MATLAB in Digital Signal Processing and Communications

Jan Mietzner (janm@ece.ubc.ca)

MATLAB Tutorial October 15, 2008

Objective and Focus

- Learn how MATLAB can be used efficiently in order to perform tasks in digital signal processing and digital communications
- Learn something about state-of-the-art digital communications systems and how to simulate/analyze their performance

- OFDM is extremely popular and is used in e.g.
 - Wireless LAN air interfaces (Wi-Fi standard IEEE 802.11a/b/g, HIPERLAN/2)
 - ► Fixed broadband wireless access systems (WiMAX standard IEEE 802.16d/e)
 - Wireless Personal Area Networks (WiMedia UWB standard, Bluetooth)
 - ▶ Digital radio and digital TV systems (DAB, DRM, DVB-T, DVB-H)
 - ► Long-term evolution (LTE) of third-generation (3G) cellular systems
 - ► Cable broadband access (ADSL/VDSL), power line communications

MATLAB Tutorial

Objective and Focus

- Learn how MATLAB can be used efficiently in order to perform tasks in digital signal processing and digital communications
- Learn something about state-of-the-art digital communications systems and how to simulate/analyze their performance

Focus

- Wireless multi-carrier transmission system based on Orthogonal Frequency-Division Multiplexing (OFDM) including
 - ▶ a simple channel coding scheme for error correction
 - ▶ interleaving across subcarriers for increased frequency diversity
- OFDM is extremely popular and is used in e.g
 - ▶ Wireless LAN air interfaces (Wi-Fi standard IEEE 802.11a/b/g, HIPERLAN/2
 - ► Fixed broadband wireless access systems (WiMAX standard IEEE 802.16d/e)
 - Wireless Personal Area Networks (WiMedia UWB standard, Bluetooth)
 - ▶ Digital radio and digital TV systems (DAB, DRM, DVB-T, DVB-H)
 - ▶ Long-term evolution (LTE) of third-generation (3G) cellular systems
 - ► Cable broadband access (ADSL/VDSL), power line communications

Objective and Focus

- Learn how MATLAB can be used efficiently in order to perform tasks in digital signal processing and digital communications
- Learn something about state-of-the-art digital communications systems and how to simulate/analyze their performance

Focus

- Wireless multi-carrier transmission system based on Orthogonal Frequency-Division Multiplexing (OFDM) including
 - a simple channel coding scheme for error correction
 - interleaving across subcarriers for increased frequency diversity
- OFDM is extremely popular and is used in e.g.
 - ► Wireless LAN air interfaces (Wi-Fi standard IEEE 802.11a/b/g, HIPERLAN/2)
 - ► Fixed broadband wireless access systems (WiMAX standard IEEE 802.16d/e)
 - ► Wireless Personal Area Networks (WiMedia UWB standard, Bluetooth)
 - ▶ Digital radio and digital TV systems (DAB, DRM, DVB-T, DVB-H)
 - ► Long-term evolution (LTE) of third-generation (3G) cellular systems
 - ► Cable broadband access (ADSL/VDSL), power line communications

System Overview

- ullet $N_{
 m c}$: number of orthogonal carriers $(N_{
 m c}:=2^n)$; corresponds to (I)FFT size
- R: code rate of employed channel code $(R := 1/2^m \le 1)$
- f U: vector of info symbols (length RN_c), $\hat{f U}$: corresponding estimated vector
- ullet X: transmitted OFDM symbol (length $N_{
 m c}$), Y: received OFDM symbol
- ⇒ We will consider each block in detail, especially their realization in MATLAB

Info Vector U

- Info symbols U_k carry the actual information to be transmitted (e.g., data files or digitized voice)
- Info symbols U_k typically regarded as independent and identically distributed (i.i.d.) random variables with realizations , e.g., in $\{0,1\}$ (equiprobable)
- ullet We use antipodal representation $\{-1,+1\}$ of bits as common in digital communications

MATI AB realization

• Generate vector ${\bf U}$ of length RN_c with i.i.d. random entries $U_k \in \{-1,+1\}$ ${\bf U} = 2*{\tt round(rand(1,R*Nc))}-1;$

Info Vector U

- Info symbols U_k carry the actual information to be transmitted (e.g., data files or digitized voice)
- Info symbols U_k typically regarded as independent and identically distributed (i.i.d.) random variables with realizations, e.g., in $\{0,1\}$ (equiprobable)
- ullet We use antipodal representation $\{-1,+1\}$ of bits as common in digital communications

MATLAB realization

ullet Generate vector ${f U}$ of length RN_c with i.i.d. random entries $U_k \in \{-1,+1\}$

$$U = 2*round(rand(1,R*Nc))-1;$$

Channel Encoding

- Channel coding adds redundancy to info symbols in a structured fashion
- Redundancy can then be utilized at receiver to correct transmission errors (channel decoding)
- ullet For each info symbol U_k the channel encoder computes N code symbols $X_{k,1},...,X_{k,N}$ according to pre-defined mapping rule \Rightarrow Code rate R:=1/N
- Design of powerful channel codes is a research discipline on its own
- ullet We focus on simple repetition code of rate R, i.e.,

$$\mathbf{U} = [..., U_k, U_{k+1}, ...] \mapsto \mathbf{X} = [..., U_k, U_k, ..., U_{k+1}, U_{k+1}, ...]$$

• Example: $U_k=+1$, R=1/4, received code symbols $+0.9,\,+1.1,\,-0.1,\,+0.5$ \Rightarrow High probability that $U_k=+1$ can be recovered

MATLAB realization

• Apply repetition code of rate R to info vector $\mathbf{U} \Rightarrow \text{Vector } \mathbf{X}$ of length N_c $\mathbf{X} = \text{kron}(\mathbf{U}, \text{ones}(1, 1/R))$;

Channel Encoding

- Channel coding adds redundancy to info symbols in a structured fashion
- Redundancy can then be utilized at receiver to correct transmission errors (channel decoding)
- ullet For each info symbol U_k the channel encoder computes N code symbols $X_{k,1},...,X_{k,N}$ according to pre-defined mapping rule \Rightarrow Code rate R:=1/N
- Design of powerful channel codes is a research discipline on its own
- ullet We focus on simple repetition code of rate R, i.e.,

$$\mathbf{U} = [\,..., U_k, U_{k+1}, ...\,] \mapsto \mathbf{X} = [\,..., U_k, U_k, ..., U_{k+1}, U_{k+1}, ...\,]$$

• Example: $U_k=+1$, R=1/4, received code symbols $+0.9,\,+1.1,\,-0.1,\,+0.5$ \Rightarrow High probability that $U_k=+1$ can be recovered

MATLAB realization

• Apply repetition code of rate R to info vector $\mathbf{U} \Rightarrow \text{Vector } \mathbf{X}$ of length N_c $\mathbf{X} = \text{kron}(\mathbf{U}, \text{ones}(\mathbf{1}, \mathbf{1}/\mathbf{R}))$;

Channel Encoding

- Channel coding adds redundancy to info symbols in a structured fashion
- Redundancy can then be utilized at receiver to correct transmission errors (channel decoding)
- For each info symbol U_k the channel encoder computes N code symbols $X_{k,1},...,X_{k,N}$ according to pre-defined mapping rule \Rightarrow Code rate R:=1/N
- Design of powerful channel codes is a research discipline on its own
- We focus on simple repetition code of rate R, i.e.,

$$\mathbf{U} = [..., U_k, U_{k+1}, ...] \mapsto \mathbf{X} = [..., U_k, U_k, ..., U_{k+1}, U_{k+1}, ...]$$

• Example: $U_k=+1$, R=1/4, received code symbols $+0.9,\,+1.1,\,-0.1,\,+0.5$ \Rightarrow High probability that $U_k=+1$ can be recovered

MATLAB realization

ullet Apply repetition code of rate R to info vector ${f U}$ \Rightarrow Vector ${f X}$ of length N_c

$$X = kron(U, ones(1, 1/R));$$

Interleaving

- Code symbols in vector ${\bf X}$ (length N_c) will be transmitted in parallel over the N_c orthogonal subcarriers (via IFFT operation)
- Each code symbol 'sees' frequency response of underlying channel on particular subcarrier
- Channel impulse response (CIR) is typically considered random in wireless communications (see slide 'Channel Model')
- Channel frequency response of neighboring subcarriers usually correlated; correlation between two subcarriers with large spacing typically low
- Idea: Spread code symbols $X_{k,1},...,X_{k,N}$ associated with info symbol U_k across entire system bandwidth instead of using N subsequent subcarriers
- We use maximum distance pattern for interleaving
- Example: $N_{\rm c}=128$ subcarriers, code rate R=1/4 \Rightarrow Use subcarriers #k, #(k+32), #(k+64), and #(k+96) for code symbols associated with info symbol U_k (k=1,...)

Interleaving

- Code symbols in vector \mathbf{X} (length N_c) will be transmitted in parallel over the N_c orthogonal subcarriers (via IFFT operation)
- Each code symbol 'sees' frequency response of underlying channel on particular subcarrier
- Channel impulse response (CIR) is typically considered random in wireless communications (see slide 'Channel Model')
- Channel frequency response of neighboring subcarriers usually correlated; correlation between two subcarriers with large spacing typically low
- Idea: Spread code symbols $X_{k,1},...,X_{k,N}$ associated with info symbol U_k across entire system bandwidth instead of using N subsequent subcarriers
- We use maximum distance pattern for interleaving
- Example: $N_c = 128$ subcarriers, code rate R = 1/4 \Rightarrow Use subcarriers #k, #(k+32), #(k+64), and #(k+96)for code symbols associated with info symbol U_k (k = 1, ..., 32)

MATLAB Tutorial

Interleaving

With Interleaving

MATLAB realization

• Interleave vector \mathbf{X} according to maximum distance pattern $(N_{\rm c}\!=\!128,\,R\!=\!1/4)$

```
index = [1 33 65 97 2 34 66 98 ... 32 64 96 128];
X(index) = X;
```

OFDM Modulation

- OFDM symbol ${\bf X}$ ($\hat{=}$ frequency domain) converted to time domain via IFFT operation \Rightarrow Vector ${\bf x}$ (length $N_{\rm c}$)
- Assume CIR ${\bf h}$ of length $N_{\rm ch} \Rightarrow$ To avoid interference between subsequent OFDM symbols, guard interval of length $N_{\rm ch}-1$ required
- Often cyclic prefix (CP) is used, i.e., last $N_{\rm ch}-1$ symbols of vector ${\bf x}$ are appended to ${\bf x}$ as a prefix \Rightarrow Vector of length $N_{\rm c}+N_{\rm ch}-1$
- Details can be found in
 - Z. Wang and G. B. Giannakis, "Wireless multicarrier communications Where Fourier meets Shannon," *IEEE Signal Processing Mag.*, May 2000.

MATLAB realization

 \bullet Perform IFFT of vector ${\bf X}$ and add CP of length $N_{\rm ch}\!-\!1$

x = [x(end-Nch+2:end) x];

OFDM Modulation

- OFDM symbol ${\bf X}$ ($\hat{=}$ frequency domain) converted to time domain via IFFT operation \Rightarrow Vector ${\bf x}$ (length $N_{\rm c}$)
- Assume CIR ${\bf h}$ of length $N_{\rm ch} \Rightarrow$ To avoid interference between subsequent OFDM symbols, guard interval of length $N_{\rm ch}-1$ required
- Often cyclic prefix (CP) is used, i.e., last $N_{\rm ch}-1$ symbols of vector ${\bf x}$ are appended to ${\bf x}$ as a prefix \Rightarrow Vector of length $N_{\rm c}+N_{\rm ch}-1$
- Details can be found in
 - Z. Wang and G. B. Giannakis, "Wireless multicarrier communications Where Fourier meets Shannon," *IEEE Signal Processing Mag.*, May 2000.

MATLAB realization

ullet Perform IFFT of vector ${f X}$ and add CP of length $N_{
m ch}{-}1$

```
x = ifft(X)*sqrt(Nc);
x = [ x(end-Nch+2:end) x ];
```

- OFDM typically employed for communication systems with large bandwidth \Rightarrow Underlying channel is frequency-selective, i.e., CIR ${\bf h}$ has length $N_{\rm ch}\!>\!1$
- ullet In wireless scenarios channel coefficients $h_0,...,h_{N_{
 m ch}-1}$ considered random
- ullet We consider baseband transmission model, i.e., channel coefficients h_l are complex-valued (equivalent passband model involves real-valued quantities)
- In rich-scattering environments, Rayleigh-fading channel model has proven useful, i.e., channel coefficients h_l are complex Gaussian random variables:

$$\operatorname{Re}\{h_l\}, \operatorname{Im}\{h_l\} \sim \mathcal{N}(0, \sigma_l^2/2) \ \Rightarrow \ h_l \sim \mathcal{C}\mathcal{N}(0, \sigma_l^2)$$

We assume exponentially decaying channel power profile, i.e.,

$$\frac{\sigma_l^2}{\sigma_0^2} := \exp(-l/c_{\text{att}}), \quad l = 0, ..., N_{\text{ch}} - 1$$

- We assume block-fading model, i.e., CIR h stays constant during entire
 OFDM symbol and changes randomly from one OFDM symbol to the next
- Noiseless received vector given by convolution of vector x with CIR h
- ullet Noise samples are i.i.d. complex Gaussian random variables $\ \sim \mathcal{CN}(0,\sigma_{\mathrm{n}}^2)$

- OFDM typically employed for communication systems with large bandwidth \Rightarrow Underlying channel is frequency-selective, i.e., CIR ${\bf h}$ has length $N_{\rm ch}\!>\!1$
- ullet In wireless scenarios channel coefficients $h_0,...,h_{N_{
 m ch}-1}$ considered random
- ullet We consider baseband transmission model, i.e., channel coefficients h_l are complex-valued (equivalent passband model involves real-valued quantities)
- In rich-scattering environments, Rayleigh-fading channel model has proven useful, i.e., channel coefficients h_l are complex Gaussian random variables:

$$\operatorname{Re}\{h_l\}, \operatorname{Im}\{h_l\} \sim \mathcal{N}(0, \sigma_l^2/2) \Rightarrow h_l \sim \mathcal{C}\mathcal{N}(0, \sigma_l^2)$$

We assume exponentially decaying channel power profile, i.e.,

$$\frac{\sigma_l^2}{\sigma_0^2} := \exp(-l/c_{\text{att}}), \quad l = 0, .., N_{\text{ch}} - 1$$

- We assume block-fading model, i.e., CIR h stays constant during entire
 OFDM symbol and changes randomly from one OFDM symbol to the next
- Noiseless received vector given by convolution of vector x with CIR h
- ullet Noise samples are i.i.d. complex Gaussian random variables $\ \sim \mathcal{CN}(0,\sigma_{\mathrm{n}}^2)$

- OFDM typically employed for communication systems with large bandwidth \Rightarrow Underlying channel is frequency-selective, i.e., CIR h has length $N_{\rm ch} > 1$
- In wireless scenarios channel coefficients $h_0,...,h_{N_{\rm ch}-1}$ considered random
- ullet We consider baseband transmission model, i.e., channel coefficients h_l are complex-valued (equivalent passband model involves real-valued quantities)
- In rich-scattering environments, Rayleigh-fading channel model has proven useful, i.e., channel coefficients h_l are complex Gaussian random variables:

$$\operatorname{Re}\{h_l\}, \operatorname{Im}\{h_l\} \sim \mathcal{N}(0, \sigma_l^2/2) \Rightarrow h_l \sim \mathcal{C}\mathcal{N}(0, \sigma_l^2)$$

• We assume exponentially decaying channel power profile, i.e.,

$$\frac{\sigma_l^2}{\sigma_0^2} := \exp(-l/c_{\text{att}}), \quad l = 0, ..., N_{\text{ch}} - 1$$

- We assume block-fading model, i.e., CIR h stays constant during entire OFDM symbol and changes randomly from one OFDM symbol to the next

MATLAR Tutorial

- OFDM typically employed for communication systems with large bandwidth \Rightarrow Underlying channel is frequency-selective, i.e., CIR ${\bf h}$ has length $N_{\rm ch}\!>\!1$
- ullet In wireless scenarios channel coefficients $h_0,...,h_{N_{
 m ch}-1}$ considered random
- ullet We consider baseband transmission model, i.e., channel coefficients h_l are complex-valued (equivalent passband model involves real-valued quantities)
- In rich-scattering environments, Rayleigh-fading channel model has proven useful, i.e., channel coefficients h_l are complex Gaussian random variables:

$$\operatorname{Re}\{h_l\}, \operatorname{Im}\{h_l\} \sim \mathcal{N}(0, \sigma_l^2/2) \Rightarrow h_l \sim \mathcal{C}\mathcal{N}(0, \sigma_l^2)$$

• We assume exponentially decaying channel power profile, i.e.,

$$\frac{\sigma_l^2}{\sigma_0^2} := \exp(-l/c_{\text{att}}), \quad l = 0, ..., N_{\text{ch}} - 1$$

- \bullet We assume block-fading model, i.e., CIR h stays constant during entire OFDM symbol and changes randomly from one OFDM symbol to the next
- \bullet Noiseless received vector given by convolution of vector ${\bf x}$ with CIR ${\bf h}$
- \bullet Noise samples are i.i.d. complex Gaussian random variables $\,\sim \mathcal{CN}(0,\sigma_n^2)$

MATLAB realization

ullet Generate exponentially decaying channel power profile \Rightarrow Variances σ_l^2

```
var_ch = exp(-[0:Nch-1]/c_att);
```

ullet Normalize channel power profile such that overall average channel energy is 1

```
var_ch = var_ch/sum(var_ch);
```

 Generate random CIR realization with independent complex Gaussian entries and specified channel power profile

```
h = sqrt(0.5)*(randn(1,Nch)+j*randn(1,Nch)) .* sqrt(var_ch);
```

ullet Calculate noiseless received vector via convolution of vector ${f x}$ with CIR ${f h}$

```
y = conv(x,h);
```

ullet Add additive white Gaussian noise (AWGN) samples with variance $\sigma_{
m n}^2$

```
n = sqrt(0.5)*( randn(1,length(y))+j*randn(1,length(y)) )
```

```
y = y + n * sqrt(sigma2_n)
```

MATLAB realization

ullet Generate exponentially decaying channel power profile \Rightarrow Variances σ_l^2

```
var_ch = exp(-[0:Nch-1]/c_att);
```

 \bullet Normalize channel power profile such that overall average channel energy is 1

```
var_ch = var_ch/sum(var_ch);
```

 Generate random CIR realization with independent complex Gaussian entries and specified channel power profile

```
h = sqrt(0.5)*(randn(1,Nch)+j*randn(1,Nch)) .* sqrt(var_ch);
```

 \bullet Calculate noiseless received vector via convolution of vector ${\bf x}$ with CIR ${\bf h}$

```
y = conv(x,h);
```

ullet Add additive white Gaussian noise (AWGN) samples with variance $\sigma_{
m n}^2$

```
n = sqrt(0.5)*( randn(1,length(y))+j*randn(1,length(y)) );
y = y + n * sqrt(sigma2_n);
```

OFDM Demodulation

- Received vector resulting from convolution of transmitted vector ${\bf x}$ with CIR ${\bf h}$ has length $(N_{\rm c}+N_{\rm ch}-1)+N_{\rm ch}-1$
 - \Rightarrow Received vector is truncated to same length $N_{
 m c}\!+\!N_{
 m ch}\!-\!1$ as vector ${f x}$
- ullet Then CP is removed to obtain received vector ${f y}$ of length $N_{
 m c}$
- ullet Finally, FFT is performed to convert received vector ${f y}$ back to frequency domain \Rightarrow received OFDM symbol ${f Y}$ of length N_c

MATLAB realization

• Truncate vector ${\bf y}$ by removing last $N_{\rm ch}-1$ entries, remove CP (first $N_{\rm ch}-1$ entries), and perform FFT to obtain received OFDM symbol ${\bf Y}$

```
y(end-Nch+2:end) = []
y(1:Nch-1) = [];
Y = fft(y)/sqrt(Nc);
```

OFDM Demodulation

- Received vector resulting from convolution of transmitted vector ${\bf x}$ with CIR ${\bf h}$ has length $(N_{\rm c}+N_{\rm ch}-1)+N_{\rm ch}-1$
 - \Rightarrow Received vector is truncated to same length $N_{
 m c} + N_{
 m ch} 1$ as vector ${f x}$
- ullet Then CP is removed to obtain received vector ${f y}$ of length $N_{
 m c}$
- ullet Finally, FFT is performed to convert received vector ${f y}$ back to frequency domain \Rightarrow received OFDM symbol ${f Y}$ of length N_c

MATLAB realization

• Truncate vector ${\bf y}$ by removing last $N_{\rm ch}-1$ entries, remove CP (first $N_{\rm ch}-1$ entries), and perform FFT to obtain received OFDM symbol ${\bf Y}$

```
y(end-Nch+2:end) = [];
y(1:Nch-1) = [];
Y = fft(y)/sqrt(Nc);
```

- ullet For coherent detection of the info symbols U_k , the channel phases associated with the entries of the received OFDM symbol ${f Y}$ have to be derotated
 - \Rightarrow We need to calculate the channel frequency response via FFT of CIR \mathbf{h}
- Perform deinterleaving based on employed interleaver pattern
- If repetition code is used, all entries of Y that are associated with same info symbols U_k are optimally combined using maximum ratio combining (MRC)
- \bullet Finally, estimates \hat{U}_k are formed based on the $RN_{\rm c}$ output symbols $Z_{{\rm mrc},k}$ of the MRC step
- \bullet In simulation, determine the number of bit errors in current OFDM symbol by comparing $\hat{\mathbf{U}}$ with \mathbf{U}
- Update error counter and finally determine average bit error rate (BER) by dividing overall number of errors by overall number of transmitted info bits

- ullet For coherent detection of the info symbols U_k , the channel phases associated with the entries of the received OFDM symbol ${f Y}$ have to be derotated
 - \Rightarrow We need to calculate the channel frequency response via FFT of CIR \mathbf{h}
- Perform deinterleaving based on employed interleaver pattern
- If repetition code is used, all entries of Y that are associated with same info symbols U_k are optimally combined using maximum ratio combining (MRC)
- \bullet Finally, estimates \hat{U}_k are formed based on the $RN_{\rm c}$ output symbols $Z_{{\rm mrc},k}$ of the MRC step
- \bullet In simulation, determine the number of bit errors in current OFDM symbol by comparing $\hat{\mathbf{U}}$ with \mathbf{U}
- Update error counter and finally determine average bit error rate (BER) by dividing overall number of errors by overall number of transmitted info bits

MATLAB realization

 \bullet Calculate channel frequency response via FFT of zero-padded CIR h

```
h_zp = [h zeros(1,Nc-Nch)];
H = fft(h_zp);
```

ullet Derotate channel phases associated with entries of received OFDM symbol ${f Y}$

$$Z = conj(H) .* Y;$$

• Perform deinterleaving ($N_c = 128$, R = 1/4)

```
index_matrix = [1 33 65 97; 2 34 66 98; ... 32 64 96 128];
matrix.help = Z(index_matrix);
```

ullet Perform MRC \Rightarrow Vector ${f Z}_{
m mrc}$ of length $RN_{
m c}$

```
Z_mrc = sum(matrix_help,2);
```

ullet Form estimates \hat{U}_k based on vector ${f Z}_{
m mrc}$

```
Uhat = sign(real(Z_mrc))';
```

MATLAB realization

 \bullet Calculate channel frequency response via FFT of zero-padded CIR h

```
h_zp = [h zeros(1,Nc-Nch)];
H = fft(h_zp);
```

ullet Derotate channel phases associated with entries of received OFDM symbol ${f Y}$

$$Z = conj(H) .* Y;$$

• Perform deinterleaving ($N_c = 128$, R = 1/4)

```
index_matrix = [1 33 65 97; 2 34 66 98; ... 32 64 96 128];
matrix_help = Z(index_matrix);
```

ullet Perform MRC \Rightarrow Vector ${f Z}_{
m mrc}$ of length $RN_{
m c}$

```
Z_mrc = sum(matrix_help,2);
```

ullet Form estimates \hat{U}_k based on vector $\mathbf{Z}_{\mathrm{mrc}}$

```
Uhat = sign(real(Z_mrc))';
```

MATLAB realization

ullet Calculate channel frequency response via FFT of zero-padded CIR ${f h}$

```
h_zp = [h zeros(1,Nc-Nch)];
H = fft(h_zp);
```

Derotate channel phases associated with entries of received OFDM symbol Y
 Z = conj(H) .* Y;

```
• Perform deinterleaving (N_c = 128, R = 1/4)
```

```
index_matrix = [1 33 65 97; 2 34 66 98; ... 32 64 96 128];
matrix_help = Z(index_matrix);
```

ullet Perform MRC \Rightarrow Vector ${f Z}_{
m mrc}$ of length $RN_{
m c}$

```
Z_mrc = sum(matrix_help,2);
```

ullet Form estimates \hat{U}_k based on vector $\mathbf{Z}_{\mathrm{mrc}}$

```
Uhat = sign(real(Z_mrc));
```

MATLAB realization (cont'd)

Count bit errors in current OFDM symbol and update error counter

```
err_count = err_count + sum(abs(Uhat-U))/2;
```

ullet After transmission of $N_{
m real}$ OFDM symbols calculate final BER

```
ber = err_count/(R*Nc*Nreal);
```

Uncoded transmission

 $N_{\mathrm{real}}\!=\!10,000$ OFDM symbols

 $N_{\rm c} = 128$ subcarriers

 $N_{\rm ch}\!=\!10$ channel coefficients

 $c_{\mathrm{att}}\!=\!2$ for channel profile

Comparison with analytical results for $L\!=\!1$ Rayleigh fading branch (see Appendix) validates simulated BER curve

Repetition code (rate 1/2) No interleaving

 $N_{\rm real} = 10,000 \text{ OFDM symbols}$

 $N_{\rm c} = 128$ subcarriers

 $N_{\rm ch} = 10$ channel coefficients

 $c_{\rm att} = 2$ for channel profile

Repetition code yields significant gain, mostly due to increased received power per info bit; hardly any diversity gain as no interleaver is used

MATLAB Tutorial

Repetition code (rate 1/2) With interleaving

 $N_{\mathrm{real}}\!=\!10,000$ OFDM symbols

 $N_{\rm c}\!=\!128$ subcarriers

 $N_{\rm ch} = 10$ channel coefficients

 $c_{\rm att} = 2$ for channel profile

Comparison with analytical results for diversity reception over $L\!=\!2$ i.i.d. Rayleigh fading branches (see Appendix) validates simulated BER curve

MATLAB Tutorial

Repetition code (rate 1/4) No interleaving

 $N_{\mathrm{real}}\!=\!10,000$ OFDM symbols

 $N_{\rm c} = 128$ subcarriers

 $N_{\rm ch} = 10$ channel coefficients

 $c_{\rm att} = 2$ for channel profile

Repetition code yields significant gain, mostly due to increased received power per info bit; slight diversity gain visible even without interleaver

Repetition code (rate 1/4) With interleaving

 $N_{\mathrm{real}}\!=\!10,000$ OFDM symbols

 $N_{\rm c} = 128$ subcarriers

 $N_{\rm ch} = 10$ channel coefficients

 $c_{\rm att} = 2$ for channel profile

Comparison with analytical results for diversity reception over $L\!=\!4$ i.i.d. Rayleigh fading branches shows that channel does not quite offer diversity order of 4

Appendix

Analytical results

• Analytical BER performance of binary antipodal transmission over $L\!\geq\!1$ i.i.d. Rayleigh fading branches with MRC at receiver was calculated according to

$$P_{\rm b} = \frac{1}{2^L} \left(1 - \sqrt{\frac{1}{1 + \sigma_{\rm n}^2}} \right)^L \sum_{l=0}^{L-1} {L-1+l \choose l} \frac{1}{2^l} \left(1 + \sqrt{\frac{1}{1 + \sigma_{\rm n}^2}} \right)^l$$

using MATLAB function proakis_equalSNRs.m

- Details can be found in Chapter 14 of
 - J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill, 2001.

MATLAB code

• The MATLAB code and these slides can be downloaded from my homepage

(see 'Teaching')