
1

Chemical Engineering 541

Computer Aided Design Methods

Matlab Tutorial

2

Overview

•  Matlab is a programming language suited to numerical analysis and
problems involving vectors and matricies.
–  Matlab = Matrix Laboratory
–  Many built in functions for solution of linear systems, interpolation,

integration, solution of ODEs, etc.
–  Straightforward syntax
–  No need for external compilation/linking

•  Built in 2D, 3D graphics, very flexible
•  Can interface with C++, Java, Fortran
•  Object oriented programming capabilities
•  Graphical interface.
•  Built-in debugging capability.
•  Great for rapid programming/prototyping.

–  Excellent learning environment, ideas carry over to faster, more flexible
(and complex) languages, such as C, Fortran.

3

FreeMat, Octave, Scilab
•  Freemat, Octave, and SciLab are open source, Matlab-like variants
•  Octave contains fewer features, but very similar syntax, and runs most

Matlab scripts without modification.
–  Visualization is via gnuplot

•  Scilab has a Matlab-like look and feel.
•  Freemat has a nice interface, and good plotting capabilities.
•  www.gnu.org/software/octave, www.scilab.org, http://freemat.sourceforge.net

4

Environment

Command Window

Editor Window

History

Variables

5

Matlab Search Path

•  File >> set path
•  Organize files into one or

more place as you create
them.

–  This goes for other
environments/languages
as well.

•  Search path: EDU>> myvar
1.  variable?
2.  built-in function?
3.  script file in current

directory?
4.  Matlab path?
5.  Error

6

Defining Variables, Expressions

•  Expressions are saved to ans
•  Variables are case sensitive: no spaces, start with a

letter.
•  Semicolon supresses output to screen
•  Variables defined, use who, whos

•  Special Vars:
 ans, beep, pi, eps, inf, NaN, i, j, nargin, nargout, realmin, realmax,
bitmax, varargin, varargout

•  Reserved Words
 for end if while function return elseif case otherwise switch
continue else try catch global persistent break

•  Operators: + - * / \ ^
•  Comments: EDU>> a=b+c; % this is a comment

7

Vectors and Matricies

•  Vectors, Matricies, Arrays are
synonymous

•  Enter elements between [...]
–  column elements separated by “,”

or “ “
–  rows separated by “;”
–  transpose with single quote.
–  elements can be expressions

•  Access elements with mat(index)
–  indexing starts at 1
–  Column notation
–  end
–  index can be an array
–  note index increment:

•  istart : inc : iend

8

Array Construction

•  Scalars operate directly on array elements:
EDU>> g = [1 2 3; 4 5 6; 7 8 9];
EDU>> g-2; 2*g-1, etc.

•  Array-Array operations are as in matrix algebra
EDU>> h = [5 6 7; 8 9 10; 11 12 13];
EDU>> g+h; 2*g+h; etc

•  Matrix multiplication:
EDU>> g*h;

•  Matrix element operations:
EDU>> g.*h; g.^h; sin(g); 1./g; g.^2; etc.

Array Construction Summary Standard arrays

9

More Array Operations

•  Automatic expansion possible

•  Reshape function operates on
columns.

•  Automatic deletion

•  repmat function to create new
matricies from existing matrices.

•  Other functions
–  sort, find, flipud, fliplr, rot90,

max, min.

–  length, size, numel, A(:)

10

m-files

•  m-files are script files containing batches of
matlab commands
–  save and edit myfile.m
–  run EDU>> myfile to execute commands.
–  these files constitute the program and are the usual

mode of use except for simple jobs at the command
prompt.

–  files can call other files for code organization
•  think of the execution of commands as if typed directly at the

command prompt.

–  useful functions: clc, clear, tic, toc, date, diary, format

11

Functions

•  Purpose of functions.
–  Organize code
–  Reuse functionality

•  simplifies code
•  easier to maintain

•  Variable Scope
–  Variables are local to the

function, and can only be
used in the function.

–  global statement allows
variable access.
•  global var1 var2 ...
•  naming

–  persistent

•  Function content
–  input arguments
–  return values

•  Function file
–  name
–  subfunctions
–  M-file calls

12

Function Syntax

•  Name the function M-file
functionName.m

•  Input arguments
–  pass in when called
–  can be any type (e.g. an

array)
–  can pass fewer than

needed
•  Return values

–  these are the outputs
–  one or many
–  again any type

•  varargin, varargout

function a = functionName(arg1, arg2, ...)

function [a, b, c] = functionName(arg1, arg2, ...)

[x,y] = ftest(2,3);

[x,y] = ftest(1:4, 7:10);

13

Function Documentation

•  Documenting
functions is good
code practice

–  Eases maintenence
to you and others

•  Purpose of the
function

•  Example of useage
•  What are the inputs/

outputs
•  Any issues,

limitations, suggested
improvements.

•  Initial continuous
comments are
displayed with help
funcName

function y = linspace(d1, d2, n)!
%LINSPACE Linearly spaced vector.!
% LINSPACE(X1, X2) generates a row vector of 100 linearly!
% equally spaced points between X1 and X2.!
%!
% LINSPACE(X1, X2, N) generates N points between X1 and X2.!
% For N < 2, LINSPACE returns X2.!
%!
% Class support for inputs X1,X2:!
% float: double, single!
%!
% See also LOGSPACE, :.!

% Copyright 1984-2004 The MathWorks, Inc. !
% $Revision: 5.12.4.1 $ $Date: 2004/07/05 17:01:20 $!

if nargin == 2!
 n = 100;!
end!

n = double(n);!
y = [d1+(0:n-2)*(d2-d1)/(floor(n)-1) d2];floo!

EDU>> open linspace

EDU>> help linspace

14

Visualization: 2-D Plots

•  x=1:0.1:10;
•  plot(x)
•  plot(x,sin(x))
•  General: plot(x,y,’S’)

–  S is color, symbol, line style
–  Example: plot(x,y,’gx--’);

Color Symbol Line Style

15

Multiple Plots

•  Three methods for
multiple plots

1.  hold on, hold off

2.  plot x and columns of y

3.  successive triplets of plot
arguments.

1

2

3

16

Subplot

•  Subplot allows
multiple plots in a
matrix format

•  subplot(nx,ny,pos)
activates an nx by ny
matrix of plots with
plot pos selected

17

Labeling, Formatting

18

Other Plotting Commands

•  grid on; grid off;

•  axis auto (manual tight,
fill, on, off, square, etc.)

•  axis([xmin, xmax, ymin,
ymax]); or axis(array);

•  xlim([xmin, xmax]), ylim
([ymin, ymax]);

•  figure;

•  figure(n)

•  close

•  close(n)

•  semilogx; semilogy; loglog

•  surf(X,Y,Z), mesh(X,Y,Z)
–  shading flat (or interp ...)

•  Latex capable text
formatting:

•  \alpha, \beta,
\gamma, \delta, etc.

•  \it italic
•  ^ superscript
•  _ subscript
•  texlabel(‘lambda =

3*alpha’)
•  title('{\itAe}^{\alpha

\itt}sin\beta{\itt}
\alpha<<\beta')

19

Conditionals

•  Relational Operators:
–  <, <=, >, >=, ==, ~=
–  (a+b) == (c+d)
–  B - (A>2)

•  Logical Operators:
–  and: &, or: |, not: ~
–  (a>2) & (a<6)

•  Conditionals:

•  Switch-Case

if expression
 (command)
end

if expression
 (command)
else
 (command)
end

if expression
 (command)
elseif expression
 (command)
else
 (command)
end

switch expression
 case test_1
 (commands)
 case {test_2, test_2}
 (commands)
 otherwise
 (commands)
end

20

Loops

•  loops offer explicit control
over element assignment and
other operations

•  Preallocate arrays before
loops.

•  Loops can be nested
•  break statement
•  Avoid for loops whenever

there is an equivalent array
approach.

–  Vectorized solutions are
often orders of magnitude
faster!

–  less typing, easier to read,
more intuitive

•  While loops execute till some
expression holds

for x = array
 (commands)
end

for i = 1:10
 x(i)=sin(i)
end

for i = 1:10
 for j= 1:3
 A(i,j) = i^2 + j^2;
 end
end

i = 1:10;
j = 1:3;
[ii,jj] = meshgrid(i,j);
A = ii.^2 + jj.^2;

tend = 10;
t = 0;
dt = 1.1;
while t < tend
 (commands)
 t = t + dt;
end

21

Basic File I/O

•  save -ASCII filename x y
–  saves variables x, y to the file filename

•  if omitted, all variables saved
–  -ASCII writes a text file

•  if omitted, a binary file results (smaller)
–  file called filename.mat

•  load filename x y
–  load the saved varialbes
–  if x y is omitted, all variables are loaded

•  dlmread, dlmwrite, textread, others
•  fopen, fclose, fread, fwrite, fscanf, fprintf, sprintf,

sscanf, others
–  myfile = ‘filelist’
–  f1 = fopen(myfile);
–  file = fscanf(f1, ‘%s’, 1)

22

File I/O Example

clc; clear;

myfile = 'CO2List';

f1 = fopen(myfile);

i = 1;
while(1);
 file = fscanf(f1, '%s', 1);
 if(feof(f1)) break; end
 flist{i,1} = file;
 file = strrep(file, '_', ' ');
 times(i,1) = sscanf(file, '%*s %*s %f');
 i = i+1;
end
fclose(f1);

[nfiles, d1] = size(flist);

for ifi=1:nfiles
 f1 = fopen(flist{ifi,1});
 ln = fgetl(f1);
 i=1;
 while(~feof(f1))
 ln = fgetl(f1);
 A(i,:) = [sscanf(ln,'%f')]';
 i = i+1;
 end
 fclose(f1);
 if(ifi==1)
 mixf = A(:,1);
 end
 data(:,ifi) = A(:,6);
 clear A;
end

[X,Y] = meshgrid(mixf, times);
surf(X,Y,data');

23

β PDF Example

•  The beta-PDF represents
the extent of mixing
between two pure streams
in turbulent flows.

•  These streams are often
fuel and oxidizer.

•  For segregated streams,
two delta functions result.

•  For perfect mixing, one
delta function exists.

•  In between, a range of
states exists

24

β PDF Example

25

Summary

•  Matlab provides a wealth of functionality for small to
intermediate size projects

•  Open source variants available
•  Advanced visualization capabilities.
•  Highly extensible
•  Relatively simple syntax. (a higher level language).
•  Extensible, object oriented.
•  Many toolboxes available for more advanced, problem

specific work
•  Search the web for more tutorials, books, examples

