	0.00%	0.00%	0.00%	2.18%	10.16%	1.01%		5.00 /8
AAA -	0 <u>,</u> 00%	0 <u>.</u> 00%	0 <u>.</u> 00%	0 <u>.</u> 00%	0 <u>.</u> 00%	1 <u>.</u> 76%	13,90%		0.00%
_		\$	22	2	Y	Z	Y		0.00%
	ن دی		42	BB		Y	A		

>> doc mnrfit >> doc mnrval >> doc treebagger

>> doc confusionmat


Popular in classifying the credit quality of instruments is the use of logistic regression. This example illustrates this classification but takes a step further by using a Tree Bagger classifier.

Credit Value Adjustment – Expected loss on portfolio


$$CVA = (1 - R) \int_0^T discEE(t) * ProbOfDefault(t)$$

- 1. Given an interest rate exposed portfolio Swap Portfolio
- 2. Generate Yield Curve Scenarios Hull White Short Rate model
- 3. Calibrate Probability of Default Curve for each Counter Party

Evaluate Counterparty Exposures

Connect to Data from Various Sources

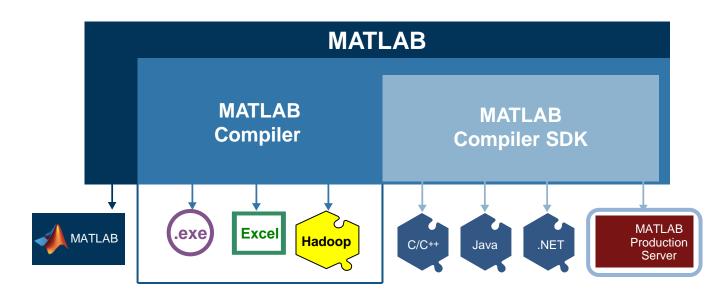
- Excel spreadsheets and flat files
- ODBC or JDBC compliant databases
- Data feeds including Bloomberg, Reuters, Factset[®], eSignal[®] and others
- Web services (SOAP)

	🕹 Import - C:\Wo	rk\Demos\Energy\LMI	PDataDriven\DALMP	20100601.csv					- I 🗆 I I
	_						A		380:
	Import as:	Range:	Convert Replace		el dates to n-numeric with	datenum0.0	± = [✓ Import	
	IMPORTED DATA		L	UNIMPO	UNIMPORTABLE CELLS			- IMPORT	
	A	В	C D	E	F	G	н	I	J
	1 C 2 C	Day-Ahead WW_DALM							
	3 C 4 H	Date: 06/01 Local Date Local	Hour Location ID	Location N	Location T I	ocational E	neray Co	Congestic	n Margin
	5 H	LocalDate Local	HourEn LocationID	LocationNat	LocationTyp			Congesti	ond Margit
	7 D	73429010 73429010	1 6352	HINTORN HC.AYOR	HUB NODE	37.0200	37.1900	1	0 (
	8 D 9 D	73429010 73429010	1 6354	HC.CARPT	HUB NODE	36.8400 36.9900	37.1900 37.1900		0 -(
Visual Query Builder	10 D	72420010		~~~~~~	HUB MODE HUB MODE	37.1100 37.4900	37.1900 37.1900		0 -0
Query Display Help	-	_			HUB NODE HUB NODE	36.9900 37.9700	37.1900 37.1900		0 -(
Data operation				эт.J	HUB NODE	37.2300 37.2700	37.1900 37.1900		0 (
Select Insert Data source	Tables	Fields	i			57.2700	57.1500	-	
BondData Catalog EnergyData default>	- BondData2011	0927 A Type Name		<u> </u>		-	-	-	-
Excel Files Historical Bund		State		E					
< III > <default></default>	•	- Coupo	on	-					
Advanced query options All Where	Group by	Having	Order by						
Distinct	Group by	naving		¢					
SQL statement									
SELECT ALL Type,Name,Price,Coupon,Maturity FRC	DM BondData2011092	27							
MATLAB workspace variable									
Data			Execute						
Workspace variable Size		Datafeed							• X
data 1x1	1636262	Connection	Data						
		Enter Security:	Choose Market:	Data Select	tion:				
			Equity 💌	Ourrel			Default Fi		
		Add Selected Secur	Lookup	Intrad Data D	ay Ticks ate: 01/11/12	An	er_Hours_ nualized_G		
		DKC Equity	nues.	Interva	l (minutes);	As	 k_Real_time k_Size	•	
		IXG Equity IXJ Equity	_	Histor From D		Bid		/_Volume	
		Load S	ave Delete	To Date		Bid	_Real_time _Size		-11
		Current Conner		Period:	daily		ok_Value		+
		Yahoo	×		ariable: data		Get Data	Ον	erride
			Ţ	Ask Size	= 55.73				^
		Status: Connected: Y	-	514_0126	-				
			anoo						*
		Help							Close

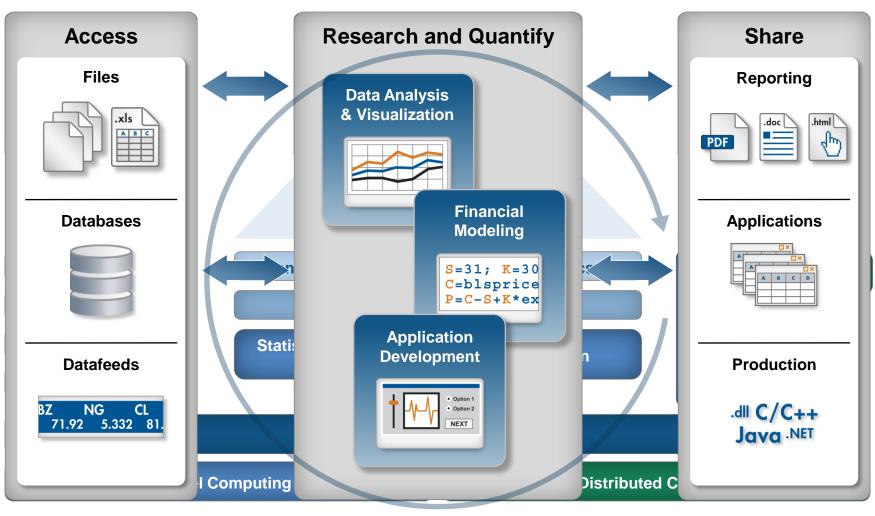
Leverage Built-in Functions to Save Time

Mathematics

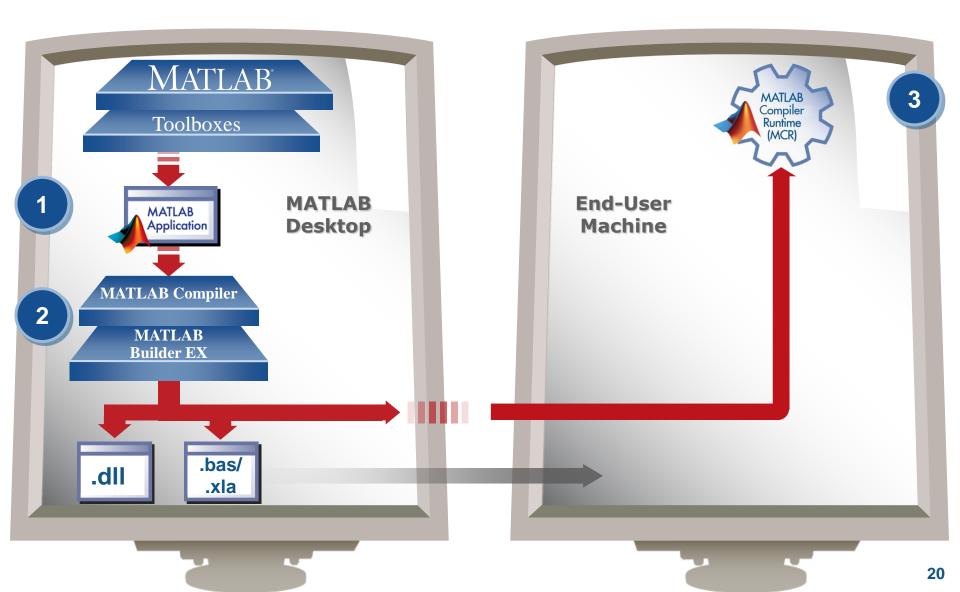
- Regression (Linear, Non-Linear)
- Curve Fitting
- Probability Distributions, RNG
- Clustering
- Multivariate & Factor Analysis
- Predictive Modeling, AI
- Optimization, Parameter Estimation


Financial Modeling

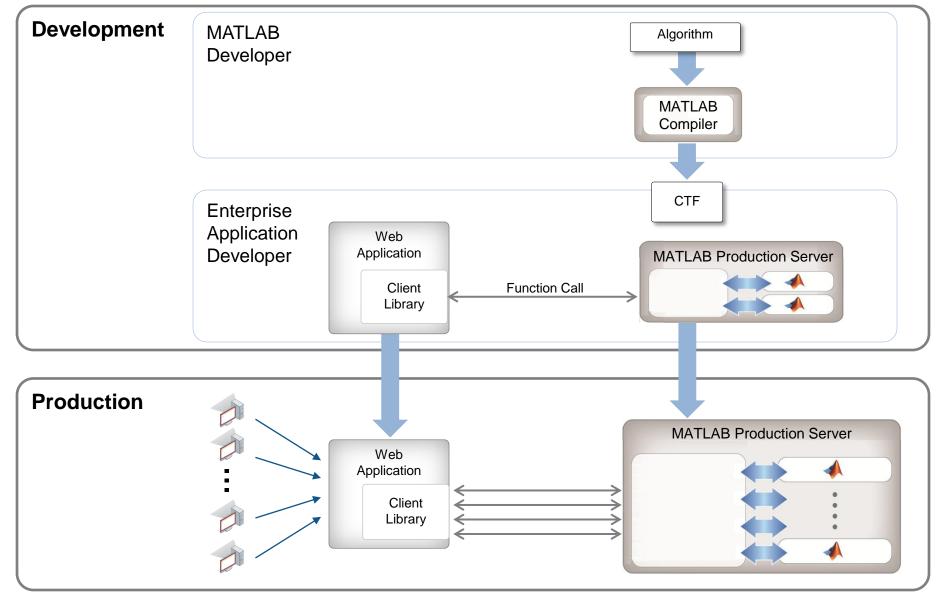
- Portfolio Optimization & Analysis
- Derivative Pricing & Hedging
- Yield Curve Modeling
- Monte Carlo Simulation
- Risk Quantification
- ARMA/GARCH Analysis


Sharing MATLAB Applications

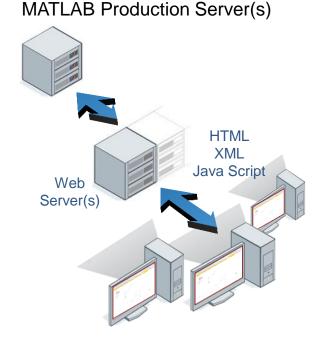
- Share applications with those who do not need MATLAB
- Royalty free
- MATLAB Production Server provides most efficient path for secure and scalable enterprise applications


Financial Modeling Workflow

Automate



Deploying MATLAB Applications to Excel

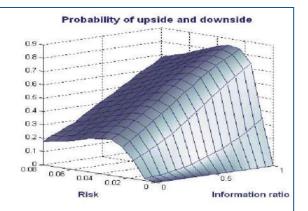

Production Deployment Workflow

Value of MATLAB Production Server

- Directly deploy MATLAB programs into production
 - Supports multiple MATLAB programs and MCR versions
- Scalable & reliable
 - Service large numbers of concurrent requests
 - Add capacity or redundancy with additional servers
- Use with web, database & application servers
 - Lightweight client library isolates MATLAB processing

CAMRADATA Models Dependencies for Quantitative Risk Assessment with MathWorks Tools

Challenge


Rapidly develop quantitative tools for factor analysis, risk analysis, and defensive asset allocation

Solution

Use MATLAB to model complex non-linear dependencies between assets, liabilities, and economic variables using copulas

Results

- Development time reduced by 90 percent
- Risk calculated in hours, not weeks
- Diverse skill sets leveraged

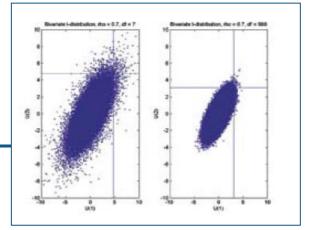
Risk-assessment model developed in MATLAB.

"Using MATLAB we can build a model in one morning. It would take two weeks to write the equivalent code in Visual Basic."

> Martyn Dorey CAMRADATA

Capgemini Helps Clients Achieve Basel II Compliance and Deliver Economic Capital, Risk, and Valuation Models with MATLAB

Challenge


Enable banking clients to meet Basel II regulatory guidelines and perform other risk management tasks

Solution

Use MATLAB to develop risk management models and to perform valuations of complex products

Results

- Strong competitive advantage established
- Scalable solution delivered
- Customer portfolio revalued

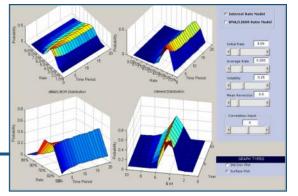
Scatterplots showing 500,000 simulations drawn from bivariate t-copulas with the same correlation coefficient but differing degrees of freedom.

"With its computational power, matrix infrastructure, and ability to perform Monte Carlo simulations, MATLAB gives us a competitive advantage in performing complex risk analyses."

> Dr. Marco Folpmers Capgemini

Intuitive Analytics Uses MATLAB to Build Quantitative Tools to Help Bond Issuers Manage Risk

Challenge


Build and market a quantitative tool for reducing expected cost and risk for municipal bond issuers

Solution

Use MathWorks tools to develop algorithms, visualize results, and simplify deployment of an advanced analytical tool

Results

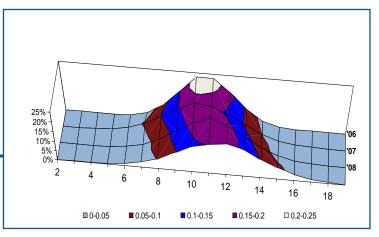
- Development productivity increased by 90%
- Deployment simplified
- Visual environment created

Using MATLAB technical computing software to provide visual representations of interest rate models.

"Because MATLAB enables us to build and distribute applications to analysts that are accessible from Excel, we are quickly bringing to market products that are adopted and deployed by investment banks." Peter Orr Intuitive Analytics

IPD Develops and Deploys Real Estate Cash Flow Models with MathWorks Tools

Challenge


Create cash flow models of real estate investment portfolios and project returns using Monte Carlo simulations

Solution

Use MATLAB and MATLAB Builder NE to develop optimization algorithms, build financial models, and deploy solutions

Results

- Development time cut by 16 weeks
- Updates completed in hours
- Deployment simplified

"The only other approach we seriously considered involved developing a class library in .NET and C#. Development, debugging, and testing would have taken us 37 weeks. Using MATLAB, we completed the project in 21 weeks."

> Peter McAnena Investment Property Databank

Nykredit Develops Risk Management and Portfolio Analysis Applications to Minimize Operational Risk

Challenge

Enable financial analysts to make rapid, fact-based decisions by providing them with direct access to risk management and portfolio analysis information

Solution

Develop and deploy easy-to-use graphical financial analysis applications using MATLAB and MATLAB Compiler

Results

- Productivity increased threefold
- Operational risk mitigated
- Analysis time reduced from days to hours

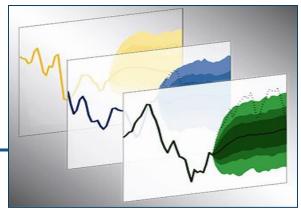
Nykredit's tool for calculating and visualizing risk statistics. The plot shows portfolio expected tracking error broken out by industry.

"Data handling, programming, debugging, and plotting are much easier in MATLAB, where everything is in one environment. For performance calculation GUIs, MATLAB provides a real error-checked application that makes cool customized plots for client reports. This has turned a several-hour task in a spreadsheet into a two-minute no-brainer."

> Peter Ahlgren Nykredit Asset Management

Macroeconomic Modeling and Inflation Rate Forecasting at the Reserve Bank of New Zealand

Challenge


Support New Zealand monetary policy with a theoretically well-founded model

Solution

Use MATLAB to analyze and forecast macroeconomic variables, and communicate results to stakeholders

Results

- Entire workflow completed in a single environment
- Code shared with other central banks and financial institutions
- Technical rigor of macroeconomic forecasting increased

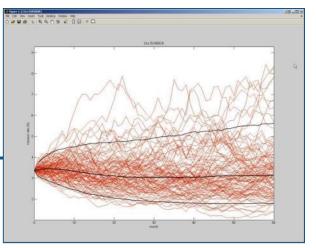
Sample fancharts produced by RBNZ's macroeconomic model.

"With all RBNZ models now implemented in MATLAB, the RBNZ has a common platform for evaluating the economy and making informed decisions."

> Jaromir Benes International Monetary Fund

Robeco Develops Quantitative Stock Selection and Portfolio Optimization Models with MathWorks Tools

Challenge


Develop, distribute, and maintain quantitative tools for portfolio construction and management

Solution

Use MATLAB and MATLAB Builder NE to develop algorithms, build quantitative models, and deploy solutions

Results

- Applications updated faster
- Black-box solutions eliminated
- Scalability and flexibility increased

Interest rate paths for the risk analysis of a savings product.

"Unlike companies that rely on off-theshelf quantitative analysis solutions, we can see our process improving all the time. We have the flexibility to continuously improve our algorithms and models in MATLAB—and that is a big advantage."

> Willem Jellema Robeco

MATLAB Solutions

Challenge	Solution
Inability to customize	Flexible modelingComplete development environment
Lack of transparency	White-box modelingViewable-source functions
Subpar computational speeds	 Powerful computation engine Run fast Monte-Carlo simulations
Long development time	<i>Quick prototyping</i>Focus on modeling not programming
Inefficiencies in Integration	 Easy to Integrate & Deploy Point-and-click workflow

Questions