

MATLABW

A Practical Introduction
to Programming and

Problem Solving
Second Edition
Stormy Attaway
Department of Mechanical Engineering

Boston University

Butterworth-Heinemann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

2012 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the Publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies, and our arrangements with organizations
such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our web site:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

MATLABW is a trademark of TheMathWorks, Inc., and is used with permission. TheMathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLABW

software or related products does not constitute endorsement or sponsorship by TheMathWorks of a
particular pedagogical approach or particular use of the MATLABW software.

MATLABW and Handle GraphicsW are registered trademarks of TheMathWorks, Inc.

Library of Congress Cataloging-in-Publication Data
Attaway, Stormy.

MATLABW: a practical introduction to programming and problem solving / Stormy
Attaway. — 2nd ed.

p. cm.
Includes index.
ISBN 978-0-12-385081-2

1. Numerical analysis—Data processing. 2. MATLAB. 3. Computer programming.
I. Title.
QA297.A87 2011
518.028553—dc22 2011015032

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Butterworth–Heinemann publications
visit our Web site at www.elsevierdirect.com
Printed in the United States
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.elsevierdirect.com

This book is dedicated to my husband, Ted de Winter.

Table of Contents

I. Introduction to Programming Using MATLAB

Chapter 1: Introduction to MATLAB
1.1 Getting into MATLAB
1.2 The MATLAB Desktop Environment
1.3 Variables and Assignment Statements
1.4 Expressions
1.5 Characters and Encoding
1.6 Vectors and Matrices

Chapter 2: Introduction to MATLAB Programming
2.1 Algorithms
2.2 MATLAB Scripts
2.3 Input and Output
2.4 Scripts with Input and Output
2.5 Scripts to Produce and Customize Simple Plots
2.6 Introduction to File Input/Output (load and save)
2.7 User-defined Functions that return a single value

Chapter 3: Selection Statements
3.1 Relational Expressions
3.2 The if Statement
3.3 The if-else statement
3.4 Nested if-else statements
3.5 The switch statement
3.6 The menu function
3.7 The ";is"; functions in MATLAB

Chapter 4: Loop Statements
4.1 The for Loop
4.2 Nested for Loops
4.3 While Loops

Chapter 5: Vectorized Code
5.1 Loops with Vectors and Matrices
5.2 Operations on Vectors and Matrices
5.3 Vectors and Matrices as Function Arguments
5.4 Logical Vectors
5.5 Vectorizing Code
5.6 Timing

Chapter 6: MATLAB Programs
6.1 More Types of User-Defined Functions
6.2 MATLAB Program Organization
6.3 Application: Menu-Driven Program
6.4 Variable Scope
6.5 Debugging Techniques

Chapter 7: String Manipulation
7.1 Creating String Variables
7.2 Operations on Strings
7.3 The ";is"; functions for strings
7.4 Converting Between String and Number Types

Chapter 8: Data Structures: Cell Arrays and Structures
8.1 Cell Arrays
8.2 Structures

Chapter 9: Advanced File Input and Output
9.1 Lower-level File I/O Functions
9.2 Writing and Reading spreadsheet files
9.3 Using MAT-Files for Variables

Chapter 10: Advanced Functions
10.1 Anonymous Functions
10.2 Uses of Function Handles
10.3 Variable Number of Arguments
10.4 Nested Functions
10.5 Recursive Functions

II. Advanced Topics for Problem Solving with MATLAB

Chapter 11: Advanced Plotting Techniques
11.1 Plot Functions
11.2 Animation
11.3 Three-Dimensional Plots
11.4 Customizing Plots
11.5 Handle Graphics and Plot Properties
11.6 Plot Applications

Chapter 12: Matrix Representation of Linear Algebraic Equations
12.1 Matrix Definitions
12.2 Matrix Solutions to Systems of Linear Algebraic Equations

Chapter 13: Basic Statistics, Searching, Sets, Sorting, and Indexing
13.1 Statistical Functions
13.2 Set Operations
13.3 Sorting
13.4 Index Vectors
13.5 Searching

Chapter 14: Sights and Sounds
14.1 Sound Files
14.2 Image Processing
14.3 Introduction to Graphical User Interfaces

Chapter 15: Advanced Mathematics
15.1 Curve Fitting
15.2 Complex numbers
15.3 Symbolic Mathematics
15.4 Calculus: integration and differentiation

Openmirrors.com
Preface
xi
Motivation
The purpose of this book is to teach fundamentals of programming concepts and

skills needed for basic problem solving, all using MATLABW as the vehicle.
MATLAB is a powerful software package that has built-in functions to accomplish

a diverse range of tasks, from mathematical operations to three-dimensional

imaging. Additionally, MATLAB has a complete set of programming constructs
that allows users to customize programs to their own specifications.

The many books that introduce MATLAB come in two basic flavors: those that

demonstrate the use of the built-in functions in MATLAB, with a chapter or two
on some programming concepts; and those that cover only the programming

constructs without mentioning many of the built-in functions that make

MATLAB efficient to use. Someone who learns just the built-in functions will
be well-prepared to use MATLAB, but would not understand basic program-

ming concepts. That person would not be able to then learn a language such
as Cþþ or Java without taking another introductory course or reading another

book on the programming concepts. Conversely, anyone who learns only pro-

gramming concepts first (using any language) would tend to write highly inef-
ficient code using control statements to solve problems, not realizing that in

many cases these are not necessary in MATLAB.

This book instead takes a hybrid approach, introducing both the programming
and efficient uses. The challenge for students is that it is nearly impossible to

predict whether they will in fact need to know programming concepts later

or whether a software package such as MATLAB will suffice for their careers.
Therefore, the best approach for beginning students is to give them both: the

programming concepts and the efficient built-in functions. Since MATLAB is

very easy to use, it is a perfect platform for this approach to teaching program-
ming and problem solving.

Since programming concepts are critically important to this book, emphasis is
not placed on the time-saving features that evolve with every new MATLAB re-

lease. For example, in current versions of MATLAB, statistics on variables are

xii Preface
available readily in the Workspace Window. This is not shown in any detail in

the book, since whether this feature is available depends on the software ver-

sion, and because of the desire to explain the concepts in the book.
Modifications in Second Edition
Changes in the second edition of this book include:

n Vectorized code has been made into a separate chapter to emphasize the

importance of using MATLAB efficiently.

n There are expanded examples on:
n Low-level file input functions

n Plots

n Graphical user interfaces
n Vectorized code, including functions diff, meshgrid, tic, and toc

n Use of MATLAB version R2011a

n Concepts used in image processing, such as three-dimensionalmatrices and
unsigned integers, are now introduced early, in Chapter 1.

n Modified and new end-of-chapter exercises.
n The introduction to Handle Graphics was moved to Chapter 11, Advanced

Plotting Techniques.

n Discussion of symbolic mathematics was moved to Chapter 15, Advanced
Mathematics.

n Improved labeling of plots.

n Improved standards for variable names and documentation.
n Added end to the end of all functions.
Key Features
Side-by-Side Programming Concepts and Built-in Functions
Themost important, and unique, feature of this book is that it teaches program-

ming concepts and the use of the built-in functions in MATLAB side by side. It

starts with basic programming concepts such as variables, assignments, input/
output, selection, and loop statements. Then throughout the rest of the book,

many times a problem will be introduced and then solved using the “program-

ming concept” and also using the “efficient method.” This will not be done in
every case to the point that it becomes tedious, but just enough to get the ideas

across.

Systematic Approach
Another key feature is that the book takes a very systematic, step-by-step ap-

proach, building on concepts throughout the book. It is very tempting in a

MATLAB text to show built-in functions or features early on with a note that
says “we’ll do this later.” This does not happen in this edition; all functions

are covered before they are used in examples. Additionally, basic programming

xiiiPreface
concepts will be explained carefully and systematically. Very basic concepts, such

as looping to calculate a sum, counting in a conditional loop, and error-checking,

are not found in many texts but will be covered here.
File Input/Output
Many applications in engineering and the sciences involve manipulating large
data sets that are stored in external files. MostMATLAB texts at leastmention the

save and load functions, and in some cases selected lower-level file input/out-

put functions as well. Since file input and output is so fundamental to so many
applications, this book will cover several low-level file input/output functions,

as well as reading from and writing to spreadsheet files. Later chapters will also

deal with audio and image files. These file input/output concepts are intro-
duced gradually: first load and save in Chapter 2, then lower-level functions

in Chapter 9, and finally sound and images in Chapter 14.
User-Defined Functions
User-defined functions are a very important programming concept, and yet

many times the nuances and differences among concepts such as types of func-
tions and function calls versus function headers can be very confusing to begin-

ning programmers. Therefore, these concepts are introduced gradually. First,

functions that calculate and return one single value—arguably the easiest type
of functions to understand—are demonstrated in Chapter 2. Later, functions

that return no values and functions that return multiple values are introduced

in Chapter 6. Finally, advanced function features are shown in Chapter 10.
Advanced Programming Concepts
In addition to the basics, some advanced programming concepts, such as string
manipulation, data structures (e.g., structures and cell arrays), recursion, anon-

ymous functions, and variable number of arguments to functions, are covered.

Sorting, searching, and indexing are also addressed. All of these are again
approached systematically; for example, cell arrays are covered before they

are used in file input functions and as labels on pie charts.
Problem-Solving Tools
In addition to the programming concepts, some basic mathematics necessary
for solving many problems will be introduced. These will include statistical

functions, solving sets of linear algebraic equations, and fitting curves to data.

The use of complex numbers and some calculus (integration and differentia-
tion) will also be introduced. The basic math will be explained and the

built-in functions in MATLAB to perform these tasks will be described.

xiv Preface
Plots, Imaging, and Graphical User Interfaces
Simple two-dimensional plots are introduced very early in the book in

Chapter 2 so that plot examples can be used throughout. Chapter 11 then
shows more plot types, and demonstrates customizing plots and how the

graphics properties are handled in MATLAB. This chapter makes use of strings

and cell arrays to customize labels. Also, there is an introduction to image pro-
cessing and the basics necessary to understand programming graphical user in-

terfaces (GUIs) in Chapter 14.
Vectorized Code
Efficient uses of the capabilities of the built-in operators and functions in
MATLAB are demonstrated throughout the book.However, to emphasize the im-

portance of using MATLAB efficiently, vectorized code is treated in a separate

chapter. Techniques, such as preallocating vectors and using logical vectors,
are featured, as well as methods of determining how efficient the code is.
Layout of Text
The book consists of two parts. The first part covers programming constructs

and demonstrates the programming method versus efficient use of built-in
functions to solve problems. The second part covers tools that are used for basic

problem solving, including plotting, image processing, andmathematical tech-

niques to solve systems of linear algebraic equations, fit curves to data, and per-
form basic statistical analyses. The first six chapters cover the very basics in

MATLAB and in programming, and are all prerequisites for the rest of the book.

After that, many chapters in the problem-solving section can be introduced
when desired, to produce a customized flow of topics in the book. This is true

to an extent, although the order of the chapters has been chosen carefully to

ensure that the coverage is systematic.

The individual chapters are described here, as well as which topics are required

for each chapter. Part I, Introduction to Programming Using MATLAB, includes

the following chapters.
Chapter 1: Introduction to MATLAB covers expressions, operators, char-

acters, variables, and assignment statements. Scalars, vectors, and matrices
are all introduced as are many built-in functions that manipulate them.

Chapter 2: Introduction to MATLAB Programming introduces the idea of
algorithms and scripts. This includes simple input and output, and com-

menting. Scripts are then used to create and customize simple plots, and to

do file input and output. Finally, the concept of a user-defined function is
introduced with only the type of function that calculates and returns a

single value.

xvPreface
Chapter 3: Selection Statements introduces relational expressions and

their use in if statements, with else and elseif clauses. The switch statement

is also demonstrated, as is the concept of choosing from a menu. Also,
functions that return logical true or false are introduced.

Chapter 4: Loop Statements introduces the concepts of counted (for) and

conditional loops (while). Many common uses, such as summing and
counting, are covered. Nested loops are also introduced. Some more so-

phisticated uses of loops, such as error-checking and combining loops and

selection statements, are also covered.
Chapter 5: Vectorized Code introduces the idea of “vectorizing” code,

which essentially means rewriting code that uses loops to more efficiently
make use of built-in functions, and the fact that operations can be done on

vectors and matrices in MATLAB. Functions that are useful in vectorizing

code are emphasized in this chapter. Functions that time the speed of code
are also introduced.
Knowledge of the concepts presented in the first five chapters is assumed

throughout the rest of the book.
Chapter 6: MATLAB Programs covers more on scripts and user-defined

functions. User-defined functions that return more than one value and also
that do not return anything are introduced. The concept of a program in

MATLAB, which consists of a script that calls user-defined functions, is

demonstrated with examples. A longer menu-driven program is shown as a
reference, but could be omitted. Subfunctions and scope of variables are

also introduced, as are some debugging techniques.
This program concept is used throughout the rest of the book.
Chapter 7: String Manipulation covers many built-in string manipulation
functions as well as converting between string and number types. Several

examples include using custom strings in plot labels and input prompts.

Chapter 8: Data Structures: Cell Arrays and Structures introduces two
main data structures: cell arrays and structures. Once structures are covered,

more complicated data structures, such as nested structures and vectors of

structures, are also introduced. Cell arrays are used in several applications in
later chapters, such as file input in Chapter 9, variable number of function

arguments in Chapter 10, and plot labels in Chapter 11, and are therefore

considered important and are covered first. The rest of the chapter on
structures can be omitted.

Chapter 9: Advanced File Input and Output covers lower-level file input/

output statements that require opening and closing the file. Functions that
can read the entire file at once as well as those that require reading one line

at a time are introduced, and examples that demonstrate the differences in

their use are shown. Additionally, reading from and writing to spreadsheet

xvi Preface

Openmirrors.com
files and also .mat files that store MATLAB variables are introduced. Cell

arrays and string functions are used extensively in this chapter.

Chapter 10: Advanced Functions covers more advanced features of and
types of functions such as anonymous functions, nested functions, and

recursive functions. Function handles and their use both with anonymous

functions and function functions are introduced. The concept of having a
variable number of input and/or output arguments to a function is intro-

duced; this is implemented using cell arrays. String functions are also used

in several examples in this chapter. The section on recursive functions is at
the end and may be omitted.
Part II, Advanced Topics for Problem Solving with MATLAB, contains the fol-

lowing chapters.
Chapter 11: Advanced Plotting Techniques continues with more on the
plot functions introduced in Chapter 2. Various two-dimensional plot

types, such as pie charts and histograms, are introduced, as is customizing

plots using cell arrays and string functions. Three-dimensional plot func-
tions as well as selected functions that create the coordinates for specified

objects are demonstrated. The notion of Handle GraphicsW is covered, and

selected graphics properties, such as line width and color, are introduced.
Applications that involve reading data from files and then plotting use both

cell arrays and string functions.

Chapter 12: Matrix Representation of Linear Algebraic Equations intro-
duces a basic method that can be used in MATLAB to solve systems of equa-

tions using a matrix representation. First, matrix and vector operations and

matrix definitions are described. This section can be covered at any point after
Chapter 5. Then, matrix solutions using the Gauss-Jordan and Gauss-Jordan

elimination methods are described. This section includes mathematical

techniques and also the MATLAB functions that implement them.
Chapter 13: Basic Statistics, Sets, Sorting, and Indexing starts with some

of the built-in statistical and set operations in MATLAB. Since some of these

require a sorted data set, methods of sorting are described. Finally, the
concepts of indexing into a vector and searching a vector are introduced.

Sorting a vector of structures and indexing into a vector of structures are

described, but these sections can be omitted. A recursive binary search
function is in the end and may be omitted.

Chapter 14: Sights and Sounds briefly discusses sound files and introduces

image processing. An introduction to programming graphical user interfaces
is also given, including the creation of a button group. Nested functions are

used in the GUI examples. A patch function example uses a structure.

Chapter 15: Advanced Mathematics covers three basic topics: curve fitting,
complex numbers, and integration and differentiation in calculus. Finally,

xviiPreface
some of the Symbolic Math Toolbox functions are shown, including those

that solve equations. This method returns a structure as a result.
Pedagogical Features
There are several pedagogical tools that are used throughout this book that are

intended to make it easier to learn the material. A list of Key Terms covered in
each chapter, in sequence, is on the first page.

First, the book takes a conversational tone with sections called Quick Ques-
tion! These are designed to stimulate thought about the material that has just

been covered. A question is posed, and then the answer is given. It will be most

beneficial to the reader to try to think about the question before reading the
answer! In any case, these sections should not be skipped over as the answers

often contain very useful information.

Practice problems are given throughout the chapters. These are very simple
problems that serve as drills of the material just covered.

When certain problems are introduced, they are solved both using The Pro-
gramming Concept and The Efficient Method. This facilitates understanding

the built-in functions and operators in MATLAB as well as the underlying pro-

gramming concepts. The Efficient Method boxes highlight methods that will
save time for the programmer, and in many cases are faster to execute in

MATLAB, as well.

Additionally, to aid the reader:

n Identifier names (variables and user-defined functions) are shown in italics
(as are filenames and file extensions).

n MATLAB function names are shown in bold.

n Reserved words are shown in bold and underline.
n Key important terms are shown in bold and italic.

The end-of-chapter summary contains, where applicable, several sections:

n Common Pitfalls: A list of common mistakes that are made, and how to
avoid them.

n Programming Style Guidelines: To encourage the creation of “good”

programs that others can actually understand, the programming chapters
have guidelines that make programs easier to read and understand, and

therefore easier to work with and to modify.

n MATLAB Reserved Words: A list of the reserved key words in MATLAB.
Throughout the text, these are shown in bold, underlined type.

xviii Preface
n MATLAB Functions and Commands: A boxed list of the MATLAB built-in

functions and commands covered in the chapter, in the order covered.

Throughout the text, these are shown in bold type.
n MATLAB Operators: A boxed list of the MATLAB operators covered in the

chapter in the order covered.

n Exercises: A comprehensive set of exercises, ranging from the rote to more
engaging applications.

Additional Book Resources
A companion web site is available with downloadable .m files for all examples

in the text, at www.elsevierdirect.com/9780123850812. Other book-related re-
sources will also be posted on the web site from time to time.

Additional teaching resources are available for faculty using this book as a text for
their course(s). Please visit www.textbooks.elsevier.com to register for access to:

n Instructor solutions manual for end-of-chapter problems
n Electronic figures from the text for creation of lecture slides

n Downloadable M-files for all examples in the text

http://www.elsevierdirect.com/9780123850812
http://www.textbooks.elsevier.com

Acknowledgments
xix
I am indebted to many, many family members, colleagues, mentors, and to

numerous students.

Throughout the last 24 years of coordinating and teaching the basic computa-
tion courses for the College of Engineering at Boston University, I have been

blessed with many fabulous students as well as graduate teaching fellows

and undergraduate teaching assistants. There have been hundreds of teaching
assistants over the years, too many to name individually, but I thank them all

for their support.

In particular, the following teaching assistants were very helpful in reviewing

drafts of the original manuscript and suggesting examples: Edy Tan, Megan

Smith, Brandon Phillips, Carly Sherwood, Ashmita Randhawa, Mike Green,
Kevin Ryan, and Brian Hsu. For this Second Edition, Brian Hsu and Paul Vermil-

ion suggested several revisions. Brian Hsu, Jake Herrmann, and Ben Duong con-

tributed exercises. Kevin Ryan created the script to produce the cover illustrations.

A number of colleagues have been very encouraging through the years. I would

especially like to thank my former and current department chairmen, Tom
Bifano and Ron Roy, for their support and motivation, and Tom for his GUI

example suggestions. I am also indebted to my mentors at Boston University,

Bill Henneman of the Computer Science Department, and Merrill Ebner of the
Department of Manufacturing Engineering, as well as to Bob Cannon from the

University of South Carolina.

I would like to thank all the reviewers of the proposal and drafts of this book.
Their comments have been extremely helpful and I hope I have incorporated

their suggestions to their satisfaction. In addition to several anonymous re-

viewers, the reviewers for this edition include:

n Peter Bernard, University of Maryland

n Sanjukta Bhowmick, Pennsylvania State University
n Chris Brown, University of Rochester

n Steven Brown, University of Delaware

xx Acknowledgments
n Anthony Muscat, University of Arizona

n Charles Riedesel, University of Nebraska, Lincoln

n Jeff Ringenberg, The University of Michigan
n Richard Ulrich, University of Arkansas

Also, I thank those at Elsevier who helped tomake this book possible, including
Joseph Hayton, Publisher; Fiona Geraghty, Editorial Project Manager; Marilyn

Rash, Project Manager; Eric DeCicco, Cover Designer/Illustrator; and Tim Pitts,

a Publisher at Elsevier in the United Kingdom.

Finally, thanks go to all members of my family, especially my parents Roy Att-

away and Jane Conklin, both of whom encouraged me at an early age to read
and to write. Thanks also to my husband Ted de Winter for his encouragement

and good-natured taking care of the weekend chores while I worked on this

project!

The photo of Ted fishing in the image-processing section was taken by Wes

Karger.

CHAPTER 1
Introduction to MATLAB
CONTENTS
KEY TERMS
1.1 Getting into
MATLAB4

1.2 The MATLAB
Desktop
Environment ..5

1.3 Variables and
Assignment
Statements......6

1.4 Expressions.10

1.5 Characters and
Encoding.......19

1.6 Vectors and
Matrices.........21
prompt

programs

script files

variables

assignment statement

assignment operator

user

initializing

incrementing

decrementing

identifier names

reserved words

key words

mnemonic

default

unary

operand

binary

scientific notation

exponential notation

precedence

associativity

nesting

call a function

arguments

returning values

constants

types

classes

double precision

floating point

unsigned

characters

strings

type casting

saturation arithmetic

random numbers

seed

pseudorandom

character encoding

character set

vectors

matrices

row vector

column vector

scalar

elements

array

array operations

iterate

step value

concatenating

index

subscript

index vector

transposing

subscripted indexing

unwinding a matrix

linear indexing

vector of variables

empty vector

deleting elements

three-dimensional

matrices
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
3

4 CHAPTER 1 Introduction to MATLAB
MATLABW is a very powerful software package that has many built-in tools for

solving problems and developing graphical illustrations. The simplest method

for using the MATLAB product is interactively; an expression is entered by the
user andMATLAB immediately responds with a result. It is also possible to write

scripts and programs in MATLAB, which are essentially groups of commands

that are executed sequentially.

This chapter will focus on the basics, including many operators and built-in

functions that can be used in interactive expressions. Means of storing values,

including vectors and matrices, will also be introduced.
1.1 GETTING INTO MATLAB

MATLAB is a mathematical and graphical software package with numerical,

graphical, and programming capabilities. It has built-in functions to perform
many operations, and there are toolboxes that can be added to augment these

functions (e.g., for signal processing). There are versions available for different

hardware platforms, in both professional and student editions.

When the MATLAB software is started, a window opens in which the main part

is the Command Window (see Figure 1.1). In the Command Window, you

should see:

>>

The >> is called the prompt. In the Student Edition, the prompt instead is:

EDU>>

In the Command Window, MATLAB can be used interactively. At the prompt,
any MATLAB command or expression can be entered, and MATLAB will imme-

diately respond with the result.

It is also possible to write programs in MATLAB that are contained in script files

or M-files. Programs will be introduced in Chapter 2.

The following commands can serve as an introduction to MATLAB and allow
you to get help:

n info will display contact information for the product.
n demo has demos of some of the features of MATLAB.

n help will explain any command; help help will explain how help works.

n helpbrowser opens a Help Window.
n lookfor searches through the help for a specific word or phrase. (Note: This

can take a long time.)

To get out of MATLAB, either type quit at the prompt, or choose File, then Exit

MATLAB from the menu.

FIGURE 1.1 MATLAB Command Window

51.2 The MATLAB Desktop Environment
1.2 THE MATLAB DESKTOP ENVIRONMENT

In addition to the CommandWindow, there are several other windows that can

be opened and may be opened by default. What is described here is the default
layout for these windows in Version R2011a, although there are other possible

configurations. Different versions of MATLAB may show other configurations

by default, and the layout can always be customized. Therefore, the main
features will be briefly described here.

Directly above the Command Window, there is a pull-down menu for the
Current Folder. The folder that is set as the Current Folder is where files will

be saved.

6 CHAPTER 1 Introduction to MATLAB
To the right of the Command Window is the Workspace Window on top and

the Command History Window on the bottom. The Command History

Window shows commands that have been entered, not just in the current ses-
sion (in the current Command Window), but previously as well. (The Work-

space Window will be described in the next section.) To the left of the

Command Window is the Current Folder Window. This shows the files that
are stored in the Current Folder. These can be grouped by type, and sorted

by name. If a file is selected, information about that file is shown on the

bottom.

This default configuration can be altered by clicking on Desktop, or using the

icons at the top right corner of each window. These include an “x” that will

close a particular window, and a curled arrow that in its initial state pointing
to the upper right allows one to undock that window. Once undocked, click-

ing on the curled arrow pointing to the lower right will dock the window

again.
1.3 VARIABLES AND ASSIGNMENT STATEMENTS

To store a value in a MATLAB session, or in a program, a variable is used. The
Workspace Window shows variables that have been created. One easy way to

create a variable is to use an assignment statement. The format of an

assignment statement is

variablename ¼ expression

The variable is always on the left, followed by the ¼ symbol, which is the as-

signment operator (unlike in mathematics, the single equal sign does not mean
equality), followed by an expression. The expression is evaluated and then that

value is stored in the variable. For example, this is the way it would appear in

the Command Window:

>> mynum ¼ 6
mynum ¼

6
>>

Here, the user (the person working in MATLAB) typed “mynum ¼ 6” at the

prompt, and MATLAB stored the integer 6 in the variable called mynum, and

then displayed the result followed by the prompt again. Since the equal sign
is the assignment operator, and does not mean equality, the statement should

be read as “mynum gets the value of 6” (not “mynum equals 6”).

Note that the variable name must always be on the left, and the expression on

the right. An error will occur if these are reversed.

Note

In the remainder of the

text, the prompt that

appears after the result

will not be shown.

71.3 Variables and Assignment Statements
>> 6 ¼ mynum
??? 6 ¼ mynum

j
Error: The expression to the left of the equals sign is not a valid
target for an assignment.

>>

Putting a semicolon at the end of a statement suppresses the output. For
example,

>> res ¼ 9 – 2;
>>

This would assign the result of the expression on the right side the value 7 to the

variable res; it just doesn’t show that result. Instead, another prompt appears
immediately. However, at this point in the Workspace Window the variables

mynum and res and their values can be seen.

The spaces in a statement or expression do not affect the result, but make it eas-
ier to read. The following statement, which has no spaces, would accomplish

exactly the same thing as the previous statement:

>> res¼9-2;

MATLAB uses a default variable named ans if an expression is typed at the
prompt and it is not assigned to a variable. For example, the result of the expres-

sion 6 þ 3 is stored in the variable ans.

>> 6 þ 3
ans ¼

9

This default variable is reused any time just an expression is typed at the prompt.

A shortcut for retyping commands is to hit the up arrow ", which will go back to
the previously typed command(s). For example, if you decided to assign the

result of the expression 6þ 3 to the variable “result” instead of using the default

ans, you could hit the up arrow and then the left arrow tomodify the command
rather than retyping the entire statement.

>> result ¼ 6 þ 3
result ¼

9

This is very useful, especially if a long expression is entered with an error, and it
is desired to go back to correct it.

To change a variable, another assignment statement can be used, which assigns
the value of a different expression to it. Consider, for example, the following

sequence of statements:

QUICK QUESTION

How can 1 be subtracted fro

num?

Answer:

num ¼ num � 1;

8 CHAPTER 1 Introduction to MATLAB
>> mynum ¼ 3
mynum ¼

3

>> mynum ¼ 4 þ 2
mynum ¼

6

>> mynum ¼ mynum þ 1
mynum ¼

7

In the first assignment statement, the value 3 is assigned to the variablemynum.
In the next assignment statement, mynum is changed to have the value of the

expression 4 þ 2, or 6. In the third assignment statement, mynum is changed

again, to the result of the expression mynum þ 1. Since at that time mynum
had the value 6, the value of the expression was 6 þ 1, or 7.

At that point, if the expression mynum þ 3 is entered, the default variable ans is

used since the result of this expression is not assigned to a variable. Thus, the
value of ans becomes 10 but mynum is unchanged (it is still 7). Note that just

typing the name of a variable will display its value.

>> mynum þ 3
ans ¼

10

>> mynum
mynum ¼

7

1.3.1 Initializing, incrementing, and decrementing
Frequently, values of variables change. Putting the first or initial value in a var-
iable is called initializing the variable.

Adding to a variable is called incrementing. For example, the statement

mynum ¼ mynum þ 1

increments the variable mynum by 1.
!

m the value of a variable called This is called decrementing the variable.

91.3 Variables and Assignment Statements

Openmirrors.com
1.3.2 Variable names
Variable names are an example of identifier names. We will see other examples

of identifier names, such as file names, in future chapters. The rules for identi-
fier names are:

n The name must begin with a letter of the alphabet. After that, the name can
contain letters, digits, and the underscore character (e.g., value_1), but it

cannot have a space.

n There is a limit to the length of the name; the built-in function name-
lengthmax tells what this maximum length is.

n MATLAB is case-sensitive, which means there is a difference between

upper- and lowercase letters. So, variables called mynum, MYNUM, and
Mynum are all different (although this would be confusing and should not

be done).

n Although underscore characters are valid in a name, their use can
cause problems with some programs that interact with MATLAB, so some

programmers use mixed case instead (e.g., partWeights instead of

part_weights)
n There are certain words called reserved words, or key words, that cannot be

used as variable names.

n Names of built-in functions can be but should not be used as variable
names.

Additionally, variable names should always be mnemonic, which means that
they should make some sense. For example, if the variable is storing the radius

of a circle, a name such as radius would make sense; x probably wouldn’t.

The Workspace Window shows the variables that have been created in the
current Command Window and their values.

The following commands relate to variables:

n who shows variables that have been defined in this Command Window

(this just shows the names of the variables)
n whos shows variables that have been defined in this Command Window

(this shows more information on the variables, similar to what is in the

Workspace Window)
n clear clears out all variables so they no longer exist

n clear variablename clears out a particular variable

n clear variablename1 variablename2 . . . clears out a list of variables (note:
separate the names with spaces)

If nothing appears when who or whos is entered, that means there aren’t any
variables! For example, in the beginning of a MATLAB session, variables could

be created and then selectively cleared (remember that the semicolon

suppresses output).

10 CHAPTER 1 Introduction to MATLAB
>> who
>> mynum ¼ 3;
>> mynum þ 5;

>> who
Your variables are:
ans mynum

>> clear mynum
>> who
Your variables are:
ans
1.4 EXPRESSIONS

Expressions can be created using values, variables that have already been

created, operators, built-in functions, and parentheses. For numbers, these
can include operators such as multiplication, and functions such as trigono-

metric functions. An example of such an expression is:

>> 2 * sin(1.4)
ans ¼

1.9709
1.4.1 The format function and ellipsis
The default in MATLAB is to display numbers that have decimal points with

four decimal places, as shown in the previous example. (The default means
if you do not specify otherwise, this is what you get.) The format command

can be used to specify the output format of expressions.

There are many options, including making the format short (the default) or
long. For example, changing the format to longwill result in 15 decimal places.

This will remain in effect until the format is changed back to short, as demon-

strated in the following.

>> format long
>> 2 * sin(1.4)
ans ¼

1.970899459976920

>> format short
>> 2 * sin(1.4)
ans ¼

1.9709

The format command can also be used to control the spacing between the
MATLAB command or expression and the result; it can be either loose

(the default) or compact.

111.4 Expressions
>> format loose
>> 5 *33
ans ¼

165

>> format compact
>> 5 *33
ans ¼

165
>>

Especially long expressions can be continued on the next line by typing three
(or more) periods, which is the continuation operator, or the ellipsis. To do

this, type part of the expression followed by an ellipsis, then hit the Enter

key and continue typing the expression on the next line.

>> 3 þ 55 � 62 þ 4 � 5 . . .
þ 22 � 1

ans ¼
16

1.4.2 Operators
There are in general two kinds of operators: unary operators, which operate on a

single value, or operand, and binary operators, which operate on two values or

operands. The symbol “-”, for example, is both the unary operator for negation
and the binary operator for subtraction.

Here are some of the common operators that can be used with numerical
expressions:
þ addition
� negation, subtraction

* multiplication

/ division (divided by, e.g., 10/5 is 2)
\ division (divided into, e.g., 5\10 is 2)

^ exponentiation (e.g., 5^2 is 25)
In addition to displaying numbers with decimal points, numbers can also be

shown using scientific or exponential notation. This uses e for the exponent of

10 raised to a power. For example, 2 * 10^4 could be written two ways:

>> 2 * 10^4
ans ¼

20000

>> 2e4
ans ¼

20000

12 CHAPTER 1 Introduction to MATLAB

Openmirrors.com
Operator precedence rules
Some operators have precedence over others. For example, in the expression

4 þ 5 * 3, the multiplication takes precedence over the addition, so first 5 is
multiplied by 3, then 4 is added to the result. Using parentheses can change

the precedence in an expression:

>> 4 þ 5 * 3
ans ¼

19

>> (4 þ 5) * 3
ans ¼

27

Within a given precedence level, the expressions are evaluated from left to right

(this is called associativity).

Nested parentheses are parentheses inside of others; the expression in the inner
parentheses is evaluated first. For example, in the expression 5�(6 *(4 þ 2)),

first the addition is performed, then the multiplication, and finally the subtrac-

tion, to result in �31. Parentheses can also be used simply to make an expres-
sion clearer. For example, in the expression ((4 þ(3 *5))�1), the parentheses

are not necessary, but are used to show the order in which the parts of the

expression will be evaluated.

For the operators that have been covered thus far, the following is the prece-

dence (from the highest to the lowest):
() parentheses

^ exponentiation
� negation

*, /, \ all multiplication and division

þ, � addition and subtraction
PRACTICE 1.1

Think about what the results would be for the following expressions, and then type them in to verify

your answers:

4 ^ 2 � 1

4 ^(2 � 1)

2\3

4 * 2 � 9/3

5 � � 3

131.4 Expressions
1.4.3 Built-in functions and help
There are many built-in functions in MATLAB. The help command can be used

to identify MATLAB functions, and also how to use them. For example, typing
help at the prompt in the CommandWindow will show a list of help topics that

are groups of related functions. This is a very long list; the most elementary help

topics appear at the beginning.

For example, one of these is listed as matlab\elfun; it includes the elementary

math functions. Another of the first help topics ismatlab\ops, which shows the

operators that can be used in expressions.

To see a list of the functions contained within a particular help topic, type help

followed by the name of the topic. For example,

>> help elfun

will show a list of the elementary math functions. It is a very long list, and it is

broken into trigonometric (for which the default is radians, but there are equiv-

alent functions that instead use degrees), exponential, complex, and rounding
and remainder functions.

To find out what a particular function does and how to call it, type help and

then the name of the function. For example,

>> help sin

will give a description of the sin function.

To call a function, the name of the function is given followed by the argument(s)

that arepassed to the function inparentheses.Most functions then returnvalue(s).

For example, to find the absolute value of –4, the following expression would be

entered:

>> abs(�4)

which is a call to the function abs. The number in the parentheses, the�4, is the

argument. The value 4 would then be returned as a result.
QUICK QUESTION!

What would happen if you use the name of a function, for

example, sin, as a variable name?

Answer: This is allowed in MATLAB, but then sin could not

be used as the built-in function until the variable is cleared.

For example, examine the following sequence:

>> sin(3.1)

ans ¼
0.0416

>> sin ¼ 45

sin ¼
45

Continued

QUICK QUESTION

What would happen if you re

typed the following:

rem(5,13)

Answer:The rem function is

two arguments passed to it. I

QUICK QUESTION!—CONT’D

>> sin(3.1)

??? Subscript indices must either be real

positive integers or logicals.

>> who

Your variables are:

ans sin

>> clear sin

>> who

Your variables are:

ans

>> sin(3.1)

ans ¼
0.0416

14 CHAPTER 1 Introduction to MATLAB
In addition to the trigonometric functions, the elfun help topic also has some

rounding and remainder functions that are very useful. Some of these include
fix, floor, ceil, round, rem, and sign.

The rem function returns the remainder from a division; for example, 5 goes
into 13 twice with a remainder of 3, so the result of this expression is 3:

>> rem(13,5)
ans ¼

3

!

versed the order by mistake, and

an example of a function that has

n some cases, the order in which

the arguments are passed does not matter, but for the rem

function the order does matter. The rem function divides the

second argument into the first. In this case, the second

argument, 13, goes into 5 zero times with a remainder of 5,

so 5 would be returned as a result.
Another function in the elfun help topic is sign, which returns 1 if the argu-

ment is positive, 0 if it is 0, and –1 if it is negative. For example,

>> sign(�5)
ans ¼

�1

>> sign(3)
ans ¼

1

151.4 Expressions
PRACTICE 1.2

Use the help function to determine what the rounding functions fix, floor, ceil, and round do.

Experiment with them by passing different values to the functions, including some negative,

some positive, and some with fractions less than 0.5 and some greater. It is very important when

testing functions that you thoroughly test by trying different kinds of arguments!
1.4.4 Constants
Variables are used to store values that might change, or for which the values are

not known ahead of time. Most languages also have the capacity to store
constants, which are values that are known ahead of time, and cannot possibly

change.Anexampleof a constant valuewouldbepi, orp,which is3.14159. . . . In
MATLAB, there are functions that return some of these constant values, some
of which include:
pi 3.14159. . . .

i
ffiffiffiffiffiffiffi

�1
p

j
ffiffiffiffiffiffiffi

�1
p

inf infinity 1

NaN stands for “not a number,” such as the result of 0/0
QUICK QUESTION!
There is no built-in constant for e (2.718), so how can that value

be obtained in MATLAB?

Answer: Use the exponential function exp; e or e1 is

equivalent to exp(1).

>> exp(1)

ans ¼
2.7183
1.4.5 Types
Every expression, or variable, has a type associated with it. MATLAB supports
many types, which are called classes. A class is essentially a combination of a

type and the operations that can be performed on values of that type.

For example, there are types to store different kinds of numbers. For float or real

numbers, or in other words numbers with a decimal place (e.g., 5.3), there are

two basic types: single and double. The name of the type double is short for
double precision; it stores larger numbers than the single type. MATLAB uses a

floating point representation for these numbers.

There are many integer types, such as int8, int16, int32, and int64. The num-

bers in the names represent the number of bits used to store values of that type.

16 CHAPTER 1 Introduction to MATLAB
For example, the type int8 uses eight bits altogether to store the integer and its

sign. Since one bit is used for the sign, this means that seven bits are used to

store actual numbers (0s or 1s). There are also unsigned integer types uint8,
uint16, uint32, and uint64. For these types, the sign is not stored,meaning that

the integers can only be positive (or 0).

For example, the typeuint8 stores 2^8or 256 integers, ranging from0 to 255. The
rangeofvalues that canbestored in int8, on theotherhand, is from–128 toþ127.

The range can be found for any type by passing the name of the type as a string

(whichmeans in single quotes) to the functions intmin and intmax. For example,

>> intmin(‘int8’)
ans ¼
�128

>> intmax(‘int8’)
ans ¼
127

The larger the number in the type name, the larger the number that can be stored
in it.Wewill for themost part use the type int32when an integer type is required.

The type char is used to store either single characters (e.g., ‘x’) or strings, which

are sequences of characters (e.g., ‘cat’). Both characters and strings are enclosed
in single quotes.

The type logical is used to store true/false values. This will be explained inmore
detail in Chapter 3.

Variables that have been created in the Command Window can be seen in the
WorkspaceWindow. In thatwindow, for every variable, the variable name, value,

andclass (which isessentially its type)canbeseen.Otherattributesofvariablescan

also be seen in theWorkspaceWindow.Which attributes are visible bydefault de-
pends on the versionofMATLAB.However, when theWorkspaceWindow is cho-

sen, clicking onView allows the user to choosewhich attributes will be displayed.

By default, numbers are stored as the type double in MATLAB. There are, how-
ever,many functions that convert values fromone type to another. The names of

these functions are the same as the names of the types shown in this section.

Thesenames canbeusedas functions to convert a value to that type. This is called
casting thevalue toadifferent type,or type casting. For example, to convert avalue

from the type double, which is the default, to the type int32, the function int32

would be used. Entering the assignment statement

>> val ¼ 6 þ 3

would result in the number 9 being stored in the variable val, with the default
type of double, which can be seen in the Workspace Window. Subsequently,

the assignment statement

171.4 Expressions
>> val ¼ int32(val);

would change the type of the variable to int32, but would not change its value.
Here is another example using two different variables.

>> num ¼ 6 þ 3;
>> numi ¼ int32(num);
>> whos
Name S B C A
num 1
numi 1
i
ze
 ytes

d
i

lass
 ttributes

x
 1
 8
 ouble

x
 1
 4
 nt32
One reason for using an integer type for a variable is to save space in memory.
QUICK QUESTION!
What would happen if you go beyond the range for a particular

type? For example, the largest integer that can be stored in int8

is 127, so what would happen if we type cast a larger integer to

the type int8?

>> int8(200)

Answer: The value would be the largest in the range, in this

case 127. Ifwe insteaduse a negative number that is smaller than

the lowest value in the range, its value would be –128. This is an

example of what is called saturation arithmetic.

>> int8(200)

ans ¼
127

>> int8(�130)

ans ¼
�128
PRACTICE 1.3

n Calculate the range of integers that can be stored in the typesuint16 and int16. Use intmin and

intmax to verify your results.

n Enter an assignment statement and view the variable type in the Workspace Window. Then,

change its type and view it again.
1.4.6 Random numbers
When a program is being written to work with data, and the data are not yet

available, it is often useful to test the program first by initializing the data vari-

ables to random numbers. There are several built-in functions in MATLAB that
generate random numbers, some of which will be illustrated in this section.

Random number generators or functions are not truly random. Basically, the
way it works is that the process starts with one number, which is called a seed.

Frequently, the initial seed is either a predetermined value or it is obtained

18 CHAPTER 1 Introduction to MATLAB
from the built-in clock in the computer. Then, based on this seed, a process de-

termines the next “random number.” Using that number as the seed the next

time, another random number is generated, and so forth. These are actually
called pseudorandom—they are not truly random because there is a process that

determines the next value each time.

The function rand can be used to generate uniformly distributed random real
numbers; calling it generates one random real number in the range from 0 to 1.

There are no arguments passed to the rand function in its simplest form. Here

are two examples of calling the rand function:

>> rand
ans ¼

0.9501

>> rand
ans ¼

0.2311

The seed for the rand function will always be the same each time MATLAB is
started, unless the initial seed is changed. In later versions of MATLAB, this

is done with the rng function:

>> rng(‘shuffle’)

Note: This is only done once in any given MATLAB session to set the seed; the
rand function can then be used as shown before any number of times to gen-

erate random numbers. For earlier versions of MATLAB, the following can be
used instead:

>> rand (‘state’,sum (100*clock))

This uses the current date and time that are returned from the built-in clock

function to set the seed.

Since rand returns a real number in the range from 0 to 1, multiplying the result

by an integer N would return a random real number in the range from 0 to N.
For example, multiplying by 10 returns a real number in the range from 0 to 10,

so the expression

rand*10

would return a result in the range from 0 to 10.

To generate a random real number in the range from low to high, first create

the variables low and high. Then, use the expression rand*(high�low)þ
low. For example, the sequence

>> low ¼ 3;
>> high ¼ 5;
>> rand *(high�low)þ low

Note

In some versions of

MATLAB, there is

another built-in

function that

specifically generates

random integers:

randint in some cases

191.5 Characters and Encoding
would generate a random real number in the range from 3 to 5.

The function randn isused togeneratenormallydistributedrandomrealnumbers.

Generating random integers
Since the rand function returns a real number, this can be rounded to produce a

random integer. For example,

>> round(rand * 10)

would generate one random integer in the range from 0 to 10 (rand *10would
generate a random real number in the range from 0 to 10; rounding that will

return an integer). Or, one can generate a random integer in a range:

>> low ¼ 2;
>> high ¼ 6;
>> round(rand *(high�low)þlow)

This would generate a random integer in the range from 2 to 6.

PRACTICE 1.4

Generate a random

n real number in the range from 0 to 1

n real number in the range from 0 to 50

n real number in the range from 10 to 20

n integer in the range from 1 to 10

and randi in others.
1.5 CHARACTERS AND ENCODING

A character in MATLAB is represented using single quotes (e.g., ‘a’ or ‘x’). The

quotes are necessary to denote a character; without them, a letter would be

interpreted as a variable name. Characters are put in an order using what is
called a character encoding. In the character encoding, all characters in the com-

puter’s character set are placed in a sequence and given equivalent integer

values. The character set includes all letters of the alphabet, digits, and punctu-
ationmarks; basically, all of the keys on a keyboard are characters. Special char-

acters, such as the Enter key, are also included. So, ‘x’, ‘!’, and ‘3’ are all

characters. With quotes, ‘3’ is a character, not a number.

The most common character encoding is the American Standard Code for

Information Interchange, or ASCII. Standard ASCII has 128 characters, which

have equivalent integer values from 0 to 127. The first 32 (integer values
0 through 31) are nonprinting characters. The letters of the alphabet are in

order, which means ‘a’ comes before ‘b’, then ‘c’, and so forth.

The numeric functions can be used to convert a character to its equivalent

numerical value (e.g., double will convert to a double value, and int32 will

Note

Quotes are not shown

when a character is

displayed.

20 CHAPTER 1 Introduction to MATLAB
convert to an integer value using 32 bits). For example, to convert the character

‘a’ to its numerical equivalent, the following statement could be used:

>> numequiv ¼ double(‘a’)
numequiv ¼

97

This stores the double value 97 in the variable numequiv, which shows that the

character ‘a’ is the 98th character in the character encoding (since the equivalent

numbers begin at 0). It doesn’t matter which number type is used to convert ‘a’;
for example,

>> numequiv ¼ int32(‘a’)

would also store the integer value 97 in the variable numequiv. The only differ-

ence between these will be the type of the resulting variable (double in the first

case, int32 in the second).

The function char does the reverse; it converts from any number to the equiv-

alent character:

>> char(97)
ans ¼
a

Since the letters of the alphabet are in order, the character ‘b’ has the equivalent
value of 98, ‘c’ is 99, and so on. Math can be done on characters. For example, to

get the next character in the character encoding, 1 can be added either to the

integer or the character:

>> numequiv ¼ double(‘a’);

>> char(numequiv þ 1)
ans ¼
b

>> ‘a’ þ 2
ans ¼

99

Note the difference in the formatting (the indentation) when a number is
displayed versus a character:

>> var ¼ 3
var ¼

3
>> var ¼ ‘3’
var ¼
3

MATLAB also handles strings, which are sequences of characters in single
quotes. For example, using the double function on a string will show the

equivalent numerical value of all characters in the string:

211.6 Vectors and Matrices
>> double(‘abcd’)
ans ¼

97 98 99 100

To shift the characters of a string “up” in the character encoding, an integer

value can be added to a string. For example, the following expression will then

shift by 1:

>> char(‘abcd’ þ 1)
ans ¼
bcde
PRACTICE 1.5

n Find the numerical equivalent of the character ‘t’.

n Find the character equivalent of 112.
1.6 VECTORS AND MATRICES

Vectors and matrices are used to store sets of values, all of which are the same
type. A vector can be either a row vector or a column vector. A matrix can be

visualized as a table of values. The dimensions of a matrix are r � c, where r

is the number of rows and c is the number of columns. This is pronounced
“r by c.” If a vector has n elements, a row vector would have the dimensions

1 � n, and a column vector would have the dimensions n � 1.

A scalar (one value) has the dimensions 1� 1. Therefore, vectors and scalars are

actually just special cases of matrices. Here are some diagrams showing, from

left to right, a scalar, a column vector, a row vector, and a matrix.
3
 5
 88
 3
 11
 9
 6
 3
5
 7
 5
 7
 2
4

The scalar is 1 � 1, the column vector is 3 � 1 (three rows by one column), the
row vector is 1 � 4 (one row by four columns), and the matrix is 2 � 3 (two

rows by three columns). All of the values in these matrices are stored in what

are called elements.

MATLAB is written to work with matrices; the name MATLAB is short for

“matrix laboratory.” Since MATLAB is written to work with matrices, it is very
easy to create vector and matrix variables, and there are many operations and

functions that can be used on vectors and matrices.

QUICK QUESTION

What happens if adding the

range specified by the last, su

1:2:6

22 CHAPTER 1 Introduction to MATLAB
A vector in MATLAB is equivalent to what is called a one-dimensional array in

other languages. A matrix is equivalent to a two-dimensional array. Usually,

even in MATLAB, some operations that can be performed on either vectors
ormatrices are referred to as array operations. The term “array” is also frequently

used to mean generically either a vector or a matrix.

1.6.1 Creating row vectors
There are several ways to create row vector variables. The most direct way is to

put the values that you want in the vector in square brackets, separated by either
spaces or commas. For example, both of these assignment statements create the

same vector v:

>> v ¼ [1 2 3 4]
v ¼

1 2 3 4

>> v ¼ [1,2,3,4]
v ¼

1 2 3 4

Both of these create a row vector variable that has four elements; each value is

stored in a separate element in the vector.

The colon operator and linspace function
If, as in the preceding examples, the values in the vector are regularly spaced,

the colon operator can be used to iterate through these values. For example,

1:5 results in all of the integers from 1 to 5:
>> vec ¼ 1:5
vec ¼

1 2 3 4 5

Note that in this case, the brackets [] are not necessary to define the vector.

With the colon operator, a step value can also be specified with another colon,
in the form (first:step:last). For example, to create a vector with all integers from

1 to 9 in steps of 2:

>

n

!

step

ch a
> nv ¼ 1:2:9

v ¼
1 3 5 7 9
value would go beyond the

s

Answer: This would create a vector containing 1, 3, and 5.

Adding 2 to the 5 would go beyond 6, so the vector stops at 5;

the result would be

1 3 5

QUICK QUESTION!

How can you use the colon operator to generate the following

vector?

9 7 5 3 1

Answer:

9:-2:1

The step operator can be a negative number, so the resulting

sequence is in descending order.

231.6 Vectors and Matrices
Similarly, the linspace function creates a linearly spaced vector; linspace(x,y,n)
creates a vector with n values in the inclusive range from x to y. For example, the

following creates a vector with five values linearly spaced between 3 and 15,

including the 3 and 15:

>> ls ¼ linspace(3,15,5)
ls ¼

3 6 9 12 15

Vector variables can also be created using existing variables. For example, a new
vector is created here consisting first of all values from nv followed by all values

from ls:

>> newvec ¼ [nv ls]
newvec ¼

1 3 5 7 9 3 6 9 12 15

Putting two vectors together like this to create a new one is called concatenating

the vectors.
Referring to and modifying elements
The elements in a vector are numbered sequentially; each element number is
called the index, or subscript. In MATLAB, the indices start at 1. Normally, dia-

grams of vectors andmatrices show the indices. For example, for the variable new-

vec created earlier the indices 1 to 10 of the elements are shown above the vector:
newvec
1
 2
 3
 4
 5
 6
 7
 8
 9
 10
1
 3
 5
 7
 9
 3
 6
 9
 12
 15
A particular element in a vector is accessed using the name of the vector variable
and the index or subscript in parentheses. For example, the fifth element in the

vector newvec is a 9:

>> newvec(5)
ans ¼

9

24 CHAPTER 1 Introduction to MATLAB
The expression newvec(5) would be pronounced “newvec sub 5,” where sub is

short for subscript. A subset of a vector, which would be a vector itself, can also

be obtained using the colon operator. For example, the following statement
would get the fourth through sixth elements of the vector newvec, and store

the result in a vector variable b:

>> b ¼ newvec(4:6)
b ¼

7 9 3

Any vector can be used for the indices into another vector, not just one created

using the colon operator. For example, the following would get the first, fifth,
and tenth elements of the vector newvec:

>> newvec([1 5 10])
ans ¼

1 9 15

The vector [1 5 10] is called an index vector; it specifies the indices in the original
vector that are being referenced.

The value stored in a vector element can be changed by specifying the index or
subscript. For example, to change the second element from the preceding vector

b to now store the value 11 instead of 9:

>> b(2) ¼ 11
b ¼

7 11 3

By referring to an index that does not yet exist, a vector can also be extended.

For example, the following creates a vector thathas three elements. By thenassign-

ing a value to the fourth element, the vector is extended to have four elements.

>> rv ¼ [3 55 11]
rv ¼

3 55 11

>> rv(4) ¼ 2
rv ¼

3 55 11 2

If there is a gap between the end of the vector and the specified element, 0s are

filled in. For example, the following extends the variable rv again:

>> rv(6) ¼ 13
rv ¼

3 55 11 2 0 13

As we will see later, this is actually not very efficient because it can take

extra time.

251.6 Vectors and Matrices
PRACTICE 1.6

Think aboutwhatwould be produced by the following sequence of statements and expressions, and

then type them in to verify your answers:

pv ¼ 2:2:8

pv(4) ¼ 33

pv(6) ¼ 11

prac ¼ pv(3:5)

linspace(4,12,3)
1.6.2 Creating column vectors
One way to create a column vector is to explicitly put the values in square

brackets, separated by semicolons (rather than commas or spaces):

>> c ¼ [1; 2; 3; 4]
c ¼

1
2
3
4

There is no direct way to use the colon operator to get a column vector.

However, any row vector created using any method can be transposed to result

in a column vector. In general, the transpose of a matrix is a new matrix in
which the rows and columns are interchanged. For vectors, transposing a

row vector results in a column vector, and transposing a column vector results

in a row vector. A built-in operator, the apostrophe, in MATLAB will transpose.

>> r ¼ 1:3;
>> c ¼ r’
c ¼

1
2
3

1.6.3 Creating matrix variables
Creating a matrix variable is simply a generalization of creating row and

column vector variables. That is, the values within a row are separated by either
spaces or commas, and the different rows are separated by semicolons. For

example, the matrix variable mat is created by explicitly typing values:

>> mat ¼ [4 3 1; 2 5 6]
mat ¼

4 3 1
2 5 6

26 CHAPTER 1 Introduction to MATLAB
There must always be the same number of values in each row. If you attempt to

create a matrix in which there are different numbers of values in the rows, the

result will be an error message, such as in the following:

>> mat ¼ [3 5 7; 1 2]
??? Error using ¼¼> vertcat
CAT arguments dimensions are not consistent.

Iterators can also be used for the values in the rows using the colon operator.

For example:

>> mat ¼ [2:4; 3:5]
mat ¼

2 3 4
3 4 5

Different rows in the matrix can also be specified by hitting the Enter key after

each row instead of typing a semicolon when entering the matrix values, as in:

>> newmat ¼ [2 6 88
33 5 2]

newmat ¼
2 6 88

33 5 2

Matrices of random numbers can be created using the rand function. If a single

value n is passed to rand, an n � n matrix will be created, or passing two
arguments will specify the number of rows and columns:

>> rand(2)
ans ¼

0.2311 0.4860
0.6068 0.8913

>> rand(1,3)
ans ¼

0.7621 0.4565 0.0185

Matrices of random integers can be generated using round, as previously

demonstrated:

>> round(rand(2,2)*10)
ans ¼

1 9
4 8

MATLAB also has several functions that create specialmatrices. For example, the

zeros function creates a matrix of all zeros, and the ones function creates a ma-

trix of all ones. Like rand, either one argument can be passed (which will be

271.6 Vectors and Matrices

Openmirrors.com
both the number of rows and columns), or two arguments (first the number of

rows and then the number of columns).

>> zeros(3)
ans ¼

0 0 0
0 0 0
0 0 0

>> ones(2,4)
ans ¼

1 1 1 1
1 1 1 1

Examples of other special matrix functions appear in Chapter 12.

Referring to and modifying matrix elements
To refer tomatrix elements, the row and then the column subscripts are given in
parentheses (always the row first and then the column). For example, this cre-

ates a matrix variable mat and then refers to the value in the second row, third

column of mat:

>> mat ¼ [2:4; 3:5]
mat ¼

2 3 4
3 4 5

>> mat(2,3)
ans ¼

5

This is called subscripted indexing; it uses the row and column subscripts. It is

also possible to refer to a subset of a matrix. For example, this refers to the first

and second rows, second and third columns:

>> mat(1:2,2:3)
ans ¼

3 4
4 5

Using a colon for the row subscript means all rows, regardless of how many,

and using a colon for the column subscript means all columns. For example,

this refers to all columns within the first row, or in other words the entire
first row:

>> mat(1,:)
ans ¼

2 3 4

Note

Since the entire row is

being modified, a vector

with the correct length

must be assigned.

28 CHAPTER 1 Introduction to MATLAB
This refers to the entire second column:

>> mat(:, 2)
ans ¼

3
4

If a single index is used with a matrix, MATLAB unwinds the matrix column by

column. For example, for the matrix intmat created here, the first two elements
are from the first column, and the last two are from the second column:

>> intmat ¼ [100 77; 28 14]
intmat ¼

100 77
28 14

>> intmat(1)
ans ¼

100

>> intmat(2)
ans ¼

28

>> intmat(3)
ans ¼

77

>> intmat(4)
ans ¼

14

This is called linear indexing. It is usually much better style when working with
matrices to use subscripted indexing.

An individual element in a matrix can be modified by assigning a new value

to it.

>> mat ¼ [2:4; 3:5];
>> mat(1,2) ¼ 11
mat ¼

2 11 4
3 4 5

An entire row or column could also be changed. For example, the following
replaces the entire second row with values from a vector.

>> mat(2,:) ¼ 5:7
mat ¼

2 11 4
5 6 7

291.6 Vectors and Matrices
To extend a matrix, an individual element could not be added since that would

mean there is no longer the same number of values in every row. However, an

entire row or column could be added. For example, the following would add a
fourth column to the matrix.

>> mat(:,4) ¼ [9 2]'
mat ¼

2 11 4 9
5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the

row or column being added, MATLAB will fill in with zeros.

>> mat(4,:) ¼ 2:2:8
mat ¼

2 11 4 9
5 6 7 2
0 0 0 0
2 4 6 8
1.6.4 Dimensions
The length and size functions in MATLAB are used to find dimensions of vec-

tors andmatrices. The length function returns the number of elements in a vec-
tor. The size function returns the number of rows and columns in a vector or

matrix. For example, the following vector vec has four elements so its length is 4.

It is a row vector, so the size is 1 � 4.

>> vec ¼ �2:1
vec ¼

�2 �1 0 1

>> length(vec)
ans ¼

4

>> size(vec)
ans ¼

1 4

To create the following matrix variable mat, iterators are used on the two rows

and then the matrix is transposed so that it has three rows and two columns, or

in other words the size is 3 � 2.

>> mat ¼ [1:3; 5:7]'
mat ¼

1 5
2 6
3 7

QUICK QUESTION

How could you create a matr

another matrix?

Answer: For a matrix variab

would accomplish this:

zeros(size(mat))

Note

This example

demonstrates a very

important and unique

concept in MATLAB:

the ability to have a

vector of variables on

the left side of an

assignment.

30 CHAPTER 1 Introduction to MATLAB
The size function returns the number of rows and then the number of columns,

so to capture these values in separate variables we put a vector of two variables

on the left of the assignment. The variable r stores the first value returned, which
is the number of rows, and c stores the number of columns.

>> [r c] ¼ size(mat)
r ¼
3

c ¼
2

If called as just an expression, the size function will return both values in a

vector:

>> size(mat)
ans ¼

3 2

For a matrix, the length function will return either the number of rows or the

number of columns, whichever is largest (in this case the number of rows, 3).

>> length(mat)
ans ¼

3

!

ix of zeros with the same size as

le mat, the following expression

The size function returns the size of the matrix, which is then

passed to the zeros function, which then returns a matrix of

zeros with the same size as mat. It is not necessary in this

case to store the values returned from the size function in

variables.
MATLAB also has a function numel that returns the total number of elements in

any array (vector or matrix):

>> vec ¼ 9:-2:1
vec ¼

9 7 5 3 1

>> numel(vec)
ans ¼

5

>> mat ¼ [3:2:7; 9 33 11]

Important

In programming

applications, it is better

to not assume that the

dimensions of a vector

or matrix are known.

Instead, to be general,

use either the length or

numel function to

determine the number

of elements in a vector,

and use size (and store

the result in two

variables) for a matrix.

311.6 Vectors and Matrices
mat ¼
3 5 7
9 33 11

>> numel(mat)
ans ¼

6

For vectors, this is equivalent to the length of the vector. For matrices, it is the
product of the number of rows and columns.

MATLAB also has a built-in expression end that can be used to refer to the last

element in a vector; for example, v(end) is equivalent to v(length(v)). For ma-

trices, it can refer to the last row or column. So, for example, using end for the
row index would refer to the last row.

In this case, the element referred to is in the first column of the last row:

>> mat ¼ [1:3; 4:6]'
mat ¼

1 4
2 5
3 6

>> mat(end,1)
ans ¼

3

Using end for the column index would refer to the last column (e.g., the last
column of the second row):

>> mat(2,end)
ans ¼

5

This can only be used as an index.
Changing dimensions
In addition to the transpose operator, MATLAB has several built-in functions

that change the dimensions or configuration of matrices, including reshape,

fliplr, flipud, and rot90.

The reshape function changes the dimensions of amatrix. The followingmatrix

variable mat is 3 � 4; in other words it has 12 elements.

>> mat ¼ round(rand(3,4)*100)
14 61 2 94
21 28 75 47
20 20 45 42

32 CHAPTER 1 Introduction to MATLAB
These 12 values could instead be arranged as a 2 � 6 matrix, 6 � 2, 4 � 3,

1 � 12, or 12 � 1. The reshape function iterates through the matrix

columnwise. For example, when reshaping mat into a 2 � 6 matrix, the
values from the first column in the original matrix (14, 21, and 20) are

used first, then the values from the second column (61, 28, 20), and so

forth.

>> reshape(mat,2,6)
ans ¼

14 20 28 2 45 47
21 61 20 75 94 42

Note that in these examples mat is unchanged; instead, the results are stored in
the default variable ans each time.

The fliplr function “flips” the matrix from left to right (in other words, the left-

most column, the first column, becomes the last column and so forth), and the
flipud function flips up to down.

>> mat
mat ¼

14 61 2 94
21 28 75 47
20 20 45 42

>> fliplr(mat)
ans ¼

94 2 61 14
47 75 28 21
42 45 20 20

>> mat
mat ¼

14 61 2 94
21 28 75 47
20 20 45 42

>> flipud(mat)
ans ¼

20 20 45 42
21 28 75 47
14 61 2 94

The rot90 function rotates thematrix counterclockwise 90 degrees, so for exam-

ple, the value in the top right corner becomes instead the top left corner and the

last column becomes the first row.

Q

Is t

clo

An

to

rot

tive

ma

res

331.6 Vectors and Matrices
>> mat
mat ¼

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat)
ans ¼

94 47 42
2 75 45
61 28 20
14 21 20
UICK QUESTION!

here a rot180 function? Is there a rot-90 function (to rotate

ckwise)?

swer: Not exactly, but a second argument can be passed

the rot90 function, which is an integer n; the function will

ate 90 * n degrees. The integer can be positive or nega-

. For example, if 2 is passed, the function will rotate the

trix 180 degrees (so, it would be the same as rotating the

ult of rot90 another 90 degrees).

>> mat

mat ¼
14 61 2 94

21 28 75 47

20 20 45 42

>> rot90(mat,2)

ans ¼
42 45 20 20

47 75 28 21

94 2 61 14

If a negative number is passed for n, the rotation would be in

the opposite direction, that is, clockwise.

>> mat

mat ¼
14 61 2 94

21 28 75 47

20 20 45 42

>> rot90(mat,�1)

ans ¼
20 21 14

20 28 61

45 75 2

42 47 94
The function repmat can be used to create a matrix; repmat(mat,m,n) creates a

largermatrix that consists of anm� nmatrix of copies ofmat. For example, here
is a 2 � 2 random matrix:

>> intmat ¼ round(rand(2)*100)
intmat ¼

50 34
96 59

34 CHAPTER 1 Introduction to MATLAB
Replicating this matrix six times as a 3 � 2 matrix would produce copies of

intmat in this form:
intmat intmat
intmat
 intmat
intmat
 intmat
>> repmat(intmat,3,2)
ans ¼

50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59
1.6.5 Using functions with vectors and matrices
Since MATLAB is written to work with vectors and matrices, an entire vector or

matrix can be passed as an argument to a function. MATLAB will evaluate the

function on every element, and return as a result a vector or matrix with the
same dimensions as the original. For example, we could pass the following

vector vec to the abs function to get the absolute value of every element.

>> vec ¼ �3:4
vec ¼

�3 �2 �1 0 1 2 3 4

>> abs(vec)
ans ¼

3 2 1 0 1 2 3 4

The original vector vec has eight elements, and since the abs function is evalu-

ated for every element, the resulting vector also has eight elements.

This also would be the case for matrices; the result will be the same size as the
input:

>> mat ¼ round(rand(2,3)*10�5)
mat ¼

�3 �2 2
3 0 4

>> abs(mat)
ans ¼

3 2 2
3 0 4

Note

There is a difference

between having an

empty vector variable

and not having the

variable at all.

351.6 Vectors and Matrices
We will see much more on operations and functions of arrays (vectors and ma-

trices) in Chapters 4, 5, and 12.

1.6.6 Empty vectors
An empty vector (i.e., a vector that stores no values) can be created using empty

square brackets:

>> evec ¼ []
evec ¼

[]

>> length(evec)
ans ¼

0

Values can then be added to an empty vector by concatenating, or adding,

values to the existing vector. The following statement takes what is currently

in evec, which is nothing, and adds a 4 to it.

>> evec ¼ [evec 4]
evec ¼

4

The following statement takes what is currently in evec, which is 4, and adds an
11 to it.

>> evec ¼ [evec 11]
evec ¼

4 11

This can be continued as many times as desired, to build a vector up from noth-
ing. Sometimes this is necessary, although generally it is not a good idea if it can

be avoided because it can be quite time consuming.

Empty vectors can also be used to delete elements from vectors. For example, to

remove the third element from a vector, the empty vector is assigned to it:

>> vec ¼ 1:5
vec ¼

1 2 3 4 5

>> vec(3) ¼ []
vec ¼

1 2 4 5

The elements in this vector are now numbered 1 through 4.

Subsets of a vector could also be removed. For example,

>> vec ¼ 1:8
vec ¼

1 2 3 4 5 6 7 8

36 CHAPTER 1 Introduction to MATLAB
>> vec(2:4) ¼ []
vec ¼

1 5 6 7 8

Individual elements cannot be removed from matrices, since matrices always

have to have the same number of elements in every row.

>> mat ¼ [7 9 8; 4 6 5]
mat ¼

7 9 8
4 6 5

>> mat(1,2) ¼ [];
??? Indexed empty matrix assignment is not allowed.

However, entire rows or columns could be removed from a matrix. For exam-

ple, to remove the second column:

>> mat(:,2) ¼ []
mat ¼

7 8
4 5

Also, if linear indexing is usedwith amatrix to delete an element, thematrix will
be reshaped into a vector.

>> mat ¼ [7 9 8; 4 6 5]
mat ¼

7 9 8
4 6 5

>> mat(3) ¼ []
mat ¼

7 4 6 8 5
PRACTICE 1.7

Think aboutwhat would be produced by the following sequence of statements and expressions, and

then type them in to verify your answers.

m ¼ [1:4; 3 11 7 2]

m(2,3)

m(:,3)

m(4)

size(m)

371.6 Vectors and Matrices
numel(m)

reshape(m,1,numel(m))

vec ¼ m(1,:)

vec(2) ¼ 5

vec(3) ¼ []

vec(5) ¼ 8

vec ¼ [vec 11]
1.6.7 Three-dimensional matrices
The matrices that have been shown so far have been two dimensional; these
matrices have rows and columns. Matrices in MATLAB are not limited to

two dimensions, however. In fact, in Chapter 14 we will see image applications

in which three-dimensional matrices are used. For a three-dimensional matrix,
imagine a two-dimensional matrix as being flat on a page, and then the third

dimension consists of more pages on top of that one (so, they are stacked on

top of each other).

Here is an example of creating a three-dimensional matrix. First, a two-

dimensional matrix mat is created. It is modified by flipping it up and down

and left to right. This new matrix newm is made into the third dimension of
the original by extending it. Note that we end up with a matrix that has two

layers, each of which is 3 � 5. The resulting three-dimensional matrix has

dimensions 3 � 5 � 2.

>> mat ¼ reshape(1:15,3,5)
mat ¼

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

>> newm ¼ fliplr(flipud(mat))
newm ¼

15 12 9 6 3
14 11 8 5 2
13 10 7 4 1

>> mat(:,:,2) ¼ newm
mat(:,:,1) ¼

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

38 CHAPTER 1 Introduction to MATLAB
mat(:,:,2) ¼
15 12 9 6 3
14 11 8 5 2
13 10 7 4 1

>> size(mat)
ans ¼

3 5 2

Three-dimensionalmatrices can also be created using the zeros, ones, and rand
functions by specifying three dimensions to begin with (e.g., zeros(3,5,2)).

Unless specified otherwise, in the remainder of this book “matrices” will be as-

sumed to be two dimensional.
SUMMARY
Common Pitfalls

It is commonwhen learning to program to make simple spelling mistakes and to confuse
the necessary punctuation. Examples are given here of very common errors. Some of

these include:

n Putting a space in a variable name

n Confusing the format of an assignment statement as

expression ¼ variablename

rather than

variablename ¼ expression

The variable name must always be on the left.

n Using a built-in function name as a variable name, and then trying to use the function

n Confusing the two division operators / and \

n Forgetting the operator precedence rules

n Confusing the order of arguments passed to functions—for example, to find the

remainder of dividing 3 into 10 using rem(3,10) instead of rem(10,3)

n Not using different types of arguments when testing functions

n Attempting to create a matrix that does not have the same number of values in

each row

n Forgetting to use parentheses to pass an argument to a function (e.g., “fix 2.3”

instead of “fix(2.3)”). MATLAB returns the ASCII equivalent for each character

when this mistake is made. (What happens is that it is interpreted as the function of

a string, “fix(‘2.3’)”.)

Programming Style Guidelines

Following these guidelines will make your codemuch easier to read and understand, and

therefore easier to work with and modify.

n Usemnemonic variable names (names thatmake sense, such as radius instead of xyz).

n Although variables named result and RESULT are different, using the same word(s)

for different variables would be confusing.

39Summary
n Do not use names of built-in functions as variable names.

n If different sets of random numbers are desired, set the seed for the rand function.

n If possible, try not to extend vectors or matrices, as it is not very efficient.

n Do not use just a single index when referring to elements in a matrix; instead, use both

the row and column indices (use subscripted indexing rather than linear indexing).

n In general, never assume that the dimensions of any array (vector or matrix) are

known. Instead, use the function length or numel to determine the number of

elements in a vector, and the function size for a matrix:
len ¼ length(vec);

[r c] ¼ size(mat);
MATLAB Functions and Commands

info

demo

help

lookfor

quit

namelengthmax

who

whos

clear

format

sin

abs

fix

floor

ceil

round

rem

sign

pi

i

j

inf

NaN

exp

single

double

int8

int16

int32

int64

uint8

uint16

uint32

uint64

intmin

intmax

char

logical

rand

rng

clock

randint

randi

randn

linspace

zeros

ones

length

size

numel

end

reshape

fliplr

flipud

rot90

repmat
MATLAB Operators

assignment ¼
ellipsis . . .

continuation . . .

addition þ
subtraction –

multiplication *

exponentiation ^

divided by /

divided into \

parentheses ()

negation –

colon :

transpose ’

40 CHAPTER 1 Introduction to MATLAB
Exercises
1. Create a variable to store the atomic weight of silicon (28.085).

2. Create a variable myage and store your age in it. Subtract one from the value of the

variable. Add 2 to the value of the variable.

3. Use the built-in function namelengthmax to find out the maximum number of

characters that you can have in an identifier name under your version of MATLAB.

4. Explore the format command in more detail. Use help format to find options.

Experiment with format bank to display dollar values.

5. Find a format option that would result in the following output format:

>> 5/16 þ 2/7
ans ¼
67/112

6. Think about what the results would be for the following expressions, and then type

them in to verify your answers.

25 / 4 * 4
3 þ 4 ^ 2
4 \ 12 þ 4
3 ^ 2
(5 – 2) * 3

7. The combined resistance RT of three resistors R1, R2, and R3 in parallel is given by

RT ¼ 1
1

R1
þ 1

R2
þ 1

R3

Create variables for the three resistors and store values in each, and then calculate
the combined resistance.

As the world becomes more “flat,” it is increasingly important for engineers and

scientists to be able to work with colleagues in other parts of the world. Correct

conversion of data from one system of units to another (e.g., from themetric system to

the American system or vice versa) is critically important.

8. Create a variable pounds to store weight in pounds. Convert this to kilograms and

assign the result to a variable kilos. The conversion factor is 1 kilogram¼ 2.2 pounds.

9. Create a variable ftemp to store a temperature in degrees Fahrenheit (F). Convert this

to degrees Celsius (C) and store the result in a variable ctemp. The conversion factor

is C ¼ (F – 32) * 5/9.

10. Find another quantity to convert from one system of units to another.

11.The function sin calculates and returns the sine of an angle in radians. Use help

elfun to find the name of the function that returns the sine of an angle in degrees.

Verify that calling this function and passing 90 degrees to it results in 1.

12.A vector can be represented by its rectangular coordinates x and y or by its polar

coordinates r and y. The relationship between them is given by the equations:

41Exercises
x ¼ r * cos(y)
y ¼ r * sin(y)

Assign values for the polar coordinates to variables r and theta. Then, using these

values, assign the corresponding rectangular coordinates to variables x and y.

13.Wind often makes the air feel even colder than it is. The wind chill factor (WCF)

measures how cold it feels with a given air temperature T (in degrees Fahrenheit) and

wind speed (V, in miles per hour). One formula for the WCF is:

WCF ¼ 35:7þ 0:6 T� 35:7ðV0:16Þ þ 0:43 TðV0:16Þ
- Create variables for the temperature T and wind speed V, and then using this

formula calculate the WCF.

14.Use help elfun or experiment to answer the following questions:

n Is fix(3.5) the same as floor(3.5)?

n Is fix(3.4) the same as fix(�3.4)?

n Is fix(3.2) the same as floor(3.2)?

n Is fix(–3.2) the same as floor(–3.2)?

n Is fix(–3.2) the same as ceil(–3.2)?

15. Find MATLAB expressions for the following:

ffiffiffiffiffi

19
p

1:2
3

tan(p)
16.Use intmin and intmax to determine the range of values that can be stored in the

types uint32 and uint64.

17.Are there equivalents to intmin and intmax for real number types? Use help to find

out.

18. Store a number with a decimal place in a double variable (the default). Convert the

variable to the type int32 and store the result in a new variable.

19.Generate a random

n real number in the range from 0 to 1

n real number in the range from 0 to 20

n real number in the range from 20 to 50

n integer in the range from 0 to 10

n integer in the range from 0 to 11

n integer in the range from 50 to 100

20.Open a new CommandWindow, and type rand to get a random real number. Make a

note of the number. Then, exit MATLAB and repeat this, again making a note of the

random number; it should be the same as before. Finally, exit MATLAB and again

open a new Command Window. This time, change the seed before generating a

random number; it should be different.

42 CHAPTER 1 Introduction to MATLAB
21. In the ASCII character encoding, the letters of the alphabet are in order; for example,

‘a’ comes before ‘b’ and also ‘A’ comes before ‘B’. However, which comes

first—lowercase or uppercase letters?

22. Shift the string ‘xyz’ up in the character encoding by two characters.

23.Using the colon operator, create the following row vectors:

3 4 5 6

1.0000 1.5000 2.0000 2.5000 3.0000

5 4 3 2

24.Using the linspace function, create the following row vectors:

4 6 8

�3 �6 �9 �12 �15

9 7 5

25.Create the following row vectors twice, using linspace and using the colon operator:

1 2 3 4 5 6 7 8 9 10

2 7 12

26.Create a variable myend that stores a random integer in the range from 8 to 12.

Using the colon operator, create a vector that iterates from 1 to myend in steps of 3.

27.Using the colon operator and the transpose operator, create a column vector that has

the values –1 to 1 in steps of 0.2.

28.Write an expression that refers to only the odd-numbered elements in a vector,

regardless of the vector length. Test your expression on vectors that have both an

odd and even number of elements.

29.Create a vector variable vec; it can have any length. Then, write assignment

statements that would store the first half of the vector in one variable and the second

half in another. Make sure that your assignment statements are general, and work

whether vec has an even or odd number of elements. (Hint: Use a rounding function

such as fix.)

30.Generate a 2 � 3 matrix of random

n real numbers, each in the range from 0 to 1

n real numbers, each in the range from 0 to 10

n integers, each in the range from 5 to 20

31.Create a variable rows that is a random integer in the range from 1 to 5. Create a

variable cols that is a random integer in the range from 1 to 5. Create a matrix of all

zeros with the dimensions given by the values of rows and cols.

43Exercises
32. Find an efficient way to generate the following matrix:

mat ¼
7 8 9 10

12 10 8 6

Then, give expressions that will, for the matrix mat,

n refer to the element in the first row, third column

n refer to the entire second row

n refer to the first two columns

33.Create a 2 � 3 matrix variable mymat. Pass this matrix variable to each of the

following functions and make sure you understand the result: fliplr, flipud, and

rot90. In how many different ways can you reshape it?

34.Create a 4 � 2 matrix of all zeros and store it in a variable. Then, replace the second

row in the matrix with a vector consisting of a 3 and a 6.

35.Create a vector x that consists of 20 equally spaced points in the range from –p toþp.
Create a y vector that is sin(x).

36.Create a 3 � 5 matrix of random integers, each in the range from –5 to 5. Get the

sign of every element.

37.Create a 4 � 6 matrix of random integers, each in the range from –5 to 5; store it

in a variable. Create another matrix that stores for each element the absolute

value of the corresponding element in the original matrix.

38.Create a 3 � 5 matrix of random real numbers. Delete the third row.

39.Create a vector variable vec. Find as many expressions as you can that would refer to

the last element in the vector, without assuming that you know how many elements

it has (i.e., make your expressions general).

40.Create amatrix variablemat. Find asmany expressions as you can that would refer to

the last element in the matrix, without assuming that you know howmany elements,

rows, or columns it has (i.e., make your expressions general).

41.Create a three-dimensional matrix and get its size.

42.The built-in function clock returns a vector that contains six elements: the first three

are the current date (year, month, day) and the last three represent the current time in

hours, minutes, and seconds. The seconds is a real number, but all others are

integers. Store the result from clock in a variable called myc. Then, store the first

three elements from this variable in a variable today and the last three elements in a

variable now. Use the fix function on the vector variable now to get just the integer

part of the current time.

CHAPTER 2
Introduction to MATLAB Programming
CONTENTS
KEY TERMS
2.1 Algorithms...46

2.2 MATLAB
Scripts.............47

2.3 Input and
Output49

2.4 Scripts with
Input and
Output57

2.5 Scripts to
Produce and
Customize
Simple Plots.58

2.6 Introduction to
File Input/
Output (Load
and Save)63

2.7 User-Defined
computer program

scripts

algorithm

top-down design

external file

default input device

prompting

default output device

execute/run

high-level languages

machine language

executable

compiler

source code

object code

interpreter

script files

documentation

comments

input/output (I/O)

user

empty string

error message

formatting

format string

place holder

conversion characters

newline character

field width

leading blanks

trailing zeros

plot symbols

markers

line types

toggle

modes

appending

user-defined functions

control

function header

output arguments

input arguments

function body

function definition

program

local variables
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Functions That
Return a Single
Value................68
We have now used the MATLABW product interactively in the Command Win-

dow. That is sufficient when all one needs is a simple calculation. However, in

many cases, quite a few steps are required before the final result can be
obtained. In those cases, it is more convenient to group statements together

in what is called a computer program.

In this chapter, we will introduce the simplest MATLAB programs, which are

called scripts. Examples of scripts that customize simple plots will illustrate

the concept. Input will be introduced, both from files and from the user.
45

46 CHAPTER 2 Introduction to MATLAB Programming
Output to files and to the screen will also be introduced. Finally, user-defined

functions that calculate and return values will be described. These topics serve

as an introduction to programming, which will be expanded on in Chapter 6.

2.1 ALGORITHMS

Before writing any computer program, it is useful to first outline the steps that
will be necessary. An algorithm is the sequence of steps needed to solve a prob-

lem. In a modular approach to programming, the problem solution is broken

down into separate steps, and then each step is further refined until the result-
ing steps are small enough to be manageable tasks. This is called the top-down

design approach.

As a simple example, consider theproblemof calculating the areaof a circle. First, it
is necessary to determinewhat information is needed to solve the problem,which

in this case is the radius of the circle. Next, given the radius of the circle, the area of

thecirclewouldbecalculated. Finally,once theareahasbeencalculated, ithas tobe
displayed in some way. The basic algorithm then is three steps:

n Get the input: the radius
n Calculate the result, the area

n Display the output

Evenwithanalgorithm this simple, it is possible to further refine eachof the steps.

When a program is written to implement this algorithm, the steps would be:

n Where does the input come from? Two possible choices would be from an

external fileonadisk, or from the user (theperson running the program)who

enters the number by typing it from the keyboard. For every system, one of
these will be the default input device (whichmeans, if not specified otherwise,

this iswhere the input comes from!). If theuser is supposed toenter the radius,

theuserhas tobe told to type in the radius (and, inwhatunits). Telling theuser
what toenter is calledprompting. So, the input stepactuallybecomes twosteps:

prompt the user to enter a radius, and then read it into the program.

n To calculate the area, the formula is needed. In this case, the area of the
circle is pmultiplied by the radius squared. So, that means the value of the

constant for p is needed in the program.

n Where does the output go? Two possibilities are (1) to an external file or
(2) to the screen. Depending on the system, one of these will be the default

output device. When displaying the output from the program, it should

always be as informative as possible. In other words, instead of just printing
the area (just the number), it should be printed in a nice sentence format.

Also, to make the output even more clear, the input should be printed.
For example, the output might be the sentence: “For a circle with a radius of

1 inch, the area is 3.1416 inches squared.”

472.2 MATLAB Scripts
Formost programs, the basic algorithm consists of the three steps outlined in the

preceding:

1. Get the input(s)

2. Calculate the result(s)

3. Display the result(s)

As can be seen here, even the simplest problem solutions can then be further

refined.
2.2 MATLAB SCRIPTS

Once a problem has been analyzed, and the algorithm for its solution has been

written and refined, the problem is then written in a particular programming

language. A computer program is a sequence of instructions, in a given language,
that accomplishes a task. To execute, or run, a program is to have the computer

actually follow these instructions sequentially.

High-level languages have English-like commands and functions, such as “print

this” or “if x < 5, do something.” The computer, however, can only interpret

commands written in its machine language. Programs that are written in
high-level languagesmust therefore be translated intomachine language before

the computer can actually execute the sequence of instructions in the program.

A program that does this translation from a high-level language to an executable

file is called a compiler. The original program is called the source code, and the

resulting executable program is called the object code.

By contrast, an interpreter goes through the code line-by-line, executing each
command as it goes. MATLAB uses what are called either script files, or M-files

(the reason for this is that the extension on the file name is .m). These script files

are interpreted, rather than compiled. Therefore, the correct terminology is that
these are scripts, not programs. However, the terms are somewhat loosely used

by many people, and the documentation in MATLAB itself refers to scripts as

programs. In this book, we will reserve the use of the word “program” to mean
a set of scripts and functions, as described briefly in Section 2.7 and then in

more detail in Chapter 6.

A script is a sequence of MATLAB instructions that is stored in an M-file and

saved. The contents of a script can be displayed in the CommandWindowusing

the type command. The script can be executed, or run, by simply entering the
name of the file (without the .m extension).

Before creating a script, make sure the Current Folder (called “Current Direc-
tory” in earlier versions) is set to the folder in which you want to save

your files.

48 CHAPTER 2 Introduction to MATLAB Programming
To create a script, click on File, then New, then Script. (In earlier versions of

MATLAB, click on File, then New, then M-file.) A new window will appear

called the Editor. To create a new script, simply type the sequence of statements
(note that line numbers will appear on the left).

When finished, save the file using File and then Save. Make sure that the

extension of .m is on the file name (this should be the default). The rules
for file names are the same as for variables (they must start with a letter,

after that there can be letters, digits, or the underscore). For example, we

will now create a script called script1.m that calculates the area of a circle.
It assigns a value for the radius, and then calculates the area based on that

radius.

In this text, scripts will be displayed in a box with the name of the M-file

on top.

script1.m

radius ¼ 5
area ¼ pi * (radius^2)

In the Command Window, the contents of the script can be displayed and

executed. The type command shows the contents of the file named script1.m;

note that the .m is not included.

>> type script1
radius ¼ 5
area ¼ pi * (radius^2)

There are two ways to view a script once it has been written: either open the

Editor Window to view it, or use the type command as shown here to display
it in the Command Window.

To actually run or execute the script, the name of the file is entered at the
prompt (again, without the .m). When executed, the results of the two assign-

ment statements are displayed, since the output was not suppressed for either

statement.

>> script1
radius ¼

5
area ¼

78.5398

Once the script has been executed, youmay find that you want tomake changes
to it (especially if there are errors!). To edit an existing file, there are several

methods to open it. The easiest are:

n Click on File, then Open, and then click on the name of the file.
n Within the Current Folder Window, double-click on the name of the file in

the list of files.

492.3 Input and Output
2.2.1 Documentation
It is very important that all scripts be documented well, so that people can un-

derstand what the script does and how it accomplishes its task. One way of doc-
umenting a script is to put comments in it. In MATLAB, a comment is anything

from a % to the end of that particular line. Comments are completely ignored

when the script is executed. To put in a comment, simply type the % symbol at
the beginning of a line, or select the comment lines and then click on Text and

then Comment and the Editor will put in the % symbols for the comments.

For example, the previous script to calculate the area of a circle could be mod-
ified to have comments:

script1b.m

% This script calculates the area of a circle

% First the radius is assigned
radius ¼ 5
% The area is calculated based on the radius
area ¼ pi * (radius^2)

The first comment at the beginning of the script describes what the script does.

Then, throughout the script, comments describe different parts of the script (not
usually a comment for every line, however!). Comments don’t affectwhat a script

does, so the output from this script would be the same as for the previous version.

The help command inMATLAB works with scripts as well as with built-in func-

tions. The first block of comments (defined as contiguous lines at the begin-

ning) will be displayed. For example, for script1b:

>> help script1b
This script calculates the area of a circle

The reason that a blank line was inserted in the script between the first two com-
ments is that otherwise bothwould have been interpreted as one contiguous com-

ment, andboth lineswouldhavebeendisplayedwithhelp. The very first comment

line is called the “H1 line”; it is what the function lookfor searches through.
PRACTICE 2.1

Write a script to calculate the area of a rectangle. Be sure to comment the script.
2.3 INPUT AND OUTPUT

The previous script would be much more useful if it were more general; for ex-

ample, if the value of the radius could be read from an external source rather
than being assigned in the script. Also, it would be better to have the script print

the output in a nice, informative way. Statements that accomplish these tasks

Note

Although normally the

quotes are not shown

around a character

or string, in this case

they are shown to

demonstrate that there

is nothing inside the

string.

50 CHAPTER 2 Introduction to MATLAB Programming
are called input/output statements, or I/O for short. Although, for simplicity,

examples of input and output statements will be shown here from the Com-

mand Window, these statements will make the most sense in scripts.
2.3.1 Input Function
Input statements read in values from the default or standard input device.
In most systems, the default input device is the keyboard, so the input state-

ment reads in values that have been entered by the user, or the person who

is running the script. To let the user know what he or she is supposed to enter,
the script must first prompt the user for the specified values.

The simplest input function inMATLAB is called input. The input function isused

in an assignment statement. To call it, a string is passed that is the prompt thatwill
appear on the screen, and whatever the user types will be stored in the variable

named on the left of the assignment statement. For ease of reading the prompt,

it is useful to put a colon and then a space after the prompt. For example,

>> rad ¼ input('Enter the radius: ')
Enter the radius: 5
rad ¼

5

If character or string input is desired, ‘s’ must be added as a second argument to

the input function:

>> letter ¼ input('Enter a char: ','s')
Enter a char: g
letter ¼
g

If the user enters only spaces or tabs before hitting the Enter key, they are ig-

nored and an empty string is stored in the variable:

>> mychar ¼ input('Enter a character: ', 's')
Enter a character:
mychar ¼

''

However, if blank spaces are entered before other characters, they are included in

the string. In thenext example, theuserhit the spacebar four timesbefore entering

“go.” The length function returns the number of characters in the string.

>> mystr ¼ input('Enter a string: ', 's')
Enter a string: go
mystr ¼

go

>> length(mystr)
ans ¼

6

512.3 Input and Output
QUICK QUESTION!
What would be the result if the user enters blank spaces after

other characters? For example, the user here entered “xyz ”

(four blank spaces):

>> mychar ¼ input('Enter chars: ', 's')

Enter chars: xyz

mychar ¼
xyz

Answer: The space characters would be stored in the string

variable. It is difficult to see in the previous example, but is clear

from the length of the string.

>> length(mychar)

ans ¼
7

The length can be seen in the Command Window by using the

mouse to highlight the value of the variable; the xyz and four

spaces will be highlighted.
It is also possible for the user to type quotation marks around the string

rather than including the second argument ‘s’ in the call to the input

function.

>> name ¼ input('Enter your name: ')
Enter your name: 'Stormy'
name ¼
Stormy

However, this assumes that the user would know to do this so it is better to

signify that character input is desired in the input function itself. Also, if the
‘s’ is specified and the user enters quotation marks, these would become part

of the string.

>> name ¼ input('Enter your name: ','s')
Enter your name: 'Stormy'
name ¼
'Stormy'
>> length(name)
ans ¼

8

Note what happens if string input has not been specified, but the user enters a
letter rather than a number.

>> num ¼ input('Enter a number: ')
Enter a number: t
??? Error using ¼¼> input
Undefined function or variable 't'.

Enter a number: 3
num ¼

3

52 CHAPTER 2 Introduction to MATLAB Programming
MATLAB gave an error message and repeated the prompt. However, if t is the

name of a variable, MATLAB will take its value as the input.

>> t ¼ 11;
>> num ¼ input('Enter a number: ')
Enter a number: t
num ¼

11

Separate input statements are necessary if more than one input is desired.

For example,

>> x ¼ input('Enter the x coordinate: ');
>> y ¼ input('Enter the y coordinate: ');

Normally, the results from input statements are suppressed with a semicolon at
the end of the assignment statements.

PRACTICE 2.2

Create a script that would prompt the user for a temperature, and then ‘F’ or ‘C’, and store both

inputs in variables. For example, when executed it would look like this (assuming the user enters

85 and then F):

Enter the temperature: 85

Is that F or C?: F
2.3.2 Output statements: disp and fprintf
Output statements display strings and/or the results of expressions, and can al-

low for formatting, or customizing how they are displayed. The simplest output
function inMATLAB is disp, which is used to display the result of an expression

or a string without assigning any value to the default variable ans. However,

disp does not allow formatting. For example,

>> disp('Hello')
Hello

>> disp(4^3)
64

Formatted output can be printed to the screen using the fprintf function. For
example,

>> fprintf('The value is %d, for sure!\n',4^3)
The value is 64, for sure!
>>

To the fprintf function, first a string (called the format string) is passed that

contains any text to be printed as well as formatting information for the

Note

Don’t confuse the % in

the place holder with

the symbol used to

designate a comment.

532.3 Input and Output
expressions to be printed. In this example, the %d is an example of format

information.

The %d is sometimes called a place holder, because it specifies where the value
of the expression that is after the string is to be printed. The character in the

place holder is called the conversion character, and it specifies the type of value

that is being printed. There are others, but what follows is a list of the simple
place holders:

%d integer (it actually stands for decimal integer)
%f float (real number)
%c single character
%s string

The character ‘\n’ at the end of the string is a special character called the newline
character; what happens when it is printed is that the output that followsmoves

down to the next line.
QUICK QUESTION!

What do you think would happen if the newline character is

omitted from the end of an fprintf statement?

Answer: Without it, the next prompt would end up on the

same line as the output. It is still a prompt, and so an expression

can be entered, but it looks messy as shown here.

>> fprintf('The value is %d, surely!',. . .

4^3)

The value is 64, surely!>> 5 þ 3

ans ¼
8

Note that with the disp function, however, the prompt will

always appear on the next line:

>> disp('Hi')

Hi

>>

Also, note that an ellipsis can be used after a string but not in

the middle.

QUICK QUESTION!

How can you get a blank line in the output?

Answer: Have two newline characters in a row.

>> fprintf('The value is %d\n\nOK!\n',4^3)

The value is 64

OK!

This also points out that the newline character can be

anywhere in the string; when it is printed, the output moves

down to the next line.

Note that the newline character can also be used in the prompt

in the input statement. For example,

>> x ¼ input('Enter the \nx coordinate: ');

Enter the

x coordinate: 4

However, that is the only formatting character allowed in the

prompt in input.

Note

If the fieldwidth iswider

than necessary, leading

blanks are printed, and

if more decimal places

are specified than

necessary, trailing zeros

are printed.

QUICK QUESTION

What do you think would hap

in a field width of 3 with

following)?

>> fprintf('%3.2f\n

Answer: It would print the en

to two places, that is,

QUICK QUESTION

What would happen if you use

you’re trying to print a real n

Answer: MATLAB will show

notation.

>> fprintf('%d\n',1

1.234568eþ006

54 CHAPTER 2 Introduction to MATLAB Programming
To print two values, there would be two place holders in the format string, and

two expressions after the format string. The expressions fill in for the place

holders in sequence.

>> fprintf('The int is %d and the char is %c\n', . . .
33 � 2, 'x')

The int is 31 and the char is x

A field width can also be included in the place holder in fprintf, which specifies

how many characters total are to be used in printing. For example, %5d would
indicate a field width of 5 for printing an integer and %10s would indicate a

field width of 10 for a string. For floats, the number of decimal places can also

be specified; for example, %6.2fmeans a field width of 6 (including the decimal
point and the two decimal places) with two decimal places. For floats, just the

number of decimal places can also be specified; for example, %.3f indicates

three decimal places, regardless of the field width.

>> fprintf('The int is %3d and the float is %6.2f\n',5,4.9)
The int is 5 and the float is 4.90
!

pen if you tried to print 1234.5678

two decimal places (using the

', 1234.5678)

tire 1234, but round the decimals

1234.57

If the field width is not large enough to print the number, the

field width will be increased. Basically, to cut the number off

would give a misleading result, but rounding the decimal

places does not change the number by much.

!

the %d conversion character but

umber?

the result using exponential

234567.89)

Note: If you want exponential notation, this is not the correct

way to get it; instead, there are conversion characters that

can be used. Use the help browser to see this option as well

as many others!
There are many other options for the format string. For example, the value

being printed can be left-justified within the field width using a minus sign.

The following example shows the difference between printing the integer
3 using %5d and using %-5d. The x’s below are used to show the spacing.

552.3 Input and Output
>> fprintf('The integer is xx%5dxx and xx%�5dxx\n',3,3)
The integer is xx 3xx and xx3 xx

Also, strings can be truncated by specifying “decimal places”:

>> fprintf('The string is %s or %.2s\n', 'street', 'street')
The string is street or st

There are several special characters that can be printed in the format string in

addition to the newline character. To print a slash, two slashes in a row are used,
and also to print a single quote two single quotes in a row are used. Addition-

ally, \t is the tab character.

>> fprintf('Try this out: tab\t quote '' slash \\ \n')
Try this out: tab quote ' slash \

Printing vectors and matrices
For a vector, if a conversion character and the newline character are in the for-
mat string, it will print in a column regardless of whether the vector itself is a

row vector or a column vector.

>> vec ¼ 2:5;
>> fprintf('%d\n', vec)
2
3
4
5

Without the newline character, it would print in a row but the next prompt

would appear on the same line:

>> fprintf('%d', vec)
2345>>

However, in a script, a separate newline character could be printed to avoid this

problem. It is also much better to separate the numbers with spaces.

printvec.m

% This demonstrates printing a vector

vec ¼ 2:5;
fprintf('%d ',vec)
fprintf('\n')

>> printvec
2 3 4 5
>>

If the number of elements in the vector is known, that many conversion char-

acters can be specified and then the newline:

>> fprintf('%d %d %d %d\n', vec)
2 3 4 5

56 CHAPTER 2 Introduction to MATLAB Programming
This is not very general, however, and is therefore not preferable.

For matrices, MATLAB unwinds the matrix column by column. For example,

consider the following random 2 � 3 matrix:

>> mat ¼ [5 9 8; 4 1 10]
mat ¼

5 9 8
4 1 10

Specifying one conversion character and then the newline character will print

the elements from the matrix in one column. The first values printed are from
the first column, then the second column, and so on.

>> fprintf('%d\n', mat)
5
4
9
1
8
10

If three of the %d conversion characters are specified, the fprintf will print

three numbers across on each line of output, but again the matrix is unwound

column by column. It again prints first the two numbers from the first column
(across on the first row of output), then the first value from the second col-

umn, and so on.

>> fprintf('%d %d %d\n', mat)
5 4 9
1 8 10

If the transpose of the matrix is printed, however, using the three %d conver-

sion characters, the matrix is printed as it appears when created.

>> fprintf('%d %d %d\n', mat') % Note the transpose
5 9 8
4 1 10

For vectors and matrices, even though formatting cannot be specified, the disp

function may be easier to use in general than fprintf because it displays the re-
sult in a straightforward manner. For example,

>> mat ¼ [15 11 14; 7 10 13]
mat ¼

>> disp(mat)
15 11 14
7 10 13

572.4 Scripts with Input and Output

Openmirrors.com
>> vec ¼ 2:5
vec ¼

2 3 4 5

>> disp(vec)
2 3 4 5

2.4 SCRIPTS WITH INPUT AND OUTPUT

Putting all of this together now, we can implement the algorithm from the be-

ginning of this chapter. The following script calculates and prints the area of a

circle. It first prompts the user for a radius, reads in the radius, and then calcu-
lates and prints the area of the circle based on this radius.

script2.m

% This script calculates the area of a circle
% It prompts the user for the radius

% Prompt the user for the radius and calculate
% the area based on that radius
fprintf('Note: the units will be inches.\n')
radius ¼ input('Please enter the radius: ');
area ¼ pi * (radius^2);

% Print all variables in a sentence format
fprintf('For a circle with a radius of %.2f inches,\n',. . .

radius)
fprintf('the area is %.2f inches squared\n',area)

Executing the script produces the following output:

>> script2
Note: The units will be inches.
Please enter the radius: 3.9
For a circle with a radius of 3.90 inches,
the area is 47.78 inches squared

Note that the output from the first two assignment statements (including the

input) is suppressed by putting semicolons at the end. That is usually done
in scripts, so that the exact format of what is displayed by the program is con-

trolled by the fprintf functions.

PRACTICE 2.3

Write a script to prompt the user separately for a character and a number, and print the character in a

fieldwidth of 4 and the number left justified in a fieldwidth of 5 with two decimal places. Test this by

entering numbers with varying widths.

58 CHAPTER 2 Introduction to MATLAB Programming
2.5 SCRIPTS TO PRODUCE AND CUSTOMIZE
SIMPLE PLOTS

MATLAB has many graphing capabilities. Customizing plots is often desired

and this is easiest to accomplish by creating a script rather than typing one com-
mand at a time in the Command Window. For that reason, simple plots and

how to customize them will be introduced in this chapter on MATLAB

programming.

Typing helpwill display the help topics that contain graph functions, including

graph2d and graph3d. Typing help graph2d would display some of the two-

dimensional graph functions, as well as functions tomanipulate the axes and to
put labels and titles on the graphs.
2.5.1 The plot function
Fornow,we’ll startwith a very simple graphof onepoint using theplot function.

The following script, plotonepoint, plots one point. To do this, first values are

given for the x and y coordinates of the point in separate variables. The point

is plotted using a red star (*). The plot is then customized by specifying themin-
imum and maximum values on first the x and then y axes. Labels are then put

on the x-axis, the y-axis, and the graph itself using the function xlabel, ylabel,

and title.

All of this can be done from the Command Window, but it is much easier to

use a script. The following shows the contents of the script plotonepoint that
accomplishes this. The x coordinate represents the time of day (e.g., 11am)

and the y coordinate represents the temperature in degrees Fahrenheit at

that time.

plotonepoint.m

% This is a really simple plot of just one point!

% Create coordinate variables and plot a red '*'
x ¼ 11;
y ¼ 48;
plot(x,y,'r*')

% Change the axes and label them
axis([9 12 35 55])
xlabel('Time')
ylabel('Temperature')

% Put a title on the plot
title('Time and Temp')

9 9.5 10 10.5 11 11.5 12
35

40

45

50

55

Time

Time and Temp

Te
m

pe
ra

tu
re

FIGURE 2.1 Plot of one data point

592.5 Scripts to Produce and Customize Simple Plots
In the call to the axis function, one vector is

passed. The first two values are the minimum

and maximum for the x axis, and the last two are
the minimum andmaximum for the y axis. Execut-

ing this script brings up a Figure Window with the

plot (see Figure 2.1).

To be more general, the script could prompt the

user for the time and temperature, rather than just

assigning values. Then, the axis function could be
used based onwhatever the values of x and y are, as

in the following example:

axis([x�2 xþ2 y�10 yþ10])

In addition, although they are the x and y coordi-

nates of a point, variables named time and temp

might be more mnemonic than x and y.
PRACTICE 2.4

Modify the script plotonepoint to prompt the user for the time and temperature, and set the axes

based on these values.
To plotmore than one point, x and y vectors are created to store the values of the

(x,y) points. For example, to plot the points

(1,1)
(2,5)
(3,3)
(4,9)
(5,11)
(6,8)

first an x vector is created that has the x values (since they range from 1 to 6 in

steps of 1, the colon operator can be used), and then a y vector is created with
the y values. The following will create (in the Command Window) x and y vec-

tors and then plot them (see Figure 2.2).

>> x ¼ 1:6;
>> y ¼ [1 5 3 9 11 8];
>> plot(x,y)

Note that the points are plotted with straight lines drawn in between.

Also, the axes are set up according to the data; for example, the x values
range from 1 to 6 and the y values from 1 to 11, so that is how the axes

are set up.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

7

8

9

10

11

FIGURE 2.2 Plot of data

points from vectors

60 CHAPTER 2 Introduction to MATLAB Programming
Also, note that in this case the x values are the in-

dices of the y vector (the y vector has six values in

it, so the indices iterate from 1 to 6). When this is
the case, it is not necessary to create the x vector.

For example,

>> plot(y)

will plot exactly the same figure without using an x
vector.

Customizing a plot: color, line
types, marker types
Plots can be done in the Command Window, as
shown here, if they are really simple. However,

many times it is desired to customize the plot with

labels, titles, and so on, so it makes more sense to

do this in a script. Using the help function for plot will show the many options

such as the line types and colors.

In the previous script plotonepoint, the string ‘r*’ specified a red star for the point

type. The possible colors are:
b blue

c cyan

g green

k black

m magenta

r red

y yellow
The plot symbols, or markers, that can be used are:
o circle

d diamond

h hexagram

p pentagram

þ plus

. point

s square

* star

v down triangle

< left triangle

> right triangle

^ up triangle

x x-mark

612.5 Scripts to Produce and Customize Simple Plots
Line types can also be specified by the following:
-- dashed

-. dash dot

: dotted

- solid
If no line type is specified, a solid line is drawn between the points, as seen in

the last example.
2.5.2 Simple related plot functions
Other functions that are useful in customizing plots include clf, figure, hold,
legend, and grid. Brief descriptions of these functions are given here; use help

to find out more about them:
clf clears the Figure Window by removing everything from it.

figure creates a new, empty Figure Window when called without any
arguments. Calling it as figure(n)where n is an integer is a way of creating

and maintaining multiple Figure Windows, and of referring to each

individually.

hold is a toggle that freezes the current graph in the Figure Window, so that
new plots will be superimposed on the current one. Just hold by itself is a

toggle, so calling this function once turns the hold on, and then the next

time turns it off. Alternatively, the commands hold on and hold off can be
used.

legend displays strings passed to it in a legend box in the FigureWindow, in

order of the plots in the Figure Window.

grid displays grid lines on a graph. Called by itself, it is a toggle that turns

the grid lines on and off. Alternatively, the commands grid on and grid
off can be used.
There are many other plot types. We will see more in Chapter 11, but another

simple plot type is a bar chart.

For example, the following script creates two separate Figure Windows. First, it

clears the FigureWindow. Then, it creates an x vector and two different y vectors
(y1 and y2). In the first FigureWindow, it plots the y1 values using a bar chart. In

the second Figure Window, it plots the y1 values as black lines, puts hold on so

that the next graph will be superimposed, and plots the y2 values as black cir-
cles. It also puts a legend on this graph and uses a grid. Labels and titles are

omitted in this case since it is generic data.

1 2
0

2

4

6

8

10

12

FIGURE 2.3 (a) Bar chart p

62 CHAPTER 2 Introduction to MATLAB Programming
plot2figs.m

% This creates 2 different plots, in 2 different
% Figure Windows, to demonstrate some plot features

clf
x ¼ 1:5; % Not necessary
y1 ¼ [2 11 6 9 3];
y2 ¼ [4 5 8 6 2];
% Put a bar chart in Figure 1
figure(1)
bar(x,y1)
% Put plots using different y values on one plot
% with a legend
figure(2)
plot(x,y1,'k')
hold on
plot(x,y2,'ko')
grid on
legend('y1','y2')

Running this scriptwill produce two separate FigureWindows. If there are no other

active Figure Windows, the first, which is the bar chart, will be in the one titled

“Figure1” inMATLAB.Thesecondwillbe in“Figure2.”SeeFigure2.3 forbothplots.

Note that the first and last points are on the axes, which makes them difficult to

see. That is why the axis function is frequently used, as it creates space around
the points so that they are all visible.
3
(a)

4 5
(b)

1 1.5 2 2.5 3 3.5 4 4.5 5
2

3

4

5

6

7

8

9

10

11
y1
y2

roduced by script. (b) Plot produced by script, with a grid and legend.

632.6 Introduction to File Input/Output (Load and Save)
PRACTICE 2.5

Modify the script using the axis function so that all points are easily seen.
The ability to pass a vector to a function and have the function evaluate every

element of the vector can be very useful in creating plots. For example, the follow-

ing script graphically displays the difference between the sin and cos functions:

sinncos.m

% This script plots sin(x) and cos(x) in the same Figure Window
% for values of x ranging from 0 to 2*pi

clf
x ¼ 0: 2*pi/40: 2*pi;
y ¼ sin(x);
plot(x,y,'ro')
hold on
y ¼ cos(x);
plot(x,y,'bþ')
legend('sin', 'cos')
xlabel('x')
ylabel('sin(x) or cos(x)')
title('sin and cos on one graph')

The script creates an x vector; iterating through all of the values from 0 to 2*p in
steps of 2*p/40 gives enough points to get a good graph. It then finds the sine of

each x value, and plots these points using red circles. The command hold on

freezes this in the Figure Window so the next plot will be superimposed.

Next, it finds the cosine of each x value and plots these points using blue plus

symbols (þ). The legend function creates a legend; the first string is paired with
the first plot, and the second string with the second plot. Running this script

produces the plot seen in Figure 2.4.

PRACTICE 2.6

Write a script that plots exp(x) and log(x) for values of x ranging from 0.5 to 2.5.
2.6 INTRODUCTION TO FILE INPUT/OUTPUT
(LOAD AND SAVE)

In many cases, input to a script will come from a data file that has been
created by another source. Also, it is useful to be able to store output in an

external file that can be manipulated and/or printed later. In this section,

0 1 2 3 4 5 6 7
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x

sin and cos on one graph

si
n(

x)
 o

r c
os

(x
)

sin
cos

FIGURE 2.4 Plot of sin

and cos in one Figure

Window with a legend

Note

If the file already exists,

the save function will

overwrite the file.

Remember that save

always begins writing

from the beginning of

a file.

64 CHAPTER 2 Introduction to MATLAB Programming
we will demonstrate which are the

simplest methods used to read from

an external data file and also to write
to an external data file.

There are basically three different oper-

ations, or modes, on files. Files can be:

n read from

n written to
n appended to

Writing to a file means writing to a file,
from the beginning. Appending to a

file is also writing, but starting at the

end of the file rather than the begin-
ning. In other words, appending to a

file means adding to what was already

there.
There are many different file types, which use different filename extensions. For

now, we will keep it simple and just work with .dat or .txt files when working
with data, or text, files. There are several methods for reading from files and

writing to files; we will for now use the load function to read and the save func-

tion to write to files. More file types and functions for manipulating them will
be discussed in Chapter 9.
2.6.1 Writing data to a file
The save function can be used to write data from a matrix to a data file, or to
append to a data file. The format is:

save filename matrixvariablename –ascii

The “-ascii” qualifier is usedwhen creating a text or a data file. Use the following to

create a matrix and then save the values of the matrix variable to a data file called
testfile.dat:

>> mymat ¼ rand(2,3)
mymat ¼

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

>> save testfile.dat mymat �ascii

This creates a file called testfile.dat that stores the numbers:

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

652.6 Introduction to File Input/Output (Load and Save)
The type command can be used to display the contents of the file; note that

scientific notation is used:

>> type testfile.dat

4.5646767e�001 8.2140716e�001 6.1543235e�001
1.8503643e�002 4.4470336e�001 7.9193704e�001
Note

Although technically

any size matrix could be

appended to this data

file, to be able to read it

back into a matrix later

there would have to be

the same number of

values on every row (or,

in other words, the

same number of

columns).
2.6.2 Appending data to a data file
Once a text file exists, data can be appended to it. The format is the same as the

preceding, with the addition of the qualifier “-append.” For example,

the following creates a new randommatrix and appends it to the file that was just
created:

>> mat2 ¼ rand(3,3)
mymat ¼

0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

>> save testfile.dat mat2 �ascii –append

This results in the file testfile.dat containing the following:

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579
PRACTICE 2.7

Prompt the user for the number of rows and columns of a matrix, create a matrix with that many

rows and columns of random numbers, and write it to a file.
2.6.3 Reading from a file
Once a file has been created (as in the preceding), it can be read into amatrix var-
iable. If the file is a data file, the load function will read from the file filename.ext

(e.g., the extension might be .dat) and create a matrix with the same name as the

file. For example, if the data file testfile.dat had been created as shown in the pre-
vious section, this would read from it, and store the result in a matrix variable

called testfile:

>> clear
>> load testfile.dat
>> who
Your variables are:

66 CHAPTER 2 Introduction to MATLAB Programming
testfile
>> testfile
testfile ¼

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

The load command works only if there are the same number of values in each
line, so that the data can be stored in a matrix, and the save command only

writes from amatrix to a file. If this is not the case, lower-level file I/O functions

must be used; these will be discussed in Chapter 9.

Example: Load from a file and plot the data
As an example, a file called timetemp.dat stores two lines of data. The first line is

the times of day, and the second line is the recorded temperature at each of

those times. The first value of 0 for the time represents midnight. For example,
the contents of the file might be:

0 3 6 9 12 15 18 21
55.5 52.4 52.6 55.7 75.6 77.7 70.3 66.6

The following script loads the data from the file into a matrix called timetemp. It
then separates the matrix into vectors for the time and temperature, and then

plots the data using black star (*) symbols.

timetempprob.m

% This reads time and temperature data for an afternoon
% from a file and plots the data

load timetemp.dat

% The times are in the first row, temps in the second row
time ¼ timetemp(1,:);
temp ¼ timetemp(2,:);

% Plot the data and label the plot
plot(time,temp,'k*')
xlabel('Time')
ylabel('Temperature')
title('Temperatures one afternoon')

Running the script produces the plot seen in Figure 2.5.

To create the data file, the Editor in MATLAB can be used; it is not necessary to
create a matrix and save it to a file. Instead, just enter the numbers in a new file,

and Save As timetemp.dat.

0 5 10 15 20 25
50

55

60

65

70

75

80

Time

Temperatures one afternoon
Te

m
pe

ra
tu

re

FIGURE 2.5 Plot of temperature data from a file

672.6 Introduction to File Input/Output (Load and Save)
Note: It is difficult to see the point at time 0 since it falls on the y-axis. The axis
function could be used to change the axes from the defaults shown here.
1.8

2

2.2

2.4

2.6

2.8

3

S
al

es
 (b

ill
io

ns
)

XYZ Corporation Sales: 2010

Division 1
Division 2
PRACTICE 2.8

The sales (in billions) for two separate divisions of the

XYZ Corporation for each of the four quarters of 2010

are stored in a file called salesfigs.dat :

1.2 1.4 1.8 1.3

2.2 2.5 1.7 2.9

n First, create this file (just type the numbers in the

Editor, and Save As salesfigs.dat).

n Load the data from the file into a matrix.

n Then, write a script that will

n separate this matrix into two vectors.

n create the plot seen in Figure 2.6 (which uses

circles and stars as the plot symbols).
1 1.5 2 2.5
Quarter

3 3.5 4
1.2

1.4

1.6

FIGURE 2.6 Plot of sales data from file

QUICK QUESTION!

Sometimes files are not in the format that is desired. For

example, a file expresults.dat has been created that has

some experimental results, but the order of the values is

reversed in the file:

4 53.4

3 44.3

2 50.0

1 55.5

How could we create a new file that reverses the order?

Answer: We can load from this file into a matrix, use the

flipud function to “flip” the matrix up to down, and then save

this matrix to a new file:

>> load expresults.dat

>> expresults

expresults ¼
4.0000 53.4000

3.0000 44.3000

2.0000 50.0000

1.0000 55.5000

>> correctorder ¼ flipud(expresults)

correctorder ¼
1.0000 55.5000

2.0000 50.0000

3.0000 44.3000

4.0000 53.4000

>> save neworder.dat correctorder – ascii

68 CHAPTER 2 Introduction to MATLAB Programming
2.7 USER-DEFINED FUNCTIONS THAT RETURN
A SINGLE VALUE

We have already seen the use of many functions in MATLAB. We have used
many built-in functions such as sin, fix, abs, and double. In this section,

user-defined functionswill be introduced. These are functions that the program-

mer defines, and then uses, in either the Command Window or in a script.

There are several different types of functions. For now, wewill concentrate on the

kindof function that calculates and returns a single result,much likebuilt-in func-
tions suchas sinandabs.Other typesof functionswillbe introduced inChapter6.

First, let us review some of what we already know about functions, including the

use of built-in functions. Although, by now, the use of these functions is straight-
forward, explanationswill be given in somedetail here to compare andcontrast to

the use of user-defined functions.

The length function is an example of a built-in function that calculates a single

value; it returns the length of a vector. As an example,

length(vec)

is an expression that represents the number of elements in the vector vec. This
expression could be used in the CommandWindow or in a script. Typically, the

value returned from this expression might be assigned to a variable:

>> vec ¼ 1:3:10;
>> lv ¼ length(vec)
lv ¼

4

692.7 User-Defined Functions That Return a Single Value
Alternatively, the length of the vector could be printed:

>> fprintf('The length of the vector is %d\n', length(vec))
The length of the vector is 4

The call to the length function consists of the name of the function, followed by

the argument in parentheses. The function receives as input the argument, and

returns a result. What happens when the call to the function is encountered is
that control is passed to the function itself (i.e., the function begins executing).

The argument(s) are also passed to the function.

The function executes its statements and does whatever it does (the actual con-

tents of the built-in functions are not generally known or seen by the program-

mer) to determine the number of elements in the vector. Since the function is
calculating a single value, this result is then returned, and it becomes the value

of the expression. Control is also passed back to the expression that called it in

the first place, which then continues (e.g., in the first example the value would
then be assigned to the variable lv, and in the second example the value was

printed).
2.7.1 Function definitions
There are different ways to organize scripts and functions, but for now
every function that we write will be stored in a separate M-file, which is why

they are commonly called “M-file functions.” Although to type in functions

in the Editor it is possible to choose File, followed by New, and then Function
in MATLAB, it will be easier for now to type in the function by choosing File,

then New, and then Script (in older versions there is no choice; it is File, then

New, then M-file for both scripts and functions).

A function in MATLAB that returns a single result consists of the following:

n The function header (the first line), comprised of:
n The reserved word function

n Since the function returns a result, the name of the output argument

followed by the assignment operator ¼
n The name of the function (IMPORTANT: This should be the same as

the name of the M-file in which this function is stored to avoid

confusion.)
n The input arguments in parentheses, which correspond to the arguments

that are passed to the function in the function call

n A comment that describes what the function does (this is printedwhen help
is used)

n The body of the function, which includes all statements and eventually must

put a value in the output argument
n end at the end of the function. (Note: This is not necessary in many

cases.)

Note

Many of the functions

in MATLAB are

implemented as M-file

functions; these can

also be displayed using

type.

70 CHAPTER 2 Introduction to MATLAB Programming
The general form of a function definition for a function that calculates and

returns one value looks like this:

functionname.m

function outputargument ¼ functionname(input arguments)
% Comment describing the function

Statements here; these must include putting a value in
the output argument

end % of the function

For example, the following is a function called calcarea that calculates and
returns the area of a circle; it is stored in a file called calcarea.m.

calcarea.m

function area ¼ calcarea(rad)
% calcarea calculates the area of a circle
% Format of call: calcarea(radius)
% Returns the area

area ¼ pi * rad * rad;
end

A radius of a circle is passed to the function to the input argument rad; the func-

tion calculates the area of this circle and stores it in the output argument area.

In the function header, we have the reserved word function, then the output

argument area followed by the assignment operator ¼, then the name of the

function (the same as the name of the M-file), and then the input argument
rad, which is the radius. Since there is an output argument in the function

header, somewhere in the body of the function we must put a value in this out-

put argument. This is how a value is returned from the function. In this case, the
function is simple and all we have to do is assign to the output argument area

the value of the built-in constant pimultiplied by the square of the input argu-

ment rad.

The function canbedisplayed in theCommandWindowusing the type command.

>> type calcarea

function area ¼ calcarea(rad)
% calcarea calculates the area of a circle
% Format of call: calcarea(radius)
% Returns the area

area ¼ pi * rad * rad;
end

Note

The printing is not done

in the function itself;

rather, the function

returns the area and

then an output

statement can print or

display it.

712.7 User-Defined Functions That Return a Single Value
2.7.2 Calling a function
The following is an example of a call to this function in which the value

returned is stored in the default variable ans:

>> calcarea(4)
ans ¼

50.2655

Technically, calling the function is donewith thenameof the file inwhich the func-

tion resides. To avoid confusion, it is easiest to give the function the same name as
the file name, so that is how it will be presented in this book. In this example, the

function name is calcarea and the name of the file is calcarea.m. The result returned

from this function can also be stored in a variable in an assignment statement; the
name could be the same as the name of the output argument in the function itself,

but that is not necessary. So, for example, either of these assignmentswouldbe fine:

>> area ¼ calcarea(5)
area ¼
78.5398

>> myarea ¼ calcarea(6)
myarea ¼
113.0973

The value returned from the calcarea function could also be printed using either
disp or fprintf:

>> disp(calcarea(4))
50.2655

>> fprintf('The area is %.1f\n', calcarea(4))
The area is 50.3

Using helpwith the function displays the contiguous block of comments under

the function header. It is useful to put the format of the call to the function in
this block comment:

>> help calcarea
calcarea calculates the area of a circle
Format of call: calcarea(radius)
Returns the area

Many organizations have standards regarding what information should be in-

cluded in the block comment in a function. These can include:

n Name of the function

n Description of what the function does

n Format of the function call
n Description of input arguments

n Description of output argument

Get input
Call fn to calculate
result
Print result

script.m

FIGURE 2.7 General form

72 CHAPTER 2 Introduction to MATLAB Programming
n Description of variables used in function

n Programmer name and date written

n Information on revisions

Although this is excellent programming style, for the most part in this book

these elements will be omitted simply to save space. Also, documentation in
MATLAB suggests that the name of the function should be in all uppercase

letters in the beginning of the block comment. However, this can be some-

what misleading in that MATLAB is case-sensitive and typically lowercase
letters are used for the actual function name.
2.7.3 Calling a user-defined function from a script
Now, we will modify our script that prompts the user for the radius and calcu-

lates the area of a circle to call our function calcarea to calculate the area of the

circle rather than doing this in the script.

script3.m

% This script calculates the area of a circle
% It prompts the user for the radius
radius ¼ input('Please enter the radius: ');
% It then calls our function to calculate the
% area and then prints the result
area ¼ calcarea(radius);
fprintf('For a circle with a radius of %.2f,',radius)
fprintf(' the area is %.2f\n',area)

Running this will produce the following:

>> script3
Please enter the radius: 5
For a circle with a radius of 5.00, the area is 78.54
function out = fn(in)

out = value based on in

fn.m

of a simple program
Simple programs
In this book, a script that calls function(s) is

what we will call a MATLAB program. In the
previous example, the program consisted of

the script script3 and the function it calls, cal-
carea. The general form of a simple program,

consisting of a script that calls a function to

calculate and return a value, looks like Fig-
ure 2.7. It is also possible for a function to call

another (whether built-in or user-defined).
2.7.4 Passing multiple arguments
In many cases it is necessary to pass more than one argument to a function. For

example, the volume of a cone is given by

732.7 User-Defined Functions That Return a Single Value
V ¼ 1

3
pr2h

where r is the radius of the circular base and h is the height of the cone. There-
fore, a function that calculates the volume of a cone needs both the radius and
the height:

conevol.m

function outarg ¼ conevol(radius, height)
% conevol calculates the volume of a cone
% Format of call: conevol(radius, height)
% Returns the volume

outarg ¼ (pi/3) * radius ^ 2 * height;
end

Since the function has two input arguments in the function header, two values

must be passed to the function when it is called. The order makes a difference.
The first value that is passed to the function is stored in the first input argument

(in this case, radius), and the second argument in the function call is passed to

the second input argument in the function header.

This is very important: The arguments in the function call must correspond one

to one with the input arguments in the function header. Here is an example of
calling this function. The result returned from the function is simply stored in

the default variable ans.

>> conevol(4,6.1)
ans ¼
102.2065

In thenextexample, the result is insteadprintedwitha formatof twodecimalplaces.

>> fprintf('The cone volume is %.2f\n',conevol(3, 5.5))
The cone volume is 51.84

PRACTICE 2.9

Write a script that will prompt the user for the radius and height, call the function conevol to

calculate the cone volume, and print the result in a nice sentence format. So, the program will

consist of a script and the conevol function that it calls.
PRACTICE 2.10

Foraproject,weneedsomematerial to formarectangle.Writea functioncalcrectarea thatwill receive

the length and width of a rectangle in inches as input arguments, and will return the area of the

rectangle. For example, the function could be called as shown, in which the result is stored in a

variable and then the amount of material required is printed, rounded up to the nearest square inch.

74 CHAPTER 2 Introduction to MATLAB Programming
>> ra ¼ calcrectarea(3.1, 4.4)

ra ¼
13.6400

>> fprintf('need %d sq in\n', . . .

ceil(ra))

need 14 sq in
2.7.5 Functions with local variables
The functions discussed thus far have been very simple. However, inmany cases
the calculations in a function are more complicated, andmay require the use of

extra variables within the function; these are called local variables.

For example, a closed cylinder is being constructed of a material that costs a cer-

tain dollar amount per square foot. We will write a function that will calculate

and return the cost of the material, rounded up to the nearest square foot, for
a cylinder with a given radius and a given height. The total surface area for the

closed cylinder is

SA ¼ 2 p r hþ 2p r2

For a cylinder with a radius of 32 inches, height of 73 inches, and cost per

square foot of the material of $4.50, the calculation would be given by the fol-

lowing algorithm:

n Calculate the surface area SA ¼ 2 * p * 32 * 73 þ 2 * p * 32 * 32 inches

squared.

n Convert the SA from square inches to square feet ¼ SA/144.
n Calculate the total cost ¼ SA in square feet * cost per square foot.

The function includes local variables to store the intermediate results.

cylcost.m

function outcost ¼ cylcost(radius, height, cost)
% cylcost calculates the cost of constructing a closed
% cylinder
% Format of call: cylcost(radius, height, cost)
% Returns the total cost

% The radius and height are in inches
% The cost is per square foot

% Calculate surface area in square inches
surf_area ¼ 2 * pi * radius * height þ 2 * pi * radius ^ 2;

75Summary
% Convert surface area in square feet and round up
surf_areasf ¼ ceil(surf_area/144);

% Calculate cost
outcost ¼ surf_areasf * cost;
end

The following shows examples of calling the function:

>> cylcost(32,73,4.50)
ans ¼
661.5000

>> fprintf('The cost would be $%.2f\n', cylcost(32,73,4.50))
The cost would be $661.50
SUMMARY
Common Pitfalls

n Spelling a variable name different ways in different places in a script or
function.

n Forgetting to add the second ‘s’ argument to the input function when
character input is desired.

n Not using the correct conversion character when printing.

n Confusing fprintf and disp. Remember that only fprintf can format.

Programming Style Guidelines
n Especially for longer scripts and functions, start by writing an

algorithm.

n Use comments to document scripts and functions, as follows:
n Block of contiguous comments at the top to describe a script

n Block of contiguous comments under the function header for functions

n Comments throughout any M-file (script or function) to describe each
section

n Make sure that the “H1” comment line contains useful information.

n Use your organization’s standard style guidelines for block comments.
n Usemnemonic identifier names (names that make sense, e.g., radius instead

of xyz) for variable names and for file names.

n Make all output easy to read and informative.
n Put a newline character at the end of every string printed by fprintf so that

the next output or the prompt appears on the line below.

n Put informative labels on the x and y axes and a title on all plots.
n Keep functions short—typically no longer than one page in length.

n Suppress the output from all assignment statements in a function.

n Functions that return a value do not normally print the value; it should
simply be returned by the function.

76 CHAPTER 2 Introduction to MATLAB Programming
MATLAB Reserved Words

function end
MATLAB Functions and Commands

type

input

disp

fprintf

plot

xlabel

ylabel

title

axis

clf

figure

hold

legend

grid

bar

load

save
MATLAB Operator

comment %
Exercises
1.Write a simple script that will calculate the volume of a hollow sphere,

4p
3
ðr3o � r3i Þ

where ri is the inner radius and ro is the outer radius. Assign a value to a variable for the

inner radius, and also assign a value to another variable for the outer radius. Then, using

these variables, assign the volume to a third variable. Include comments in the script.

2. The atomic weight is the weight of a mole of atoms of a chemical element. For

example, the atomic weight of oxygen is 15.9994 and the atomic weight of hydrogen

is 1.0079. Write a script that will calculate the molecular weight of hydrogen

peroxide, which consists of two atoms of hydrogen and two atoms of oxygen. Include

comments in the script. Use help to view the comment in your script.

3.Write an input statement that will prompt the user for the name of a chemical

element as a string. Then, find the length of the string.

4.Write an input statement that will prompt the user for a real number, and store it in a

variable. Then, use the fprintf function to print the value of this variable using two

decimal places.

5. The input function can be used to enter a vector, such as:

>> vec ¼ input('Enter a vector: ')
Enter a vector: 4:7
vec ¼

4 5 6 7

Experiment with this, and determine how the user can enter a matrix.

77Exercises
6. Experiment, in theCommandWindow,withusing the fprintf function for real numbers.

Make a note of what happens for each. Use fprintf to print the real number 12345.6789

n without specifying any field width

n in a field width of 10 with four decimal places

n in a field width of 10 with two decimal places

n in a field width of 6 with four decimal places

n in a field width of 2 with four decimal places

7. Experiment in the Command Window with using the fprintf function for integers.

Make a note of what happens for each. Use fprintf to print the integer 12345

n without specifying any field width

n in a field width of 5

n in a field width of 8

n in a field width of 3

8. Create the following variables:

x ¼ 12.34;
y ¼ 4.56;

Then, fill in the fprintf statements using these variables that will accomplish the

following:

>> fprintf(
x is 12.340
>> fprintf(
x is 12
>> fprintf(
y is 4.6
>> fprintf(
y is 4.6 !

9.Write a script to prompt the user for the length and width of a rectangle, and print its

area with two decimal places. Put comments in the script.

10.Write a script called echoname that will prompt the user for his or her name, and then

echo print the name in a sentence in the following format (use %s to print it):

>> echoname
What is your name? Susan
Wow, your name is Susan!

11.Write a script called echostring that will prompt the user for a string, and will echo

print the string in quotes:

>> echostring
Enter your string: hi there
Your string was: 'hi there'

12. In the metric system, fluid flow is measured in cubic meters per second (m3/s).

A cubic foot per second (ft3/s) is equivalent to 0.028 m3/s. Write a script titled

flowrate that will prompt the user for flow in cubic meters per second and will

78 CHAPTER 2 Introduction to MATLAB Programming
print the equivalent flow rate in cubic feet per second. Here is an example of running

the script. Your script must produce output in exactly the same format as this:

>> flowrate
Enter the flow in m^3/s: 15.2
A flow rate of 15.200 meters per sec
is equivalent to 542.857 feet per sec

13.On average, people in a region spend 8% to 10% of their income on food.Write a script

that will prompt the user for annual income. It will then print the range that would

typically be spent on food annually. Also, print a monthly range.

14.Wing loading, which is airplane weight divided by wing area, is an important design

factor in aeronautical engineering. Write a script that will prompt the user for the

weight of the aircraft in kilograms, and the wing area in meters squared, and then

calculate and print the wing loading of the aircraft in kilograms per square meter.

15.Write a script that assigns values for the x coordinate and then y coordinate of a

point, and then plots this using a green þ.

16. Plot exp(x) for values of x ranging from �2 to 2 in steps of 0.1. Place an appropriate

title on the plot, and label the axes.

17.Create a vector x with values ranging from 1 to 100 in steps of 5. Create a vector y,

which is the square root of each value in x. Plot these points. Next, use the bar

function instead of plot to get a bar chart instead.

18.Create a y vector that stores random integers in the 1 to 100 range. Create an x vector

that iterates from 1 to the length of the y vector. Experiment with the plot function

using different colors, line types, and plot symbols.

19. Plot sin(x) for x values ranging from 0 to p (in separate Figure Windows)

n using 10 points in this range

n using 100 points in this range

20.Atmospheric properties, such as temperature, air density, and air pressure, are

important in aviation. Create a file that stores temperatures in degrees Kelvin at

various altitudes. The altitudes are in the first column and the temperatures in the

second. For example, it may look like this:

1000 288
2000 281
3000 269
5000 256

10000 223

Write a script that will load these data into amatrix, separate it into vectors, and then

plot the data with appropriate axis labels and a title.

21.Create a 3 � 6 matrix of random integers, each in the range from 50 to 100. Write

this to a file called randfile.dat. Then, create a newmatrix of random integers, but this

time make it a 2 � 6 matrix of random integers, each in the range from 50 to 100.

Append this matrix to the original file. Then, read the file in (which will be to a

variable called randfile) just to make sure that it worked!

79Exercises
22.Create a file called testtan.dat comprised of two lines with three real numbers on

each line (some negative, some positive, in the�1 to 3 range). The file can be created

from the Editor, or saved from amatrix. Then, load the file into amatrix and calculate

the tangent of every element in the resulting matrix.

23.Write a function calcrectarea that will calculate and return the area of a rectangle.

Pass the length and width to the function as input arguments.

24.Write a function called fn that will calculate y as a function of x, as follows:

y ¼ x3 – 4x2 þ sin(x)

Here are two examples of using the function:

>> help fn
Calculates y as a function of x

>> y ¼ fn(7)
y ¼

147.6570

Renewable energy sources, such as biomass, are gaining increasing attention.

Biomass energy units include megawatt hours (MWh) and gigajoules (GJ). One MWh is

equivalent to 3.6 GJ. For example, one cubic meter of wood chips produces 1 MWh.

25.Write a function mwh_to_gj that will convert from MWh to GJ. Here are some

examples of using the function:

>> gj ¼ mwh_to_gj(mwh)
gj ¼

11.8800

>> disp(mwh_to_gj(1.1))
3.9600

>> help mwh_to_gj
Converts from MWh to GJ

26.The velocity of an aircraft is typically given in either miles/hour or meters/second.

Write a function that will receive one input argument, the velocity of an airplane in

miles per hour, and will return the velocity in meters per second. The relevant

conversion factors are one hour¼ 3600 seconds, onemile¼ 5280 feet, and one foot¼
0.3048 meters.

27. If a certain amount of money (called the principal P) is invested in a bank account,

earning an interest rate i compounded annually, the total amount of money Tn that

will be in the account after n years is given by:

Tn ¼ P ð1þ iÞn

Write a function that will receive input arguments for P, i, and n, and will return the
total amount of money Tn. Also, give an example of calling the function.

28. List some differences between a script and a function.

80 CHAPTER 2 Introduction to MATLAB Programming
29.The velocity of a moving fluid can be found by calculating the difference between the

total and static pressure Pt and Ps. For water, this is given by

V ¼ 1:016
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pt � Ps
p

Write a function that will receive as input arguments the total and static pressures
and will return the velocity of the water.

30. For a project, some biomedical engineering students are designing a device that will

monitor a person’s heart rate while on a treadmill. The device will let the subject

knowwhen the target heart rate has been reached. A simple calculation of the target

heart rate (THR) for a moderately active person is

THR ¼ ð220� AÞ � :6
where A is the person’s age. Write a function that will calculate and return the THR.
31.An approximation for a factorial can be found using Stirling’s formula:

n! �
ffiffiffiffiffiffiffiffi

2pn
p n

e

� �n

Write a function to implement this, passing the value of n as an argument.
32.The cost of manufacturing n units (where n is an integer) of a particular product at a

factory is given by the equation

CðnÞ ¼ 5n2 � 44n þ 11

Write a script mfgcost that will
n prompt the user for the number of units n

n call a function costn thatwill calculate and return the cost ofmanufacturingn units

n print the result (the format must be exactly as shown next)

Next, write the function costn, which simply receives the value of n as an input

argument, and calculates and returns the cost of manufacturing n units.

Here is an example of executing the script:

>> mfgcost
Enter the number of units: 100
The cost for 100 units will be $45611.00
>>

33.The desired conversion depends on temperature and other factors, but an

approximation is that 1 inch of rain is equivalent to 6.5 inches of snow. Write a script

that prompts the user for the number of inches of rain, calls a function to return the

equivalent amount of snow, and prints this result. Write the function as well!

34.The volumeVof a regular tetrahedron is given by V ¼ 1
12

ffiffiffi

2
p

s3, where s is the length of

the sides of the equilateral triangles that form the faces of the tetrahedron. Write a

program to calculate such a volume. The program will consist of one script and one

function. The function will receive one input argument, which is the length of the

sides, and will return the volume of the tetrahedron. The script will prompt the user

for the length of the sides, call the function to calculate the volume, and print the

result in a nice sentence format. For simplicity, we will ignore units.

81Exercises
35.Write a function that is called pickone, which will receive one input argument x,

which is a vector, and will return one random element from the vector. For example,

>> pickone(4:7)
ans ¼

5

>> disp(pickone(-2:0))
�1

>> help pickone
pickone(x) returns a random element from vector x

36.A function can return a vector as a result. Write a function vecout that will receive

one integer argument and will return a vector that increments from the value of the

input argument to its value plus 5, using the colon operator. For example,

>> vecout(4)
ans ¼

4 5 6 7 8 9

37. If the lengths of two sides of a triangle and the angle between them are known, the

length of the third side can be calculated. Given the lengths of two sides (b and c) of a

triangle, and the angle between them a in degrees, the third side a is calculated as

follows:

a2 ¼ b2 þ c2 � 2 b c cosðaÞ

Write a script thirdside that will prompt the user and read in values for b, c, and a
(in degrees), and then calculate and print the value of a with three decimal places.

(Note: To convert an angle from degrees to radians, multiply the angle by p/180.) The
format of the output from the script should look exactly like this:

>> thirdside
Enter the first side: 2.2
Enter the second side: 4.4
Enter the angle between them: 50

The third side is 3.429

For more practice, write a function to calculate the third side, so that the script will

call this function.

38.Apart is being turned on a lathe. The diameter of the part is supposed to be 20,000mm.

The diameter is measured every 10 minutes and the results are stored in a file called

partdiam.dat. Create a data file to simulate this. The file will store the time in minutes

and the diameter at each time. Plot the data.

39.A file floatnums.dat has been created for use in an experiment. However, it contains

float (real) numbers and what is desired instead is integers. Also, the file is not exactly

in the correct format; the values are stored columnwise rather than rowwise. For

example, if the file contains the following:

1 1.5 2
600

700

800

900

1000

1100

1200

1300
Com

FIGURE 2.8 Plot of cost an

Note

It should not be

assumed that the

number of lines in

the file is known.

82 CHAPTER 2 Introduction to MATLAB Programming
90.5792 27.8498 97.0593
12.6987 54.6882 95.7167
91.3376 95.7507 48.5376
63.2359 96.4889 80.0280
9.7540 15.7613 14.1886

what is really desired is:

91 13 91 63 10
28 55 96 96 16
97 96 49 80 14

Create the data file in the specified format. Write a script that would read from the file

floatnums.dat into a matrix, round the numbers, and write the matrix in the desired

format to a new file called “intnums.dat.”

40.A file named costssales.dat stores a company’s cost and sales figures for the last n

quarters (n is not defined ahead of time). The costs are in the first column, and the

sales are in the second column. For example, if five quarters were represented, there

would be five lines in the file, and it might look like this:
2.5 3 3.5 4 4.5 5
Quarter

pany Costs and Sales

Costs
Sales

d sales data
1100 800
1233 650
1111 1001
1222 1300
999 1221
Write a script called salescosts that will read

the data from this file into a matrix. When

the script is executed, it will do three things.

First, it will print how many quarters were

represented in the file, such as:

>> salescosts
There were 5 quarters in
the file

Next, it will plot the costs using black circles

and sales using black stars (*) in a

Figure Window with a legend (using default

axes) as seen in Figure 2.8.

Finally, the script will write the data to

a new file called newfile.dat in a different
order. The sales will be in the first row, and the costs in the second row. For example,

if the file is as shown before, the resulting file will store the following:

800 650 1001 1300 1221
1100 1233 1111 1222 999

CHAPTER 3
Selection Statements
CONTENTS
KEY TERMS
3.1 Relational
Expressions.83

3.2 The If
Statement87

3.3 The If-Else
selection statements

branching statements

condition

relational expression

Boolean expression

logical expression

relational operators

logical operators

truth table

action

temporary variable

error-checking

nesting statements

cascading if-else

“is” functions
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Statement91

3.4 Nested If-Else
Statements...93

3.5 The Switch
Statement98

3.6 The Menu
Function100

3.7 The“Is”
Functions in
MATLAB102
In the scripts and functions we’ve seen thus far, every statement was executed in
sequence. That is not always desirable, and in this section we’ll see how tomake

choices as to whether statements are executed or not, and how to choose

between or among statements. The statements that accomplish this are called
selection or branching statements.

TheMATLABW software has two basic statements that allow choices: the if state-

ment and the switch statement. The if statement has optional else and elseif
clauses for branching. The if statement uses expressions that are logically true

or false. These expressions use relational and logical operators. MATLAB also

has “is” functions that ask whether something is true or false; these functions
are covered at the end of this chapter.
3.1 RELATIONAL EXPRESSIONS

Conditions in if statements use expressions that are conceptually either true or

false. These expressions are called relational expressions; they are also some-
times called Boolean expressions or logical expressions. These expressions can

use both relational operators, which relate two expressions of compatible types,

and logical operators, which operate on logical operands.
83

84 CHAPTER 3 Selection Statements
The relational operators in MATLAB are:
Operator
 Meaning
>
 greater than
<
 less than
>¼
 greater than or equals
<¼
 less than or equals
¼¼
 equality
�¼
 inequality
All concepts should be familiar, although the operators used may be different
from those used in other programming languages or in mathematics classes. In

particular, it is important to note that the operator for equality is two consec-

utive equal signs, not a single equal sign (since the single equal sign is already
used as the assignment operator).

For numerical operands, the use of these operators is straightforward. For ex-
ample, 3 < 5 means “3 less than 5,” which is conceptually a true expression.

In MATLAB, as in many programming languages, “true” is represented by

the logical value 1, and “false” is represented by the logical value 0. So, the
expression 3 < 5 actually displays in the Command Window the value 1

(logical) in MATLAB. Displaying the result of expressions like this in the

Command Window demonstrates the values of the expressions.

>> 3 < 5
ans ¼

1

>> 2 > 9
ans ¼

0

The result type is logical.MATLABalsohas built-in true and false. In otherwords,

true is equivalent to logical(1) and false is equivalent to logical(0). (In some

versions of MATLAB, the value shown for the result of these expressions is true
or false in theWorkspaceWindow.)Although these are logicalvalues,mathemat-

ical operations could be performed on the resulting 1 or 0.

>> 5 < 7
ans ¼

1

>> ans þ 3
ans ¼

4

853.1 Relational Expressions

Openmirrors.com
Comparing characters (e.g., ‘a’< ‘c’) is also possible. Characters are compared

using their ASCII equivalent values in the character encoding. So, ‘a’ < ‘c’ is a

true expression, because the character ‘a’ comes before the character ‘c’.

>> 'a' < 'c'
ans ¼

1

The logical operators are:
Note

Operator
 Meaning
The logical operators for

matriceswill be covered
k
 or (for scalars)
in Chapter 5.
&&
 and (for scalars)
�
 not
All logical operators operate on logical or Boolean operands. The not operator

is a unary operator; the others are binary. The not operator will take a logical

expression, which is true or false, and give the opposite value. For example,
�(3 < 5) is false since (3 < 5) is true. The or operator has two logical expres-

sions as operands. The result is true if either or both of the operands are true,
and false only if both operands are false. The and operator also operates on two

logical operands. The result of an and expression is true only if both operands
are true; it is false if either or both are false.

In addition to these logical operators, MATLAB also has a function xor, which is

the exclusive-or function. It returns logical true if one (and only one) of the
arguments is true. For example, in the following only the first argument is true,

so the result is true:

>> xor(3 < 5, 'a' > 'c')
ans ¼

1

In this example, both arguments are true so the result is false:

>> xor(3 < 5, 'a' < 'c')
ans ¼

0

Given the logical values of true and false in variables x and y, the truth table (see

Table 3.1) shows how the logical operators work for all combinations. Note that

the logical operators are commutative (e.g., x k y is the same as y k x).

Table 3.1 Truth Table for Logical Operators

x y �x x k y x && y xor(x,y)

true true false true true false

true false false true false true

false false true false false false

QUICK QUESTION

Assume that there is a variabl

would be the value of the exp

3 < x < 5

if the value of x is 4? What if

Answer: The value of this e

true, or 1, regardless of the va

are evaluated from left to rig

will be evaluated. There ar

this will be true or false,

86 CHAPTER 3 Selection Statements
As with the numerical operators, it is important to know the operator prece-

dence rules. Table 3.2 shows the rules for the operators that have been covered

thus far in order of precedence.
Table 3.2 Operator Precedence Rules

Operators Precedence

parentheses: () highest

transpose and power ', ^

unary: negation (�), not (�)

multiplication, division *,/,\

addition, subtraction þ, �
colon operator :

relational <, <¼, >, >¼, ¼¼, �¼
and &&

or k
assignment ¼ lowest

!

e x that has been initialized.What

ression

the value of x is 7?

xpression will always be logical

lue of the variable x. Expressions

ht. So, first the expression 3 < x

e only two possibilities: either

which means that either the

expression will have the value 1 or 0. Then, the rest of the

expression will be evaluated, which will be either 1 < 5, or

0 < 5. Both of these expressions are true.

So, the value of x does not matter: The expression 3 < x < 5

would be true regardless of the value of the variable x. This

is a logical error; it would not enforce the desired range. If

we wanted an expression that was logical true only if x was

in the range from 3 to 5, we could write 3 < x && x < 5.

873.2 The If Statement
PRACTICE 3.1

Think about what would be produced by the following expressions, and then type them in to verify

your answers.

4 > 3 þ 1

'e' ¼¼ 'd' þ 1

3 < 9 – 2

(3 < 9) – 2

4 ¼¼ 3 þ 1 && 'd' > 'c'

3 >¼ 2 k 'x' ¼¼ 'y'

xor(3 >¼ 2,'x' ¼¼ 'y')

xor(3 >¼ 2,'x' �¼ 'y')
3.2 THE IF STATEMENT

The if statement chooses whether another statement, or group of statements, is

executed or not. The general form of the if statement follows:

if condition
action

end

A condition is a relational expression that is conceptually, or logically, true or false.
The action is a statement, or a group of statements, that will be executed if the con-

dition is true. When the if statement is executed, first the condition is evaluated.

If the value of the condition is true, the action will be executed; if not, the action
will not be executed. The action can be any number of statements until the

reserved word end; the action is naturally bracketed by the reserved words if

and end. (Note: This is different from the end that is used as an index into a vector
or matrix.) The action is usually indented to make it easier to see.

For example, the following if statement checks to see whether the value of a

variable is negative. If it is, the value is changed to a positive number by using
the absolute value function; otherwise, nothing is changed.

if num < 0
num ¼ abs(num)

end

88 CHAPTER 3 Selection Statements
If statements can be entered in the CommandWindow, although they generally

make more sense in scripts or functions. In the Command Window, the if line

would be entered, followed by the Enter key, the action, the Enter key, and
finally end and Enter. The results immediately follow. For example, the preced-

ing if statement is shown twice here.

>> num ¼ �4;
>> if num < 0

num ¼ abs(num)
end

num ¼
4

>> num ¼ 5;
>> if num < 0

num ¼ abs(num)
end

>>

Note that the output from the assignment is not suppressed, so the result of

the action will be shown if the action is executed. The first time the value
of the variable is negative so the action is executed and the variable is

modified, but in the second case the variable is positive so the action

is skipped.

This may be used, for example, tomake sure that the square root function is not

used on a negative number. The following script prompts the user for a number,

and prints the square root. If the user enters a negative number, the if statement
changes it to positive before taking the square root.

sqrtifexamp.m

% Prompt the user for a number and print its sqrt
num ¼ input('Please enter a number: ');
% If the user entered a negative number, change it
if num < 0

num ¼ abs(num);
end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

Here are two examples of running this script:

>> sqrtifexamp
Please enter a number: -4.2
The sqrt of 4.2 is 2.0

>> sqrtifexamp
Please enter a number: 1.44
The sqrt of 1.4 is 1.2

Note

As seenhere, two single

quotes in the disp

statement are used to

print one single quote.

893.2 The If Statement
Note that in the script the output from the assignment statement is suppressed.

In this case, the action of the if statement was a single assignment statement.

The action can be any number of valid statements. For example, we may wish
to print a note to the user to say that the number entered was being changed.

sqrtifexampii.m

% Prompt the user for a number and print its sqrt

num ¼ input('Please enter a number: ');

% If the user entered a negative number, tell
% the user and change it
if num < 0

disp('OK, we''ll use the absolute value')
num ¼ abs(num);

end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

>> sqrtifexampii
Please enter a number: �25
OK, we'll use the absolute value
The sqrt of 25.0 is 5.0
PRACTICE 3.2

Write an if statement that would print “No overtime for you!” if the value of a variable hours is less

than 40. Test the if statement for values of hours both less than and greater than 40.
QUICK QUESTION!

Assume that we want to create a vector of increasing integer

values from mymin to mymax. We will write a function

createvec that receives two input arguments, mymin and

mymax, and returns a vector with values from mymin to

mymax in steps of one. First, we would make sure that the

value of mymin is less than the value of mymax. If not, we

would need to exchange their values before creating the

vector. How would we accomplish this?

Answer:To exchange values, a temporary variable is required.

For example, let’s say that we have two variables a and b,

storing the values:

a ¼ 3;

b ¼ 5;

To exchange values, we could not just assign the value of b to a:

a ¼ b;

If that were done, then the value of a (3) is lost! Instead, we need

to assign the value of a first to a temporary variable so that the

value is not lost. The algorithm would be:

1. Assign the value of a to temp.

2. Assign the value of b to a.

3. Assign the value of temp to b.

>> temp ¼ a;

>> a ¼ b

a ¼
5

>> b ¼ temp

b ¼
3

Continued

QUICK QUESTION!—CONT’D

Now, for the function. An if statement is used to determine

whether or not the exchange is necessary.

createvec.m

function outvec ¼ createvec(mymin, mymax)

% createvec creates a vector that iterates from a

% specified minimum to a maximum

% Format of call: createvec(minimum, maximum)

% Returns a vector

% If the "minimum" isn't smaller than the "maximum",

% exchange the values using a temporary variable

if mymin > mymax

temp ¼ mymin;

mymin ¼ mymax;

mymax ¼ temp;

end

% Use the colon operator to create the vector

outvec ¼ mymin:mymax;

end

90 CHAPTER 3 Selection Statements
Examples of calling the function are:

>> createvec(4,6)
ans ¼

4 5 6

>> createvec(7,3)
ans ¼

3 4 5 6 7
3.2.1 Representing logical true and false
It has been stated that conceptually true expressions have the logical value

of 1, and expressions that are conceptually false have the logical value of 0. Repre-

senting the concepts of logical true and false inMATLAB is slightly different: The
concept of false is represented by the value of 0, but the concept of true can be

representedbyanynonzero value (not just1). This can lead to somestrange logical

expressions. For example, consider the following if statement:

>> if 5
disp('Yes, this is true!')

end
Yes, this is true!

913.3 The If-Else Statement
Since 5 is a nonzero value, the condition is true. Therefore, when this logical

expression is evaluated, it will be true, so the disp function will be executed and

“Yes, this is true!” is displayed. Of course, this is a pretty bizarre if statement,
and one that hopefully would never be encountered!

However, a simplemistake in an expression can lead to a similar result. For exam-

ple, let’s say that theuser isprompted forachoiceof ‘Y’or ‘N’ for ayes/noquestion.

letter ¼ input('Choice (Y/N): ','s');

In a script we might want to execute a particular action if the user

responded with ‘Y’. Most scripts would allow the user to enter either lower-
case or uppercase; for example, either ‘y’ or ‘Y’ to indicate “yes.” The proper

expression that would return true if the value of “letter” was ‘y’ or ‘Y’ would

be

letter ¼¼ 'y' k letter ¼¼ 'Y'

However, if by mistake this was written as

letter ¼¼ 'y' k 'Y'

this expression would ALWAYS be true, regardless of the value of the variable
letter. This is because ‘Y’ is a nonzero value, so it is a true expression. The first

part of the expression may be false, but since the second expression is true the

entire expression would be true.
3.3 THE IF-ELSE STATEMENT

The if statement chooses whether or not an action is executed. Choosing be-

tween two actions, or choosing from several actions, is accomplished using

if-else, nested if, and switch statements.

The if-else statement is used to choose between two statements, or sets of state-

ments. The general form is:

if condition
action1

else
action2

end

First, the condition is evaluated. If it is true, then the setof statementsdesignatedas

“action1” is executed, and that is the end of the if-else statement. If instead the

condition is false, the secondsetof statementsdesignatedas“action2” is executed,
and that is the endof the if-else statement. The first set of statements (“action1”) is

called the actionof the if clause; it iswhatwill be executed if the expression is true.

The second set of statements (“action2”) is called the action of the else clause; it is
whatwill be executed if the expression is false. Oneof these actions, andonlyone,

will be executed—which one depends on the value of the condition.

92 CHAPTER 3 Selection Statements
For example, to determine and print whether or not a random number in the

range from 0 to 1 is less than 0.5, an if-else statement could be used:

if rand < 0.5
disp('It was less than .5!')

else
disp('It was not less than .5!')

end
PRACTICE 3.3

Write a script printsindegorrad that will:

1. Prompt the user for an angle.

2. Prompt the user for (r)adians or (d)egrees, with radians as the default.

3. If the user enters ‘d’, the sind function will be used to get the sine of the angle in degrees;

otherwise, the sin function will be used. Which sine function to use will be based solely on

whether the user enters a ‘d’ or not. A ‘d’ means degrees, so sind is used; otherwise, for any

other character the default of radians is assumed so sin is used.

4. Print the result.

Here are examples of running the script:

>> printsindegorrad

Enter the angle: 45

(r)adians (the default) or (d)egrees: d

The sin is 0.71

>> printsindegorrad

Enter the angle: pi

(r)adians (the default) or (d)egrees: r

The sin is 0.00
One application of an if-else statement is to check for errors in the inputs to a

script (this is called error-checking). For example, an earlier script prompted the

user for a radius, and then used that to calculate the area of a circle. However, it
did not check to make sure that the radius was valid (e.g., a positive number).

Here is a modified script that checks the radius:

checkradius.m

% This script calculates the area of a circle
% It error-checks the user's radius
radius ¼ input('Please enter the radius: ');
if radius <¼ 0

fprintf('Sorry; %.2f is not a valid radius\n',radius)
else

area ¼ calcarea(radius);
fprintf('For a circle with a radius of %.2f,',radius)
fprintf(' the area is %.2f\n',area)

end

933.4 Nested If-Else Statements
Examples of running this script when the user enters invalid and then valid radii

are shown as follows:

>> checkradius
Please enter the radius: -4
Sorry; -4.00 is not a valid radius

>> checkradius
Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions:

printing an error message, or using the radius to calculate the area and then
printing out the result. Note that the action of the if clause is a single

statement, whereas the action of the else clause is a group of three
statements.
3.4 NESTED IF-ELSE STATEMENTS

The if-else statement is used to choose between two actions. To choose from
more than two actions the if-else statements can be nested, meaning one state-

ment inside of another. For example, consider implementing the following

continuous mathematical function y ¼ f(x):

y ¼ 1 if x < -1
y ¼ x2 if -1 � x � 2
y ¼ 4 if x > 2

The value of y is based on the value of x, which could be in one of three possible

ranges. Choosing which range could be accomplished with three separate if
statements, as follows:

if x < -1
y ¼ 1;

end
if x >¼ -1 && x <¼2

y ¼ x^2;
end
if x > 2

y ¼ 4;
end

Since the three possibilities are mutually exclusive, the value of y can be deter-
mined by using three separate if statements. However, this is not very efficient

code: all three logical expressions must be evaluated, regardless of the range

in which x falls. For example, if x is less than –1, the first expression is true
and 1 would be assigned to y. However, the two expressions in the next

two if statements are still evaluated. Instead of writing it in the preceding

94 CHAPTER 3 Selection Statements
way, the expressions can be nested so that the statement ends when an expres-

sion is found to be true:

if x < -1
y ¼ 1;

else
% If we are here, x must be >¼ -1
% Use an if-else statement to choose
% between the two remaining ranges
if x <¼ 2

y ¼ x^2;
else

% No need to check
% If we are here, x must be > 2
y ¼ 4;

end
end

By using a nested if-else to choose from among the three possibilities, not all
conditions must be tested as they were in the previous example. In this case, if x

is less than –1, the statement to assign 1 to y is executed, and the if-else state-

ment is completed so no other conditions are tested. If, however, x is not less
than –1, then the else clause is executed. If the else clause is executed, then we

already know that x is greater than or equal to –1 so that part does not need to

be tested.

Instead, there are only two remaining possibilities: either x is less than or equal

to 2, or it is greater than 2. An if-else statement is used to choose between those
two possibilities. So, the action of the else clause was another if-else statement.

Although it is long, this is one if-else statement, a nested if-else statement. The

actions are indented to show the structure of the statement. Nesting if-else
statements in this way can be used to choose from among 3, 4, 5, 6,

The possibilities are practically endless!

This is actually anexampleof aparticular kindofnested if-else statement called a
cascading if-else statement. This is a type of nested if-else statement inwhich the

conditions and actions cascade in a stairlike pattern (similar to a waterfall).
3.4.1 The elseif clause

THE PROGRAMMING CONCEPT
In most programming languages, choosing from multiple options means using nested if-else

statements. However, MATLAB has another method of accomplishing this using the elseif

clause.

953.4 Nested If-Else Statements
THE EFFICIENT METHOD
To choose from amongmore than two actions, the elseif clause is used. For example, if there are

n choices (where n > 3 in this example), the following general form would be used:
if condition1
action1

elseif condition2
action2

elseif condition3
action3

% etc: there can be many of these
else

actionn % the nth action
end

The actions of the if, elseif, and else clauses are naturally bracketed by the reserved words if,

elseif, else, and end. For example, the previous example could bewritten using the elseif clause

rather than nesting if-else statements:

if x < -1
y ¼ 1;

elseif x <¼ 2
y ¼ x^2;

else
y ¼ 4;

end

Note that in this example we only need one end. So, there are three ways of accomplishing this

task: using three separate if statements, using nested if-else statements, and using an if

statement with elseif clauses, which is the simplest. This could be implemented in a

function that receives a value of x and returns the corresponding value of y:

calcy.m

function y ¼ calcy(x)
% calcy calculates y as a function of x
% Format of call: calcy(x)
% y ¼ 1 if x < -1
% y ¼ x^2 if -1 <¼ x <¼ 2
% y ¼ 4 if x > 2

if x < -1
y ¼ 1;

elseif x <¼ 2
y ¼ x^2;

else
y ¼ 4;

end
end

QUICK QUESTION

How could you write a functio

argument is a scalar, vector, o

Answer: To do this, the size

dimensions of the input argum

and columns is equal to 1, the

If, on the other hand, only

argument is a vector (eithe

neither dimension is 1, the

These three options can be

statement. In this example,

‘matrix’ is returned from the

findargtype.m

function outtype ¼ fi

% findargtype determi

% argument is a scalar

% Format of call: finda

% Returns a string

[r c] ¼ size(inputarg

if r ¼¼ 1 && c ¼¼ 1

outtype ¼ 'scalar

elseif r ¼¼ 1 k c ¼¼ 1

outtype ¼ 'vector

else

outtype ¼ 'matrix

end

end

96 CHAPTER 3 Selection Statements
!

n to

r ma

func

ent.

n the

one

r a

inp

test

the

func

ndar

nes

, ve

rgty

);

';

';

';
>> x ¼ 1.1;
>> y ¼ calcy(x)
y ¼

1.2100
determine whether an input

trix?

tion can be used to find the

If both the number of rows

input argument is a scalar.

dimension is 1, the input

row or column vector). If

ut argument is a matrix.

ed using a nested if-else

word ‘scalar’, ‘vector’, or

tion.

gtype(inputarg)

whether the input

ctor, or matrix

pe(inputArgument)

Examples of calling this function are:

>> findargtype(33)

ans ¼
scalar

>> findargtype(2:5)

ans ¼
vector

>> findargtype(zeros(2,3))

ans ¼
matrix

Note: There is no need to check for the last case: If the

input argument Isn’t a scalar or a vector, it must be

a matrix!
PRACTICE 3.4

Modify the function findargtype to return ‘scalar’, ‘row vector’, ‘column vector’, or ‘matrix’

depending on the input argument.

973.4 Nested If-Else Statements
Another example demonstrates choosing from more than just a few options.

The following function receives an integer quiz grade, which should be in

the range from 0 to 10. The function then returns a corresponding letter grade,
according to the following scheme: a 9 or 10 is an ‘A’, an 8 is a ‘B’, a 7 is a ‘C’, a 6

is a ‘D’, and anything below that is an ‘F’. Since the possibilities are mutually

exclusive, we could implement the grading scheme using separate if statements.
However, it is more efficient to have one if-else statement with multiple elseif

clauses. Also, the function returns the value ‘X’ if the quiz grade is not valid. The

function assumes that the input is an integer.

letgrade.m

function grade ¼ letgrade(quiz)
% letgrade returns the letter grade corresponding
% to the integer quiz grade argument
% Format of call: letgrade(integerQuiz)
% Returns a character

% First, error-check
if quiz < 0 k quiz > 10

grade ¼ 'X';

% If here, it is valid so figure out the
% corresponding letter grade
elseif quiz ¼¼ 9 k quiz ¼¼ 10

grade ¼ 'A';
elseif quiz ¼¼ 8

grade ¼ 'B';
elseif quiz ¼¼ 7

grade ¼ 'C';
elseif quiz ¼¼ 6

grade ¼ 'D';
else

grade ¼ 'F';
end
end

Three examples of calling this function are:

>> quiz ¼ 8;
>> lettergrade ¼ letgrade(quiz)
lettergrade ¼
B

>> quiz ¼ 4;
>> letgrade(quiz)
ans ¼
F

Note

It is assumed that the

user will enter an

integer value. If the user

does not, an error

message will be printed

or an incorrect result

will be returned.

Methods for remedying

this are discussed in

Chapter 4.

98 CHAPTER 3 Selection Statements
>> lg ¼ letgrade(22)
lg ¼
X

In the part of this if statement that chooses the appropriate letter grade to re-

turn, all of the logical expressions are testing the value of the variable quiz to see

if it is equal to several possible values, in sequence (first 9 or 10, then 8, then 7,
etc.). This part can be replaced by a switch statement.
3.5 THE SWITCH STATEMENT

A switch statement can often be used in place of a nested if-else or an if state-

ment with many elseif clauses. Switch statements are used when an expression

is tested to see whether it is equal to one of several possible values.

The general form of the switch statement is:

switch switch_expression
case caseexp1

action1
case caseexp2

action2
case caseexp3

action3
% etc: there can be many of these
otherwise

actionn
end

The switch statement starts with the reserved word switch, and ends with the re-

served word end. The switch_expression is compared, in sequence, to the case ex-
pressions (caseexp1, caseexp2, etc.). If the value of the switch_expression matches

caseexp1, for example, then action1 is executed and the switch statement ends.

If the value matches caseexp3, then action3 is executed, and in general if the value
matches caseexpi where i can be any integer from 1 to n, then the actioni is exe-

cuted. If the value of the switch_expression does not match any of the case expres-

sions, the action after the word otherwise is executed (the nth action, actionn).

For the previous example, the switch statement can be used as follows:

switchletgrade.m

function grade ¼ switchletgrade(quiz)
% switchletgrade returns the letter grade corresponding
% to the integer quiz grade argument using switch
% Format of call: switchletgrade(integerQuiz)
% Returns a character

993.5 The Switch Statement
% First, error-check
if quiz < 0 k quiz > 10

grade ¼ 'X';
else

% If here, it is valid so figure out the
% corresponding letter grade using a switch
switch quiz

case 10
grade ¼ 'A';

case 9
grade ¼ 'A';

case 8
grade ¼ 'B';

case 7
grade ¼ 'C';

case 6
grade ¼ 'D';

otherwise
grade ¼ 'F';

end
end
end

Here are two examples of calling this function:

>> quiz ¼ 22;
>> lg ¼ switchletgrade(quiz)
lg ¼
X

>> switchletgrade(9)
ans ¼
A

Since the same action of printing ‘A’ is desired for more than one grade, these

can be combined as follows:

switch quiz
case {10,9}

grade ¼ 'A';
case 8

grade ¼ 'B';
% etc.

The curly braces around the case expressions 10 and 9 are necessary.

In this example, we error-checked first using an if-else statement. Then if the

grade was in the valid range, a switch statement was used to find the corre-
sponding letter grade.

FIGURE 3.1 Menu in

Figure Window

100 CHAPTER 3 Selection Statements
Sometimes the otherwise clause is used for the error message. For example, if

the user is supposed to enter only a 1, 3, or 5, the script might be organized as

follows:

switcherror.m

% Example of otherwise for error message
choice ¼ input('Enter a 1, 3, or 5: ');

switch choice
case 1

disp('It' 's a one!!')
case 3

disp('It''s a three!!')
case 5

disp('It''s a five!!')
otherwise

disp('Follow directions next time!!')
end

In this example, actions are taken if the user correctly enters one of the valid
options. If the user does not, the otherwise clause handles printing an error

message. Note the use of two single quotes within the string to print a single

quote.

>> switcherror
Enter a 1, 3, or 5: 4
Follow directions next time!!
3.6 THE MENU FUNCTION

MATLAB has a built-in function called menu that will display a Figure Window
with pushbuttons for the options. The first string passed to themenu function is

the heading (an instruction), and the rest are labels that appear on the pushbut-

tons. The function returns the number of the button that is pushed. For example,

>> mypick ¼ menu('Pick a pizza','Cheese','Shroom','Sausage');

will display the Figure Window seen in Figure 3.1 and store the result of the
user’s button push in the variable mypick.

There are three buttons, the equivalent values of which are 1, 2, and 3. For ex-
ample, if the user pushes the “Sausage” button, mypick would have the value 3:

>> mypick
mypick ¼

3

1013.6 The Menu Function
Note that the strings ‘Cheese’, ‘Shroom’, and ‘Sausage’ are just labels on the

buttons. The actual value of the button push in this example would be 1, 2, or 3.

A script that uses thismenu function would then use either an if-else statement
or a switch statement to take an appropriate action based on the button

pushed. For example, the following script simply prints which pizza to order,

using a switch statement.

pickpizza.m

%This script asks the user for a type of pizza
% and prints which type to order using a switch

mypick ¼ menu('Pick a pizza','Cheese','Shroom','Sausage');
switch mypick

case 1
disp('Order a cheese pizza')

case 2
disp('Order a mushroom pizza')

case 3
disp('Order a sausage pizza')

otherwise
disp('No pizza for us today')

end

This is an example of running this script and clicking on the “Sausage” button:
>> pickpizza
Order a sausage pizza
QUICK QUESTION!
How could the otherwise action get executed in this switch

statement?

Answer: If the user clicks on the red “X” on the top right of the

menu box instead of on one of the three buttons, the value

returned from the menu function will be 0, which will cause

the otherwise clause to be executed. This could also have

been accomplished using a case 0 label instead of otherwise.
Instead of using a switch statement in this script, an alternative method would

be to use an if-else statement with elseif clauses.

pickpizzaifelse.m

%This script asks the user for a type of pizza

% and prints which type to order using if-else
mypick ¼ menu('Pick a pizza', 'Cheese', 'Shroom','Sausage');
if mypick ¼¼ 1

disp('Order a cheese pizza')
Continued

102 CHAPTER 3 Selection Statements
elseif mypick ¼¼ 2
disp('Order a mushroom pizza')

elseif mypick ¼¼ 3
disp('Order a sausage pizza')

else
disp('No pizza for us today')

end
PRACTICE 3.5

Write a function that will receive one number as an input argument. It will use themenu function to

display ‘Choose a function’ and will have buttons labeled ‘fix’, ‘floor’, and ‘abs’. Using a switch

statement, the function will then calculate and return the requested function (e.g., if ‘abs’ is

chosen, the function will return the absolute value of the input argument). Choose a fourth

function to return if the user clicks on the red ‘X’ instead of pushing a button.
3.7 THE “IS” FUNCTIONS IN MATLAB

There are a lot of functions that are built into MATLAB that test whether

or not something is true; these functions have names that begin with the

word “is.” Since these functions are frequently used in if statements, they
are introduced in this chapter. For example, the function called isletter

returns logical 1 if the character argument is a letter of the alphabet, or

0 if it is not:

>> isletter('h')
ans ¼

1

>> isletter('4')
ans ¼

0

The isletter function will return logical true or false so that it can be used in a

condition in an if statement. For example, here is code that would prompt the
user for a character, and then print whether or not it is a letter:

mychar ¼ input('Please enter a char: ','s');
if isletter(mychar)

disp('Is a letter')
else

disp('Not a letter')
end

1033.7 The “Is” Functions in MATLAB
When used in an if statement, it is not necessary to test the value to see whether

the result from isletter is equal to 1 or 0; this is redundant. In other words, in

the condition of the if statement,

isletter(mychar)

and

isletter(mychar) ¼¼ 1
would produce the same results.
QUICK QUESTION!

How can we write our own function myisletter to accomplish

the same result as isletter?

Answer: The functionwould compare the character’s position

within the character encoding.

myisletter.m

function outlog ¼ myisletter(inchar)

% myisletter returns true if the input argument

% is a letter of the alphabet or false if not

% Format of call: myisletter(inputCharacter)

% Returns logical 1 or 0

if inchar >¼ 'a' && inchar <¼ 'z' . . .

k inchar >¼ 'A' && inchar <¼ 'Z'

outlog ¼ logical(1);

else

outlog ¼ logical(0);

end

end

Remember that it is necessary to check for both lowercase and

uppercase letters. Also, the function must return logical 1 or 0.
The function isempty returns logical true if a variable is empty, logical false if it

has a value, or an errormessage if the variable does not exist. Therefore, it can be
used to determine whether a variable has a value yet or not. For example,

>> clear
>> isempty(evec)
??? Undefined function or variable 'evec'.

104 CHAPTER 3 Selection Statements
>> evec ¼ [];
>> isempty(evec)
ans ¼

1

>> evec ¼ [evec 11];
>> isempty(evec)
ans ¼

0

The isempty function will also determine whether or not a string variable is

empty. For example, the following can be used to determine whether the user
entered a string in an input function:

>> istr ¼ input('Please enter a string: ','s');
Please enter a string:
>> isempty(istr)
ans ¼

1

PRACTICE 3.6

Prompt the user for a string, and then print either the string that the user entered or an error message

if the user failed to enter a string.

The function iskeyword will determine whether or not a name is a key word in

MATLAB, and therefore something that cannot be used as an identifier name.

By itself (with no arguments), it will return the list of all keywords. Note that the
names of functions like “sin” are not key words, so their values can be overwrit-

ten if used as an identifier name.

>> iskeyword('sin')
ans ¼

0

>> iskeyword('switch')
ans ¼

1

>> iskeyword
ans ¼

'break'
'case'
'catch'

% etc.

There are many other “is” functions; the list of them can be found in the Help
browser.

105Summary
SUMMARY
Common Pitfalls

n Using ¼ instead of ¼¼ for equality

n Not using quotes when comparing a string variable to a string, such as in

letter ¼¼ y

instead of

letter ¼¼ 'y'

n Confusing && and k
n Confusing k and xor

n Putting a space in two-character operators (e.g., typing “< ¼” instead of
“<¼”).

n Not spelling out an entire logical expression. An example is typing

radius k height <¼ 0

instead of

radius <¼ 0 k height <¼ 0

or typing

letter ¼¼ 'y' k 'Y'

instead of

letter ¼¼ 'y' k letter ¼¼ 'Y'

Note that these are logically incorrect, but would not result in error messages.

Note also that the expression "letter ¼¼ 'y' k 'Y'" will ALWAYS be true,

regardless of the value of the variable letter, since ‘Y’ is a nonzero value and
therefore a true expression.

n Writing conditions that are more complicated than necessary, such as

if (x < 5) ¼¼ 1

instead of just

if (x < 5)

n Using an if statement instead of an if-else statement for error-checking; for

example,

if error occurs
print error message

end

continue rest of code

106 CHAPTER 3 Selection Statements
instead of

if error occurs
print error message

else
continue rest of code

end

In the first example, the error message would be printed but then the

program would continue anyway.

Programming Style Guidelines

n Use indentation to show the structure of a script or function. In particular,

the actions in an if statement should be indented.

n When the else clause is not needed, use an if statement rather than an if-else
statement. The following is an example:

if unit ¼¼ 'i'
len ¼ len * 2.54;

else
len ¼ len; % this does nothing so skip it!

end

Instead, just use:

if unit ¼¼ 'i'
len ¼ len * 2.54;

end

n Do not put unnecessary conditions on else or elseif clauses. For example,
the following prints one thing if the value of a variable “number” is equal to

5, and something else if it is not.

if number ¼¼ 5
disp('It is a 5')

elseif number �¼ 5
disp('It is not a 5')

end

The second condition, however, is not necessary. Either the value is 5 or not,

so just the else would handle this:

if number ¼¼ 5
disp('It is a 5')

else
disp('It is not a 5')

end

n When using the menu function, ensure that the program handles the

situation when the user clicks on the red ‘X’ on the menu box rather than

pushing one of the buttons.

107Exercises
MATLAB Reserved Words

if

else

switch

case

otherwise

elseif
MATLAB Functions and Commands

true

false

xor

sind

menu

isletter

isempty

iskeyword
MATLAB Operators

less than <

greater than >

less than or equals <¼
greater than or equals >¼
equality ¼¼

inequality �¼
or for scalars jj
and for scalars &&

not �
Exercises
1.What would be the result of the following expressions?

'b' >¼ 'c' � 1

3 ¼¼ 2 þ 1

(3 ¼¼ 2) þ 1

xor(5 < 6, 8 > 4)

2.Write a script that tests whether the user can follow instructions. It prompts the user

to enter an ‘x’. If the user enters anything other than an ‘x’, it prints an error message;

otherwise, the script does nothing.

3.Write a function nexthour that receives one integer argument, which is an hour

of the day, and returns the next hour. This assumes a 12-hour clock; so, for

example, the next hour after 12 would be 1. Here are two examples of calling this

function:

>> fprintf('The next hour will be %d.\n',nexthour(3))
The next hour will be 4.
>> fprintf('The next hour will be %d.\n',nexthour(12))
The next hour will be 1.

108 CHAPTER 3 Selection Statements
4.Write a script to calculate the volume of a pyramid, which is 1/3 * base * height,

where the base is length * width. Prompt the user to enter values for the length,

width, and height, and then calculate the volume of the pyramid. When the user

enters each value, he or she will then also be prompted for ‘i’ for inches or ‘c’ for

centimeters. (Note: 2.54 cm ¼ 1 inch.) The script should print the volume in cubic

inches with three decimal places. As an example, the output format will be:

This program will calculate the volume of a pyramid.
Enter the length of the base: 50
Is that i or c? i
Enter the width of the base: 6
Is that i or c? c
Enter the height: 4
Is that i or c? i

The volume of the pyramid is xxx.xxx cubic inches.

5.Write a script to prompt the user for a character, and then print either that it is a letter

of the alphabet or that it is not.

6.Write a script that will prompt the user for a numerator and a denominator for a

fraction. If the denominator is 0, it will print an error message saying that division by 0

is not possible. If the denominator is not 0, it will print the result of the fraction.

7. The eccentricity of an ellipse is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

a

r

where a is the semimajor axis and b is the semiminor axis of the ellipse. A script
prompts the user for the values of a and b. Since division by 0 is not possible, the

script prints an error message if the value of a is 0 (it ignores any other errors,

however). If a is not 0, the script calls a function to calculate and return the

eccentricity, and then the script prints the result. Write the script and the function.

8. The systolic and diastolic blood pressure readings are found when the heart is

pumping and the heart is at rest, respectively. A biomedical experiment is being

conducted only on subjects whose blood pressure is optimal. This is defined as a

systolicbloodpressure less than120andadiastolicbloodpressure less than80.Writea

script that will prompt for the systolic and diastolic blood pressures of a person, and

will print whether or not that person is a candidate for this experiment, or not.

9.The continuity equation in fluid dynamics for steady fluid flow through a stream tube

equates the product of the density, velocity, and area at two points that have varying

cross-sectional areas. For incompressible flow, the densities are constant so that the

equation is A1V1 ¼ A2V2. If the areas and V1 are known, V2 can be found as A1
A2
V1.

Therefore, whether the velocity at the second point increases or decreases depends

on the areas at the two points. Write a script that will prompt the user for the two

areas in square feet, and will print whether the velocity at the second point will

increase, decrease, or remain the same as at the first point.

109Exercises
10. In chemistry, the pH of an aqueous solution is a measure of its acidity. The pH scale

ranges from 0 to 14, inclusive. A solution with a pH of 7 is said to be neutral, a solution

with a pH greater than 7 is basic, and a solution with a pH less than 7 is acidic. Write a

script that will prompt the user for the pH of a solution, and will print whether it is

neutral, basic, or acidic. If theuser enters an invalid pH, anerrormessagewill beprinted.

11.Write a function createvecMToN that will create and return a vector of integers from

m to n (where m is the first input argument and n is the second), regardless of

whetherm is less than n or greater than n. Ifm is equal to n, the “vector” will just be

1 � 1 or a scalar.

12.Write a function flipvec that will receive one input argument. If the input argument is

a row vector, the function will reverse the order and return a new row vector. If the

input argument is a column vector, the function will reverse the order and return a

new column vector. If the input argument is a matrix or a scalar, the function will

return the input argument unchanged.

13. In a script, the user is supposed to enter either a ‘y’ or ‘n’ in response to a prompt. The

user’s input is read into a character variable called “letter.” The script will print “OK,

continuing” if the user enters either a ‘y’ or ‘Y’; “OK, halting” if the user enters an ‘n’

or ‘N’; or “Error” if the user enters anything else. Put this statement in the script first:

letter ¼ input('Enter your answer: ', 's');

Write the script using a single nested if-else statement (elseif clause is permitted).

14.Write the script from the previous exercise using a switch statement instead.

15. In aerodynamics, theMach number is a critical quantity. It is defined as the ratio of the

speed of an object (e.g., an aircraft) to the speed of sound. If the Mach number is less

than 1, the flow is subsonic; if theMach number is equal to 1, the flow is transonic; and

if the Mach number is greater than 1, the flow is supersonic. Write a script that will

prompt the user for the speed of an aircraft and the speed of sound at the aircraft’s

current altitude and will print whether the condition is subsonic, transonic, or

supersonic.

16.Write a script thatwill prompt theuser for a temperature in degreesCelsius, and thenan

‘F’ for Fahrenheit or ‘K’ for Kelvin. The scriptwill print the corresponding temperature in

the scale specified by the user. For example, the output might look like this:

Enter the temp in degrees C: 29.3
Do you want K or F? F
The temp in degrees F is 84.7

The format of the output should be exactly as specified. The conversions follow:

F ¼ 9

5
Cþ 32

K ¼ Cþ 273:15
17.Write a script that will generate one random integer, and will print whether the
random integer is an even or an odd number. (Hint: An even number is divisible by 2,

whereas an odd number is not; so check the remainder after dividing by 2.)

110 CHAPTER 3 Selection Statements
18.Write a function isdivby4 that will receive an integer input argument, and will

return logical1 for true if the input argument is divisible by 4, or logical false if it is not.

19.Write a function isint that will receive a number input argument innum, and will

return 1 for true if this number is an integer, or 0 for false if not. Use the fact that

innum should be equal to int32(innum) if it is an integer. Unfortunately, due to

round-off errors, it should be noted that it is possible to get logical 1 for true if the

input argument is close to an integer. Therefore, the output may not be what you

might expect, as shown here.

>> isint(4)
ans ¼

1
>> isint(4.9999)
ans ¼

0

>> isint(4.9999999999999999999999999999)
ans ¼

1

20.A Pythagorean triple is a set of positive integers (a,b,c) such that a2 þ b2 ¼ c2.

Write a function ispythag that will receive three positive integers (a, b, c in that order)

and will return logical 1 for true if they form a Pythagorean triple, or 0 for false if not.

21. In fluid dynamics, the Reynolds number Re is a dimensionless number used to

determine the nature of a fluid flow. For an internal flow (e.g., water flow through a

pipe), the flow can be categorized as follows:

Re � 2300 Laminar region

2300 < Re � 4000 Transition region

Re > 4000 Turbulent region
Write a script that will prompt the user for the Reynolds number of a flow and will

print the region the flow is in. An example of running the script follows:

>> Reynolds
Enter a Reynolds number: 3500
The flow is in transition region

Would it be a good idea to write the selection statements using switch?Why or why

not?

22.The area A of a rhombus is defined as A¼ d1d2
2

, where d1 and d2 are the lengths of the

twodiagonals.Write a script rhomb that first prompts the user for the lengths of the two

diagonals. If either is a negative number or zero, the script prints an error message.

Otherwise, if they arebothpositive, it calls a function rhombarea to return the area of the

rhombus, and prints the result. Write the function, also! The lengths of the diagonals,

which you can assume are in inches, are passed to the rhombarea function.

111Exercises
Global temperature changes have resulted in new patterns of storms in many

parts of the world. Tracking wind speeds and a variety of categories of storms

is important in understanding the ramifications of these temperature variations.

Programs that work with storm data will use selection statements to determine

the severity of storms and also to make decisions based on the data.

23.Whether a storm is a tropical depression, tropical storm, or hurricane is determined by

the average sustained wind speed. In miles per hour, a storm is a tropical depression if

the winds are less than 38 mph. It is a tropical storm if the winds are between 39 and

73 mph, and it is a hurricane if the wind speeds are �74 mph. Write a script that will

prompt the user for thewind speed of the storm, andwill printwhich type of storm it is.

24.Hurricanes are categorized based on wind speeds. The following table shows the

category number for hurricanes with varying wind ranges and what the storm surge

is (in feet above normal).

Cat Wind speed Storm surge

1 74–95 4–5

2 96–110 6–8

3 111–130 9–12

4 131–155 13–18

5 >155 >18
Write a script that will prompt the user for the wind speed, and will print the
hurricane category number and the typical storm surge.

25.The BeaufortWind Scale is used to characterize the strength of winds. The scale uses

integer values and goes from a force of 0, which is no wind, up to 12, which is a

hurricane. The following script first generates a random force value. Then, it prints a

message regarding what type of wind that force represents, using a switch

statement. You are to rewrite this switch statement as one nested if-else statement

that accomplishes exactly the same thing. You may use else and/or elseif clauses.

ranforce ¼ round(rand*12);

switch ranforce
case 0

disp('There is no wind')
case {1,2,3,4,5,6}

disp('There is a breeze')
case {7,8,9}

disp('This is a gale')
case {10,11}

disp('It is a storm')
case 12

disp('Hello, Hurricane!')
end

112 CHAPTER 3 Selection Statements
26.Clouds are generally classified as high, middle, or low level. The height of the cloud is

the determining factor, but the ranges vary depending on the temperatue. For

example, in tropical regions the classifications may be based on the following height

ranges (given in feet):
Low 0–6500

Middle 6500–20,000

High >20,000
Write a script that will prompt the user for the height of the cloud in feet, and print the

classification.

27.Rewrite the following switch statement as one nested if-else statement (elseif

clauses may be used). Assume that there is a variable letter and that it has been

initialized.

switch letter
case 'x'

disp('Hello')
case {'y', 'Y'}

disp('Yes')
case 'Q'

disp('Quit')
otherwise

disp('Error')
end

28.Rewrite the following nested if-else statement as a switch statement that

accomplishes exactly the same thing. Assume that num is an integer variable that has

been initialized, and that there are functions f1, f2, f3, and f4. Do not use any if or if-else

statements in the actions in the switch statement; use only calls to the four functions.

if num < -2 k num > 4
f1(num)

else
if num <¼ 2

if num >¼ 0
f2(num)

else
f3(num)

end
else

f4(num)
end

end

113Exercises
29.Write a script areaMenu that will print a list consisting of “cylinder,” “circle,” and

“rectangle.” It prompts the user to choose one, and then prompts the user for the

appropriate quantities (e.g., the radius of the circle) and then prints its area. If the user

enters an invalid choice, the script simply prints an error message. The script should

use a nested if-else statement to accomplish this. Here are two examples of running

it (units are assumed to be inches).

>> areaMenu

Menu

1. Cylinder
2. Circle
3. Rectangle

Please choose one: 2

Enter the radius of the circle: 4.1

The area is 52.81

>> areaMenu

Menu

1. Cylinder
2. Circle
3. Rectangle

Please choose one: 3

Enter the length: 4

Enter the width: 6

The area is 24.00

30.Modify the areaMenu script to use a switch statement to decide which area to

calculate.

31.Modify the areaMenu script (either version) to use the built-inmenu function instead

of printing the menu choices.

32.Write a script that prompts the user for a value of a variable x. Then, it uses themenu

function to present choices between ‘sin(x)’, ‘cos(x)’, and ‘tan(x)’. The script will

print whichever function of x the user chooses. Use an if-else statement to

accomplish this.

33.Modify the above script to use a switch statement instead.

34.Write a function that will receive one number as an input argument. It will use

the menu function that will display ‘Choose a function’ and will have buttons

labeled ‘ceil’, ‘round’, and ‘sign’. Using a switch statement, the function will

then calculate and return the requested function (e.g., if ‘round’ is chosen, the

function will return the rounded value of the input argument).

35.Modify the function in Question 34 to use a nested if-else statement instead.

114 CHAPTER 3 Selection Statements
36. Simplify this statement:

if num < 0
num ¼ abs(num);

else
num ¼ num;

end

37. Simplify this statement:

if val >¼ 4
disp('OK')

elseif val < 4
disp('smaller')

end

CHAPTER 4
Loop Statements
CONTENTS
KEY TERMS
4.1 The For
Loop116

4.2 Nested For
Loops.............128

4.3 While
Loops.............139
looping statements

counted loops

conditional loops

action

iterate

loop or iterator variable

running sum

running product

factorial

preallocate

echo printing

nested loop

outer loop

inner loop

infinite loop

counting

error-checking
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Consider the problem of calculating the area of a circle with a radius of 0.3

centimeters. A MATLABW program certainly is not needed to do that; you’d

use your calculator instead, and punch in p * 0.32. However, if a table of circle
areas is desired, for radii ranging from 0.1 centimeters to 100 centimeters in

steps of 0.05 (e.g., 0.1, 0.15, 0.2, etc.), it would be very tedious to use a calcu-

lator and write it all down. One of the great uses of a computer program such as
MATLAB is the ability to repeat a process such as this.

This chapter will cover statements in MATLAB that allow other statement(s) to be
repeated. The statements that do this are called looping statements, or loops. There

are two basic kinds of loops in programming: counted loops and conditional loops.

A counted loop is a loop that repeats statements a specified number of times (so,
ahead of time it is known how many times the statements are to be repeated). In

a counted loop, for example, you might say “repeat these statements 10 times.”

A conditional loop also repeats statements, but ahead of time it is not known
how many times the statements will need to be repeated. With a conditional loop,

for example, you might say “repeat these statements until this condition becomes

false.”Thestatement(s) thatarerepeatedinanylooparecalledtheactionof theloop.
115

116 CHAPTER 4 Loop Statements
There are two different loop statements in MATLAB: the for statement and the

while statement. In practice, the for statement is usually used as the counted

loop, and the while is used as the conditional loop. To keep it simple, that
is how they will be presented here.

4.1 THE FOR LOOP

The for statement, or the for loop, is used when it is necessary to repeat state-

ment(s) in a script or function, and when it is known ahead of time how many

times the statements will be repeated. The statements that are repeated are
called the action of the loop. For example, it may be known that the action

of the loop will be repeated five times. The terminology used is that we iterate

through the action of the loop five times.

The variable that is used to iterate through values is called a loop variable, or an

iterator variable. For example, the variable might iterate through the integers 1
through 5 (e.g., 1, 2, 3, 4, and then 5). Although variable names in general

should be mnemonic, it is common for an iterator variable to be given the

name i (and if more than one iterator variable is needed, i, j, k, l, etc.). This
is historical, and is because of the way integer variables were named in Fortran.

However, in MATLAB both i and j are built-in values for
ffiffiffiffiffiffiffi�1p

, so using either as

a loop variable will override that value. If that is not an issue, then it is okay to
use i as a loop variable.

The general form of the for loop is

for loopvar ¼ range
action

end

where loopvar is the loop variable, “range” is the range of values through

which the loop variable is to iterate, and the action of the loop consists of all

statements up to the end. Just like with if statements, the action is indented to
make it easier to see. The range can be specified using any vector, but normally

the easiest way to specify the range of values is to use the colon operator.

For instance, the following prints a column of numbers from 1 to 5:

for i ¼ 1:5
fprintf('%d\n',i)

end

This loop could be entered in the Command Window, although like if and
switch statements, loops will make more sense in scripts and functions. In

the Command Window, the results would appear after the for loop:

>> for i ¼ 1:5
fprintf('%d\n',i)

end

1174.1 The For Loop

Openmirrors.com
1
2
3
4
5

What the for statement accomplished was to print the value of i and then the

newline character for every value of i, from1 through 5 in steps of 1. The first thing
that happens is that i is initialized to have the value 1. Then, the action of the loop

is executed, which is the fprintf statement that prints the value of i (1), and

then the newline character to move the cursor down. Then, i is incremented to
have the value of 2.

Next, the action of the loop is executed, which prints 2 and the newline. Then, i
is incremented to 3 and that is printed, then i is incremented to 4 and that is

printed, and then finally i is incremented to 5 and that is printed. The final

value of i is 5; this value can be used once the loop has finished.
QUICK QUESTION!

How could you print the following column of integers?

0

50

100

150

200

Answer: In a loop, you could print these values starting at 0,

incrementing by 50, and ending at 200. Each is printed using a

field width of 3.

>> for i ¼ 0:50:200

fprintf('%3d\n',i)

end
4.1.1 Finding sums and products
A very common application of a for loop is to calculate sums and products. For

example, instead of just printing the integers 1 through 5, we could calculate the

sum of the integers 1 through 5 (or, in general, 1 through n where n is any
positive integer). Basically, we want to implement

X

n

i¼1
i

or calculate the sum 1 þ 2 þ 3 þ . . . þ n.
To do this, we need to add each value to a running sum. A running sum keeps

changing, as we keep adding to it. First the sum has to be initialized to 0, then in
this case itwill be1 (0þ1), then3 (0þ1þ2), then6 (0þ1þ2þ3), and so forth.

In a function to calculate the sum, we need a loop or iterator variable i, as

before, and also a variable to store the running sum. In this case we will use
the output argument runsum as the running sum. Every time through the loop,

Note

The output was

suppressed when

initializing the sum to

0 and when adding to it

during the loop.

118 CHAPTER 4 Loop Statements
the next value of i is added to the value of runsum. This function will return the

end result, which is the sum of all integers from 1 to the input argument n

stored in the output argument runsum.

sum1ToN.m

function runsum ¼ sum1ToN(n)
% sum1ToN returns the sum of integers from 1 to n
% Format of call: sum1ToN(n)

runsum ¼ 0;
for i ¼ 1:n

runsum ¼ runsum þ i;
end
end

As an example, if 5 is passed to be the value of the input argument n, the

function will calculate and return 1 þ 2 þ 3 þ 4 þ 5, or 15:

>> sum1ToN(5)
ans ¼

15
PRACTICE 4.1

Write a function sumMToN that is similar to the preceding function but will calculate the sum of

the integers from m to n. For example, if the integers 4 and 7 are passed to the function, it will

calculate 4 þ 5 þ 6 þ 7:

>> sumMToN(4,7)

ans ¼
22
Another very common application of a for loop is to find a running product. For
example, instead of finding the sum of the integers 1 through n, we could find

the product of the integers 1 through n. Basically, we want to implement
Y

n

i¼1
i

or calculate the product 1 * 2 * 3 * 4 *. . . * n, which is called the factorial of n

and is written n!.

THE PROGRAMMING CONCEPT
The basic algorithm is similar to finding a sum, except that we need to multiply each value of the

loop variable to a running product. The difference is that while a running sum variable is

initialized to 0, a running product variable must be initialized to 1. Thus, the first time a

value is multiplied by it, it does not change the original value.

1194.1 The For Loop
myfact.m

function runprod ¼ myfact(n)

% myfact returns n!

% Format of call: myfact(n)

runprod ¼ 1;

for i ¼ 1:n

runprod ¼ runprod * i;

end

end

Any positive integer argument could be passed to this function, and it will calculate the factorial

of that number. For example, if 5 is passed, the function will calculate and return 1 * 2 * 3 * 4 * 5,

or 120:

>> myfact(5)

ans ¼
120
THE EFFICIENT METHOD
MATLAB has a built-in function, factorial, that will find the factorial of an integer n:
>> factorial(5)

ans ¼
120
Sums and products with vectors
The previous examples found either the sum or product of values at regular in-

tervals, for example, from 1 to an integer n. Frequently, however, we wish to

find the sum and/or product of the elements in a vector, regardless of what
those values might be. For example, we will write a function to sum all of

the elements in a vector.
THE PROGRAMMING CONCEPT
The vector is passed as an argument to the function. The function loops through all of the

vector’s elements, from 1 to the length of the vector, to add them all to the running sum.
myvecsum.m

function outarg ¼ myvecsum(vec)

% myvecsum returns the sum of the elements in a

120 CHAPTER 4 Loop Statements
% vector

% Format of call: myvecsum(vector)

outarg ¼ 0;

for i ¼ 1:length(vec)

outarg ¼ outarg þ vec(i);

end

end

Any vector could be passed to this function; for example, we could just specify values for the

elements in square brackets:

>> myvecsum([5 9 4])

ans ¼
18
THE EFFICIENT METHOD
MATLAB has a built-in function, sum, that will sum all values in a vector. Again, any vector can

be passed to the sum function:
>> sum([5 9 4])

ans ¼
18
The functionmyvecsum illustrates a very important concept: looping through all of

the elements in a vector to do somethingwith each one. In this case, we are adding
every element in the vector to a running sum, which is stored in the output argu-

ment outarg. Notice that the loop variable, i, is used as the index into the vector.

The first time through the loop, when i has the value 1, the value of vec(1)
which is 5, is added to the value of outarg (so it is 0 þ 5, or 5). The second time

through the loop, when i has the value 2, vec(2) or 9 is added to outarg (so it

now stores 0þ 5þ 9, or 14). Then, the third and final time through the loop vec
(3) or 4 is added, so outarg now stores 0 þ 5 þ 9 þ 4, or 18.

This is in fact one reason to store values in a vector. Values in a vector typically rep-
resent “the same thing,” so in a program typically the same operation would be

performed on every element. The general form of a for loop to accomplish this is

for i ¼ 1:length(vectorvariable)
do something with vectorvariable(i)

end

1214.1 The For Loop
The loop variable iterates through all elements in the vector, from 1 through the

end (given by length(vectorvariable)), doing something with each element,

specified as vectorvariable(i).

As another example, we will write a function to find the product of all the el-

ements in a vector.

THE PROGRAMMING CONCEPT
Q

H

r

s

The vector is passed as an argument to the function. The function loops through all of the

vector’s elements, from 1 to the length of the vector, to multiply them all by the running

product.
U

ow

etur

pec
myvecprod.m

function outarg ¼ myvecprod(vec)

% myvecprod returns the product of

% the elements in a vector

% Format of call: myvecprod(vector)

outarg ¼ 1;

for i ¼ 1:length(vec)

outarg ¼ outarg * vec(i);

end

end

>> myvecprod([5 9 4])

ans ¼
180
THE EFFICIENT METHOD
MATLAB has a built-in function, prod, that will return the product of all values in a

vector.
>> prod([5 9 4])

ans ¼
180
ICK QUESTION!

could we write a function prodMToN to calculate and

n the product of the integers m to n without assuming a

ific order of the arguments? In other words, both the

function calls prodMToN(3,6) and prodMToN(6,3) would

return the result of 3*4*5*6 or 360.

The answer is in the following boxes.

122 CHAPTER 4 Loop Statements
THE PROGRAMMING CONCEPT
To loop from the smaller value to the larger, we would first have to compare their values and

exchange them if necessary.
prodMToN.m

function runprod ¼ prodMToN(m,n)

% prodMToN returns the product of m:n

% using a for loop

% Format: prodMToN(m,n) or prodMToN(n,m)

% Make sure m is less than n

if m > n

temp ¼ m;

m ¼ n;

n ¼ temp;

end

% Loop to calculate the running product

runprod ¼ 1;

for i ¼ m:n

runprod ¼ runprod * i;

end

end
THE EFFICIENT METHOD
Instead of exchanging the values ofm and n, we could use the colon operator with steps of either

þ1 or –1 to create a vector. Also, instead of looping to calculate a running product, we could use

the prod function.
prodMToNii.m

function outprod ¼ prodMToNii(m,n)

% prodMToNii returns the product of m:n

% using : and prod

% Format: prodMToNii(m,n) or profMToNii(n,m)

if m < n

outprod ¼ prod(m:n);

else

outprod ¼ prod(m:-1:n);

end

end

1234.1 The For Loop
Additionally, MATLAB has the functions cumsum and cumprod that return

a vector of the running sums or products. For example, for the following

vector the first value is 5, so that is the first value in the vector returned
by cumsum. Then the next value is 9 so 5 þ 9 is 14, and finally 14 þ 4

is 18.

>> vec ¼ [5 9 4];
>> cumsum(vec)
ans ¼

5 14 18

Since vec is a row vector, the result is also a row vector; passing a column vector

to cumsum would result in a column vector. The cumulative product function
cumprod instead calculates 5, then 5 * 9, and finally 5 * 9 * 4:

>> cumprod(vec)
ans ¼

5 45 180

The cumsum and cumprod functions will return a vector with the same dimen-

sions as the input vector.
Preallocating a vector
There are essentially two programming methods that could be used to simulate

the cumsum function. One method is to start with an empty vector and con-

catenate each running sum value to the vector. Extending a vector, however, is
very inefficient. A better method is to preallocate the vector to the correct size

and then change the value of each element to be successive running sums. Both

methods will be shown here.

In the following function, the output argument is initialized to the empty

vector []. Then, every time the next element in the vector is added to the run-
ning sum, this new sum is concatenated to the end of the vector.

myveccumsum.m

function outvec ¼ myveccumsum(vec)
% myveccumsum simulates cumsum for a vector
% Format: myveccumsum(vector)

outvec ¼ [];
runsum ¼ 0;
for i ¼ 1:length(vec)

runsum ¼ runsum þ vec(i);
outvec ¼ [outvec runsum];

end
end

124 CHAPTER 4 Loop Statements
An example of calling the function follows:

>> myveccumsum([5 9 4])
ans ¼

5 14 18

The first time in the loop, outvec will be [5]. Then, the second time runsum will
be 14 and outvecwill store [5 14]. Finally, runsumwill be 18 and outvecwill store

[5 14 18].

Although the previous method works, it is inefficient. What happens is that

every time a vector is extended, a new “chunk” of memory must be found

that is large enough for the new vector, and all the values must be copied from
the original location in memory to the new one. This can take a long time to

execute.

A better method involves referring to each index in the output vector,
and placing each partial sum into the next element in the output vector. As

each value of vec(i) is added to the running sum, this new sum is stored in

outvec(i).

myveccumsumii.m

function outvec ¼ myveccumsumii(vec)
% myveccumsumii imitates cumsum for a vector
% It preallocates the output vector
% Format: myveccumsumii(vector)

outvec ¼ zeros(size(vec));
runsum ¼ 0;
for i ¼ 1:length(vec)

runsum ¼ runsum þ vec(i);
outvec(i) ¼ runsum;

end
end

Although initializing the output vector outvec to all zeros is not strictly neces-

sary, it greatly improves the efficiency of the function. Initializing this vector
to all zeros with the same size as the input argument preallocates that much

memory for outvec. Then, each element is changed in the loop to its correct

value.

MATLAB has many other functions that work with vectors. Many of these func-

tions, which are statistical in nature, will be seen in Chapter 13.
PRACTICE 4.2

Write a function that imitates the cumprod function. Use the method of preallocating the output

vector.

1254.1 The For Loop
4.1.2 Combining for loops with if statements
Another example of a common application on a vector is to find the minimum

and/or maximum value in the vector.

THE PROGRAMMING CONCEPT
For instance, the algorithm to find the minimum value in a vector follows:

1. The working minimum (the minimum that has been found so far) is the first element in the

vector to begin with.

2. Loop through the rest of the vector (from the second element to the end).

n If any element is less than the working minimum, then that element is the newminimum

so far.

The following function implements this algorithm, and returns the minimum value found in the

vector.
Note

An if statement is used

in the loop rather than

an if-else statement. If

the value of the next

element in the vector is

less than outmin, then

the value of outmin is

changed; otherwise, no

action is necessary.
myminvec.m

function outmin ¼ myminvec(vec)

% myminvec returns the minimum value in a vector

% Format: myminvec(vector)

outmin ¼ vec(1);

for i ¼ 2:length(vec)

if vec(i) < outmin

outmin ¼ vec(i);

end

end

end

>> vec ¼ [3 8 99 �1];
>> myminvec(vec)

ans ¼
�1

>> vec ¼ [3 8 99 11];

>> myminvec(vec)

ans ¼
3

THE EFFICIENT METHOD
MATLAB has functions min and max that find the minimum and maximum values in a

vector.
>> vec ¼ [5 9 4];

>> min(vec)

ans ¼
4

QUICK QUESTION

What would be the result of t

for i ¼ 4:2:8

fprintf('I will n

end

Answer: Exactly the same ou

that the loop variable iterate

126 CHAPTER 4 Loop Statements
PRACTICE 4.3

Write a function to find and return the maximum value in a vector.
4.1.3 For loops that do not use the iterator
variable in the action
In all examples discussed thus far, the value of the loop variable has been used
in some way in the action of the for loop: we have printed the value of i, or

added it to a sum, or multiplied it by a running product, or used it as an index

into a vector. It is not always necessary to actually use the value of the loop
variable, however. Sometimes the variable is simply used to iterate, or repeat,

an action a specified number of times. For example,

for i ¼ 1:3
fprintf('I will not chew gum\n')

end

produces the output:

I will not chew gum
I will not chew gum
I will not chew gum

The variable i is necessary to repeat the action three times, even though the

value of i is not used in the action of the loop.
!

he following for loop?

ot chew gum\n')

tput as above! It doesn’t matter

s through the values 4, then 6,

then 8, instead of 1, 2, 3. Since the loop variable is not used

in the action, this is just another way of specifying that the

action should be repeated three times. Of course, using 1:3

makes more sense!
4.1.4 Input in a for loop
The following script repeats the process of prompting the user for a number,

and echo printing the number (which means simply printing it back out).
A for loop specifies how many times this is to occur. This is another example

in which the loop variable is not used in the action, but instead just specifies

how many times to repeat the action.

1274.1 The For Loop
forecho.m

% This script loops to repeat the action of
% prompting the user for a number and echo printing it

for iv ¼ 1:3
inputnum ¼ input('Enter a number: ');
fprintf('You entered %.1f\n',inputnum)

end

>> forecho
Enter a number: 33
You entered 33.0
Enter a number: 1.1
You entered 1.1
Enter a number: 55
You entered 55.0

In this example, the loop variable iv iterates through the values 1 through 3, so

the action is repeated three times. The action consists of prompting the user for
a number and echo printing it with one decimal place.
PRACTICE 4.4

Modify the forecho script to sum the numbers that the user enters and print the result.
Instead of simply echo printing the numbers, it is often necessary to store them in
a vector. One way of accomplishing this is to start by preallocating the vector and

then putting values in each element, as we saw in a previous example. The

following is a function that does this, and returns the resulting vector. The
function receives an input argument n, and repeats the process n times.

forinputvec.m

function numvec ¼ forinputvec(n)
% forinputvec returns a vector of length n
% It Prompts the user and puts n numbers into a vector
% Format: forinputvec(n)

numvec ¼ zeros(1,n);
for iv ¼ 1:n

inputnum ¼ input('Enter a number: ');
numvec(iv) ¼ inputnum;

end
end

Next is an example of calling this function and storing the resulting vector in a

variable called myvec.

QUICK QUESTION!

If you need to just print the sum o

theuser enters,wouldyouneed to

QUICK QUESTION!

What if you wanted to calculate h

the user entered were greater th

Answer: Yes, then you would n

because youwould have to go bac

128 CHAPTER 4 Loop Statements
>> myvec ¼ forinputvec(3)
Enter a number: 44
Enter a number: 2.3
Enter a number: 11

myvec ¼
44.0000 2.3000 11.0000
r average of the numbers that

store them inavector variable?

Answer: No. You could just add each to a running sum as you

read them in a loop.

ow many of the numbers that

an the average?

eed to store them in a vector,

k through them to count how

manywere greater than the average (or, alternatively, you could

go back and ask the user to enter them again!!).
4.2 NESTED FOR LOOPS

The action of a loop can be any valid statement(s). When the action of a loop is
another loop, this is called a nested loop.

The general form of a nested for loop is as follows:

for loopvarone ¼ rangeone outer loop

% actionone includes the inner loop

for loopvartwo ¼ rangetwo inner loop
actiontwo

end
end

The first for loop is called the outer loop; the second for loop is called the inner
loop. The action of the outer loop consists (in part; there could be other state-

ments) of the entire inner loop.

As an example, a nested for loop will be demonstrated in a script that will print

a box of stars (*). Variables in the script will specify how many rows and

columns to print. For example, if rows has the value 3, and columns has the
value 5, the following would be the output:

1294.2 Nested For Loops

Since lines of output are controlled by printing the newline character, the basic

algorithm is:

n For every row of output,

n Print the required number of stars

n Move the cursor down to the next line (print ‘\n’)

printstars.m

% Prints a box of stars
% How many will be specified by 2 variables
% for the number of rows and columns

rows ¼ 3;
columns ¼ 5;
% loop over the rows
for i ¼ 1:rows

% for every row loop to print *'s and then one \n
for j ¼ 1:columns

fprintf('*')
end
fprintf('\n')

end

Running the script displays the output:

>> printstars

The variable rows specifies the number of rows to print, and the variable columns
specifies how many stars to print in each row. There are two loop variables: i

is the loop variable for the rows, and j is the loop variable for the columns. Since

the number of rows is known and the number of columns is known (given by
the variables rows and columns), for loops are used. There is one for loop to loop

over the rows, and another to print the required number of stars.

The values of the loop variables are not used within the loops, but are used sim-

ply to iterate the correct number of times. The first for loop specifies that the

action will be repeated “rows” times. The action of this loop is to print stars
and then the newline character. Specifically, the action is to loop to print col-

umns stars (e.g., five stars) across on one line. Then, the newline character is

printed after all five stars to move the cursor down to the next line.

In this case, the outer loop is over the rows, and the inner loop is over the col-

umns. The outer loop must be over the rows because the script is printing a

QUICK QUESTION

How could this script be mo

instead of a box, such as the

*

**

printtristars.m

% Prints a triangle o

% How many will be sp

% for the number of

rows ¼ 3;

for i¼1:rows
% inner loop just

for j¼1:i
fprintf('*')

end

fprintf('\n')

end

>> printtristars

*

**

130 CHAPTER 4 Loop Statements
certain number of rows of output. For each row, a loop is necessary to print the

required number of stars; this is the inner for loop.

When this script is executed, first the outer loop variable i is initialized to 1.
Then, the action is executed. The action consists of the inner loop, and then

printing the newline character. So, while the outer loop variable has the value

1, the inner loop variable j iterates through all of its values. Since the value of
columns is 5, the inner loop will print a star five times. Then, the newline char-

acter is printed and then the outer loop variable i is incremented to 2. The ac-

tion of the outer loop is then executed again, meaning the inner loop will print
five stars, and then the newline character will be printed. This continues, and in

all the action of the outer loop will be executed rows times.

Notice the action of the outer loop consists of two statements (the for loop and

an fprintf statement). The action of the inner loop, however, is only a single

fprintf statement.

The fprintf statement to print the newline character must be separate from the

other fprintf statement that prints the star character. If we simply had

fprintf('*\n')

as the actionof the inner loop, thiswouldprint a long columnof15 stars, not abox.
!

dified to print a triangle of stars

following?

Answer: In this case, the number of stars to print in each row

is the same as the row number (e.g., one star is printed in row 1,

two stars in row 2, and so on). The inner for loop does not loop

to columns, but to the value of the row loop variable (so we do

not need the variable columns):

f stars

ecified by a variable

rows

iterates to the value of i

1314.2 Nested For Loops
In the previous examples, the loop variables were just used to specify the num-

ber of times the action is to be repeated. In the next example, the actual values of

the loop variables will be printed.

printloopvars.m

% Displays the loop variables
for i ¼ 1:3

for j ¼ 1:2
fprintf('i¼%d, j¼%d\n',i,j)

end
fprintf('\n')

end

Executing this script would print the values of both i and j on one line every

time the action of the inner loop is executed. The action of the outer loop con-

sists of the inner loop and printing a newline character, so there is a separation
between the actions of the outer loop:

>> printloopvars
i¼1, j¼1
i¼1, j¼2

i¼2, j¼1
i¼2, j¼2

i¼3, j¼1
i¼3, j¼2

Now, instead of just printing the loop variables, we can use them to produce a

multiplication table, by multiplying the values of the loop variables.

The following functionmulttable calculates and returns a matrix that is a multi-

plication table. Two arguments are passed to the function, which are the num-

ber of rows and columns for this matrix.

multtable.m

function outmat ¼ multtable(rows, columns)
% multtable returns a matrix which is a
% multiplication table
% Format: multtable(nRows, nColumns)

% Preallocate the matrix
outmat ¼ zeros(rows,columns);
for i ¼ 1:rows

for j ¼ 1:columns
outmat(i,j) ¼ i * j;

end
end
end

132 CHAPTER 4 Loop Statements
In the following example of calling this function, the resulting matrix has

three rows and five columns:

>> multtable(3,5)
ans ¼

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

Note that this is a function that returns a matrix; it does not print anything. It
preallocates thematrix to zeros, and then replaces each element. Since the num-

ber of rows and columns are known, for loops are used. The outer loop loops

over the rows, and the inner loop loops over the columns. The action of the
nested loop calculates i * j for all values of i and j.

First, when i has the value 1, j iterates through the values 1 through 5, so first we
are calculating 1*1, then 1 * 2, then 1 * 3, then 1 * 4, and finally 1 * 5. These

are the values in the first row (first in element (1,1), then (1,2), then (1,3), then

(1,4), and finally (1,5)). Then, when i has the value 2, the elements in the sec-
ond row of the output matrix are calculated, as j again iterates through the

values from 1 through 5. Finally, when i has the value 3, the values in the third

row are calculated (3 * 1, 3 * 2, 3 * 3, 3 * 4, and 3 * 5).

This function could be used in a script that prompts the user for the number of

rows and columns, calls this function to return a multiplication table, and
writes the resulting matrix to a file:

createmulttab.m

% Prompt the user for rows and columns and
% create a multiplication table to store in
% a file "mymulttable.dat"

num_rows ¼ input('Enter the number of rows: ');
num_cols ¼ input('Enter the number of columns: ');
multmatrix ¼ multtable(num_rows, num_cols);
save mymulttable.dat multmatrix -ascii

Following is an example of running this script, and then loading from the file

into a matrix to verify that the file was created:

>> createmulttab
Enter the number of rows: 6
Enter the number of columns: 4

>> load mymulttable.dat
>> mymulttable
mymulttable ¼

1334.2 Nested For Loops
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20
6 12 18 24
PRACTICE 4.5

For each of the following (they are separate), determine what would be printed. Then, check your

answers by trying them in MATLAB.

mat ¼ [2:4; 8 2 5];

[r c] ¼ size(mat);

for i ¼ 1:r

fprintf('The sum is %d\n', sum(mat(i,:)))

end

––––––––––––––––––––––––––––––––––––––

for i ¼ 1:3

fprintf('%d ', i)

for j¼ 1:2

fprintf('%d ', j)

end

fprintf('\n')

end
4.2.1 Nested loops and matrices
Nested loops are often used when it is necessary to loop through all of the
elements of a matrix. As an example, we will calculate the overall sum of

the elements in a matrix.
THE PROGRAMMING CONCEPT
The matrix is passed as an input argument to the function. The function then uses the size

function to determine the number of rows and columns in the matrix. It then loops over all

elements in the matrix by using a nested loop: one loop over the rows, and another loop over

the columns, adding each element to the running sum. Note that the loop variables i and j

are used as the indices into the matrix: first the row index and then the column index.
mymatsum.m

function outsum ¼ mymatsum(mat)

% mymatsum returns the overall sum of the elements

134 CHAPTER 4 Loop Statements
% in a matrix

% Format: mymatsum(matrix)

[row col] ¼ size(mat);

outsum ¼ 0;

% The outer loop is over the rows

for i ¼ 1:row

for j ¼ 1:col

outsum ¼ outsum þ mat(i,j);

end

end

end

>> mat ¼ [3:5; 2 5 7]

mat ¼
3 4 5

2 5 7

>> mymatsum(mat)

ans ¼
26
THE EFFICIENT METHOD
MATLAB has a built-in function sum, as we have seen. For matrices, like many built-in

functions, the sum function operates columnwise, meaning that it will return the sum of

each column.
>> mat

mat ¼
3 4 5

2 5 7

>> sum(mat)

ans ¼
5 9 12

So, to get the overall sum, it is necessary to sum the column sums!

>> sum(sum(mat))

ans ¼
26

Note

When referring to an

element in the matrix,

the row index is always

given first, and then the

column index,

regardless of the order

of the loops.

1354.2 Nested For Loops
In the current example, the outer loop was over the rows, and the inner

loop was over the columns. This order could easily be switched, however, so

that the outer loop is over the columns and the inner loop is over the rows:

mymatsumb.m

function outsum ¼ mymatsumb(mat)
% mymatsumb returns the overall sum of the elements
% in a matrix, with outer loop over columns
% Format: mymatsumb(matrix)

[row col] ¼ size(mat);
outsum ¼ 0;

% The outer loop is over the columns
for i ¼ 1:col

for j ¼ 1:row
outsum ¼ outsum þ mat(j,i);

end
end
end

>> mat ¼ [3:5; 2 5 7]
mat ¼

3 4 5
2 5 7

>> mymatsumb(mat)
ans ¼

26

The order of the loops does not matter in this example, since all that is required

is to add each element to the overall sum.
QUICK QUESTION!

How would we sum each individual column, rather than just

getting an overall sum?

Answer: The programming method would require a nested

loop in which the outer loop is over the columns. For example,

we will modify the previous function to sum each column and

return a row vector containing the results, as shown on the next

page.

QUICK QUESTION!—CONT’D

matcolsum.m

function outsum ¼ matcolsum(mat)

% matcolsum finds the sum of every column in a matrix

% Returns a vector of the column sums

% Format: matcolsum(matrix)
[row col] ¼ size(mat);

% Preallocate the vector to the number of columns

outsum ¼ zeros(1,col);

% Every column is being summed so the outer loop

% has to be over the columns

for i ¼ 1:col

% Initialize the running sum to 0 for every column

runsum ¼ 0;

for j ¼ 1:row

runsum ¼ runsum þ mat(j,i);

end

outsum(i) ¼ runsum;

end

end

Note that the output argument will be a row vector containing

the same number of columns as the input argument matrix.

Also, since the function is calculating a sum for each column,

the runsum variable must be initialized to 0 for every column,

so it is initialized inside of the outer loop.

>> mat ¼ [3:5; 2 5 7]

mat ¼
3 4 5

2 5 7

>> matcolsum(mat)

ans ¼
5 9 12

Of course, the built-in sum function in MATLAB would

accomplish the same thing, as we have already seen.

136 CHAPTER 4 Loop Statements
PRACTICE 4.6

Modify the functionmatcolsum. Create a functionmatrowsum to calculate and return a vector of all

row sums, instead of column sums. For example, calling it and passing themat variable would result

in the following:

>> matrowsum(mat)

ans ¼
12 14

1374.2 Nested For Loops
Note that since the built-in sum function sums each column, one way of

using sum to find the sum of each row is to transpose the matrix, as

follows:

>> sum(mat')
ans ¼

12 14

For matrices, the cumsum function returns a matrix consisting of the first row

of the matrix argument, then the sum of the values in the first and second rows
(for a matrix that has two rows).

>> cumsum(mat)
ans ¼

3 4 5
5 9 12

The functions min and max also operate columnwise; these functions find the

minimum or maximum values in each column.

>> mat
mat ¼

3 4 5
2 5 7

>> max(mat)
ans ¼

3 5 7
4.2.2 Combining nested for loops and if statements
The statements inside of a nested loop can be any valid statement, including

any selection statement. For example, there could be an if or if-else statement
as the action, or part of the action, in a loop.

As an example, assume that there is a file called datavals.dat containing results
recorded from an experiment. However, some were erroneously recorded. The

numbers are all supposed to be positive. The script below reads from this file

into a matrix. It prints the sum from each row of only the positive numbers. We
will assume that the file contains integers but will not assume how many lines

are in the file nor how many numbers per line.

sumonlypos.m

% Sums only positive numbers from file
% Reads from the file into a matrix and then
% calculates and prints the sum of only the
% positive numbers from each row

QUICK QUESTION

Would it matter if the order o

example, so that the outer loo

the inner loop over the rows?

138 CHAPTER 4 Loop Statements
load datavals.dat
[r c] ¼ size(datavals);

for i ¼ 1:r
sumrow ¼ 0;
for j ¼ 1:c

if datavals(i,j) >¼ 0
sumrow ¼ sumrow þ datavals(i,j);

end
end
fprintf('The sum for row %d is %d\n',i,sumrow)

end

For example, if the file contains:

33 �11 2
4 5 9

22 5 �7
2 11 3

the output from the program would look like this:

>> sumonlypos
The sum for row 1 is 35
The sum for row 2 is 18
The sum for row 3 is 27
The sum for row 4 is 16

The file is loaded and the data are stored in amatrix variable. The script finds the
dimensions of the matrix, and then loops through all elements in the matrix by

using a nested loop; the outer loop iterates through the rows and the inner loop

iterates through the columns. For each element, an if-else statement determines
whether the element is positive or not. It only adds the positive values to the

row sum. Since the sum is found for each row, the sumrow variable is initialized

to 0 for every row, meaning inside of the outer loop.
!

f the loops was reversed in this

p iterates over the columns and

Answer:Yes, sincewewant a sum for every row the outer loop

must be over the rows.
PRACTICE 4.7

Write a functionmymatmin that finds the minimum value in each column of a matrix argument and

returns a vector of the column minimums. An example of calling the function follows:

Q

Wo

a v

An

ma

1394.3 While Loops
>> mat ¼ round(rand(3,4)*19þ1)
mat ¼

15 19 17 5

6 14 13 13

9 5 3 13

>> mymatmin(mat)

ans ¼
6 5 3 5
UICK QUESTION!

uld the functionmymatmin in the Practice 4.7 also work for

ector argument?

swer: Yes, it should, since a vector is just a subset of a

trix. In this case, one of the loop actions would be

executed only one time (for the rows if it is a row vector,

or for the columns if it is a column vector).
4.3 WHILE LOOPS

The while statement is used as the conditional loop in MATLAB; it is used to

repeat an action when ahead of time it is not known how many times the action
will be repeated. The general form of the while statement is:

while condition
action

end

The action, which consists of any number of statement(s), is executed as long as
the condition is true.

The way it works is that first the condition is evaluated. If it is logically true,
the action is executed. So, to begin with, the while statement is just like an

if statement. However, at that point the condition is evaluated again. If it is

still true, the action is executed again. Then, the condition is evaluated again.
If it is still true, the action is executed again. Then, the condition is. . . . eventually,

this has to stop! Eventually something in the action has to change something in

the condition so that it becomes false. The condition must eventually become
false to avoid an infinite loop. (If this happens, Ctrl-C will exit the loop.)

As an example of a conditional loop, we will write a function that will find the
first factorial that is greater than the input argument high. Previously, we wrote a

function to calculate a particular factorial. For example, to calculate 5! we found

the product 1 * 2 * 3 * 4 * 5. In that case a for loop was used, since it was
known that the loop would be repeated five times. Now, we do not know

how many times the loop will be repeated.

140 CHAPTER 4 Loop Statements
The basic algorithm is to have two variables, one that iterates through the values

1, 2, 3, and so on, and one that stores the factorial of the iterator at each step.

We start with 1, and 1 factorial, which is 1. Then, we check the factorial. If it is
not greater than high, the iterator variable will then increment to 2, and find its

factorial (2). If this is not greater than high, the iterator will then increment to 3,

and the function will find its factorial (6). This continues until we get to the first
factorial that is greater than high.

So, the process of incrementing a variable and finding its factorial is repeated

until we get to the first value greater than high. This is implemented using a
while loop:

factgthigh.m

function facgt ¼ factgthigh(high)
% factgthigh returns the first factorial > input
% Format: factgthigh(inputInteger)

i¼0;
fac¼1;
while fac <¼ high

i¼iþ1;
fac ¼ fac * i;

end
facgt ¼ fac;
end

An example of calling the function, passing 5000 for the value of the input ar-

gument high, follows:

>> factgthigh(5000)
ans ¼

5040

The iterator variable i is initialized to 0, and the running product variable fac, which
will store the factorial of each value of i, is initialized to 1. The first time the while

loop is executed, the condition is true: 1 is less than or equal to 5000. So, the action

of the loop is executed, which is to increment i to 1 and fac becomes 1 (1 * 1).

After the execution of the action of the loop, the condition is evaluated again.

Since it will still be true, the action is executed: i is incremented to 2, and fac

will get the value 2 (1 * 2). The value 2 is still �5000, so the action will be ex-
ecuted again: iwill be incremented to 3, and facwill get the value 6 (2 * 3). This

continues, until the first value of fac is found that is greater than 5000. As soon

as fac gets to this value, the condition will be false and the while loop will end.
At that point the factorial is assigned to the output argument, which returns

the value.

1414.3 While Loops
The reason that i is initialized to 0 rather than 1 is that the first time the loop

action is executed, i becomes 1 and fac becomes 1 so that we have 1 and 1!,

which is 1.
4.3.1 Multiple conditions in a while loop
In the factgthigh function, the condition in the while loop consisted of one
expression, which tested whether or not the variable fac was less than or equal

to the variable high. In many cases, however, the condition will be more com-

plicated than that and could use either the or operator jj or the and operator
&&. For example, it may be that it is desired to stay in a while loop as long

as a variable x is in a particular range:

while x >¼ 0 && x <¼ 100

As another example, continuing the action of a loopmay be desired as long as at

least one of two variables is in a specified range:

while x < 50 jj y < 100
ta
4.3.2 Reading from a file in a while loop
The following example illustrates reading from a data file using a while loop.

Data from an experiment has been recorded in a file called experd.dat. The file
has some numbers followed by a –99, thenmore numbers, all on the same line.

The only data values that we are interested in, however, are those before �99.
The algorithm for the script will be: Valid da
1 1.5 2 2.5 3 3.5 4
3

4

5

6

7

8

9

10

11

FIGURE 4.1 Plot of some (but not all) data from a file
1. Read the data from the file into a vector.
2. Create a new vector variable newvec that

only has the data values up to but not

including the �99.
3. Plot the new vector values, using black

circles.

For example, if the file contains the following:

3.1 11 5.2 8.9 -99 4.4 62

the plot produced would look like Figure 4.1.

For simplicity, wewill assume that the file format
is as specified.Using loadwill create a vectorwith

the name experd, which contains the values from

the file. Also, since this is generic data we will
omit the plot labels for simplicity.

142 CHAPTER 4 Loop Statements
THE PROGRAMMING CONCEPT
Using the programming method, we would loop through the vector until the –99 is found,

creating the new vector by storing each element from experd in the vector newvec.
findvalwhile.m

% Reads data from a file, but only plots the numbers

% up to a flag of -99. Uses a while loop.

load experd.dat

i ¼ 1;

while experd(i) �¼ -99

newvec(i) ¼ experd(i);

i ¼ i þ 1;

end

plot(newvec,'ko')

title('Valid data')
THE EFFICIENT METHOD
A more efficient method using built-in functions will be shown in the next chapter.
4.3.3 Input in a while loop
Sometimes a while loop is used to process input from the user as long as

the user is entering data in a correct format. The following script repeats the

process of prompting the user, reading in a positive number, and echo printing
it, as long as the user correctly enters positive numbers when prompted. As

soon as the user types in a negative number, the program will print “OK”

and end.

whileposnum.m

% Prompts the user and echo prints the numbers entered
% until the user enters a negative number

inputnum¼input('Enter a positive number: ');
while inputnum >¼ 0

fprintf('You entered a %d.\n\n',inputnum)
inputnum ¼ input('Enter a positive number: ');

end
fprintf('OK!\n')

Note

This example illustrates

a very important feature

of while loops: It is

possible that the action

will not be executed at

all, if the value of the

condition is false the

first time it is evaluated.

1434.3 While Loops
When the script is executed, the input/output might look like this:

>> whileposnum
Enter a positive number: 6
You entered a 6.

Enter a positive number: -2
OK!

Note that the prompt is repeated in the script: once before the loop, and then

again at the end of the action. This is done so that every time the condition is

evaluated, there is a new value of inputnum to check. If the user enters a negative
number the first time, no values would be echo printed:

>> whileposnum
Enter a positive number: -33
OK!

As we have seen previously, MATLAB will give an error message if a character is

entered rather than a number.

>> whileposnum
Enter a positive number: a
??? Error using ¼¼> input
Undefined function or variable 'a'.

Enter a positive number: -4
OK!

However, if the character is actually the name of a variable, it will use the value
of that variable as the input. For example:

>> a¼5;
>> whileposnum
Enter a positive number: a
You entered a 5.

Enter a positive number: -4
OK!
4.3.4 Counting in a while loop
Although while loops are used when the number of times the action will be
repeated is not known ahead of time, it is frequently useful to know howmany

times the action was in fact repeated. In that case, it is necessary to count the

number of times that the action is executed. The following variation on the pre-
vious script counts the number of positive numbers that the user successfully

enters.

144 CHAPTER 4 Loop Statements
countposnum.m

% Prompts the user for positive numbers and echo prints as
% long as the user enters positive numbers
% Counts the positive numbers entered by the user
counter¼0;
inputnum¼input('Enter a positive number: ');
while inputnum >¼ 0

fprintf('You entered a %d.\n\n',inputnum)
counter ¼ counter þ 1;
inputnum ¼ input('Enter a positive number: ');

end
fprintf('Thanks, you entered %d positive numbers.\n',counter)

The script initializes a variable counter to 0. Then, in thewhile loop action, every

time the user successfully enters a number, the script increments the counter

variable. At the end of the script, it prints the number of positive numbers that
were entered.

>> countposnum
Enter a positive number: 4
You entered a 4.

Enter a positive number: 8
You entered a 8.

Enter a positive number: 11
You entered a 11.

Enter a positive number: �4
Thanks, you entered 3 positive numbers.
PRACTICE 4.8

Write a script aveposnum that will repeat the process of prompting the user for positive numbers,

until the user enters a negative number, as just shown. Instead of echo printing them, however, the

script will print the average (of just the positive numbers). If no positive numbers are entered, the

script will print an error message instead of the average. Examples of executing this script follow:

>> aveposnum

Enter a positive number: �5
No positive numbers to average.

>> aveposnum

Enter a positive number: 8

Enter a positive number: 3

Enter a positive number: 4

Enter a positive number: �6
The average was 5.00.

Note

MATLAB itself catches

the character input and

prints an error message

and repeats the prompt

when the c was

entered.

1454.3 While Loops
4.3.5 Error-checking user input in a while loop
In most applications, when the user is prompted to enter something, there is a

valid range of values. If the user enters an incorrect value, rather than having the
program carry on with an incorrect value, or just printing an error message, the

program should repeat the prompt. The program should keep prompting the

user, reading the value, and checking it, until the user enters a value that is
in the correct range. This is a very common application of a conditional loop:

looping until the user correctly enters a value in a program. This is called error-

checking.

For example, the following script prompts the user to enter a positive number,

and loops to print an error message and repeat the prompt until the user finally

enters a positive number.

readonenum.m

% Loop until the user enters a positive number

inputnum¼input('Enter a positive number: ');
while inputnum < 0

inputnum ¼ input('Invalid! Enter a positive number: ');
end
fprintf('Thanks, you entered a %.1f \n',inputnum)

An example of running this script follows:

>> readonenum
Enter a positive number: -5
Invalid! Enter a positive number: -2.2
Invalid! Enter a positive number: c
??? Error using ¼¼> input
Undefined function or variable 'c'.

Invalid! Enter a positive number: 44
Thanks, you entered a 44.0
QUICK QUESTION!

How could we vary the previous example, so that the script

asks the user to enter positive numbers n times, where n is

an integer defined to be 3?

Answer: Every time that the user enters a value, the script

checks and in a while loop keeps telling the user that it’s

invalid until a valid positive number is entered. By putting the

error-check in a for loop that repeats n times, the user is

forced eventually to enter three positive numbers, as shown in

the following.

Continued

QUICK QUESTION!—CONT’D

readnnums.m

% Loop until the user enters n positive numbers

n¼3;
fprintf('Please enter %d positive numbers\n\n',n)

for i¼1:n
inputnum¼input('Enter a positive number: ');

while inputnum < 0

inputnum ¼ input('Invalid! Enter a positive number: ');

end

fprintf('Thanks, you entered a %.1f \n',inputnum)

end

>> readnnums

Please enter 3 positive numbers

Enter a positive number: 5.2

Thanks, you entered a 5.2

Enter a positive number: 6

Thanks, you entered a 6.0

Enter a positive number: �7.7
Invalid! Enter a positive number: 5

Thanks, you entered a 5.0

146 CHAPTER 4 Loop Statements

Openmirrors.com
Error-checking for integers
Since MATLAB uses the type double by default for all values, to check to make
sure that the user has entered an integer, the program has to convert the input

value to an integer type (e.g., int32) and then checks to see whether that is equal

to the original input. The following examples illustrate the concept.

If the value of the variable num is a real number, converting it to the type int32

will round it, so the result is not the same as the original value.

>> num ¼ 3.3;
>> inum ¼ int32(num)
inum ¼

3

>> num ¼¼ inum
ans ¼

0

If, on the other hand, the value of the variable num is an integer, converting it to
an integer type will not change the value.

>> num ¼ 4;
>> inum ¼ int32(num)
inum ¼

4

1474.3 While Loops
>> num ¼¼ inum
ans ¼

1

The following script uses this idea to error-check for integer data; it loops until

the user correctly enters an integer.

readoneint.m

% Error-check until the user enters an integer
inputnum ¼ input('Enter an integer: ');
num2 ¼ int32(inputnum);
while num2 �¼ inputnum

inputnum ¼ input('Invalid! Enter an integer: ');
num2 ¼ int32(inputnum);

end
fprintf('Thanks, you entered a %d \n',inputnum)

Examples of running this script are:

>> readoneint
Enter an integer: 9.5
Invalid! Enter an integer: 3.6
Invalid! Enter an integer: �11
Thanks, you entered a �11

>> readoneint
Enter an integer: 5
Thanks, you entered a 5

Putting these ideas together, the following script loops until the user correctly
enters a positive integer. There are two parts to the condition, since the value

must be positive and must be an integer.

readoneposint.m

% Error-checks until the user enters a positive integer
inputnum ¼ input('Enter a positive integer: ');
num2 ¼ int32(inputnum);
while num2 �¼ inputnum jj num2 < 0

inputnum ¼ input('Invalid! Enter a positive integer: ');
num2 ¼ int32(inputnum);

end
fprintf('Thanks, you entered a %d \n',inputnum)

>> readoneposint
Enter a positive integer: 5.5
Invalid! Enter a positive integer: �4
Invalid! Enter a positive integer: 11
Thanks, you entered a 11

148 CHAPTER 4 Loop Statements
PRACTICE 4.9

Modify the previous script to read n positive integers, instead of just one.
SUMMARY
Common Pitfalls

n Forgetting to initialize a running sum or count variable to 0
n Forgetting to initialize a running product variable to 1
n In cases where loops are necessary, not realizing that if an action is required

for every row in a matrix, the outer loop must be over the rows (and if an

action is required for every column, the outer loopmust be over the columns)
n Not realizing that it is possible that the action of a while loop will never be

executed
n Failing to error-check input into a program

Programming Style Guidelines

n Use loops for repetition only when necessary:
n for statements as counted loops

n while statements as conditional loops

n Donot use i or j for iterator variable names if the use of the built-in constants
i and j is desired

n Indent the action of loops

n If the loop variable is just being used to specify how many times the action
of the loop is to be executed, use the colon operator 1:n where n is the

number of times the action is to be executed

n Preallocate vectors andmatrices whenever possible (when the size is known
ahead of time)

n When data are read in a loop, only store them in an array if it will be

necessary to access the individual data values again
MATLAB Reserved Words

while

for

end
MATLAB Functions and Commands

factorial

sum

prod

cumsum

cumprod

min

max

149Exercises
Exercises
1.Write a for loop that will print the column of real numbers from 1.5 to 3.1 in steps

of 0.2.

2.Write a function sumsteps2 that calculates and returns the sum of 1 to n in steps of 2,

where n is an argument passed to the function. For example, if 11 is passed, it will

return 1 þ 3 þ 5 þ 7 þ 9 þ 11. Do this using a for loop. Calling the function will look

like this:

>> sumsteps2(11)
ans ¼

36

3.Write a function prodby2 that will receive a value of a positive integer n and will

calculate and return the product of the odd integers from 1 to n (or from 1 to n – 1 if n

is even).

4. Prompt the user for an integer n and print “I love this stuff!” n times.

5. In the Command Window, write a for loop that will iterate through the integers

from 32 to 255. For each, show the corresponding character from the character

encoding.

6. In the Command Window, write a for loop that will print the elements from a vector

variable in sentence format. For example, if the following is the vector:

>> vec ¼ [5.5 11 3.45];

this would be the result:

Element 1 is 5.50.
Element 2 is 11.00.
Element 3 is 3.45.

The for loop should work regardless of how many elements are in the vector.

7.Write a script that will:

n Generate a random integer in the range from 2 to 5

n Loop that many times to

n Prompt the user for a number

n Print the sum of the numbers entered thus far with one decimal place

There are many signal processing applications. Voltages, currents, and sounds

are all examples of signals studied in a diverse range of disciplines such as

biomedical engineering, acoustics, and telecommunications. Sampling discrete data

points from a continuous signal is an important concept.

8. A sound engineer has recorded a sound signal from a microphone. The sound signal

was “sampled,” meaning that values at discrete intervals were recorded (rather than

a continuous sound signal). The units of each data sample are volts. The microphone

was not on at all times, however, so the data samples that are below a certain

threshold are considered to be data values that were samples when the microphone

Note

In the absence of valid

data samples, the

program would print an

error message instead

of the last line shown on

the right.

150 CHAPTER 4 Loop Statements
was not on, and therefore not valid data samples. The sound engineer would like to

know the average voltage of the sound signal.

Write a script that will ask the user for the threshold and the number of data

samples, and then for the individual data samples. The program will then print the

average and a count of the valid data samples, or an error message if there were no

valid data samples. An example of what the input and output would look like in the

Command Window is shown here.

Please enter the threshold below which samples will be
considered to be invalid: 3.0
Please enter the number of data samples to enter: 7

Please enter a data sample: 0.4
Please enter a data sample: 5.5
Please enter a data sample: 5.0
Please enter a data sample: 2.1
Please enter a data sample: 6.2
Please enter a data sample: 0.3
Please enter a data sample: 5.4

The average of the 4 valid data samples is 5.53 volts.

9.Write a script that will load data from a file into a matrix. Create the data file first, and

make sure that there is the same number of values on every line in the file so that it

can be loaded into a matrix. Using a for loop, it will then create as many

Figure Windows as there are rows in the matrix, and will plot the numbers from each

row in a separate Figure Window.

10.Amachine cuts N pieces of a pipe. After each cut, each piece of pipe is weighed and

its length is measured; these two values are then stored in a file called pipe.dat (first

the weight and then the length on each line of the file). Ignoring units, the weight is

supposed to be between 2.1 and 2.3, inclusive, and the length is supposed to be

between 10.3 and 10.4, inclusive. The following is just the beginning of what will be a

long script to work with these data. For now, the script will just count how many

rejects there are. A reject is any piece of pipe that has an invalidweight and/or length.

For a simple example—if N is 3 (meaning three lines in the file) and the file stores

2.14 10.30
2.32 10.36
2.20 10.35

there is only one reject, the second one, as it weighs too much. The script would print:

There were 1 rejects.

11. Improve the output from the previous problem. If there is only one reject, it should

print “There was 1 reject.”; otherwise, for n rejects it should print “There were n

rejects.”

Note

The value of col is not

needed.

151Exercises
12.When would it matter if a for loop contained for i ¼ 1:4 vs. for i ¼ [3 5 2 6],

and when would it not matter?

13.Create a vector of five random integers, each in the range from –10 to 10. Perform

each of the following using loops (with if statements if necessary):

n Subtract 3 from each element

n Count how many are positive

n Get the absolute value of each element

n Find the maximum

14.Write a function that will receive a matrix as an input argument, and will calculate

and return the overall average of all numbers in the matrix. Use loops, not built-in

functions, to calculate the average.

15.We have seen that by default, when using built-in functions such as sum and prod

on matrices, MATLAB will perform the function on each column. A dimension can

also be specified when calling these functions. MATLAB refers to the columns as

dimension 1 and the rows as dimension 2, such as the following:

>> sum(mat,1)
>> sum(mat,2)

Create a matrix and find the product of each row and column using prod.

16.Create a 3� 5matrix. Perform each of the following using loops (with if statements if

necessary):

n Find the maximum value in each column

n Find the maximum value in each row

n Find the maximum value in the entire matrix

17.With a matrix, when would:

n Your outer loop be over the rows?

n Your outer loop be over the columns?

n It not matter which is the outer and which is the inner loop?

18.Assume that you have a matrix of integers mat. Fill in the rest of the fprintf

statement so that this would print the product of every row in the matrix in the

following format:

The product of row 1 is 162
The product of row 2 is 320

etc.

[row col] ¼ size(mat);
for i ¼ 1:row

fprintf('The product of row %d is %d\n',)
end

19.Write a script beautyofmath that produces the following output. The script should

iterate from 1 to 9 to produce the expressions on the left, perform the specified

operation to get the results shown on the right, and print exactly in the format shown

on the next page.

152 CHAPTER 4 Loop Statements
>> beautyofmath
1 x 8 þ 1 ¼ 9
12 x 8 þ 2 ¼ 98
123 x 8 þ 3 ¼ 987
1234 x 8 þ 4 ¼ 9876
12345 x 8 þ 5 ¼ 98765
123456 x 8 þ 6 ¼ 987654
1234567 x 8 þ 7 ¼ 9876543
12345678 x 8 þ 8 ¼ 98765432
123456789 x 8 þ 9 ¼ 987654321

20.Write a script that will print the following multiplication table:

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25

21.Thewind chill factor (WCF) measures how cold it feels with a given air temperature T

(in degrees Fahrenheit) and wind speed V (in miles per hour). One formula for WCF is

WCF ¼ 35:7þ 0:6 T� 35:7ðV0:16Þ þ 0:43 TðV0:16Þ
Write a function to receive the temperature and wind speed as input arguments, and
return theWCF. Using loops, print a table showingwind chill factors for temperatures

ranging from –20 to 55 in steps of 5, and wind speeds ranging from 0 to 55 in steps of

5. Call the function to calculate each wind speed.

22. Instead of printing the WCFs in the previous problem, create a matrix of WCFs and

write them to a file.

23.The inverse of the mathematical constant e can be approximated as follows:

1

e
� 1� 1

n

� �n

Write a script that will loop through values of n until the difference between the
approximation and the actual value is less than 0.0001. The script should then print

out the built-in value of e–1 and the approximation to four decimal places, and also

print the value of n required for such accuracy.

24.Given the following loop:

while x < 10
action

end

for what values of the variable x would the action of the loop be skipped entirely?

If the variable x is initialized to have the value of 5 before the loop, what would the

action have to include for this to not be an infinite loop?

25.Write a script that will prompt the user for the radius r and height of a cone, error-

check the user’s input for the radius and the height, and then calculate and print the

volume of the cone (volume ¼ p/3 r2h).

153Exercises
26.Writeascript (e.g.,called findmine) thatwillprompt theuser forminimumandmaximum

integers, and then another integer that is the user’s choice in the range from the

minimum to the maximum. The script will then generate random integers in the range

fromtheminimumtothemaximum,until amatch for theuser’s choice isgenerated.The

script will print how many random integers had to be generated until a match for the

user’s choice was found. For example, running this script might result in this output:

>> findmine
Please enter your minimum value: �2
Please enter your maximum value: 3
Now enter your choice in this range: 0
It took 3 tries to generate your number

27.Write a script that will prompt the user for N integers, and then write the positive

numbers (�0) to an ASCII file called pos.dat and the negative numbers to an ASCII

file called neg.dat. Error-check to ensure that the user enters N integers.

28. In thermodynamics, the Carnot efficiency is the maximum possible efficiency of a

heat engine operating between two reservoirs at different temperatures. The Carnot

efficiency is given as

� ¼ 1� TC

TH

where TC and TH are the absolute temperatures at the cold and hot reservoirs,
Note

The format must be

exactly as shown in this

code.
respectively. Write a script that will prompt the user for the two reservoir

temperatures in Kelvin and print the return of the corresponding Carnot efficiency to

three decimal places. The script should error-check the user’s input since absolute

temperature cannot be less than or equal to zero. The script should also swap the

temperature values if TH is less than TC.

29.Write a script that will continue prompting the user for positive numbers, and storing

them in a vector variable, until the user types in a negative number.

30.Write a script echoletters that will prompt the user for letters of the alphabet and

echo-print them until the user enters a character that is not a letter of the alphabet. At

that point, the script will print the nonletter, and a count of how many letters were

entered. Here are examples of running this script:

>> echoletters
Enter a letter: T
Thanks, you entered a T
Enter a letter: a
Thanks, you entered a a
Enter a letter: 8
8 is not a letter
You entered 2 letters

>> echoletters
Enter a letter: !
! is not a letter
You entered 0 letters

154 CHAPTER 4 Loop Statements
31.Write a script that will use the menu function to present the user with choices for

functions “fix,” “floor,” and “ceil.” Error-check by looping to display the menu until

the user pushes one of the buttons (an error could occur if the user clicks on the “X”

on the menu box rather than pushing one of the buttons). Then, generate a random

number and print the result of the user’s function choice of that number (e.g., fix(5)).

32.Write a script called prtemps that will prompt the user for a maximum Celsius value

in the range from –16 to 20; error-check to make sure it’s in that range. Then, print a

table showing degrees Fahrenheit and degrees Celsius until this maximum is

reached. The first value that exceeds the maximum should not be printed. The table

should start at 0 degrees Fahrenheit, and increment by 5 degrees Fahrenheit until the

max (in Celsius) is reached. Both temperatures should be printedwith a field width of

6 and one decimal place. The formula is C ¼ 5/9 (F – 32). For example, the execution

of the script might look like this (the format should be exactly like this):

>> prtemps
When prompted, enter a temp in degrees C in range �16 to 20.
Enter a maximum temp: 30
Error! Enter a maximum temp: 9

F C
0.0 �17.8
5.0 �15.0

.

.

.
40.0 4.4
45.0 7.2

33.Create an x vector that has integers 1 through 10, and set a y vector equal to x. Plot

this straight line. Now, add noise to the data points by creating a new y2 vector that

stores the values of y plus or minus 0.25. Plot the straight line and also these noisy

points.

34.A blizzard is a massive snowstorm. Definitions vary, but for our purposes we will

assume that a blizzard is characterized by both winds of 30 mph or higher and

blowing snow that leads to visibility of 0.5 mile or less, sustained for at least four

hours. Data from a storm one day has been stored in a file stormtrack.dat. There are

24 lines in the file, one for each hour of the day. Each line in the file has thewind speed

and visibility at a location. Create a sample data file. Read these data from the file and

determine whether blizzard conditions were met during this day or not.

CHAPTER 5
Vectorized Code
CONTENTS
KEY TERMS
5.1 Loops with
Vectors and
Matrices.......155
vectorizing

scalar operations

array operations

logical vectors

logical indexing
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
5.2 Operations on
Vectors and
Matrices.......156

5.3 Vectors and
Matrices as
Function
Arguments.159

5.4 Logical
Vectors160

5.5 Vectorizing
Although loops are extremely useful in most programming applications and

necessary in many languages, in the MATLABW software they are frequently
not necessary especially when dealing with vectors or matrices. In this chapter,

the concept of vectorizingwill be introduced, which is the term used inMATLAB

for rewriting code that was written using constructs such as loops in a tradi-
tional programming language and instead taking advantage of array operations

in MATLAB. The vectorized code is faster and easier for the programmer to

write, and in many cases, is also faster for MATLAB to execute.

Code...............166

5.6 Timing171
5.1 LOOPS WITH VECTORS AND MATRICES

In most programming languages when performing an operation on a vector, a

for loop is used to loop through the entire vector, using the loop variable as the

index into the vector. In general, inMATLAB, assuming there is a vector variable
vec, the indices range from 1 to the length of the vector:

for i ¼ 1:length(vec)
% do something with vec(i)

end

For example, let’s say that we want to multiply every element of a vector v by 3,
and store the result back in v, where v is initialized as follows:

>> v ¼ [3 7 2 1];
155

156 CHAPTER 5 Vectorized Code
THE PROGRAMMING CONCEPT
To accomplish this, we can loop through all of the elements in the vector and multiply each

element by 3. In the following, the output is suppressed in the loop, and then the resulting

vector is shown:
>> for i ¼ 1:length(v)

v(i) ¼ v(i) * 3;

end

>> v

v ¼
9 21 6 3
Similarly, for an operation on a matrix, a nested loop would be required, and

the loop variables over the rows and columns are used as the subscripts into the
matrix. In general, assuming a matrix variable mat, we use size to return sepa-

rately the number of rows and columns and use these variables in the for loops:

[r c] ¼ size(mat);
for row ¼ 1:r

for col ¼ 1:c
% do something with mat(row,col)

end
end

Typically, this is not necessary in MATLAB!!
5.2 OPERATIONS ON VECTORS AND MATRICES

Numerical operations can be done on entire vectors or matrices. For example,

let’s say that we want to multiply every element of a vector v by 3 as in the pre-
vious section.

THE EFFICIENT METHOD
In MATLAB, we can simply multiply v by 3 and store the result back in v in an assignment

statement:
>> v ¼ v*3

v ¼
9 21 6 3
As another example, we can divide every element by 2:

>> v¼ [3 7 2 1];
>> v/2
ans ¼

1.5000 3.5000 1.0000 0.5000

1575.2 Operations on Vectors and Matrices
For amatrix, numerical operations can also be performed on every element. For

example, to multiply every element in amatrix by 2 withmost languages would

involve a nested loop, but in MATLAB it is automatic.

>> mat ¼ [4:6; 3:�1:1]
mat ¼

4 5 6
3 2 1

>> mat * 2
ans ¼

8 10 12
6 4 2

These are scalar operations; we are multiplying every element in a vector
ormatrix by a scalar, or dividing every element in a vector or amatrix by a scalar.

Array operations are operations that are performed on vectors or matrices term
by term, or element by element. This means that the two arrays (vectors or

matrices) must be the same size to begin with. The following examples demon-

strate the array addition and subtraction operators.

>> v1 ¼ 2:5
v1 ¼

2 3 4 5
>> v2 ¼ [33 11 5 1]
v2 ¼

33 11 5 1
>> v1 þ v2
ans ¼

35 14 9 6

>> mata ¼ [5:8; 9:-2:3]
mata ¼

5 6 7 8
9 7 5 3

>> matb ¼ reshape(1:8,2,4)
matb ¼

1 3 5 7
2 4 6 8

>> mata - matb
ans ¼

4 3 2 1
7 3 �1 �5

However, for any operation that is based onmultiplication (which means mul-
tiplication, division, and exponentiation), a dot must be placed in front of the

operator for array operations. For example, the exponentiation operator, .^,

must be used when working with vectors and matrices, rather than just the ^
operator. Squaring a vector, for example, means multiplying each element

by itself, so the .^ operator must be used.

Note

Matrix multiplication

is a very different

operation, and will be

covered in Chapter 12.

158 CHAPTER 5 Vectorized Code
>> v ¼ [3 7 2 1];
>> v ^ 2
??? Error using ¼¼> mpower
Inputs must be a scalar and a square matrix.
To compute elementwise POWER, use POWER (.^) instead.

>> v .^ 2
ans ¼

9 49 4 1

Similarly, the operator .* must be used for array multiplication and ./ or .\ for

array division. The following examples demonstrate array multiplication and
array division.

>> v1 ¼ 2:5
v1 ¼

2 3 4 5
>> v2 ¼ [33 11 5 1]
v2 ¼

33 11 5 1

>> v1 .* v2
ans ¼

66 33 20 5

>> mata ¼ [5:8; 9:�2:3]
mata ¼

5 6 7 8
9 7 5 3

>> matb ¼ reshape(1:8, 2,4)
matb ¼

1 3 5 7
2 4 6 8

>> mata ./ matb
ans ¼

5.0000 2.0000 1.4000 1.1429
4.5000 1.7500 0.8333 0.3750

The operators .^, .*, ./, and .\ are called array operators and are used when

multiplying or dividing vectors or matrices of the same size term by term.
PRACTICE 5.1

1. Create a vector variable and add 2 to every element in it.

2. Create a matrix variable and divide every element by 3.

3. Create a matrix variable and square every element.

1595.3 Vectors and Matrices as Function Arguments
5.3 VECTORS AND MATRICES AS FUNCTION
ARGUMENTS

Using most programming languages, if it is desired to evaluate a function on

every element in a vector or a matrix, loop(s) would be necessary to accomplish
this. However, as we have already seen, in MATLAB an entire vector or matrix

can be passed as an argument to a function; the function will be evaluated on

every element. This means that the result will be the same size as the input
argument.

For example, let us find the sine in radians of every element of a vector vec.

The sin function will automatically return the sine of each individual
element and the result will be a vector with the same length as the input vector.

>> vec ¼ �2:1
vec ¼

�2 �1 0 1

>> sinvec ¼ sin(vec)
sinvec ¼

�0.9093 �0.8415 0 0.8415

For a matrix, the resulting matrix will have the same size as the input argument
matrix. For example, the sign function will find the sign of each element in a

matrix:

>> mat ¼ [0 4 -3; -1 0 2]
mat ¼

0 4 �3
�1 0 2

>> sign(mat)
ans ¼

0 1 �1
�1 0 1

Vectors or matrices can be passed to user-defined functions, as well, as long

as the operators used in the function are correct. For example, we previously
defined a function that calculates the area of a circle:

>> type calcarea

function area ¼ calcarea(rad)
% calcarea calculates the area of a circle
% Format of call: calcarea(radius)
% Returns the area

area ¼ pi * rad * rad;
end

160 CHAPTER 5 Vectorized Code
The previous function was written assuming that the argument was a scalar, so

calling it with a vector instead would produce an error message:

>> calcarea(1:3)
??? Error using ¼¼> mtimes
Inner matrix dimensions must agree.
Error in ¼¼> calcarea at 6

area ¼ pi * rad * rad;

This is because the * was used for multiplication in the function, but .* must be

used when multiplying vectors term by term. Changing this in the function
would allow either scalars or vectors to be passed to this function:

calcareaii.m

function area ¼ calcareaii(rad)
% calcareaii returns the area of a circle
% The input argument can be a vector of radii
% Format: calcareaii(radiiVector)

area ¼ pi * rad .* rad;
end

>> calcareaii(1:3)
ans ¼

3.1416 12.5664 28.2743

>> calcareaii(4)
ans ¼
50.2655

Note the * operator is only necessary when multiplying the radius vector by

itself. Multiplying by pi is scalar multiplication, so the .* operator is not needed

there. We could have also used

area ¼ pi * rad .^ 2;

5.4 LOGICAL VECTORS

The relational operators can alsobeusedwith vectors andmatrices. For example,

let’s say that there is a vector vec, and we want to compare every element in the
vector to 5 to determine whether it is greater than 5 or not. The result would be a

vector (with the same length as the original) with logical true or false values.

>> vec ¼ [5 9 3 4 6 11];
THE PROGRAMMING CONCEPT
To accomplish this using the programming method, we would have to loop through all of the

vector’s elements and compare each element with 5 to determine whether the corresponding

value in the result would be logical true or false.

1615.4 Logical Vectors
THE EFFICIENT METHOD
In MATLAB, this can be accomplished automatically by simply using the relational operator >.
>> isg ¼ vec > 5

isg ¼
0 1 0 0 1 1
Note that using the relational operator creates a vector consisting of all logical

true or false values. Although the current example is a vector of ones and zeros,

and numerical operations can be done on the vector isg—its type is logical
rather than double.

>> doubres ¼ isg þ 5
ans ¼

5 6 5 5 6 6

>> whos
Name Size Bytes Class

doubres 1x6 48 double array
isg 1x6 6 logical array
vec 1x6 48 double array

To determine how many of the elements in the vector vec were greater than 5,
the sum function could be used on the resulting vector isg:

>> sum(isg)
ans ¼

3

What we have done is to create a logical vector isg. This logical vector can be used
to index into the original vector. For example, if only the elements from the

vector that are greater than 5 are desired:

>> vec(isg)
ans ¼

9 6 11

This is called logical indexing. Only the elements from vec for which the corre-

sponding element in the logical vector isg is logical true are returned.
QUICK QUESTION!
Why doesn’t the following work?

>> vec([0 1 0 0 1 1])

??? Subscript indices must either be real

positive integers or logicals.

Answer: The difference between the vector in this example

and isg is that isg is a vector of logicals (logical 1s and 0s),

whereas [0 1 0 0 1 1] by default is a vector of double values.

Only logical 1s and 0s can be used to index into a vector.

162 CHAPTER 5 Vectorized Code
To preallocate a vector or matrix of all logical 1s or 0s, the functions ones and

zeros can be used, and then cast to the type logical:

>> logical(zeros(2))
ans ¼

0 0
0 0

>> logical(ones(1,5))
ans ¼

1 1 1 1 1

However, MATLAB also has the functions true and false that accomplish this,

and are faster and manage memory more efficiently than using logical with
zeros or ones:

>> false(2)
ans ¼

0 0
0 0

>> true(1,5)
ans ¼

1 1 1 1 1

How can we write a function that will receive a vector and an integer and will

return a logical vector, storing logical true only for elements of the vector that
are greater than the integer?
THE PROGRAMMING CONCEPT
The function receives two input arguments: the vector, and an integer nwith which to compare

(so it is somewhatmore general than using 5). It loops through every element in the input vector,

and stores in the result vector either a 1 or 0 depending on whether vec(i) > n is true or false.
testvecgtn.m

function outvec ¼ testvecgtn(vec,n)

% testvecgtn tests whether elements in vector

% are greater than n or not

% Format: testvecgtn(vector, n)

% Preallocate the vector to logical false

outvec ¼ false(size(vec));

for i ¼ 1:length(vec)

% Each element in the output vector stores 1 or 0

if vec(i) > n

outvec(i) ¼ 1;

1635.4 Logical Vectors
else

outvec(i) ¼ 0;

end

end

end
THE EFFICIENT METHOD
testvecgtnii.m
function outvec ¼ testvecgtnii(vec,n)

% testvecgtnii tests whether elements in vector

% are greater than n or not with no loop

% Format: testvecgtnii(vector, n)

outvec ¼ vec > n;
5.4.1 Logical built-in functions
There are built-in functions in MATLAB that are useful in conjunction with log-
ical vectors or matrices; two of these are the functions any and all. The function

any returns logical true if any element in a vector is nonzero, and false if not.

The function all returns logical true only if all elements are nonzero. Here are
some examples. For the variable vec1, all elements are nonzero, so both any and

all return true. (Recall that any nonzero value can be used to represent the con-

cept of true, not just logical 1.)

>> vec1 ¼ [1 3 1 1 2];
>> any(vec1)
ans ¼

1

>> all(vec1)
ans ¼

1

For vec2, some but not all elements are nonzero; consequently, any returns true
but all returns false.

>> vec2 ¼ [1 1 0 1]
vec2 ¼

1 1 0 1

164 CHAPTER 5 Vectorized Code
>> any(vec2)
ans ¼

1

>> all(vec2)
ans ¼

0

The function find returns the indices of a vector that meet given criteria. For
example, to find all of the elements in a vector that are greater than 5:

>> vec ¼ [5 3 6 7 2]
vec ¼

5 3 6 7 2

>> find(vec > 5)
ans ¼

3 4

As an example of using this, in the previous chapter we solved the following
problem using awhile loop but nowwe can solve it more efficiently using find.

Data from an experiment has been recorded in a file called experd.dat. The file

has some numbers followed by a –99 and then more numbers, all on the same
line. The only data values that we are interested in, however, are those before

the –99. The algorithm for the script follows:

n Read the data from the file into a vector.

n Create a new vector variable newvec that only has the data values up to but

not including the –99.
n Plot the new vector values, using black circles.
THE EFFICIENT METHOD
Using the find function, we can locate the index of the element that stores the –99. Then, the

new vector comprises all of the original vector from the first element to the index before the

index of the element that stores the –99.
findval.m

% Reads data from a file, but only plots the numbers

% up to a flag of -99.Uses find and the colon operator

load experd.dat

where ¼ find(experd ¼¼ -99);

newvec ¼ experd(1:where-1);

plot(newvec,'ko')

1655.4 Logical Vectors
For matrices, the find function will use linear indexing when returning the in-

dices that meet the specified criteria. For example:

>> mata
mata ¼

5 6 7 8
9 7 5 3

>> find(mata ¼¼ 5)
ans ¼

1
6

For both vectors and matrices, an empty vector will be returned if no elements

match the criterion.

The function isequal is useful in comparing vectors. In MATLAB, using

the equality operator with arrays will return 1 or 0 for each element; the all

function could then be used on the resulting array to determine whether all el-
ements were equal or not. The built-in function isequal also accomplishes this:

>> vec1 ¼ [1 3 �4 2 99];
>> vec2 ¼ [1 2 �4 3 99];
>> vec1 ¼¼ vec2
ans ¼

1 0 1 0 1

>> all(vec1 ¼¼ vec2)
ans ¼

0

>> isequal(vec1,vec2)
ans ¼

0

MATLAB also has or and and operators that work elementwise for matrices:
Operator
 Meaning
j e
lementwise or for matrices
& e
lementwise and for matrices
These operators will compare any two vectors ormatrices, as long as they are the

same size, element by element and return a vector or matrix of the same size of

logical 1s and 0s. The operators jj and && are only used with scalars, not

matrices. For example:

>> v1 ¼ [3 0 5 1];
>> v2 ¼ [0 0 2 0];

166 CHAPTER 5 Vectorized Code
>> v1 & v2
ans ¼

0 0 1 0

>> v1 j v2
ans ¼

1 0 1 1

>> v1 && v2
??? Operands to the jj and && operators must be convertible to
logical scalar values.

As with the numerical operators, it is important to know the operator prece-
dence rules. Table 5.1 shows the rules for the operators that have been covered

so far, in the order of precedence.
Table 5.1 Operator Precedence Rules

Operators Precedence

parentheses () highest

transpose and power ’, ^, .^

unary: negation (�), not (�)

multiplication, division *, /, \, .*, ./, .\

addition, subtraction þ, �
colon operator :

relational <, <¼, >, >¼, ¼¼, �¼
elementwise and &

elementwise or j
and &&

or jj
assignment ¼ lowest
5.5 VECTORIZING CODE

The term vectorizing codemeans essentially rewriting code that has been written

inefficiently, perhaps in another language, to make use of the built-in functions
and operations in MATLAB. In many cases this means using these built-in func-

tions and operators instead of writing loops and selection statements.

For example, a function signum follows:

signum.m

function outmat ¼ signum(mat)
% signum imitates the sign function
% Format: signum(matrix)

1675.5 Vectorizing Code
[r c] ¼ size(mat);
for i ¼ 1:r

for j ¼ 1:c
if mat(i,j) > 0

outmat(i,j) ¼ 1;
elseif mat(i,j) ¼¼ 0

outmat(i,j) ¼ 0;
else

outmat(i,j) ¼ -1;
end

end
end
end

To test this function, we will create a matrix and pass it to the function. Here is
an example of using this function:

>> mat ¼ [0 4 -3; -1 0 2]
mat ¼

0 4 -3
-1 0 2

>> signum(mat)
ans ¼

0 1 -1
-1 0 1

Close inspection reveals that the function accomplishes the same task as the built-

in sign function!Therefore, a function suchas signum is notnecessary inMATLAB.
QUICK QUESTION!
Determine what the following function accomplishes: An
xxx.m

function logresult ¼ xxx(vec)

% QQ for you � what does this do?

logresult ¼ logical(0);

i ¼ 1;

while i <¼ length(vec) && logresult ¼¼ 0

if vec(i) �¼ 0

logresult ¼ logical(1);

end

i ¼ i þ 1;

end

end

swer: The output produced by this function is the same as

the any function.

QUICK QUESTION!

Determine what the following function accomplishes:

yyy.m

function logresult ¼ yyy(vec)

% QQ for you - what does this do?

count ¼ 0;

for i ¼ 1:length(vec)

if vec(i) �¼ 0

count ¼ count þ 1;

end

end

if count ¼¼ length(vec)

logresult ¼ logical(1);

else

logresult ¼ logical(0);

end

end

>> yyy([1 1 1])

ans ¼
1

>> vec1 ¼ 1:5;

>> yyy(vec1)

ans ¼
1

>> vec2 ¼ [1 0 1 1];

>> yyy(vec2)

ans ¼
0

Answer: The output produced by this function is the same

as the all function.

168 CHAPTER 5 Vectorized Code
To be able to vectorize code in MATLAB, there are several important features to

keep in mind:

n Scalar and array operations
n Logical vectors

n Built-in functions

n Preallocation of vectors

There are many functions in MATLAB that can be utilized instead of code that

uses loops and selection statements. These functions have been demonstrated

already but it is worth repeating them to emphasize their utility:

n sum and prod: Find the sum or product of every element in a vector, or

column in a matrix.
n cumsum and cumprod: Return a vector or matrix of the cumulative

(running) sums or products.

n min andmax: Find the minimum value in a vector, or in every column of a
matrix.

n any, all, find: Work with logical expressions.

n “is” functions such as isletter and isequal: return logical values.

1695.5 Vectorizing Code
PRACTICE 5.2

Vectorize the following:

i ¼ 0;

for inc ¼ 0: 0.5: 3

i ¼ i þ 1;

myvec(i) ¼ sqrt(inc);

end

–––––––––––––––––––––––––––––––––––

[r c] ¼ size(mat);

newmat ¼ zeros(r,c);

for i ¼ 1:r

for j ¼ 1:c

newmat(i,j) ¼ sign(mat(i,j));

end

end
QUICK QUESTION!

If we have a vector vec that erroneously stores negative values,

how can we eliminate those negative values?

Answer: One method is to determine where they are and

delete these elements:

>> vec ¼ [11 �5 33 2 8 �4 25];

>> neg ¼ find(vec < 0)

neg ¼
2 6

>> vec(neg) ¼ []

vec ¼
11 33 2 8 25

Alternatively, we can just use a logical vector rather than find:

>> vec ¼ [11 -5 33 2 8 -4 25];

>> vec(vec < 0) ¼ []

vec ¼
11 33 2 8 25
PRACTICE 5.3

Modify the result seen in the previous Quick Question. Instead of deleting the “bad” elements,

retain only the “good” ones. (Hint: Do it two ways, using find and using a logical vector with

the expression vec >¼ 0.)

There are several other functions that can be useful in vectorizing code, includ-

ing diff and meshgrid. The function diff returns the differences between con-
secutive elements in a vector. An example follows:

>> diff([4 7 15 32])
ans ¼

3 8 17

170 CHAPTER 5 Vectorized Code
>> diff([4 7 2 32])
ans ¼

3 �5 30

For a vector v with a length of n, the length of diff(v) will be n – 1.

As an example, a vector that stores a signal can contain both positive and neg-
ative values. (For simplicity, we will assume no zeroes, however.) For many ap-

plications it is useful to find the zero crossings, or where the signal goes from

being positive to negative or vice versa. This can be accomplished with vector-
ized code, using the functions sign, diff, and find.

>> vec ¼ [0.2 �0.1 �0.2 �0.1 0.1 0.3 �0.2];
>> sv ¼ sign(vec)
sv ¼

1 �1 �1 �1 1 1 �1

>> dsv ¼ diff(sv)
dsv ¼

-2 0 0 2 0 -2

>> find(dsv)
ans ¼

1 4 6

This shows that the signal crossings are between elements 1 and 2, 4 and 5, and

6 and 7.

Themeshgrid function receives as input arguments two vectors, and returns as
output arguments two matrices that can specify the x and y coordinates of

points in images, or can be used to calculate functions on two variables x

and y. For example, the x and y coordinates of a 2� 3 image would be specified
by the coordinates:
(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)
Thematrices that separately specify the coordinates are created by themeshgrid
function:

>> [x y] ¼ meshgrid(1:3,1:2)
x ¼

1 2 3
1 2 3

y ¼
1 1 1
2 2 2

1715.6 Timing
As an example, let’s say we want to evaluate a function f of two variables

x and y:

f(x,y) ¼ 2*x þ y

where x ranges from 1 to 4 and y ranges from 1 to 3. We could use nested for
loops to accomplish this. Usingmeshgrid, however, we can use vectorized code

instead of nested loops:

>> [x y] ¼ meshgrid(1:4,1:3)
x ¼

1 2 3 4
1 2 3 4
1 2 3 4

y ¼
1 1 1 1
2 2 2 2
3 3 3 3

>> f ¼ 2*x þ y
f ¼

3 5 7 9
4 6 8 10
5 7 9 11
Note

When using timing

functions such as tic/

toc, be aware that other

processes running in the

background (e.g., any

web browser) will affect

the speed of your code.
5.6 TIMING

MATLAB has built-in functions that determine how long it takes code to exe-

cute. One set of related functions is tic/toc. These functions are placed around

code, and will print the time it took for the code to execute. The function tic
essentially turns a timer on, and then toc evaluates the timer and prints the

result. The following is a script that illustrates these functions.

fortictoc.m

tic
mysum ¼ 0;
for i ¼ 1:20000000

mysum ¼ mysum þ i;
end
toc

>> fortictoc
Elapsed time is 0.088591 seconds.

Here is an example of a script that demonstrates howmuch preallocating a vec-

tor speeds up the code.

QUICK QUESTION!

Preallocation can speed up co

necessary to know the desired s

the eventual size of a vector (

that you have to extend it rather

Answer: If you know the maxim

be, you can preallocate to a size

then delete the “unused” eleme

172 CHAPTER 5 Vectorized Code
tictocprealloc.m

% This shows the timing difference between
% preallocating a vector vs. not

clear
disp('No preallocation')
tic
for i ¼ 1:10000

x(i) ¼ sqrt(i);
end
toc

disp('Preallocation')
tic
y ¼ zeros(1,10000);
for i ¼ 1:10000

y(i) ¼ sqrt(i);
end
toc

>> tictocprealloc
No preallocation
Elapsed time is 0.070526 seconds.
Preallocation
Elapsed time is 0.001177 seconds.
de, but to preallocate it is

ize. What if you do not know

or matrix)? Does that mean

than preallocating?

um size that it could possibly

that is larger than necessary,

nts. To do that, you would

have to count the number of elements that are actually used.

For example, if you have a vector vec that has been

preallocated, and a variable count that stores the number of

elements that were actually used, this will trim the

unnecessary elements:

vec ¼ vec(1:count)
SUMMARY
Common Pitfalls

n Attempting to use an array of double 1s and 0s to index into an array (must
be logical, instead).

n Forgetting that for array operations based on multiplication, the dot must be
used in theoperator. Inotherwords, formultiplying,dividingby,dividing into,

or raising to an exponent term by term, the operators are .*, ./, .\, and .^.

n Attempting to use jj or &&with arrays. Always use j and &whenworking with
arrays; jj and && are only used with scalars.

173Exercises
Programming Style Guidelines

n Vectorize code whenever possible. If it is not necessary to use loops in

MATLAB, don’t!

n Use the array operators .*, ./, .\, and .^ in functions so that the input
arguments can be arrays and not just scalars.

n Use true instead of logical(1) and false instead of logical(0), especially

when creating vectors or matrices.
MATLAB Functions and Commands

any

all

find

isequal

diff

meshgrid

tic

toc
MATLAB Operators

array operators .^, .*, ./, .\

elementwise or for matrices j
elementwise and for matrices &
Exercises
1. The following code was written by somebody who does not know how to use

MATLAB efficiently. Rewrite this as a single statement that will accomplish exactly

the same thing for a matrix variable mat (e.g., vectorize this code):

[r c] ¼ size(mat);
for i ¼ 1:r

for j ¼ 1:c
mat(i,j) ¼ mat(i,j) * 2;

end
end

2. Vectorize this code! Write one assignment statement that will accomplish

exactly the same thing as the given code (assume that the variable vec has been

initialized):

result ¼ 0;
for i ¼ 1:length(vec)

result ¼ result þ vec(i);
end

3. Vectorize this code! Write one assignment statement that will accomplish

exactly the same thing as the given code (assume that the variable vec has been

initialized):

174 CHAPTER 5 Vectorized Code
newv ¼ zeros(size(vec));
myprod ¼ 1;
for i ¼ 1:length(vec)

myprod ¼ myprod * vec(i);
newv(i) ¼ myprod;

end
newv % Note: this is just to display the value

4. Create a 1� 6 vector of random integers, each in the range from 1 to 20. Use built-in

functions to find the minimum and maximum values in the vector. Also, create a

vector of cumulative sums using cumsum.

5.Write a relational expression for a vector variable that will verify that the last value in

a vector created by cumsum is the same as the result returned by sum.

6. Create a vector of five random integers, each in the range from –10 to 10. Perform

each of the following using only vectorized code:

n Subtract 3 from each element

n Count how many are positive

n Get the absolute value of each element

n Find the maximum.

7. Create a 3 � 5 matrix. Perform each of the following using only vectorized code:

n Find the maximum value in each column

n Find the maximum value in each row

n Find the maximum value in the entire matrix

8.Write a function called geomser that will receive values of r and n, and will calculate

and return the sum of the geometric series:

1 þ r þ r2 þ r3 þ r4 þ . . . þ rn

The following examples of calls to this function illustrate what the result should be:

>> geomser(1,5)
ans ¼

6

>> disp(geomser(2,4))
31

9. Generate a random integer n, create a vector of the integers one through n in steps of

2, square them, and plot the squares.

10.A vector v stores for several employees of the Green Fuel Cells Corporation their

hours worked for one week followed for each by the hourly pay rate. For example, if

the variable stores

>> v
v ¼
10.5000 40.0000 18.0000 20.0000 7.5000

that means the first employeeworked 33 hours at $10.50 per hour, the secondworked

40 hours at $18 an hour, and so on. Write code that will separate this into two vectors,

175Exercises
one that stores the hours worked and another that stores the hourly rates. Then, use

the array multiplication operator to create a vector, storing in the new vector the total

pay for every employee.

11.Write a function repvec that receives a vector and the number of times each element

is to be duplicated. The function should then return the resulting vector. Do this

problem using built-in functions only. Here are some examples of calling the

function:

>> repvec(5:-1:1,2)
ans ¼

5 5 4 4 3 3 2 2 1 1

>> repvec([0 1 0],3)
ans ¼

0 0 0 1 1 1 0 0 0

12.The mathematician Euler proved the following:

p2

6
¼ 1þ 1

4
þ 1

9
þ 1

16
þ . . .

Rather than finding amathematical proof for this, try to verify whether the conjecture
seems to be true or not. (Note: Two basic ways to approach this are choosing a

number of terms to add or loop until the sum is close to p2/6.)

Whenworkingwith images, it is often necessary to “crop” one image tomatch the

size of another. Images are represented very simply in MATLAB as matrices of

numbers. However, these matrices are quite large. Depending on the resolution, the

number of rows and columns could easily be in the thousands. It is therefore

extremely important when working with image matrices to vectorize the code.

13.Write a script that will read from a file oldfile.dat into a matrix. It will create a

square matrix (same number of rows and columns) by deleting rows or columns

as necessary, and then write this new square matrix to a new file called

squarefile.dat. For example, if the original matrix is 4 � 6, the new matrix would

be created by deleting the fifth and sixth columns to result in a 4 � 4 matrix.

Another example: If the original matrix is 3 � 2, the third row would be deleted to

result in a 2 � 2 matrix. The script should be general and work regardless of the

size of the original file and should not use any loops or if statements. Create the data

file first.

14.A file called hightemp.dat was created some time ago that stores, on every line, a

year followed by the high temperature at a specific site for each month of that year.

For example, the file might look like this:

89 42 49 55 72 63 68 77 82 76 67
90 45 50 56 59 62 68 75 77 75 66
91 44 43 60 60 60 65 69 74 70 70
etc.

176 CHAPTER 5 Vectorized Code
As can be seen, only two digits were used for the year (whichwas common in the last

century). Write a script that will read this file into a matrix, create a new matrix that

stores the years correctly as 19xx, and then write this to a new file called y2ktemp.

dat. (Hint: Add 1900 to the entire first column of the matrix.) Such a file, for example,

would look like this:

1989 42 49 55 72 63 68 77 82 76 67
1990 45 50 56 59 62 68 75 77 75 66
1991 44 43 60 60 60 65 69 74 70 70
etc.

15.Write a script that will prompt the user for a quiz grade and error-check until the user

enters a valid quiz grade. The script will then echo print the grade. For this case, valid

grades are in the range from 0 to 10 in steps of 0.5. Do this by creating a vector of

valid grades and then use any or all in the condition in the while loop.

16.Which is faster—using false or using logical(0) to preallocate a matrix to all logical

zeros? Write a script to test this.

17.Which is faster—using a switch statement or using a nested if-else? Write a script

to test this.

18.Vectorize the following code:

n ¼ 3;
x ¼ zeros(n);
y ¼ x;
for i ¼ 1:n

x(:,i) ¼ i;
y(i,:) ¼ i;

end

19.A company is calibrating some measuring instrumentation and has measured the

radius and height of one cylinder 10 separate times; the measurements are in vector

variables r and h. Use vectorized code to find the volume from each trial, which is

given by pr2h. Also, use logical indexing first to make sure that all measurements

were valid (> 0).

CHAPTER 6
MATLAB Programs
CONTENTS
KEY TERMS
6.1 More Types of
User-Defined
Functions....177

6.2 MATLAB
Program
Organization
..........................186

6.3 Application:
Menu-Driven
functions that return

more than one value

functions that do not

return any values

side effects

call-by-value

modular programs

main program

primary function

subfunction

menu-driven program

variable scope

base workspace

local variable

global variable

persistent variable

bug

debugging

syntax errors

runtime errors

logical errors

tracing

breakpoints

function stubs
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Modular
Program191

6.4 Variable
Scope197

6.5 Debugging
Techniques
..........................202
Chapter 2 introduced scripts and user-defined functions. In that chapter, we saw
how to write script files, which are sequences of statements that are stored in an

M-file and then executed. We also saw how to write user-defined functions, also

stored in M-files, that calculate and return a single value. In this chapter, we will
expand on these concepts, and introduce other kinds of user-defined functions.

We will show how MATLABW programs consist of combinations of scripts and

user-defined functions. The mechanisms for interactions of variables in M-files
and the Command Window will be explored. Finally, techniques for finding

and fixing mistakes in programs will be reviewed.
6.1 MORE TYPES OF USER-DEFINED FUNCTIONS

We have already seen how to write a user-defined function, stored in an M-file,

that calculates and returns one value. This is just one type of function. It is also
possible for a function to returnmultiple values, and it is possible for a function

to return nothing. We will categorize functions as follows:
177

178 CHAPTER 6 MATLAB Programs

Openmirrors.com
n Functions that calculate and return one value

n Functions that calculate and return more than one value

n Functions that just accomplish a task, such as printing, without returning
any values

Thus, although many functions calculate and return values, some do not. Some
functions instead just accomplish a task. Categorizing the functions as such is

somewhat arbitrary, but there are differences between these three types of func-

tions, including the format of the function headers and also the way in which
the functions are called. Regardless of what kind of function it is, all functions

must be defined, and all function definitions consist of the header and the

body. Also, the function must be called for it to be utilized.

In general, any function in MATLAB consists of the following:

n The function header (the first line), which contains
n The reserved word function. (If the function returns values, the name(s)

of the output argument(s), followed by the assignment operator ¼.)

n The name of the function. (IMPORTANT: This should be the same
as the name of the M-file in which this function is stored to avoid

confusion.)

n The input arguments in parentheses, if there are any (separated by commas
if there is more than one).

n A comment that describes what the function does (this is printed if help

is used)
n The body of the function, which includes all statements, including putting

values in all output arguments, if there are any

n end at the end of the function
6.1.1 Functions that return more than one value
Functions that return one value have one output argument, as can be seen in
Section 2.7. Functions that return more than one value must instead have more

than one output argument in the function header in square brackets. This means

that in the body of the function, valuesmust be put in all output arguments listed
in the function header. The general form of a function definition for a function

that calculates and returns more than one value looks like the following:

functionname.m

function [output arguments] ¼ functionname(input arguments)
% Comment describing the function

Statements here; these must include putting values in all of the
output arguments listed in the header

end

1796.1 More Types of User-Defined Functions
In the vector of output arguments, the output argument names are by conven-

tion separated by commas. In more recent versions of MATLAB, choosing File,

New, then Function (rather than File, New, then Script) brings up a template in
the Editor that can then be filled in:

function [output_args] ¼ Untitled2(input_args)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

end

For example, here is a function that calculates two values, both the area and the
circumference of a circle; this is stored in a file called areacirc.m:

areacirc.m

function [area, circum] ¼ areacirc(rad)
% areacirc returns the area and
% the circumference of a circle
% Format: areacirc(radius)

area ¼ pi * rad .* rad;
circum ¼ 2 * pi * rad;
end

Since this function is calculating two values, there are two output arguments
in the function header (area and circum) that are placed in square brackets [].

Therefore, somewhere in the body of the function, values have to be put in

both. Since the function is returning two values, it is important to capture
and store these values in separate variables when the function is called. In this

case, the first value returned, the area of the circle, is stored in a variable a and

the second value returned is stored in a variable c.

>> [a c] ¼ areacirc(4)
a ¼

50.2655
c ¼

25.1327

If this is not done, only the first value returned is retained—in this case, the area:

>> disp(areacirc(4))
50.2655

Note that in capturing the values the order matters. In this case, the function

returns first the area and then the circumference of the circle. The order inwhich

values are assigned to the output arguments within the function, however, does
not matter.

QUICK QUESTION!

What would happen if a vector of radii was passed to the

function?

Answer: Since the .* operator is used in the function to square

rad, a vector can be passed to the input argument rad.

Therefore, the results will also be vectors, so the variables on

the left side of the assignment operator would become

vectors of areas and circumferences.

>> [a c] ¼ areacirc (1:4)

a ¼
3.1416 12.5664 28.2743 50.2655

c ¼
6.2832 12.5664 18.8496 25.1327

180 CHAPTER 6 MATLAB Programs
The help function shows the comment listed under the function header:

>> help areacirc
areacirc calculates the area and
the circumference of a circle
Format: areacirc(radius)

The areacirc function could be called from the Command Window as shown

here, or from a script. Here is a script that will prompt the user for the radius
of just one circle, call the areacirc function to calculate and return the area and

circumference of the circle, and print the results:

calcareacirc.m

% This script prompts the user for the radius of a circle,
% calls a function to calculate and return both the area
% and the circumference, and prints the results
% It ignores units and error-checking for simplicity

radius ¼ input('Please enter the radius of the circle: ');
[area circ] ¼ areacirc(radius);
fprintf('For a circle with a radius of %.1f,\n', radius)
fprintf('the area is %.1f and the circumference is %.1f\n',. . .

area, circ)

>> calcareacirc
Please enter the radius of the circle: 5.2
For a circle with a radius of 5.2,
the area is 84.9 and the circumference is 32.7
PRACTICE 6.1

Write a function perimarea that calculates and returns the perimeter and area of a rectangle. Pass the

length and width of the rectangle as input arguments. For example, this function might be called

from the following script:

calcareaperim.m

% Prompt the user for the length and width of a rectangle,

% call a function to calculate and return the perimeter

1816.1 More Types of User-Defined Functions
% and area, and print the result

% For simplicity it ignores units and error-checking

length ¼ input('Please enter the length of the rectangle: ');

width ¼ input('Please enter the width of the rectangle: ');

[perim area] ¼ perimarea(length, width);

fprintf('For a rectangle with a length of %.1f and a', length)

fprintf(' width of %.1f,\nthe perimeter is %.1f,', width, perim)

fprintf(' and the area is %.1f\n', area)
As another example, consider a function that calculates and returns three out-

put arguments. The function will receive one input argument representing a to-
tal number of seconds, and returns the number of hours, minutes, and

remaining seconds that it represents. For example, 7515 total seconds is 2

hours, 5 minutes, and 15 seconds because 7515 ¼ 3600 * 2 þ 60 * 5 þ 15.

The algorithm follows:

n Divide the total seconds by 3600, which is the number of seconds in an

hour. For example, 7515/3600 is 2.0875. The integer part is the number of

hours (e.g., 2).
n The remainder of the total seconds divided by 3600 is the remaining

number of seconds; it is useful to store this in a local variable.

n The number of minutes is the remaining number of seconds divided by 60
(again, the integer part).

n The number of seconds is the remainder of the division.

breaktime.m

function [hours, minutes, secs] ¼ breaktime(totseconds)
% breaktime breaks a total number of seconds into
% hours, minutes, and remaining seconds
% Format: breaktime(totalSeconds)

hours ¼ floor(totseconds/3600);
remsecs ¼ rem(totseconds, 3600);
minutes ¼ floor(remsecs/60);
secs ¼ rem(remsecs,60);
end

An example of calling this function is

>> [h m s] ¼ breaktime(7515)
h ¼

2
m ¼

5
s ¼

15

182 CHAPTER 6 MATLAB Programs
As before, it is important to store all values that the function returns in separate

variables.

6.1.2 Functions that accomplish a task without
returning values
Many functions do not calculate values, but rather accomplish a task such as

printing formatted output. Since these functions do not return any values, there
are no output arguments in the function header.

The general form of a function definition for a function that does not return any

values looks like this:

functionname.m

function functionname(input arguments)
% Comment describing the function

Statements here
end

Note what is missing in the function header: there are no output arguments,

and no assignment operator.

For example, the following function just prints the number arguments passed
to it in a sentence format:

printem.m

function printem(a,b)
% printem prints two numbers in a sentence format
% Format: printem(num1, num2)

fprintf('The first number is %.1f and the second is %.1f\n',a,b)
end

Since this function performs no calculations, there are no output arguments in
the function header and no equal symbol (¼). An example of a call to the printem

function is

>> printem(3.3, 2)
The first number is 3.3 and the second is 2.0

Note that since the function does not return a value, it cannot be called from an
assignment statement. Any attempt to do this would result in an error, such as

the following:

>> x ¼ printem(3, 5) % Error!!
??? Error using ¼¼> printem
Too many output arguments.

1836.1 More Types of User-Defined Functions
We can therefore think of the call to a function that does not return values as

a statement by itself, in that the function call cannot be imbedded in another

statement such as an assignment statement or an output statement.

The tasks that are accomplished by functions that do not return any values (e.g.,

output from an fprintf statement or a plot) are sometimes referred to as side

effects. Some standards for commenting functions include putting the side ef-
fects in the block comment.

PRACTICE 6.2

Write a function that receives a vector as an input argument and prints the elements from the vector

in a sentence format.

>> printvecelems([5.9 33 11])

Element 1 is 5.9

Element 2 is 33.0

Element 3 is 11.0
6.1.3 Functions that return values versus printing

A function that calculates and returns values (through the output arguments)
does not normally also print them; that is left to the calling script or function.

It is good programming practice to separate these tasks.

If a function just prints a value, rather than returning it, the value cannot be
used later in other calculations. For example, here is a function that just prints

the circumference of a circle:

calccircum1.m

function calccircum1(radius)
% calccircum1 displays the circumference of a circle
% but does not return the value
% Format: calccircum1(radius)

disp(2 * pi * radius)
end

Calling this function prints the circumference, but there is no way to store the

value so that it can be used in subsequent calculations:

>> calccircum1(3.3)
20.7345

Since no value is returned by the function, attempting to store the value in a
variable would be an error:

>> c ¼ calccircum1(3.3)
??? Error using ¼¼> calccircum1
Too many output arguments.

184 CHAPTER 6 MATLAB Programs
By contrast, the following function calculates and returns the circumference, so

that it can be stored and used in other calculations. For example, if the circle is

the base of a cylinder, and we wish to calculate the surface area of the cylinder,
we would need to multiply the result from the calccircum2 function by the

height of the cylinder.

calccircum2.m

function circle_circum ¼ calccircum2(radius)
% calccircum2 calculates and returns the
% circumference of a circle
% Format: calccircum2(radius)

circle_circum ¼ 2 * pi * radius;
end

>> circumference ¼ calccircum2(3.3)
circumference ¼

20.7345

>> height ¼ 4;
>> surf_area ¼ circumference * height
surf_area ¼

82.9380
6.1.4 Passing arguments to functions
In all function examples presented thus far, at least one argument was passed in

the function call to be the value(s) of the corresponding input argument(s) in
the function header. The call-by-value method is the term for this method of

passing the values of the arguments to the input arguments in the functions.

In some cases, however, it is not necessary to pass any arguments to the func-

tion. Consider, for example, a function that simply prints a random real num-

ber with two decimal places:

printrand.m

function printrand()
% printrand prints one random number
% Format: printrand or printrand()

fprintf('The random # is %.2f\n',rand)
end

Here is an example of calling this function:

>> printrand()
The random # is 0.94

1856.1 More Types of User-Defined Functions
Since nothing is passed to the function, there are no arguments in the paren-

theses in the function call, and none in the function header, either. In fact,

the parentheses are not even needed in either the function or the function call.
The following works as well:

printrandnp.m

function printrandnp
% printrandnp prints one random number
% Format: printrandnp or printrandnp()

fprintf('The random # is %.2f\n',rand)
end

>> printrandnp
The random # is 0.52

In fact, the function can be calledwith orwithout empty parentheses in the func-

tion header. This was an example of a function that did not receive any input ar-

guments nor did it return any output arguments; it simply accomplished a task.

The following is another example of a function that does not receive any input

arguments, but in this case it does return a value. The function prompts the user
for a string and returns the value entered.

stringprompt.m

function outstr ¼ stringprompt
% stringprompt prompts for a string and returns it
% Format stringprompt or stringprompt()

disp('When prompted, enter a string of any length.')
outstr ¼ input('Enter the string here: ', 's');
end

>> mystring ¼ stringprompt
When prompted, enter a string of any length.
Enter the string here: Hi there

mystring ¼
Hi there
PRACTICE 6.3

Write a function thatwill prompt the user for a positive number, loop to error-check tomake sure that

the number is positive, and return the positive number.

QUICK QUESTION!

It is important that the number of arguments in the call

to a function must be the same as the number of input

arguments in the function header, even if that number is

zero. Also, if a function returns more than one value, it is

important to “capture” all values by having an equivalent

number of variables in a vector on the left side of an

assignment statement. Although it is not an error if there

aren’t enough variables, some of the values returned will

be lost. The following question is posed to highlight this.

Given the following function header (note that this is just

the function header, not the entire function definition):

function [outa, outb] ¼ qq1(x, y, z)

which of the following proposed calls to this function would

be valid?

a) [var1 var2] ¼ qq1(a, b, c);

b) answer ¼ qq1(3, y, q);

c) [a b] ¼ myfun(x, y, z);

d) [outa outb] ¼ qq1(x, z);

Answer: The first proposed function call, (a), is valid. There

are three arguments that are passed to the three input

arguments in the function header, the name of the function

is qq1, and there are two variables in the assignment

statement to store the two values returned from the

function. Function call (b) is valid, although only the first

value returned from the function would be stored in

answer ; the second value would be lost. Function call (c) is

invalid because the name of the function is given

incorrectly. Function call (d) is invalid because only two

arguments are passed to the function, but there are three

input arguments in the function header.

186 CHAPTER 6 MATLAB Programs
6.2 MATLAB PROGRAM ORGANIZATION

A MATLAB program typically consists of a script that calls functions to do the

actual work.
6.2.1 Modular programs
A modular program is a program in which the solution is broken down into

modules, and each is implemented as a function. The script that calls these
functions is typically called the main program.

To demonstrate the concept, we will use the very simple example of calculating
the area of a circle. In Section 6.3 amuch longer andmore realistic example will

be given. For this example, there are three steps in the algorithm to calculate the

area of a circle:

n Get the input (the radius)

n Calculate the area
n Display the results

In a modular program, there would be one main script that calls three separate
functions to accomplish these tasks:

n A function to prompt the user and read in the radius
n A function to calculate and return the area of the circle

n A function to display the results

1876.2 MATLAB Program Organization
Since scripts and functions are stored in M-files, there would therefore be four

separate M-files altogether for this program; one M-file script, and three M-file

functions, as follows:

calcandprintarea.m

% This is the main script to calculate the
% area of a circle
% It calls 3 functions to accomplish this
radius ¼ readradius;
area ¼ calcarea(radius);
printarea(radius,area)

readradius.m

function radius ¼ readradius
% readradius prompts the user and reads the radius
% Format: readradius or readradius()

disp('When prompted, please enter the radius in inches.')
radius ¼ input('Enter the radius: ');
end

calcarea.m

function area ¼ calcarea(rad)
% calcarea returns the area of a circle
% Format: calcarea(radius)

area ¼ pi * rad .* rad;
end

printarea.m

function printarea(rad,area)
% printarea prints the radius and area
% Format: printarea(radius, area)

fprintf('For a circle with a radius of %.2f inches,\n',rad)
fprintf('the area is %.2f inches squared.\n',area)
end

When the program is executed, the following steps will take place:

n The script calcandprintarea begins executing.
n calcandprintarea calls the readradius function.

n readradius executes and returns the radius.

n calcandprintarea resumes executing and calls the calcarea function, passing
the radius to it.

n calcarea executes and returns the area.

188 CHAPTER 6 MATLAB Programs
n calcandprintarea resumes executing and calls the printarea function, passing

both the radius and the area to it.

n printarea executes and prints.
n The script finishes executing.

Running the program would be accomplished by typing the name of the script;
this would call the other functions:

>> calcandprintarea
When prompted, please enter the radius in inches.
Enter the radius: 5.3
For a circle with a radius of 5.30 inches,
the area is 88.25 inches squared.

Note how the function calls and the function headers match up. For example:

readradius function:

function call: radius ¼ readradius;
function header: function radius ¼ readradius

In the function call, no arguments are passed so there are no input arguments in
the function header. The function returns one output argument so that is stored

in one variable.

calcarea function:

function call: area ¼ calcarea(radius);
function header: function area ¼ calcarea(rad)

In the function call, one argument is passed in parentheses so there is one input

argument in the function header. The function returns one output argument so

that is stored in one variable.

printarea function:

function call: printarea(radius,area)
function header: function printarea(rad,area)

In the function call, there are two arguments passed, so there are two input

arguments in the functionheader. The functiondoesnot returnanything, so the call
to the function is a statementby itself; it isnot inanassignmentoroutput statement.

Of course, the readradius function should error-check the user’s input.
PRACTICE 6.4

Modify the readradius function to error-check the user’s input to make sure that the radius is valid.

The function should ensure that the radius is a positive number by looping to print an error message

until the user enters a valid radius.

1896.2 MATLAB Program Organization
6.2.2 Subfunctions
Thus far, every function has been stored in a separate M-file. However, it is pos-

sible to havemore than one function in a givenM-file. For example, if one func-
tion calls another, the first (calling) function would be the primary function,

and the function that is called is a subfunction. These functions would both

be stored in the same M-file, first the primary function and then the subfunc-
tion. The name of the M-file would be the same as the name of the primary

function, to avoid confusion.

To demonstrate this, a program that is similar to the previous one, but calculates
and prints the area of a rectangle, is shownhere. The script, ormain program, first

calls a function that reads the length and width of the rectangle, and then calls a

function toprint the results. This function calls a subfunction to calculate the area.

rectarea.m

% This program calculates & prints the area of a rectangle

% Call a fn to prompt the user & read the length and width
[length, width] ¼ readlenwid;
% Call a fn to calculate and print the area
printrectarea(length, width)

readlenwid.m

function [l,w] ¼ readlenwid
% readlenwid reads & returns the length and width
% Format: readlenwid or readlenwid()

l ¼ input('Please enter the length: ');
w ¼ input('Please enter the width: ');
end

printrectarea.m

function printrectarea(len, wid)
% printrectarea prints the rectangle area
% Format: printrectarea(length, width)

% It calls a subfunction to calculate the area
area ¼ calcrectarea(len,wid);
fprintf('For a rectangle with a length of %.2f\n',len)
fprintf('and a width of %.2f, the area is %.2f\n', . . .

wid, area);
end

function area ¼ calcrectarea(len, wid)
% calcrectarea returns the rectangle area
% Format: calcrectarea(length, width)
area ¼ len * wid;
end

190 CHAPTER 6 MATLAB Programs
An example of running this program follows:

>> rectarea
Please enter the length: 6
Please enter the width: 3
For a rectangle with a length of 6.00
and a width of 3.00, the area is 18.00

Note how the function calls and function headers match up. For example:

readlenwid function:

function call: [length, width] ¼ readlenwid;
function header: function [l,w] ¼ readlenwid

In the function call, no arguments are passed so there are no input arguments in
the function header. The function returns two output arguments so there is a

vector with two variables on the left side of the assignment statement in which

the function is called.

printrectarea function:

function call: printrectarea(length, width)
function header: function printrectarea(len, wid)

In the function call, there are two arguments passed, so there are two input
arguments in the function header. The function does not return anything,

so the call to the function is a statement by itself; it is not in an assignment

or output statement.

calcrectarea subfunction:

function call: area ¼ calcrectarea(len,wid);
function header: function area ¼ calcrectarea(len, wid)

In the function call, two arguments are passed in parentheses so there are two

input arguments in the function header. The function returns one output argu-

ment so that is stored in one variable.

The help command can be used with the script rectarea, the function

readlenwid, and with the primary function, printrectarea. To view the first com-

ment in the subfunction, since it is contained within the printrectarea.m
file, the operator > is used to specify both the primary and subfunctions:

>> help rectarea
This program calculates & prints the area of a rectangle

>> help printrectarea
printrectarea prints the rectangle area
Format: printrectarea(length, width)

1916.3 Application: Menu-Driven Modular Program
>> help printrectarea>calcrectarea
calcrectarea returns the rectangle area
Format: calcrectarea(length, width)
PRACTICE 6.5

For a right triangle with sides a, b, and c, where c is the hypotenuse and y is the angle between sides

a and c, the lengths of sides a and b are given by:

a ¼ c * cos(y)
b ¼ c * sin(y)

Write a script righttri that calls a function to prompt the user and read in values for the

hypotenuse and the angle (in radians), and then calls a function to calculate and return the

lengths of sides a and b, and a function to print out all values in a sentence format. For

simplicity, ignore units. Here is an example of running the script; the output format should

be exactly as shown here:

>> righttri

Enter the hypotenuse: 5

Enter the angle: .7854

For a right triangle with hypotenuse 5.0

and an angle 0.79 between side a & the hypotenuse,

side a is 3.54 and side b is 3.54

For extra practice, do this using two different program organizations:

n One script that calls three separate functions

n One script that calls two functions; the function that calculates the lengths of the sides will be a

subfunction to the function that prints
6.3 APPLICATION: MENU-DRIVEN MODULAR
PROGRAM

Many longer, more involved programs that have interaction with the user are
menu-driven, which means that the program prints a menu of choices and then

continues to loop to print the menu of choices until the user chooses to end the

program. A modular menu-driven program would typically have a function
that presents the menu and gets the user’s choice, as well as functions to imple-

ment the action for each choice. These functions may have subfunctions. Also,

the functions would error-check all user input.

As an example of such a menu-driven program, we will write a program to

explore the constant e.

The constant e, called the natural exponential base, is used extensively in math-

ematics and engineering. There are many diverse applications of this constant.

The value of the constant e is approximately 2.1718. . . . Raising e to the power
of x, or ex, is so common that this is called the exponential function. In

MATLAB, as we have seen, there is a function for this, exp.

192 CHAPTER 6 MATLAB Programs
One way to determine the value of e is by finding a limit:

e ¼ lim
n!1 ð1þ 1

n
Þn

As the value of n increases toward infinity, the result of this expression

approaches the value of e.

An approximation for the exponential function can be found using what is
called a Maclaurin series:

ex � 1þ x1

1!
þ x2

2!
þ x3

3!
þ . . .

We will write a progam to investigate the value of e and the exponential func-
tion. It will be menu-driven. The menu options will be:

n Print an explanation of e.
n Prompt the user for a value of n, and then find an approximate value for e

using the expression (1 þ 1/n)n.

n Prompt the user for a value for x. Print the value of exp(x) using the built-in
function. Find anapproximate value for exusing theMaclaurin series just given.

n Exit the program.

The algorithm for the script main program follows:

n Call a function eoption to display the menu and return the user’s choice.

n Loop until the user chooses to exit the program. If the user has not chosen to
exit, the action of the loop is to:

n Depending on the user’s choice, do one of the following:

– Call a function explaine to print an explanation of e.
– Call a function limite that will prompt the user for n and calculate an

approximate value for e.
– Prompt the user for x and call a function expfn that will print both an

approximate value for ex and the value of the built-in exp(x). Note

that because any value for x is acceptable, the program does not need
to error-check this value.

n Call the function eoption to display the menu and return the user’s

choice again.

The algorithm for the eoption function follows:

n Use the menu function to display the four choices.
n Error-check (an error would occur if the user clicks on the “X” on the menu

box rather than pushing one of the four buttons) by looping to display the

menu until the user pushes one of the buttons.
n Return the integer value corresponding to the button push.

1936.3 Application: Menu-Driven Modular Program
The algorithm for the explaine function is:

n Print anexplanationof e, theexp function, andhowto findapproximatevalues.

The algorithm for the limite function is:

n Call a subfunction askforn to prompt the user for an integer n.

n Calculate and print the approximate value of e using n.

The algorithm for the subfunction askforn is:

n Prompt the user for a positive integer for n.

n Loop to print an error message and reprompt until the user enters a positive
integer.

n Return the positive integer n.

The algorithm for the expfn function is:

n Receive the value of x as an input argument.
n Print the value of exp(x).

n Assign an arbitrary value for the number of terms n (an alternative method

would be to prompt the user for this).
n Call a subfunction appex to find an approximate value of exp(x) using a

series with n terms.

n Print this approximate value.

The algorithm for the appex subfunction is:

n Receive x and n as input arguments.

n Initialize a variable for the running sum of the terms in the series (to 1 for

the first term) and for a running product that will be the factorials in the
denominators.

n Loops to add the n terms to the running sum.

n Returns the resulting sum.

The entire program consists of the followingM-file script and fourM-file functions:

eapplication.m

% This script explores e and the exponential function

% Call a function to display a menu and get a choice
choice ¼ eoption;

% Choice 4 is to exit the program
while choice �¼ 4

switch choice
case 1

% Explain e
explaine;

Continued

194 CHAPTER 6 MATLAB Programs
case 2
% Approximate e using a limit
limite;

case 3
% Approximate exp(x) and compare to exp
x ¼ input('Please enter a value for x: ');
expfn(x);

end
% Display menu again and get user's choice
choice ¼ eoption;

end

eoption.m

function choice ¼ eoption
% eoption prints the menu of options and error-checks
% until the user pushes one of the buttons
% Format: eoption or eoption()

choice ¼ menu('Choose an e option', 'Explanation', . . .
'Limit', 'Exponential function', 'Exit Program');

% If the user closes the menu box rather than
% pushing one of the buttons, choice will be 0
while choice ¼¼ 0

disp('Error - please choose one of the options.')
choice ¼ menu('Choose an e option', 'Explanation', . . .

'Limit', 'Exponential function', 'Exit Program');
end
end

explaine.m

function explaine
% explaine explains a little bit about e
% Format: explaine or explaine()

fprintf('The constant e is called the natural')
fprintf(' exponential base.\n')
fprintf('It is used extensively in mathematics and')
fprintf(' engineering.\n')
fprintf('The value of the constant e is � 2.1718\n')
fprintf('Raising e to the power of x is so common that\n')
fprintf('this is called the exponential function.\n')
fprintf('An approximation for e is found using a limit.\n')
fprintf('An approximation for the exponential function\n')
fprintf('can be found using a series.\n')
end

limite.m

function limite
% limite returns an approximate of e using a limit
% Format: limite or limite()

1956.3 Application: Menu-Driven Modular Program
% Call a subfunction to prompt user for n
n ¼ askforn;
fprintf('An approximation of e with n ¼ %d is %.2f\n', . . .

n, (1 þ 1/n) ^ n)
end

function outn ¼ askforn
% askforn prompts the user for n
% Format: askforn or askforn()
% It error-checks to make sure n is a positive integer

inputnum ¼ input('Enter a positive integer for n: ');
num2 ¼ int32(inputnum);
while num2 �¼ inputnum jj num2 < 0
inputnum ¼ input('Invalid! Enter a positive integer: ');
num2 ¼ int32(inputnum);

end
outn ¼ inputnum;
end

expfn.m

function expfn(x)
% expfn compares the built-in function exp(x)
% and a series approximation and prints
% Format: expfn(x)

fprintf('Value of built-in exp(x) is %.2f\n',exp(x))

% n is arbitrary number of terms
n ¼ 10;
fprintf('Approximate exp(x) is %.2f\n', appex(x,n))
end

function outval ¼ appex(x,n)
% appex approximates e to the x power using terms up to
% x to the nth power
% Format: appex(x,n)

% Initialize the running sum in the output argument
% outval to 1 (for the first term)
outval ¼ 1;
% runprod is the factorial in the denominator
runprod ¼ 1;

for i ¼ 1:n
runprod ¼ runprod * i;
outval ¼ outval þ (x^i)/runprod;

end
end

FIGURE 6.1 Menu

Figure Window for

eapplication program

196 CHAPTER 6 MATLAB Programs
Running the script will bring up the menu seen in Figure 6.1.

Then, what happens will depend on which button(s) the user pushes. Every

time the user pushes a button, the appropriate function will be called and
then this menu will appear again. This will continue until the user pushes

the button Exit Program. Examples will be given of running the script, with

different sequences of button pushes.

In the following example, the user:

n Closed the menu window that caused the error message and brought up

a new menu

n Chose Explanation
n Chose Exit Program

>> eapplication
Error - please choose one of the options.
The constant e is called the natural exponential base.
It is used extensively in mathematics and engineering.
The value of the constant e is � 2.1718
Raising e to the power of x is so common that
this is called the exponential function.
An approximation for e is found using a limit.
An approximation for the exponential function
can be found using a series.

In the following example, the user

n Chose Limit

n When prompted for n, entered two invalid values before finally entering
a valid positive integer.

n Chose Exit Program

>> eapplication
Enter a positive integer for n: �4
Invalid! Enter a positive integer: 5.5
Invalid! Enter a positive integer: 10
An approximation of e with n ¼ 10 is 2.59

To see the difference in the approximate value for e as n increases, the user kept
choosing Limit and entering larger and larger values each time in the following

example:

>> eapplication
Enter a positive integer for n: 4
An approximation of e with n ¼ 4 is 2.44
Enter a positive integer for n: 10
An approximation of e with n ¼ 10 is 2.59
Enter a positive integer for n: 30
An approximation of e with n ¼ 30 is 2.67

1976.4 Variable Scope
Enter a positive integer for n: 100
An approximation of e with n ¼ 100 is 2.70

In the following example, the user:

n Chose Exponential function
n When prompted, entered 4.6 for x

n Chose Exponential function again
n When prompted, entered –2.3 for x

n Chose Exit Program
>> eapplication
Please enter a value for x: 4.6
Value of built-in exp(x) is 99.48
Approximate exp(x) is 98.71
Please enter a value for x: �2.3
Value of built-in exp(x) is 0.10
Approximate exp(x) is 0.10

6.4 VARIABLE SCOPE

The scope of any variable is the workspace in which it is valid. The workspace
created in the Command Window is called the base workspace.

As we have seen before if a variable is defined in any function it is a local variable
to that function, which means that it is only known and used within that func-

tion. Local variables only exist while the function is executing; they cease to exist

when the function stops executing. For example, in the following function that
calculates the sum of the elements in a vector, there is a local loop variable i.

mysum.m

function runsum ¼ mysum(vec)
% mysum returns the sum of a vector
% Format: mysum(vector)

runsum ¼ 0;
for i¼1:length(vec)

runsum ¼ runsum þ vec(i);
end
end

Running this function does not add any variables to the base workspace, as
demonstrated in the following:

>> clear
>> who
>> disp(mysum([5 9 1]))

15
>> who
>>

Note

This, however, is very

poor programming

style. It is much better

to pass the vector vec to

a function.

198 CHAPTER 6 MATLAB Programs
In addition, variables that are defined in the Command Window cannot be

used in a function.

However, scripts (as opposed to functions) do interact with the variables that
are defined in the Command Window. For example, the function is changed

to be a script mysumscript.

mysumscript.m

% This script sums a vector
vec ¼ 1:5;
runsum ¼ 0;
for i¼1:length(vec)

runsum ¼ runsum þ vec(i);
end
disp(runsum)

The variables defined in the script do become part of the base workspace:

>> clear
>> who
>> mysumscript

15
>> who
Your variables are:
i runsum vec

Variables that are defined in the CommandWindow can be used in a script, but

cannot be used in a function. For example, the vector vec could be defined in the
Command Window (instead of in the script), but then used in the script:

mysumscriptii.m

% This script sums a vector from the Command Window

runsum ¼ 0;
for i¼1:length(vec)

runsum ¼ runsum þ vec(i);
end

>> clear
>> vec ¼ 1:7;
>> who
Your variables are:
vec

>> mysumscriptii
>> who
Your variables are:
i runsum vec
>> runsum
runsum ¼

28

1996.4 Variable Scope
Because the variables created in scripts and in the CommandWindow both use
the base workspace, many programmers begin scripts with a clear command to

eliminate variables that may have already been created elsewhere (either in the

Command Window or in another script).

Instead of a program consisting of a script that calls other functions to do the

work, in some cases programmers will write a “main function” to call the other

functions. So, the program consists of all functions rather than one script and
the rest functions. The reason for this is again because both scripts and the

Command Window use the base workspace.

It is possible, in MATLAB as well as in other languages, to have global variables

that can be shared by functions without passing them. Although there are some

cases in which using global variables is efficient, it is generally regarded as poor
programming style and therefore will not be explained here.
6.4.1 Persistent variables
Normally, when a function stops executing, the local variables from it are

cleared. That means that every time a function is called, memory is allocated
and used while the function is executing, but released when it ends. With vari-

ables that are declared as persistent variables, however, the value is not cleared

so the next time the function is called, the variable still exists and retains its for-
mer value.

The following program demonstrates this. The script calls a function func1,
which initializes a variable count to 0, then increments it, and then prints the

value. Every time this function is called, the variable is created, initialized to

0, changed to 1, and then cleared when the function exits. The script then calls
a function func2, which first declares a persistent variable count. If the variable

has not yet been initialized, which will be the case the first time the function is

called, it is initialized to 0. Then, like the first function, the variable is incremen-
ted and the value is printed. With the second function, however, the variable

remains with its value when the function exits, so the next time the function

is called the variable is incremented again.

persistex.m

% This script demonstrates persistent variables

% The first function has a variable "count"
fprintf('This is what happens with a "normal" variable:\n')
func1
func1

% The second fn has a persistent variable "count"
fprintf('\nThis is what happens with a persistent variable:\n')
Continued

200 CHAPTER 6 MATLAB Programs
func2
func2

func1.m

function func1
% func1 increments a normal variable "count"
%Format func1 or func1()

count ¼ 0;
count ¼ count þ 1;
fprintf('The value of count is %d\n',count)
end

func2.m

function func2
% func2 increments a persistent variable "count"
% Format func2 or func2()

persistent count
if isempty(count)

count ¼ 0;
end
count ¼ count þ 1;
fprintf('The value of count is %d\n',count)
end

The functions can be called from the script or from the Command Window, as
shown. For example, the functions are called first from the script. With the

persistent variable, the value of count is incremented. Then, func1 is called from

the Command Window, and func2 is also called from the Command Window.
Since the value of the persistent variable was 2, this time it is incremented to 3.

>> persistex
This is what happens with a "normal" variable:
The value of count is 1
The value of count is 1

This is what happens with a persistent variable:
The value of count is 1
The value of count is 2

>> func1
The value of count is 1

>> func2
The value of count is 3

2016.4 Variable Scope
As can be seen from this, every time the function func1 is called, whether

from persistex or from the Command Window, the value of 1 is printed. How-

ever, with func2 the variable count is incremented every time it is called. It is first
called in this example from persistex twice, so the count is 1 and then 2. Then,

when called from the Command Window, it is incremented to 3.

Theway to restart a persistent variable is to use the clear function. The command

>> clear functions

will reinitialize all persistent variables (see help clear for more options).
PRACTICE 6.6

The following function posnum prompts the user to enter a positive number and loops to error-

check. It returns the positive number entered by the user. It calls a subfunction in the loop to

print an error message. The subfunction has a persistent variable to count the number of times

an error has occurred. Here is an example of calling the function:

>> enteredvalue ¼ posnum

Enter a positive number: �5

Error # 1 . . . Follow instructions!

Does �5.00 look like a positive number to you?

Enter a positive number: �33

Error # 2 . . . Follow instructions!

Does �33.00 look like a positive number to you?

Enter a positive number: 6

enteredvalue ¼
6

Fill in the subfunction below to accomplish this.

posnum.m

function num ¼ posnum

% Prompt user and error-check until the

% user enters a positive number

num ¼ input('Enter a positive number: ');

while num < 0

errorsubfn(num)

num ¼ input('Enter a positive number: ');

end

function errorsubfn(num)

Of course, the numbering of the error messages will continue if the function is executed again

without clearing it first.

202 CHAPTER 6 MATLAB Programs
6.5 DEBUGGING TECHNIQUES

Any error in a computer program is called a bug. This term is thought to date

back to the 1940s, when a problem with an early computer was found to have
been caused by amoth in the computer’s circuitry! The process of finding errors

in a program, and correcting them, is still called debugging.

6.5.1 Types of errors
There are several different kinds of errors that can occur in a program, which fall

into the categories of syntax errors, runtime errors, and logical errors.

Syntax errors are mistakes in using the language. Examples of syntax errors are
missing a comma or a quotation mark, or misspelling a word. MATLAB itself

will flag syntax errors and give an error message. For example, the following

string is missing the end quote:

>> mystr ¼ 'how are you;
??? mystr ¼ 'how are you;

j
Error: A MATLAB string constant is not terminated properly.

If this type of error is typed in a script or function using the Editor, the Editor

will flag it.

Another common mistake is to spell a variable name incorrectly; MATLAB will

also catch this error.

>> value ¼ 5;
>> newvalue ¼ valu þ 3;
??? Undefined function or variable 'valu'.

Runtime, or execution-time, errors are found when a script or function is

executing. With most languages, an example of a runtime error would be
attempting to divide by zero. However, inMATLAB, this will generate a warning

message. Another example would be attempting to refer to an element in an

array that does not exist.

runtimeEx.m

% This script shows an execution-time error

vec ¼ 3:5;

for i ¼ 1:4
disp(vec(i))

end

The previous script initializes a vector with three elements, but then attempts to

refer to a fourth. Running it prints the three elements in the vector, and then an

2036.5 Debugging Techniques
error message is generated when it attempts to refer to the fourth element. Note

that the script gives an explanation of the error, and it gives the line number in

the script in which the error occurred.

>> runtimeEx
3
4
5

??? Attempted to access vec(4); index out of bounds because
numel(vec)¼ 3.

Error in ¼¼> runtimeEx at 6
disp(vec(i))

Logical errors aremore difficult to locate, because they do not result in any error
message. A logical error is a mistake in reasoning by the programmer, but it is

not a mistake in the programming language. An example of a logical error

would be dividing by 2.54 instead of multiplying to convert inches to centime-
ters. The results printed or returned would be incorrect, but this might not be

obvious.

All programs should be robust and should wherever possible anticipate poten-
tial errors, and guard against them. For example, whenever there is input into a

program, the program should error-check andmake sure that the input is in the

correct range of values. Also, before dividing, any denominator should be
checked to make sure that it is not zero.

Despite the best precautions, there are bound to be errors in programs.

6.5.2 Tracing
Many times, when a program has loops and/or selection statements and is not
running properly, it is useful in the debugging process to know exactly which

statements have been executed. For example, following is a function that

attempts to display “In middle of range” if the argument passed to it is in
the range 3 to 6, and “Out of range” otherwise.

testifelse.m

function testifelse(x)
% testifelse will test the debugger
% Format: testifelse(Number)

if 3 < x < 6
disp('In middle of range')

else
disp('Out of range')

end
end

204 CHAPTER 6 MATLAB Programs
However, it seems to print “In middle of range” for all values of x:

>> testifelse(4)
In middle of range

>> testifelse(7)
In middle of range

>> testifelse(�2)
In middle of range

One way of following the flow of the function, or tracing it, is to use the echo
function. The echo function, which is a toggle, will display every statement as it

is executed as well as results from the code. For scripts, just echo can be typed,

but for functions, the name of the function must be specified. For example, the
general form is

echo functionname on/off

>> echo testifelse on
>> testifelse(�2)
% This function will test the debugger
if 3 < x < 6

disp('In middle of range')
In middle of range
end

We can see from this result that the action of the if clause was executed.
6.5.3 Editor/Debugger
MATLAB has many useful functions for debugging, and debugging can also be

done through its Editor, which is more properly called the Editor/Debugger.

Typing help debug at the prompt in the CommandWindowwill show some of

the debugging functions. Also, in the Help Browser, clicking on the Search tab

and then typing “debugging” will display basic information about the debug-
ging processes.

It can be seen in the previous example that the action of the if clause was ex-

ecuted and it printed “In middle of range”, but just from that it cannot be de-
termined why this happened. There are several ways to set breakpoints in a file

(script or function) so that the variables or expressions can be examined. These

can be done from the Editor/Debugger, or commands can be typed from the
Command Window. For example, the following dbstop command will set a

breakpoint in the fifth line of this function (which is the action of the if clause),
which allows the values of variables and/or expressions to be examined at that

point in the execution. The function dbcont can be used to continue the

2056.5 Debugging Techniques
execution, and dbquit can be used to quit the debug mode. Note that the

prompt becomes K>> in debug mode.

>> dbstop testifelse 5
>> testifelse(�2)
5 disp('In middle of range')
K>> x
x ¼

�2

K>> 3 < x
ans ¼

0

K>> 3 < x < 6
ans ¼

1

K>> dbcont
In middle of range
end
>>

By typing the expressions 3 < x and then 3 < x < 6, we can determine that the

expression 3 < x will return either 0 or 1. Both 0 and 1 are less than 6, so the
expression will always be true, regardless of the value of x!
6.5.4 Function stubs
Another common debugging technique that is used when there is a script main

program that calls many functions is to use function stubs. A function stub is a
place holder, used so that the script will work even though that particular func-

tion hasn’t been written yet. For example, a programmer might start with a

script main program that consists of calls to three functions that accomplish
all of the tasks.

mainscript.m

% This program gets values for x and y, and
% calculates and prints z

[x, y] ¼ getvals;
z ¼ calcz(x,y);
printall(x,y,z)

The three functions have not yet been written, however, so function stubs are
put in place so that the script can be executed and tested. The function stubs

consist of the proper function headers, followed by a simulation of what the

206 CHAPTER 6 MATLAB Programs
function will eventually do. For example, the first two functions put arbitrary

values in for the output arguments, and the last function prints.

getvals.m

function [x, y] ¼ getvals
x ¼ 33;
y ¼ 11;

calcz.m

function z ¼ calcz(x,y)
z ¼ 2.2;

printall.m

function printall(x,y,z)
disp(x, y, z)

Then, the functions can be written and debugged one at a time. It is much easier
to write a working program using this method than to attempt to write every-

thing at once—then, when errors occur, it is not always easy to determine where

the problem is!
SUMMARY
Common Pitfalls

n Not matching up arguments in a function call with the input arguments in a

function header.

n Not having enough variables in an assignment statement to store all of the

values returned by a function through the output arguments.
n Attempting to call a function that does not return a value from an

assignment statement, or from an output statement.

n Not using the same name for the function and the file in which it is stored.
n Not thoroughly testing functions for all possible inputs and outputs.

n Forgetting that persistent variables are updated every time the function in

which they are declared is called—whether from a script or from the
Command Window.

Programming Style Guidelines
n If a function is calculating one ormore values, return these value(s) from the

function by assigning them to output variable(s).

n Give the function and the file in which it is stored the same name.
n Function headers and function calls must correspond. The number of

arguments passed to a function must be the same as the number of input

arguments in the function header. If the function returns values, the number

207Exercises
of variables in the left side of an assignment statement should match the
number of output arguments returned by the function.

n If arguments are passed to a function in the function call, do not replace

these values by using input in the function itself.
n Functions that calculate and return value(s) will not normally also print

them.

n Functions should not normally be longer than one page in length.
n Do not declare variables in the Command Window and then use them in a

script, or vice versa.

n Pass all values to be used in functions to input arguments in the functions.
n When writing large programs with many functions, start with the main

program script and use function stubs, filling in one function at a time while

debugging.
MATLAB Reserved Words

global persistent
MATLAB Functions and Commands

echo

dbstop

dbcont

dbquit
Exercises
1.Write a function that will receive as an input argument a temperature in degrees

Fahrenheit, and will return the temperature in both degrees Celsius and Kelvin. The

conversion factors are C ¼ (F – 32) * 5/9 and K ¼ C þ 273.15.

2.Write a function that will receive as an input argument a number of kilometers (K).

The function will convert the kilometers to miles and to U.S. nautical miles, and

return both results. The conversions are 1 K¼ 0.621 miles and 1 U.S. nautical mile¼
1.852 K.

3. A vector can be represented by its rectangular coordinates x and y or by its polar

coordinates r and y. For positive values of x and y, the conversions from rectangular

to polar coordinates in the range from 0 to 2 p are r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and y¼ arctan(y/x).

The function for arctan is atan. Write a function recpol to receive as input

arguments the rectangular coordinates and return the corresponding polar

coordinates.

4. A vector can be represented by its rectangular coordinates x and y or by its polar

coordinates r and y. For positive values of x and y, the conversions from rectangular to

polar coordinates in the range from 0 to 2 p are r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and y ¼ arctan(y/x).

208 CHAPTER 6 MATLAB Programs
Write a function to receive as input arguments the rectangular coordinates and

return the corresponding polar coordinates.

5.Write a function to calculate the volume and surface area of a hollow cylinder.

It receives as input arguments the radius of the cylinder base and the height of

the cylinder. The volume is given by p r 2 h, and the surface area is 2 p r h.

6.Write a function that will receive the radius of a circle and will print both the radius

and diameter of the circle in a sentence format. This function will not return any

value; it simply prints.

7.Write a function that will receive as an input argument a length in inches, and will

print in a sentence format the length in both inches and centimeters (1 in.¼ 2.54 cm).

Note that this function will not return any value.

8.Write a function that will receive an integer n and a character as input arguments,

and will print the character n times.

9. Convert the printstars script from Chapter 4 to a function that receives as inputs the

number of rows and columns, and prints a box of asterisks with the specified number

of rows and columns.

10.Convert the multtable function from Chapter 4 to a function that receives as input

arguments the number of rows and columns and prints a multiplication table (rather

than returning the matrix).

11.Write a function that will receive a matrix as an input argument, and prints it in a

table format.

12.Write a function that receives a matrix as an input argument, and prints a random

row from the matrix.

13.Write a function that receives a count as an input argument, and prints the

value of the count in a sentence that would read “It happened 1 time.” if the

value of the count is 1, or “It happened xx times.” if the value of the count (xx) is

greater than 1.

14.Write a function that will print an explanation of temperature conversions. The

function does not receive any input arguments; it simply prints.

15.Write a function that receives an x vector, a minimum value, and a maximum value,

and plots sin(x) from the specified minimum to the specified maximum.

16.Write a function that prompts the user for a value of an integer n, and returns the

value of n. No input arguments are passed to this function.

17.Write a function that prompts the user for a value of an integer n, and returns a vector

of values from 1 to n. The function should error-check to make sure that the user

enters an integer. No input arguments are passed to this function.

18.Write a script that will:

n Call a function to prompt the user for an angle in degrees.

n Call a function to calculate and return the angle in radians. (Note: p
radians ¼ 180�.)

n Call a function to print the result.

Write all of the functions as well. Note that the solution to this problem involves four

M-files: one which acts as a main program (the script), and three for the functions.

209Exercises
19.Modify the program in Exercise 18 so that the function to calculate the angle is a

subfunction to the function that prints.

20.Write a program to calculate and print the area and circumference of a circle. There

should be one script and three functions to accomplish this (one that prompts for the

radius, one that calculates the area and circumference, and one that prints).

21.The lump sum S to be paid when interest on a loan is compounded annually is given

by S ¼ P (1 þ i)n, where P is the principal invested, i is the interest rate, and n is the

number of years. Write a program that will plot the amount S as it increases through

the years from 1 to n. The main script will call a function to prompt the user for the

number of years (and error-check tomake sure that the user enters a positive integer).

The script will then call a function that will plot S for years 1 through n. It will use 0.05

for the interest rate and $10,000 for P.

22.The following script prtftlens loops to:

n Call a function to prompt the user for a length in feet.

n Call a function to convert the length to inches.

n Call a function to print both.

prtftlens.m

for i ¼ 1:3

lenf ¼ lenprompt();

leni ¼ convert_f_to_i(lenf);

printlens(lenf, leni)

end

Write all of the functions.

23.Write a program to write a length conversion chart to a file. It will print lengths in feet,

from 1 to an integer specified by the user, in one column and the corresponding

length in meters (1 foot¼ 0.3048 m) in a second column. The main script will call one

function that prompts the user for the maximum length in feet; this function must

error-check to make sure that the user enters a valid positive integer. The script then

calls a function to write the lengths to a file.

24. For a prism that has as its base an n-sided polygon and height h, the volume V and

surface area A are given by:

V ¼ n

4
hS2 cot

p
n

A ¼ n

2
S2 cot

p
n
þ nSh

where S is the length of the sides of the polygons. Write a script that calls a function
getprism that prompts the user for the number of sides n, the height h, and the length

of the sides S, and returns these three values. It then calls a function calc_v_a that

calculates and returns the volume and surface area, and then finally a function printv_a

that prints the results. The built-in function in MATLAB for cotangent is cot.

25.The resistance R in ohms of a conductor is given by R¼ E

I
where E is the potential in

volts and I is the current in amperes. Write a script that will:

210 CHAPTER 6 MATLAB Programs

Openmirrors.com
n Call a function to prompt the user for the potential and the current.

n Call a function that will print the resistance; this will call a subfunction to

calculate and return the resistance.

Write the functions as well.

26.The power in watts is given by P¼ EI. Modify the program in Exercise 25 to calculate

and print both the resistance and the power. Modify the subfunction so that it

calculates and returns both values.

27.The distance between any two points (x1,y1) and (x2,y2) is given by:

distance ¼
ffi

ðx1 � x2Þ2 þ ðy1 � y2Þ2
q

The area of a triangle is:
area ¼
ffi

s�ðs� aÞ�ðs� bÞ�ðs� cÞ
q

where a, b, and c are the lengths of the sides of the triangle, and s is equal to half the
sum of the lengths of the three sides of the triangle. Write a script that will prompt the

user to enter the coordinates of three points that determine a triangle (e.g., the x and y

coordinates of each point). The script will then calculate and print the area of the

triangle. It will call one function to calculate the area of the triangle. This function will

call a subfunction that calculates the length of the side formed by any two points (the

distance between them).

Satellite navigation systems have become ubiquitous. Navigation systems

based in space such as the global positioning system (GPS) can send data to

handheld personal devices. The coordinate systems that are used to represent

locations present these data in several formats.

28.The geographic coordinate system is used to represent any location on Earth as

a combination of altitude and longitude values. These values are angles that can be

written in the decimal degrees (DD) form or the degrees, minutes, seconds (DMS) form

just like time. For example, 24.5� is equivalent to 24�30’0". Write a script that will prompt

the user for an angle in DD form andwill print in sentence format the same angle in DMS

form. The script should error-check for invalid user input. The angle conversion is to be

done by calling a separate function in the script. An example of running the script is:

>> DMSscript
Enter an angle in decimal degrees form: 24.5588
24.56 degrees is equivalent to 24 degrees, 33 minutes, 31.68
seconds

29.Write a program towrite a temperature conversion chart to a file. Themain script will:

n Call a function that explains what the program will do.

n Call a function to prompt the user for the minimum and maximum temperatures

in degrees Fahrenheit, and return both values. This function checks to make sure

that the minimum is less than the maximum, and calls a subfunction to swap the

values if not.

211Exercises
n Call a function to write temperatures to a file: the temperature in degrees F

from the minimum to the maximum in one column, and the corresponding

temperature in degrees Celsius in another column. The conversion is

C ¼ (F – 32) * 5/9.

30.A bar is a unit of pressure. Polyethylene water pipes are manufactured in pressure

grades, which indicate the amount of pressure in bars that the pipe can support for

water at a standard temperature. The following script printpressures prints some

common pressure grades, as well as the equivalent pressure in atm (atmospheres)

and psi (pounds per square inch). The conversions are:

1 bar ¼ 0.9869 atm ¼ 14.504 psi

The script calls a function to convert from bars to atm and psi, and calls another

function to print the results. You may assume that the bar values are integers.

printpressures.m

% prints common water pipe pressure grades
commonbar ¼ [4 6 10];
for bar ¼ commonbar

[atm, psi] ¼ convertbar(bar);
print_press(bar,atm,psi)

end

31.The following script (called circscript) loops n times to prompt the user for the

circumference of a circle (where n is a random integer). Error-checking is ignored to

focus on functions in this program. For each, it calls one function to calculate the

radius and area of that circle, and then calls another function to print these values.

The formulas are r ¼ c/(2p) and a ¼ pr2 where r is the radius, c is the circumference,

and a is the area. Write the two functions.

circscript.m

n ¼ round(rand*4)þ1;
for i ¼ 1:n

circ ¼ input('Enter the circumference of the circle: ');
[rad area] ¼ radarea(circ);
dispra(rad,area)

end

32.Write a script that will ask the user to choose his or her favorite science class,

and print a message regarding that course. It will call a function to display a menu of

choices (using the menu function); this function will error-check to make sure that

the user pushes one of the buttons. The function will return the number corres-

ponding to the user’s choice. The script will then print a message.

33.Write a menu-driven program to convert a time in seconds to other units (minutes,

hours, and so on). The main script will loop to continue until the user chooses to exit.

Each time in the loop, the script will generate a random time in seconds, call a

function to present a menu of options, and print the converted time. The conversions

212 CHAPTER 6 MATLAB Programs
must be made by individual functions (e.g., one to convert from seconds to minutes).

All user entries must be error-checked.

34.Write a menu-driven program to investigate the constant p. Model it after the

program that explores the constant e. Pi (p) is the ratio of a circle’s circumference to

its diameter. Many mathematicians have found ways to approximate p. For example,

Machin’s formula is

p
4
¼ 4 arctan

1

5

� �

� arctan
1

239

� �

Leibniz found that p can be approximated by:
p ¼ 4

1
� 4

3
þ 4

5
� 4

7
þ 4

9
� 4

11
þ . . .

This is called a sum of a series. There are six terms shown in this series. The first term
is 4, the second term is –4/3, the third term is 4/5, and so forth. For example, the

menu-driven program might have the following options:

n Print the result from Machin’s formula.

n Print the approximation using Leibniz’s formula, allowing the user to specify how

many terms to use.

n Print the approximation using Leibniz’s formula, looping until a “good”

approximation is found.

n Exit the program.

35.Modify the function func2 from Section 6.4.1 that has a persistent variable

count. Instead of having the function print the value of count, the value should

be returned.

36.Write a function per2 that receives one number as an input argument. The function

has a persistent variable that sums the values passed to it. Here are the first two

times the function is called:

>> per2(4)
ans ¼

4

>> per2(6)
ans ¼

10

37.What would be the output from the following program? Think about it, write down

your answer, and then type it in to verify.

testscope.m

answer ¼ 5;
fprintf('Answer is %d\n',answer)
pracfn
pracfn
fprintf('Answer is %d\n',answer)
printstuff
fprintf('Answer is %d\n',answer)

213Exercises
pracfn.m

function pracfn
persistent count
if isempty(count)

count ¼ 0;
end
count ¼ count þ 1;
fprintf('This function has been called %d times.\n',count)

printstuff.m

function printstuff
answer ¼ 33;
fprintf('Answer is %d\n',answer)
pracfn
fprintf('Answer is %d\n',answer)

38.Assume a matrix variable mat, as in the following example:

mat ¼
4 2 4 3 2
1 3 1 0 5
2 4 4 0 2

The following for loop:

[r c] ¼ size(mat);
for i ¼ 1:r
sumprint(mat(i,:))

end

prints this result:

The sum is now 15
The sum is now 25
The sum is now 37

Write the function sumprint.

CHAPTER 7
String Manipulation
CONTENTS
KEY TERMS
7.1 Creating String
Variables215

7.2 Operations on
Strings218
string

substring

control characters

white space characters

leading blanks

trailing blanks

vectors of characters

empty string

string concatenation

delimiter

token
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
7.3 The “Is”
Functions for
Strings234

7.4 Converting
Between String
and Number
Types.............234
A string in the MATLABW software consists of any number of characters

and is contained in single quotes. Actually, strings are vectors in which every

element is a single character, which means that many of the vector opera-
tions and functions that we have already seen work with strings.

MATLAB also has many built-in functions that are specifically written to manip-

ulate strings. In some cases, strings contain numbers, and it is useful to convert
from strings to numbers and vice versa; MATLAB has functions to do this as well.

There are many applications for using strings, even in fields that are pre-
dominantly numerical. For example, when data files consist of combinations

of numbers and characters, it is often necessary to read each line from the

file as a string, break the string into pieces, and convert the parts that
contain numbers to number variables that can be used in computations.

In this chapter the string manipulation techniques necessary for this will

be introduced, and in Chapter 9 applications in file input/output will be
demonstrated.
7.1 CREATING STRING VARIABLES

A string consists of any number of characters (including, possibly, none).

The following are examples of strings:
215

Note

There is a difference

between an empty

string, which has a

length of 0, and a string

consisting of a blank

space, which has a

length of 1.

216 CHAPTER 7 String Manipulation
''
'x'
'cat'
'Hello there'
'123'

A substring is a subset or part of a string. For example, ‘there’ is a substring

within the string ‘Hello there’.

Characters include letters of the alphabet, digits, punctuationmarks, white space,

and control characters. Control characters are characters that cannot be printed,
but accomplish a task (e.g., a backspace or tab). White space characters include

the space, tab, newline (which moves the cursor down to the next line), and car-

riage return (which moves the cursor to the beginning of the current line). Lead-
ing blanks are blank spaces at the beginning of a string, for example, ’ hello’ and

trailing blanks are blank spaces at the end of a string.

There are several ways that string variables can be created. One is using

assignment statements:

>> word ¼ 'cat';

Another method is to read into a string variable. Recall that to read into a string
variable using the input function, the second argument ‘s’ must be included:

>> strvar ¼ input('Enter a string: ', 's')
Enter a string: xyzabc
strvar ¼
xyzabc

If leading or trailing blanks are typed by the user, these will be stored in the string.

For example, in the following the user entered four blanks and then ‘xyz’:

>> s ¼ input('Enter a string: ','s')
Enter a string: xyz
s ¼

xyz
7.1.1 Strings as vectors
Strings are treated as vectors of characters, or in other words, a vector in which

every element is a single character, so many vector operations can be per-
formed. For example, the number of characters in a string can be found using

the length function:

>> length('cat')
ans ¼

3

>> length(' ')
ans ¼

1

Note

Ablank space in a string

is a valid character

within the string.

2177.1 Creating String Variables
>> length('')
ans ¼

0

Expressions can refer to an individual element (a character within the string), or

a subset of a string or a transpose of a string:

>> mystr ¼ 'Hi';
>> mystr(1)
ans ¼
H

>> mystr'
ans ¼
H
i

>> sent ¼ 'Hello there';
>> length(sent)
ans ¼

11
>> sent(4:8)
ans ¼
lo th

A character matrix can be created that consists of strings in every row. This is

created as a column vector of strings, but the end result is that it is a matrix

in which every element is a character:

>> wordmat ¼ ['Hello';'Howdy']
wordmat ¼
Hello
Howdy

>> size(wordmat)
ans ¼

2 5

This created a 2 � 5 matrix of characters.

With a character matrix, we can refer to an individual element, which is

a character, or an individual row, that is one of the strings:

>> wordmat(2,4)
ans ¼
d

>> wordmat(1,:)
ans ¼
Hello

218 CHAPTER 7 String Manipulation
Since rows within a matrix must always be the same length, the shorter

strings must be padded with blanks so that all strings have the same length;

otherwise an error will occur.

>> greetmat ¼ ['Hello '; 'Goodbye']
??? Error using ¼¼> vertcat
CAT arguments dimensions are not consistent.

>> greetmat ¼ ['Hello '; 'Goodbye']
greetmat ¼
Hello
Goodbye
>> size(greetmat)
ans ¼

2 7
PRACTICE 7.1

Prompt the user for a string. Print the length of the string and also the last character in the string.

Make sure that this works regardless of what the user enters.
7.2 OPERATIONS ON STRINGS

MATLAB has many built-in functions that work with strings. Some of the string
manipulation functions that perform the most common operations will be

described here.
7.2.1 Concatenation
String concatenation means to join strings together. Of course, since strings are

just vectors of characters, themethod of concatenating vectors works for strings,
also. For example, to create one long string from two strings, it is possible to

join them by putting them in square brackets:

>> first ¼ 'Bird';
>> last ¼ 'house';
>> [first last]
ans ¼
Birdhouse

The function strcat concatenates horizontally, meaning that it creates one

longer string from the inputs.

>> first ¼ 'Bird';
>> last ¼ 'house';
>> strcat(first,last)
ans ¼
Birdhouse

2197.2 Operations on Strings
There is a difference between these two methods of concatenating, however, if

there are leading or trailing blanks in the strings. The method of using the

square brackets will concatenate the strings, including all leading and trailing
blanks.

>> str1 ¼ 'xxx ';
>> str2 ¼ ' yyy';
>> [str1 str 2]
ans ¼
xxx yyy

>> length(ans)
ans ¼

12

The strcat function, however,will remove trailingblanks (but not leadingblanks)
fromstrings before concatenating.Note that in these examples, the trailingblanks

from str1 are removed, but the leading blanks from str2 are not.

>> strcat(str1,str2)
ans ¼
xxx yyy

>> length(ans)
ans ¼

9

>> strcat(str2,str1)
ans ¼

yyyxxx

>> length(ans)
ans ¼

9

The function strvcatwill concatenate vertically, meaning that it will create a col-

umn vector of strings (or, in other words, a matrix of characters).

>> strvcat(first,last)
ans ¼
Bird
house

>> size(ans)
ans ¼

2 5

Note that strvcatwill pad with extra trailing blanks automatically, in this case to

make both strings have a length of 5.

220 CHAPTER 7 String Manipulation
We have seen already that the char function can be used to convert from an

ASCII code to a character, such as the following example:

>> char(97)
ans ¼
a

The char function can also be used to create a matrix of characters. When using

the char function to create a matrix, it will automatically pad the strings within

the rows with trailing blanks as necessary so that they are all the same length,
just like strvcat.

>> clear greetmat
>> greetmat ¼ char('Hello','Goodbye')
greetmat ¼
Hello
Goodbye

>> size(greetmat)
ans ¼

2 7
PRACTICE 7.2

Create the following string variables:

v1 ¼ 'Mechanical';

v2 ¼ 'Engineering';

Then, get the length of each string. Create a new variable v3, which is a substring of v2 that stores

just ‘Engineer’. Create a matrix consisting of the values of v1 and v2 in separate rows.
7.2.2 Creating customized strings
There are several built-in functions that create customized strings, including
blanks and sprintf.

The blanks function will create a string consisting of n blank characters (which
are kind of hard to see!!). However, in MATLAB, if the mouse is moved to high-

light the result in ans, the blanks can be seen.

>> blanks(4)
ans ¼

>> length(ans)
ans ¼

4

It is usually most useful to use this function when concatenating strings, and a

number of blank spaces is desired in between. For example, this will insert

five blank spaces in between the words:

2217.2 Operations on Strings
>> [first blanks(5) last]
ans ¼
Bird house

Displaying the transpose of the blanks function can also be used to move the
cursor down. In the Command Window, it would look like this:

>> disp(blanks(4)')

>>

This is useful in a script or function to create space in the output, and is essen-

tially equivalent to printing the newline character four times.

The sprintf function works exactly like the fprintf function, but instead of

printing it creates a string. Here are several examples in which the output is

not suppressed so the value of the string variable is shown:

>> sent1 ¼ sprintf('The value of pi is %.2f', pi)
sent1 ¼
The value of pi is 3.14

>> sent2 ¼ sprintf('Some numbers: %5d, %2d', 33, 6)
sent2 ¼
Some numbers: 33, 6

>> length(sent2)
ans ¼

23

In the following example, on the other hand, the output of the assignment is

suppressed so the string is created including a random integer and stored in
the string variable. Then, some exclamation points are concatenated to that

string.

>> phrase ¼ sprintf('A random integer is %d', . . .
round(rand*5þ5));

>> strcat(phrase, '!!!')
ans ¼
A random integer is 7!!!

All of the formatting options that can be used in the fprintf function can also be
used in the sprintf function.
Applications of customized strings: prompts, labels,
arguments to functions
One very useful application of the sprintf function is to include numbers in

strings that are used for plot titles and axis labels. For example, assume that

a file expnoanddata.dat stores an experiment number, followed by the

222 CHAPTER 7 String Manipulation
experiment data. In this case the experiment number is “123,” and then the rest

of the file consists of the actual data.

123 4.4 5.6 2.5 7.2 4.6 5.3

The following script would load these data and plot them with a title that in-
cludes the experiment number.

plotexpno.m

% This script loads a file that stores an experiment number
% followed by the actual data. It plots the data and puts
% the experiment # in the plot title

load expnoanddata.dat
experNo ¼ expnoanddata(1);
data ¼ expnoanddata(2:end);
plot(data,'ko')
xlabel('Sample #')
ylabel('Weight')
title(sprintf('Data from experiment %d', experNo))

The script loads all numbers from the file into a row vector. It then separates the
vector; it stores the first element, which is the experiment number, in a variable

experNo, and the rest of the vector in a variable data (the rest being from

the second element to the end). It then plots the data, using sprintf to create
the title, which includes the experiment number as seen in Figure 7.1.
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Sample #

Data from experiment 123

W
ei

gh
t

FIGURE 7.1 Customized title in plot using sprintf

2237.2 Operations on Strings
PRACTICE 7.3

In a loop, create and print strings with file names file1.dat, file2.dat, and so on for file numbers

1 through 5.
QUICK QUESTION!

How could we use the sprintf function in customizing prompts for the input function?

Answer: For example, if it is desired to have the contents of a string variable printed in a prompt, sprintf can be used:

>> username ¼ input('Please enter your name: ', 's');

Please enter your name: Bart

>> prompt ¼ sprintf('%s, Enter your id #: ',username);

>> id_no ¼ input(prompt)

Bart, Enter your id #: 177

id_no ¼
177

Another way of accomplishing (in a script or function) would be:

fprintf('%s, Enter your id #: ',username);

id_no ¼ input(' ');

Note: The calls to the sprintf and fprintf functions are identical except that the fprintf prints (so there is no need for a prompt in

the input function), whereas the sprintf creates a string that can then be displayed by the input function. In this case using

sprintf seems cleaner than using fprintf and then having an empty string for the prompt in input.
As another example, the following program prompts the user for endpoints

(x1, y1) and (x2, y2) of a line segment, and calculates themidpoint of the line seg-
ment, which is the point (xm, ym). The coordinates of themidpoint are found by:

xm ¼ 1

2
ðx1 þ x2Þ ym ¼ 1

2
ðy1 þ y2Þ

The scriptmidpoint calls a function entercoords to separatelyprompt theuser for the
xandycoordinatesof the twoendpoints, calls a function findmid twice tocalculate

separately the x and y coordinates of themidpoint, and then prints thismidpoint.
When the program is executed, the output looks like this:

>> midpoint
Enter the x coord of the first endpoint: 2
Enter the y coord of the first endpoint: 4
Enter the x coord of the second endpoint: 3
Enter the y coord of the second endpoint: 8
The midpoint is (2.5, 6.0)

224 CHAPTER 7 String Manipulation
In this example, the word ‘first’ or ‘second’ is passed to the entercoords function so

that it can use whichever word is passed in the prompt. Twomethods are shown

to customize this prompt, using sprintf for the prompt and using fprintf and
then an empty prompt (for no reason other than to demonstrate the differences).

midpoint.m

% This program finds the midpoint of a line segment

[x1, y1] ¼ entercoords('first');
[x2, y2] ¼ entercoords('second');

midx ¼ findmid(x1,x2);
midy ¼ findmid(y1,y2);

fprintf('The midpoint is (%.1f, %.1f)\n',midx,midy)

entercoords.m

function [xpt, ypt] ¼ entercoords(word)
% entercoords reads in & returns the coordinates of
% the specified endpoint of a line segment
% Format: entercoords(word) where word is 'first'
% or 'second'

% Two different methods are used to customize the
% prompt to show the difference
fprintf('Enter the x coord of the %s endpoint: ', word)
xpt ¼ input(' ');

prompt ¼ sprintf('Enter the y coord of the %s endpoint: ', . . .
word);

ypt ¼ input(prompt);
end

findmid.m

function mid ¼ findmid(pt1,pt2)
% findmid calculates a coordinate (x or y) of the
% midpoint of a line segment
% Format: findmid(coord1, coord2)

mid ¼ 0.5 * (pt1 þ pt2);
end
7.2.3 Removing white space characters
MATLAB has functions that will remove trailing blanks from the end of a string

and/or leading blanks from the beginning of a string.

The deblank function will remove blank spaces from the end of a string. For

example, if some strings are padded in a charactermatrix so that all are the same

Note

The deblank function

only removes trailing

blanks from a string, not

leading blanks.

2257.2 Operations on Strings
length, it is frequently desired to then remove those extra blank spaces to use

the string in its original form.

>> names ¼ char('Sue', 'Cathy','Xavier')
names ¼
Sue
Cathy
Xavier

>> name1 ¼ names(1,:)
name1 ¼
Sue

>> length(name1)
ans ¼

6

>> name1 ¼ deblank(name1);
>> length(name1)
ans ¼

3

The strtrim function will remove both leading and trailing blanks from a string,

but not blanks in the middle of the string. In the following example, the three
blanks in the beginning and four blanks in the end are removed, but not the

two blanks in the middle. Highlighting the result in the Command Window

with the mouse would show the blank spaces.

>> strvar ¼ [blanks(3) 'xx' blanks(2) 'yy' blanks(4)]
strvar ¼

xx yy
>> length(strvar)
ans ¼

13

>> strtrim(strvar)
ans ¼
xx yy
>> length(ans)
ans ¼

6

7.2.4 Changing case
MATLAB has two functions that convert strings to all uppercase letters, or all

lowercase, called upper and lower.

>> mystring ¼ 'AbCDEfgh';
>> lower(mystring)
ans ¼
abcdefgh

226 CHAPTER 7 String Manipulation
>> upper(ans)
ans ¼
ABCDEFGH
PRACTICE 7.4

Assume that these expressions are typed sequentially in the Command Window. Think about

it, write down what you think the results will be, and then verify your answers by actually typing

them.

wxyzstring ¼ '123456789012345';

longstring ¼ ' abc de f '

length(longstring)

shortstring ¼ strtrim(longstring)

length(shortstring)

upper(shortstring)

news ¼ sprintf('The first part is %s', . . .

shortstring(1:3))
7.2.5 Comparing strings
There are several functions that compare strings and return logical true if

they are equivalent, or logical false if not. The function strcmp compares
strings, character by character. It returns logical true if the strings are

completely identical (which infers that they must be of the same length,

also) or logical false if the strings are not the same length or any corre-
sponding characters are not identical. Note that for strings, these func-

tions are used to determine whether strings are equal to each other or

not, not the equality operator ¼¼. Here are some examples of these
comparisons:

>> word1 ¼ 'cat';
>> word2 ¼ 'car';
>> word3 ¼ 'cathedral';
>> word4 ¼ 'CAR';
>> strcmp(word1,word2)
ans ¼

0

>> strcmp(word1,word3)
ans ¼

0

2277.2 Operations on Strings
>> strcmp(word1,word1)
ans ¼

1

>> strcmp(word2,word4)
ans ¼

0

The function strncmp compares only the first n characters in strings and ignores
the rest. The first two arguments are the strings to compare, and the third argu-

ment is the number of characters to compare (the value of n).

>> strncmp(word1,word3,3)
ans ¼

1

>> strncmp(word1,word3,4)
ans ¼

0

QUICK QUESTION!
How can we compare strings, ignoring whether the characters

in the string are uppercase or lowercase?

Answer: See the following Programming Concept and

Efficient Method.
Note

These functions are
THE PROGRAMMING CONCEPT
used in MATLAB to test
strings for equality, not
Ignoring thecasewhencomparing strings canbedonebychangingall characters in the strings to

either upper- or lowercase; for example, in MATLAB using the upper or lower function:
the ¼¼ operator.

>> strcmp(upper(word2),upper(word4))

ans ¼
1

THE EFFICIENT METHOD
The function strcmpi compares the strings but ignores the case of the characters.
>> strcmpi(word2,word4)

ans ¼
1

There is also a function strncmpi that compares n characters, ignoring the case.

228 CHAPTER 7 String Manipulation
7.2.6 Finding, replacing, and separating strings
There are functions that find and replace strings, or parts of strings, within other

strings and functions that separate strings into substrings.

The function findstr receives two strings as input arguments. It finds all occur-

rences of the shorter string within the longer, and returns the subscripts of the

beginning of the occurrences. The order of the strings does not matter with
findstr; it will always find the shorter string within the longer, whichever that

is. The shorter string can consist of one character, or any number of characters.

If there is more than one occurrence of the shorter string within the longer one,
findstr returns a vector with all indices. Note that what is returned is the index

of the beginning of the shorter string.

>> findstr('abcde', 'd')
ans ¼

4

>> findstr('d','abcde')
ans ¼

4

>> findstr('abcde', 'bc')
ans ¼

2

>> findstr('abcdeabcdedd', 'd')
ans ¼

4 9 11 12

The function strfind does essentially the same thing, except that the order of the
arguments does make a difference. The general form is strfind(string, sub-

string); it finds all occurrences of the substring within the string, and returns

the subscripts.

>> strfind('abcdeabcde','e')
ans ¼

5 10

For both strfind and findstr, if there are no occurrences, the empty vector is
returned.

>> strfind('abcdeabcde','ef')
ans ¼

[]

QUICK QUESTION!

How can you find how many blanks there are in a string (e.g.,

‘how are you’)?

Answer: The strfind function will return an index for every

occurrence of a substringwithin a string, so the result is a vector

of indices. The length of this vector of indices would be the

number of occurrences. For example, the following finds the

number of blank spaces in the variable phrase:

>> phrase¼ 'Hello, and how are you doing?';

>> length(strfind(phrase,' '))

ans ¼
5

If it is desired to get rid of any leading and trailing blanks first (in

case there are any), the strtrim function would be used first.

>> phrase ¼ ' Well, hello there! ';

>> length(strfind(strtrim(phrase),' '))

ans ¼
2

2297.2 Operations on Strings
Let’s expand this, and write a script that creates a vector of strings that are

phrases. The output is not suppressed so that the strings can be seen when
the script is executed. It loops through this vector and passes each string to a

function countblanks. This function counts the number of blank spaces in the

string, not including any leading or trailing blanks.

phraseblanks.m

% This script creates a column vector of phrases
% It loops to call a function to count the number
% of blanks in each one and prints that

phrasemat ¼ char('Hello and how are you?', . . .
'Hi there everyone!', 'How is it going?', 'Whazzup?')

[r c] ¼ size(phrasemat);

for i ¼ 1:r
% Pass each row (each string) to countblanks function
howmany ¼ countblanks(phrasemat(i,:));
fprintf('Phrase %d had %d blanks\n',i,howmany)

end

countblanks.m

function num ¼ countblanks(phrase)
% countblanks returns the # of blanks in a trimmed string
% Format: countblanks(string)

num ¼ length(strfind(strtrim(phrase), ' '));
end

230 CHAPTER 7 String Manipulation
For example, running this script would result in:

>> phraseblanks
phrasemat ¼
Hello and how are you?
Hi there everyone!
How is it going?
Whazzup?

Phrase 1 had 4 blanks
Phrase 2 had 2 blanks
Phrase 3 had 3 blanks
Phrase 4 had 0 blanks

The function strrep finds all occurrences of a substring within a string, and repla-
ces themwith a new substring. The order of the arguments matters. The format is

strrep(string, oldsubstring, newsubstring)

The following example replaces all occurrences of the substring ‘e’ with the sub-
string ‘x’:

>> strrep('abcdeabcde','e','x')
ans ¼
abcdxabcdx

All strings can be any length, and the lengths of the old and new substrings

do not have to be the same.

In addition to the string functions that find and replace, there is a function
that separates a string into two substrings. The strtok function breaks a

string into two pieces; it can be called several ways. The function receives

one string as an input argument. It looks for the first delimiter, which is a
character or set of characters that act as a separator within the string.

By default, the delimiter is any white space character. The function returns a token
that is thebeginningofthestring,upto(butnot including) thefirstdelimiter. Italso

returns the rest of the string, which includes the delimiter. Assigning the returned

values to a vector of two variables will capture both of these. The format is

[token rest] ¼ strtok(string)

where token and rest are variable names. For example,

>> sentence1 ¼ 'Hello there';
>> [word rest] ¼ strtok(sentence1)
word ¼
Hello
rest ¼
there

>> length(word)
ans ¼

5

2317.2 Operations on Strings
>
a

Not

By d
the

iters

[

retu

tain
ing

>
w
H
r
l

Lead

a sp

>
f
m

l

QUICK QUESTION!

What do you think strtok returns if the delimiter is not in the

string?

Answer: The first result returned will be the entire string, and

the second will be the empty string.

>> [first rest] ¼ strtok('ABCDE')

first ¼
ABCDE

rest ¼
Empty string: 1-by-0
PR

Thin

then
> length(rest)
ns ¼

6

e that the rest of the string includes the blank space delimiter.

efault, the delimiter for the token is a white space character (meaning that
token is defined as everything up to the blank space), but alternate delim-

can be defined. The format

token rest] ¼ strtok(string, delimeters)

rns a token that is the beginning of the string, up to the first character con-

ed within the delimiters string, and also the rest of the string. In the follow-
example, the delimiter is the character ‘l’.

> [word rest] ¼ strtok(sentence1,'l')
ord ¼
e
est ¼
lo there

ing delimiter characters are ignored, whether it is the default white space or

ecified delimiter. For example, the leading blanks are ignored here:

> [firstpart lastpart] ¼ strtok(' materials science')
irstpart ¼
aterials

astpart ¼
science
ACTICE 7.5

k about what would be returned by the following sequence of expressions and statements, and

type them into MATLAB to verify your results.

strcmp('hello', 'height')

strncmp('hello', 'height',2)

QUICK QUESTION!

The function date returns the cu

Feb-2011). How could we write

month, and year as separate out

separatedat

function [t

% separated

% month, and

% Format: se

[todayday r

[todaymo to

todayyr ¼ t

end

Since we need to separate the str

to use the strtok function twice

separated into ‘07’ and ‘-Feb-20

second string is separated in

strtok. (Since leading delimiters

found as the delimiter in ‘-Feb

remove the ‘-’ from the string ‘

just indexing from the second

string.

An example of calling this funct

>> [d m y] ¼ separateda

d ¼
07

m ¼
Feb

y ¼
2011

232 CHAPTER 7 String Manipulation
strncmpi('yes', 'YES', 1)

name ¼ 'Smith, Carly';

ind ¼ findstr(name,',')

first ¼ name(1:ind-1)

last ¼ name(indþ2:end)

[f rest] ¼ strtok(name, ',')

l ¼ rest(3:end)
rrent date as a string (e.g., 07-

a function to return the day,

put arguments?

Answer: We could use strrep to replace the ‘-’ characters with

blanks,and thenusestrtokwith theblankas thedefault delimiter

to break up the string (twice), or more simply we could just use

strtok and specify the ‘-’ character as the delimiter.

e.m

odayday, todaymo, todayyr] ¼ separatedate

ate separates the current date into day,

year

paratedate or separatedate()

est] ¼ strtok(date,'-');

dayyr] ¼ strtok(rest,'-');

odayyr(2:end);

ing into three parts, we need

. The first time the string is

11’ using strtok. Then, the

to ‘Feb’ and ‘-2011’ using

are ignored the second ‘-’ is

-2011’.) Finally, we need to

-2011’; this can be done by

character to the end of the

ion follows:

te

Note: No input arguments are passed to the separatedate

function; instead, the date function returns the current date

as a string. Also, note that all three output arguments are

strings.

1 1.5 2 2.5 3 3.5 4
2

3

4

5

6

7

8

FIGURE 7.2 Plot type passed to the eval function

2337.2 Operations on Strings

Openmirrors.com
7.2.7 Evaluating a string
The function eval is used to evaluate a string.

If the string contains a call to a function, then
that function call is executed. For example, in

the following, the string ‘plot(x)’ is evaluated

to be a call to the plot function, and it pro-
duces the plot shown in Figure 7.2.

>> x ¼ [2 6 8 3];
>> eval('plot(x)')

This would be useful if the user entered the

name of the type of plot to use. In this ex-

ample, the user chooses the type of plot to
use for some quiz grades. The string that

the user enters (in this case, ’bar’) is

concatenated with the string ‘(x)’ to create
the string ‘bar(x)’; this is then evaluated

as a call to the bar function as seen in

Figure 7.3. The name of the plot type is also
used in the title.
>> x ¼ [9 7 10 9];
>> whatplot ¼ input('What type of plot?: ', 's');
9

10
bar
What type of plot?: bar
>> eval([whatplot '(x)'])
>> title(whatplot)
>> xlabel('Student #')
>> ylabel('Quiz Grade')
4

5

6

7

8

Q
ui

z
G

ra
de
PRACTICE 7.6

Create an x vector. Prompt the user for ‘sin’,

‘cos’, or ‘tan’ and create a string with that

function of x (e.g., ‘sin(x)’ or ‘cos(x)’). Use

eval to create a y vector using the specified

function.
1 2 3 4
0

1

2

3

Student #
FIGURE 7.3 Plot type entered by the user

234 CHAPTER 7 String Manipulation
7.3 THE “IS” FUNCTIONS FOR STRINGS

There are several “is” functions for strings, which return logical true or false.

The function isletter returns logical true for every character in a string if the
character is a letter of the alphabet. The function isspace returns logical true

if the character is a white space character. If strings are passed to these functions,

they will return logical true or false for every element, or in other words, every
character.

>> isletter('EK127')
ans ¼

1 1 0 0 0

>> isspace('a b')
ans ¼

0 1 0

The ischar function will return logical true if the vector argument is a character

vector (in other words, a string), or logical false if not.

>> vec ¼ 'EK127';
>> ischar(vec)
ans ¼

1

>> vec ¼ 3:5;
>> ischar(vec)
ans ¼

0

7.4 CONVERTING BETWEEN STRING
AND NUMBER TYPES

MATLAB has several functions that convert numbers to strings in which each

character element is a separate digit and vice versa.

To convert numbers to strings, MATLAB has the functions int2str for in-

tegers and num2str for real numbers (which also works with integers).

The function int2str would convert, for example, the integer 4 to the
string 4.

>> num ¼ 38;
num ¼

38

>> s1 ¼ int2str(num)
s1 ¼
38
>> length(num)
ans ¼

1

Note

These are different from

the functions such as

char and double that

convert characters to

ASCII equivalents and

vice versa.

2357.4 Converting Between String and Number Types
>> length(s1)
ans ¼

2

The variable num is a scalar that stores one number, whereas s1 is a string that

stores two characters, 3 and 8. Even though the result of the first two assign-

ments is “38,” note that the indentation in the Command Window is different
for the number and the string.

The num2str function, which converts real numbers, can be called in several
ways. If only the real number is passed to the num2str function, it will create

a string that has four decimal places, which is the default in MATLAB for

displaying real numbers. The precision can also be specified (which is the num-
ber of digits), and format strings can also be passed, as shown in the following:

>> str2 ¼ num2str(3.456789)
str2 ¼
3.4568

>> length(str2)
ans ¼

6

>> str3 ¼ num2str(3.456789,3)
str3 ¼
3.46

>> str ¼ num2str(3.456789,'%6.2f')
str ¼
3.46

Note that in the last example, MATLAB removed the leading blanks from the

string.

The function str2num does the reverse; it takes a string in which a number is

stored and converts it to the type double:

>> num ¼ str2num('123.456')
num ¼
123.4560

If there is a string in which there are numbers separated by blanks, the str2num

function will convert this to a vector of numbers (of the default type double).

For example,

>> mystr ¼ '66 2 111';
>> numvec ¼ str2num(mystr)
numvec ¼

66 2 111

QUICK QUESTION!

Let’s say that we have a strin

followed by either d for degrees

it may be a string entered by the

degrad¼ input('Enteran

Enter angle and d/r: 54

How could we separate the st

character, and then get the sin

sin or sind, as appropriate (sin fo

Answer: First, we could separat

>> angle ¼ degrad(1:en

angle ¼

236 CHAPTER 7 String Manipulation
>> sum(numvec)
ans ¼

179
PRACTICE 7.7

Think about what would be returned by the following sequence of expressions and statements, and

then type them into MATLAB to verify your results.

isletter('?')

isspace('Oh no!')

str ¼ '12 33';

ischar(str)

v ¼ str2num(str)

ischar(v)

sum(v)

num ¼ 234;

size(num)

snum ¼ int2str(num);

size(snum)
g that consists of an angle

or r for radians. For example,

user:

gleand d/r:','s');

r

ring into the angle and the

e of that angle using either

r radians or sind for degrees)?

e this string into its two parts:

d-1)

54

>> dorr ¼ degrad(end)

dorr ¼
r

Then, using an if-else statement, we would decide whether to

use the sin or sind function, based on the value of the variable

dorr. Let’s assume that the value is ‘r’ so we want to use sin.

The variable angle is a string so the following would not work:

>> sin(angle)

??? Function 'sin' is not defined for values

of class 'char'.

>>

QUICK QUESTION!—CONT’D

Instead, we could either use str2num to convert the string

to a number, or use concatenation to create a string ‘sin(54)’

(or whatever the value of the variable angle is) and pass that

to the eval function:

>> eval(['sin(' angle ')'])

ans ¼

-0.5588

>> sin(str2num(angle))

ans ¼
-0.5588

Acomplete script to accomplish this is shown in the box of code.

angleDorR.m

% Prompt the user for angle and 'd' for degrees

% or 'r' for radians; print the sine of the angle

% Read in the response as a string and then

% separate the angle and character

degrad ¼ input('Enter angle and d/r: ', 's');

angle ¼ degrad(1:end-1);

dorr ¼ degrad(end);

% Error-check to make sure that user enters 'd' or 'r'

while dorr �¼ 'd' && dorr �¼ 'r'

disp('Error! Enter d or r with the angle.')

degrad ¼ input('Enter angle and d/r: ', 's');

angle ¼ degrad(1:end-1);

dorr ¼ degrad(end);

end

% Convert angle to number

anglenum ¼ str2num(angle);

fprintf('The sine of %.1f ', anglenum)

% Choose sin or sind function

if dorr ¼¼ 'd'

fprintf('degrees is %.3f.\n', sind(anglenum))

else

fprintf('radians is %.3f.\n', sin(anglenum))

end

>> angleDorR

Enter angle and d/r: 3.1r

The sine of 3.1 radians is 0.042.

>> angleDorR

Enter angle and d/r: 53t

Error! Enter d or r with the angle.

Enter angle and d/r: 53d

The sine of 53.0 degrees is 0.799.

2377.4 Converting Between String and Number Types

238 CHAPTER 7 String Manipulation
SUMMARY
Common Pitfalls

n Putting arguments to strfind in incorrect order (the order matters for
strfind but not for findstr).
n Confusing sprintf and fprintf. The syntax is the same, but sprintf creates a

string whereas fprintf prints.

n Trying to create a vector of strings with varying lengths (the easiest way is
to use strvcat or char, which will pad with extra blanks automatically).

n Forgetting that when using strtok, the second argument returned (the “rest”

of the string) contains the delimiter.
n When breaking a string into pieces, forgetting to convert the numbers in the

strings to actual numbers that can then be used in calculations.

Programming Style Guidelines
n Trim trailing blanks from strings stored in matrices before using.
n Make sure that the correct string comparison function is used; for example,

use strcmpi if ignoring case is desired.

MATLAB Functions and Commands

strcat

strvcat

blanks

sprintf

deblank

strtrim

upper

lower

strcmp

strncmp

strcmpi

strncmpi

findstr

strfind

strtok

strrep

date

eval

isspace

ischar

int2str

num2str

str2num
Exercises
1.Write a function that will receive a name and department as separate strings and will

create and return a code consisting of the first two letters of the name and the last

two letters of the department. The code should be uppercase letters. For example,

>> namedept('Robert','Mechanical')
ans ¼
ROAL

2.Write a function that will generate two random integers, each in the range from

10 to 30. It will then return a string consisting of the two integers joined

together, for example, if the random integers are 11 and 29, the string that is returned

will be ‘1129’.

3.Write a function ranlowlet that will return a random lowercase letter of the alphabet.

Do not build in the ASCII equivalents of any characters; rather, use built-in functions

to determine them (e.g., you may know that the ASCII equivalent of ‘a’ is 97, but do

239Exercises
not use 97 in your function; use a built-in function that would return that value

instead).

>> let ¼ ranlowlet
let ¼
a

>> fprintf('The random letter is %c\n', ranlowlet)
The random letter is y

4.Write a function that will prompt the user separately for a first and last name and will

create and return a string with the form ‘last, first’.

5.Write a function that will prompt the user separately for a filename and extension and

will create and return a string with the form ‘filename.ext’.

6.Write a script that will, in a loop, prompt the user for four course numbers. Eachwill be

a string of length 5 of the form ‘CS101’. These strings are to be stored in a character

matrix.

7. The following script calls a function getstr that prompts the user for a string, error-

checking until the user enters something (the error would occur if the user just hits

the Enter key without any other characters first). The script then prints the length of

the string. Write the getstr function.

thestring ¼ getstr();
fprintf('Thank you, your string is %d characters long\n', . . .

length(thestring))

8.Write a function that will receive one input argument, which is an integer n. The

function will prompt the user for a number in the range from 1 to n (the actual

value of n should be printed in the prompt) and return the user’s input. The

function should error-check to make sure that the user’s input is in the correct

range.

9.Write a script that will create x and y vectors. Then, it will ask the user for a color

(red, blue, or green) and for a plot style (circle or star). It will then create a string pstr

that contains the color and plot style, so that the call to the plot function would be

plot(x,y,pstr). For example, if the user enters “blue” and star (*), the variable pstr

would contain ‘b*’.

10.Write a script that will generate a random integer, ask the user for a field width,

and print the random integer with the specified field width. The script will use

sprintf to create a string such as ‘The # is %4d\n’ (if, for example, the user

entered 4 for the field width), which is then passed to the fprintf function. To

print (or create a string using sprintf) either the % or \ character, there must be

two of them in a row.

11.What does the blanks function return when a 0 is passed to it? A negative number?

Write a function myblanks that does exactly the same thing as the blanks function.

Here are some examples of calling it:

>> fprintf('Here is the result:%s!\n', myblanks(0))

240 CHAPTER 7 String Manipulation
Here is the result:!

>> fprintf('Here is the result:%s!\n', myblanks(7))
Here is the result: !

12.Write a function that will receive two strings as input arguments, and will return a

character matrix with the two strings in separate rows. Rather than using the char

function to accomplish this, the function should pad with extra blanks as necessary

and create the matrix using square brackets.

13.The functions that label the x and y axes and title on a plot expect string arguments.

These arguments can be string variables. Write a script that will prompt the user for

an integer n, create an x vector with integer values from 1 to n, a y vector that is x^2,

and then plot with a title that says “x^2 with n values” where the number is actually

in the title.

14. Load files named file1.dat, file2.dat, and so on in a loop. To test this, create just two

files with these names in your Current Folder first.

15.Write a function that will receive two input arguments: a character matrix that is a

column vector of strings, and a string. It will loop to look for the string within the

character matrix. The function will return the row number in which the string is

found if it is in the character matrix, or the empty vector if not.

16. If the strings passed to strfind or findstr are the same length, what are the only two

possible results that could be returned?

17.Either in a script or in the Command Window, create a string variable that stores a

string in which numbers are separated by the character ‘x’, such as ‘12x3x45x2’.

Create a vector of the numbers, and then get the sum (e.g., for the example given it

would be 62 but the solution should be general).

18.Assembly language instructions frequently are in the form of a word that

represents the operator and then the operands separated by a comma. For

example, the string ‘ADD n,m’ is an instruction to add n þ m. Write a function

called assembly_add that will receive a string in this form and will return the sum

of n þ m. For example,

>> assembly_add('ADD 10,11')
ans ¼

21

Cryptography, or encryption, is the process of converting plaintext (e.g., a

sentence or paragraph) into something that should be unintelligible, called the

ciphertext. The reverse process is code-breaking, or cryptanalysis, which relies on

searching the encrypted message for weaknesses and deciphering it from that point.

Modern security systems are heavily reliant on these processes.

19. In cryptography, the intended message sometimes consists of the first letter of every

word in a string. Write a function called crypt that will receive a string with the

encrypted message and return the message.

241Exercises
>> estring ¼ 'The early songbird tweets';
>> m ¼ crypt(estring)
m ¼
Test

20.Using the functions char and double, one can shift words. For example, one

can convert from lowercase to uppercase by subtracting 32 from the character codes:

>> orig ¼ 'ape';

>> new ¼ char(double(orig)�32)

new ¼
APE

>> char(double(new)þ32)

ans ¼
ape

We’ve “encrypted” a string by altering the character codes. Figure out the original

string. Try adding and subtracting different values (do this in a loop) until you

decipher it:

Jmkyvihmxsyx$}ixC

21.Write a function rid_multiple_blanks that will receive a string as an input argument.

The string contains a sentence that hasmultiple blank spaces in between some of the

words. The function will return the string with only one blank in between words. For

example,

>> mystr ¼ 'Hello and how are you?';
>> rid_multiple_blanks(mystr)
ans ¼
Hello and how are you?

22.Words in a sentence variable (just a string variable) called mysent are separated

by right slashes (/) instead of blank spaces. For example, mysent might have this

value:

'This/is/not/quite/right'

Write a function slashtoblank that will receive a string in this form and will return a

string in which the words are separated by blank spaces. This should be general and

work regardless of the value of the argument. No loops are allowed in this function;

the built-in string function(s) must be used.

>> mysent ¼ 'This/is/not/quite/right';
>> newsent ¼ slashtoblank(mysent)
newsent ¼
This is not quite right

242 CHAPTER 7 String Manipulation
23.Create the following two variables:

>> var1 ¼ 123;
>> var2 ¼ '123';

Then, add 1 to each of the variables. What is the difference?

24.A file name is supposed to be in the form filename.ext. Write a function that will

determine whether a string is in the form of a name followed by a dot followed by a

three-character extension, or not. The function should return 1 for logical true if it is

in that form, or 0 for false if not.

25.The built-in clock function returns a vector with six elements representing the

year, month, day, hours, minutes, and seconds. The first five elements are

integers whereas the last is a double value, but calling it with fix will convert

all to integers. The built-in date function returns the day, month, and year as a

string. For example,

>> fix(clock)
ans ¼

2011 4 25 14 25 49

>> date
ans ¼
25�Apr�2011

Write a script that will call both of these built-in functions, and then compare results to

make sure that the year is the same. The script will have to convert one from a string to

a number, or the other from a number to a string to compare.

26. Find out how to pass a vector of integers to int2str or real numbers to num2str.

27.Write a function wordscramble that will receive a word in a string as an input

argument. It will then randomly scramble the letters and return the result. The

following are examples of calling the function:

>> wordscramble('fantastic')
ans ¼
safntcait

>> sc ¼ wordscramble('hello')
sc ¼
hleol

28.Two variables store strings that consist of a letter of the alphabet, a blank space, and a

number (in the form ‘R 14.3’). Write a script that would initialize two such variables.

Then, use string manipulating functions to extract the numbers from the strings and

add them together.

29.Write a script that will first initialize a string variable that will store x and y

coordinates of a point in the form ‘x 3.1 y 6.4’. Then, use string manipulating

functions to extract the coordinates and plot them.

243Exercises
30.Modify the script in Exercise 29 to be more general: the string could store the

coordinates in any order; for example, it could store ‘y 6.4 x 3.1’.

31.Write a script that will be a temperature converter. The script prompts the user for

a temperature in degrees Fahrenheit, and then uses the menu function to let the

user choose whether to convert that temperature to degrees Celsius or degrees

Kelvin. The user’s temperature should be in the title of the menu. The script

will then print the converted temperature. The conversions are C ¼ (F � 32) * 5/9

and K ¼ C þ 273.15.

32.Write a function called readthem that prompts the user for a string consisting of

a number immediately followed by a letter of the alphabet. The function error-

checks to make sure that the first part of the string is actually a number, and to

make sure that the last character is actually a letter of the alphabet. The function

returns the number and letter as separate output arguments. Note: If a string ‘S’ is

not a number, str2num(S) returns the empty vector. An example of calling the

function follows:

>> [num let] ¼ readthem
Please enter a number immediately followed
by a letter of the alphabet
Enter a # and a letter: 3.3&
Error! Enter a # and a letter: xyz4.5t
Error! Enter a # and a letter: 3.21f

num ¼
3.2100

let ¼
f

33.Assume that you have the following function and that it has not yet

been called.

strfunc.m
function strfunc(instr)
persistent mystr
if isempty(mystr)

mystr ¼ ' ';
end
mystr ¼ strcat(instr,mystr);
fprintf('The string is %s\n',mystr)
end

What would be the result of the following sequential expressions?

strfunc('hi')

strfunc('hello')

244 CHAPTER 7 String Manipulation
34.Explain in words what the following function accomplishes (not step by step, but

what the end result is).

function out ¼ dostr(inp)
persistent str
[w r] ¼ strtok(inp);
str ¼ strcat(str,w);
out ¼ str;
end

35.Write the beautyofmath script described in Chapter 4, Exercise 19, as a string

problem.

CHAPTER 8
Data Structures: Cell Arrays
and Structures
CONTENTS
KEY WORDS
8.1. Cell
Arrays..........246

8.2. Structures..252
data structures

cell array

structures

fields

database

record

content indexing

cell indexing

comma-separated list

vector of structures

nested structure
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Data structures are variables that store more than one value. For it to make

sense to store more than one value in a variable, the values should somehow

be logically related. There are many different kinds of data structures. We have
already been working with one kind, arrays (e.g., vectors and matrices). An ar-

ray is a data structure in which all of the values are logically related in that they

are of the same type, and represent in some sense “the same thing.” So far, that
has been true for the vectors andmatrices that we have used. We use vectors and

matrices whenwewant to be able to loop through them (or essentially have this

done for us using vectorized code).

A cell array is a kind of data structure that stores values of different types.

Cell arrays can be vectors or matrices; the different values are referred to as

the elements of the array. One very common use of a cell array is to store
strings of different lengths. Cell arrays actually store pointers to the

stored data.

Structures are data structures that group together values that are logically re-

lated, but are not the same thing and not necessarily the same type. The differ-

ent values are stored in separate fields of the structure.
245

246 CHAPTER 8 Data Structures: Cell Arrays and Structures
One use of structures is to set up a database of information. For example, a pro-

fessor might want to store for every student in a class the student’s name, uni-

versity ID number, grades on all assignments and quizzes, and so forth. In
many programming languages and database programs, the terminology is that

within a database file, there would be one record of information for each stu-

dent; each separate piece of information (name, quiz 1 score, and so on) would
be called a field of the record. In the MATLABW software these records are called

structs.

Both cell arrays and structures can be used to store values that are different types
in a single variable. The main difference between them is that cell arrays are

indexed, and can therefore be used with loops or vectorized code. Structures,

on the other hand, are not indexed; the values are referenced using the names
of the fields, which can be more mnemonic than indexing.
8.1 CELL ARRAYS

One type of data structure that MATLAB has but is not found inmany program-

ming languages is a cell array. A cell array in MATLAB is an array, but unlike the
vectors and matrices we have used so far, elements in cell arrays are cells that

can store different types of values.
8.1.1 Creating cell arrays
There are several ways to create cell arrays. For example, we will create a cell
array in which one element will store an integer, one element will store a char-

acter, one element will store a vector, and one element will store a string. Just

like with the arrays we have seen so far, this could be a 1� 4 row vector, a 4� 1
column vector, or a 2� 2matrix. The syntax for creating vectors and matrices is

the same as before. Values within rows are separated by spaces or commas, and

rows are separated by semicolons. However, for cell arrays, curly braces are used
rather than square brackets. For example, the following creates a row vector cell

array with the four types of values:

>> cellrowvec ¼ {23, 'a', 1:2:9, 'hello'}
cellrowvec ¼

[23] 'a' [1 x 5 double] 'hello'

To create a columnvector cell array, the values are instead separatedby semicolons:

>> cellcolvec ¼ {23; 'a'; 1:2:9; 'hello'}
cellcolvec ¼

[23]
'a'
[1 x 5 double]
'hello'

2478.1 Cell Arrays
This method creates a 2 � 2 cell array matrix:

>> cellmat ¼ {23 'a'; 1:2:9 'hello'}
cellmat ¼

[23] 'a'
[1 x 5 double] 'hello'

Another method of creating a cell array is to simply assign values to specific

array elements and build it up element by element. However, as explained
before, extending an array element by element is a very inefficient and

time-consuming method.

It is much more efficient, if the size is known ahead of time, to preallocate the

array. For cell arrays, this is done with the cell function. For example, to pre-

allocate a variable mycellmat to be a 2 � 2 cell array, the cell function would
be called as follows:

>> mycellmat ¼ cell(2,2)
mycellmat ¼

[] []
[] []

Note that this is a function call, so the arguments to the function are in paren-

theses; a matrix is created in which all of the elements are empty vectors. Then,
each element can be replaced by the desired value. How to refer to each element

to accomplish this will be explained next.
8.1.2 Referring to and displaying cell array
elements and attributes
Just like with the other vectors we have seen so far, we can refer to individual ele-
ments of cell arrays. However, with cell arrays, there are two different ways to do

this. The elements in cell arrays are cells. These cells can contain different types of

values. With cell arrays, you can refer to the cells, or to the contents of the cells.

Using curly braces for the subscripts will reference the contents of a cell; this is

called content indexing. For example, this refers to the contents of the second
element of the cell array cellrowvec; ans will have the type char:

> cellrowvec{2}
ans ¼
a

Row and column subscripts are used to refer to the contents of an element in a
matrix (again using curly braces):

>> cellmat{1,1}
ans ¼

23

248 CHAPTER 8 Data Structures: Cell Arrays and Structures
Values can be assigned to cell array elements. For example, after preallocating

the variable mycellmat in the previous section, the elements can be initialized:

>> mycellmat{1,1} ¼ 23
mycellmat ¼

[23] []
[] []

Using parentheses for the subscripts references the cells; this is called as cell

indexing. For example, this refers to the second cell in the cell array cellrowvec;

ans will be a 1 � 1 cell array:

>> cellcolvec(2)
ans ¼

'a'

When an element of a cell array is itself a data structure, only the type of the

element is displayed when the cells are shown. For example, in the previous cell

arrays, the vector is shown just as “1� 5 double” (this is a high-level view of the
cell array). This is what will be displayed with cell indexing; content indexing

would display its contents:

>> cellmat(2,1)
ans ¼

[1 x 5 double]

>> cellmat{2,1}
ans ¼

1 3 5 7 9

Since this element is a vector, parentheses are used to refer to its elements. For

example, the fourth element of the previous vector is:

>> cellmat{2,1}(4)
ans ¼
7

Note that the index into the cell array is given in curly braces, and then paren-
theses are used to refer to an element of the vector.

One can also refer to subsets of cell arrays, such as in the following:

>> cellcolvec{2:3}
ans ¼
a

ans ¼
1 3 5 7 9

Note, however, that MATLAB stored cellcolvec{2} in the default variable ans, and
then replaced that with the value of cellcolvec{3}. Using content indexing returns

2498.1 Cell Arrays
them as a comma-separated list. However, they could be stored in two separate

variables by having a vector of variables on the left side of an assignment:

>> [c1 c2] ¼ cellcolvec{2:3}
c1 ¼
a

c2 ¼
1 3 5 7 9

Using cell indexing, the two cells would be put in a new cell array (in this case,
in ans):

>> cellcolvec(2:3)
ans ¼

'a'
[1 x 5 double]

There are several methods for displaying cell arrays. The celldisp function dis-

plays the contents of all elements of the cell array:

>> celldisp(cellrowvec)
cellrowvec {1} ¼

23

cellrowvec {2} ¼
a

cellrowvec {3} ¼
1 3 5 7 9

cellrowvec {4} ¼
hello

The function cellplot puts a graphical display of the cell array into a
Figure Window; however, it is a high-level view and basically just displays the

same information as typing the name of the variable (so, for instance, it would

not show the contents of the vector in the previous example). In other words, it
shows the cells, not their contents.

Many of the functions and operations on arrays that we have already seen

also work with cell arrays. For example, here are some related to dimensioning:

>> length(cellrowvec)
ans ¼

4

>> size(cellcolvec)
ans ¼

4 1

250 CHAPTER 8 Data Structures: Cell Arrays and Structures
>> cellrowvec{end}
ans ¼
hello

To delete an element from a vector cell array, use cell indexing:

>> cellrowvec
mycell ¼

[23] 'a' [1 x 5 double] 'hello'

>> length(cellrowvec)
ans ¼

4

>> cellrowvec(2) ¼ []
cellrowvec ¼

[23] [1 x 5 double] 'hello'

>> length(cellrowvec)
ans ¼

3

For a matrix, an entire row or column can be deleted using cell indexing:

>> cellmat
mycellmat ¼

[23] 'a'
[1 x 5 double] 'hello'

>> cellmat(1,:) ¼ []
mycellmat ¼

[1 x 5 double] 'hello'

8.1.3 Storing strings in cell arrays
One good application of a cell array is to store strings of different lengths. Since

cell arrays can store different types of values in the elements, that means strings
of different lengths can be stored in the elements.

>> names ¼ {'Sue', 'Cathy', 'Xavier'}
names ¼

'Sue' 'Cathy' 'Xavier'

This is extremely useful, because unlike vectors of strings created using char or
strvcat, these strings do not have extra trailing blanks. The length of each string

can be displayed using a for loop to loop through the elements of the cell array:

2518.1 Cell Arrays
>> for i ¼ 1:length(names)
disp(length(names{i}))

end
3

5

6

It is possible to convert from a cell array of strings to a character array, and vice
versa. MATLAB has several functions that facilitate this. For example, the func-

tion cellstr converts from a character array padded with blanks to a cell array in

which the trailing blanks have been removed.

>> greetmat ¼ char('Hello','Goodbye');

>> cellgreets ¼ cellstr(greetmat)
cellgreets ¼

'Hello'
'Goodbye'

The char function can convert from a cell array to a character matrix:

>> names ¼ {'Sue', 'Cathy', 'Xavier'};
>> cnames ¼ char(names)
cnames ¼

Sue
Cathy
Xavier

>> size(cnames)
ans ¼

3 6

The function iscellstr will return logical true if a cell array is a cell array of all
strings, or logical false if not.

>> iscellstr(names)
ans ¼

1

>> iscellstr(cellcolvec)
ans ¼

0

We will see several examples of cell arrays containing strings of varying lengths
in later chapters, including advanced file input functions and customizing

plots.

Note

Some programmers

use names that

begin with an

uppercase letter for

structure variables

(e.g., Package) to

make them easily

distinguishable.

252 CHAPTER 8 Data Structures: Cell Arrays and Structures
PRACTICE 8.1

Write an expression that would display a random element from a cell array (without assuming that

the number of elements in the cell array is known). Create two different cell arrays and try the

expression on them to make sure that it is correct.

For more practice, write a function that will receive one cell array as an input argument and will

display a random element from it.
8.2 STRUCTURES

Structures are data structures that group values together that are logically related

in fields of the structure. An advantage of structures is that the fields are named,

which helps to make it clear what values are stored in the structure. However,
structure variables are not arrays. They do not have elements that are indexed,

so it is not possible to loop through the values in a structure.

8.2.1 Creating and modifying structure variables
Creating structure variables can be accomplished by simply storing values in
fields using assignment statements, or by using the struct function.

In our first example, assume that the local Computer Super Mart wants to store
information on the software packages that it sells. For each one, they will store

the following:

n item number

n cost to the store

n price to the customer
n character code indicating the type of software

An individual structure variable for a given software packagemight look like this:
package
item_no
 cost
 price
 code
123
 19.99
 39.95
 g
The name of the structure variable is package; it has four fields: item_no, cost,

price, and code.

One way to initialize a structure variable is to use the struct function, which pre-

allocates thestructure.Thenamesof the fieldsarepassedasstrings;each is followed
by the value for that field (so, pairs of field names and values are passed to struct).

>> package ¼ struct('item_no',123,'cost',19.99,. . .
'price',39.95,'code','g')

package ¼
item_no: 123

2538.2 Structures
cost: 19.9900
price: 39.9500
code: 'g'

Note that in the Workspace Window, the variable package is listed as a 1�1

struct. MATLAB, since it is written to work with arrays, assumes the array for-

mat. Just like a single number is treated as a 1 � 1 double, a single structure
is treated as a 1 � 1 struct. Later in this chapter we will see how to work more

generally with vectors of structs.

An alternative method of creating this structure, which is not as efficient, in-

volves using the dot operator to refer to fields within the structure. The name

of the structure variable is followed by a dot, or period, and then the name
of the field within that structure. Assignment statements can be used to assign

values to the fields.

>> package.item_no ¼ 123;
>> package.cost ¼ 19.99;
>> package.price ¼ 39.95;
>> package.code ¼ 'g';

By using the dot operator in the first assignment statement, a structure variable
is created with the field item_no. The next three assignment statements add

more fields to the structure variable. Again, extending the structure in this man-

ner is not as efficient as using struct.

Adding a field to a structure later is accomplished as shown here, by using an

assignment statement.

An entire structure variable can be assigned to another. This would make sense,

for example, if the two structures had some values in common. Here, for exam-
ple, the values from one structure are copied into another and then two fields

are selectively changed.

>> newpack ¼ package;
>> newpack.item_no ¼ 111;
>> newpack.price ¼ 34.95
newpack ¼

item_no: 111
cost: 19.9900

price: 34.9500
code: 'g'

To print from a structure, the disp function will display either the entire struc-

ture or an individual field.

>> disp(package)
item_no: 123

cost: 19.9900
price: 39.9500
code: 'g'

254 CHAPTER 8 Data Structures: Cell Arrays and Structures

Openmirrors.com
>> disp(package.cost)
19.9900

However, when using fprintf only individual fields can be printed; the entire

structure cannot be printed.

>> fprintf('%d %c\n', package.item_no, package.code)
123 g

The function rmfield removes a field from a structure. It returns a new structure

with the field removed, but does not modify the original structure (unless the

returned structure is assigned to that variable). For example, the following
would remove the code field from the newpack structure, but store the resulting

structure in the default variable ans. The value of newpack remains unchanged.

>> rmfield(newpack, 'code')
ans ¼

item_no: 111
cost: 19.9900

price: 34.9500

>> newpack
newpack ¼
item_no: 111

cost: 19.9000
price: 34.9500
code: 'g'

To change the value of newpack, the structure that results from calling rmfield

must be assigned to newpack.

>> newpack ¼ rmfield(newpack, 'code')
newpack ¼

item_no: 111
cost: 19.9000

price: 34.9500
PRACTICE 8.2

A silicon wafer manufacturer stores, for every part in its inventory, a part number, quantity in the

factory, and the cost for each.

onepart

part_no quantity costper

123 4 33
Create this structure variable using struct. Print the cost in the form $xx.xx.

2558.2 Structures
8.2.2 Passing structures to functions
An entire structure can be passed to a function, or individual fields can

be passed. For example, here are two different versions of a function that calcu-
lates the profit on a software package. The profit is defined as the price minus

the cost.

In the first version, the entire structure variable is passed to the function, so the
function must use the dot operator to refer to the price and cost fields of the

input argument.

calcprof.m
function profit ¼ calcprof(packstruct)
% calcprofit calculates the profit for a
% software package
% Format: calcprof(structure w/ price & cost fields)

profit ¼ packstruct.price - packstruct.cost;
end
>> calcprof(package)
ans ¼

19.9600

In the second version, just the price and cost fields are passed to the function
using the dot operator in the function call. These are passed to two scalar input

arguments in the function header, so there is no reference to a structure variable

in the function itself, and the dot operator is not needed in the function.

calcprof2.m
function profit ¼ calcprof2(oneprice, onecost)
% Calculates the profit for a software package
% Format: calcprof2(price, cost)

profit ¼ oneprice - onecost;
end
>> calcprof2(package.price, package.cost)
ans ¼

19.9600

It is important, as always with functions, to make sure that the arguments in
the function call correspond one-to-one with the input arguments in the func-

tion header. In the case of calcprof, a structure variable is passed to an input

argument, which is a structure. For the second function calcprof2, two individ-
ual fields, which are double values, are passed to two double input

arguments.

QUICK QUESTION

How can we ask the user for

print its value or an error if it

Answer: The isfield functio

whether it is a field of the str

inputfi

if isfi

fp

else

fprin

end

that would produce this outp

was initialized as shown prev

256 CHAPTER 8 Data Structures: Cell Arrays and Structures
8.2.3 Related structure functions
There are several functions that can be used with structures in MATLAB.

The function isstruct will return logical 1 for true if the variable argument is
a structure variable, or 0 if not. The isfield function returns logical true if a field-

name (as a string) is a field in the structure argument, or logical false if not.

>> isstruct(package)
ans ¼

1

>> isfield(package,'cost')
ans ¼

1

The fieldnames function will return the names of the fields that are contained

in a structure variable.

>> pack_fields ¼ fieldnames(package)
pack_fields ¼

'item_no'
'cost'
'price'
'code'

Since the names of the fields are of varying lengths, the fieldnames function

returns a cell array with the names of the fields.

Curly braces are used to refer to the elements, since pack_fields is a cell array. For
example, we can refer to the length of one of the field names:

>> length(pack_fields{2})
ans ¼
4

!

a field in a structure and either

is not actually a field?

n can be used to determine

ucture. Then, by concatenating

that field name to the structure variable and dot, and then

passing the entire string to eval, the expression would be

evaluated as the actual field in the structure. The following is

the code

eld ¼ input('Which field would you like to see: ','s');

eld(package, inputfield)

rintf('The value of the %s field is: %c\n', . . .

inputfield, eval(['package.' inputfield]))

tf('Error: %s is not a valid field\n', inputfield)

ut (assuming the package variable

iously):

Which field would you like to see: code

The value of the code field is: g

2578.2 Structures
PRACTICE 8.3

Modify the code from the preceding Quick Question to use sprintf rather than eval.
8.2.4 Vectors of structures
In many applications, including database applications, information would
normally be stored in a vector of structures, rather than in individual structure

variables. For example, if the Computer SuperMart is storing information on all

of the software packages that it sells. It would likely be in a vector of structures
such as the following:
packages
item_no
 cost
 price
 code
1
 123
 19.99
 39.95
 g
2
 456
 5.99
 49.99
 l
3
 587
 11.11
 33.33
 w
In this example, packages is a vector that has three elements. It is shown as a

column vector. Each element is a structure consisting of four fields: item_no,

cost, price, and code. It may look like a matrix, which has rows and columns,
but it is instead a vector of structures.

This vector of structures can be created several ways. One method is to create a
structure variable, as shown earlier, to store information on one software

package.

This can then be expanded to be a vector of structures.

>> packages ¼ struct('item_no',123,'cost',19.99,. . .
'price',39.95,'code','g');

>> packages(2) ¼ struct('item_no',456,'cost', 5.99,. . .
'price',49.99,'code','l');

>> packages(3) ¼ struct('item_no',587,'cost',11.11,. . .
'price',33.33,'code','w');

The first assignment statement shown here creates the first structure in the struc-
ture vector, the next one creates the second structure, and so on. This actually

creates a 1 � 3 row vector.

258 CHAPTER 8 Data Structures: Cell Arrays and Structures
Alternatively, the first structure could be treated as a vector to begin with; for

example,

>> packages(1) ¼ struct('item_no',123,'cost',19.99,. . .
'price',39.95,'code','g');

>> packages(2) ¼ struct('item_no',456,'cost', 5.99,. . .
'price',49.99,'code','l');

>> packages(3) ¼ struct('item_no',587,'cost',11.11,. . .
'price',33.33,'code','w');

Both of these methods, however, involve extending the vector. As we have al-

ready seen, preallocating any vector inMATLAB ismore efficient than extending

it. There are several methods of preallocating the vector. By starting with the last
element, MATLAB would create a vector with that many elements. Then, the

elements from 1 through end-1 could be initialized. For example, for a vector

of structures that has three elements, start with the third element.

>> packages(3) ¼ struct('item_no',587,'cost',11.11,. . .
'price',33.33,'code','w');

>> packages(1) ¼ struct('item_no',123,'cost',19.99,. . .
'price',39.95,'code','g');

>> packages(2) ¼ struct('item_no',456,'cost', 5.99,. . .
'price',49.99,'code','l');

Another method is to create one element with the values from one structure,
and use repmat to replicate it to the desired size. The remaining elements

can then be modified. The following creates one structure and then replicates

this into a 1 � 3 matrix.

>> packages ¼ repmat(struct('item_no',123,'cost',19.99,. . .
'price',39.95,'code','g'),1,3);

>> packages(2) ¼ struct('item_no',456,'cost', 5.99,. . .
'price',49.99,'code','l');

>> packages(3) ¼ struct('item_no',587,'cost',11.11,. . .
'price',33.33,'code','w');

Typing the name of the variable will display only the size of the structure vector
and the names of the fields:

>> packages
packages ¼
1 x 3 struct array with fields:

item_no
cost
price
code

The variable packages is now a vector of structures, so each element in the

vector is a structure. To display one element in the vector (one structure), an

2598.2 Structures
index into the vector would be specified. For example, to refer to the second

element:

>> packages(2)
ans ¼

item_no: 456
cost: 5.9900

price: 49.9900
code: 'l'

To refer to a field, it is necessary to refer to the particular structure, and then the

field within it. Thismeans using an index into the vector to refer to the structure,

and then the dot operator to refer to a field. For example:

>> packages(1).code
ans ¼
g

Thus, there are essentially three levels to this data structure. The variable
packages is the highest level, which is a vector of structures. Each of its ele-

ments is an individual structure. The fields within these individual structures

are the lowest level. The following loop displays each element in the packages
vector.

>> for i ¼ 1:length(packages)
disp(packages(i))

end

item_no:123
cost: 19.9900

price: 39.9500
code: 'g'

item_no:456
cost: 5.9900

price: 49.9900
code: 'l'

item_no:587
cost: 11.1100

price: 33.3300
code: 'w'

To refer to a particular field for all structures, in most programming languages it

would be necessary to loop through all elements in the vector and use the dot

operator to refer to the field for each element. However, this is not the case in
MATLAB.

260 CHAPTER 8 Data Structures: Cell Arrays and Structures
THE PROGRAMMING CONCEPT
For example, to print all of the costs, a for loop could be used:
>> for i¼1:3
fprintf('%f\n',packages(i).cost)

end
19.990000
5.990000
11.110000
THE EFFICIENT METHOD
However, fprintf would do this automatically in MATLAB:
>> fprintf('%f\n',packages.cost)
19.990000
5.990000
11.110000
Using the dot operator in this manner to refer to all values of a field would re-
sult in the values being stored successively in the default variable ans since this

method results in a comma-separated list:

>> packages.cost
ans ¼

19.9900

ans ¼
5.9900

ans ¼
11.1100

However, the values can all be stored in a vector:

>> pc ¼ [packages.cost]
pc ¼

19.9900 5.9900 11.1100

Using this method, MATLAB allows the use of functions on all of the same

fields within a vector of structures. For example, to sum all three cost fields,
the vector of cost fields is passed to the sum function:

>> sum([packages.cost])
ans ¼

37.0900

2618.2 Structures
For vectors of structures, the entire vector (e.g., packages) could be passed to a

function, or just one element (e.g., packages(1)), which would be a structure, or

a field within one of the structures (e.g., packages(2).price).

The following is an example of a function that receives the entire vector of struc-

tures as an input argument, and prints all of it in a nice table format.

printpackages.m
function printpackages(packstruct)
% printpackages prints a table showing all
% values from a vector of 'packages' structures
% Format: printpackages(package structure)

fprintf('\nItem # Cost Price Code\n\n')
no_packs ¼ length(packstruct);
for i ¼ 1:no_packs

fprintf('%6d %6.2f %6.2f %3c\n', . . .
packstruct(i).item_no, . . .
packstruct(i).cost, . . .
packstruct(i).price, . . .
packstruct(i).code)

end
end
The function loops through all of the elements of the vector, each of which is a

structure, and uses the dot operator to refer to and print each field. An example

of calling the function follows:

>> printpackages(packages)

Item # Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 l
587 11.11 33.33 w
PRACTICE 8.4

A siliconwafermanufacturer stores, for every part in their inventory, a part number, howmany are in

the factory, and the cost for each. First, create a vector of structs called parts so that when displayed

it has the following values:

>> parts

parts ¼
1 x 3 struct array with fields:

partno

quantity

costper

>> parts(1)

ans ¼

262 CHAPTER 8 Data Structures: Cell Arrays and Structures
partno: 123

quantity: 4

costper: 33

>> parts(2)

ans ¼
partno: 142

quantity: 1

costper: 150

>> parts(3)

ans ¼
partno: 106

quantity: 20

costper: 7.5000

Next, write general code that will, for any values and any number of structures in the variable parts,

print the part number and the total cost (quantity of the parts multiplied by the cost of each) in a

column format.

For example, if the variable parts stores the previous values, the result would be:

123 132.00

142 150.00

106 150.00
The previous example involved a vector of structs. In the next example, a some-
what more complicated data structure will be introduced: a vector of structs in

which some fields are vectors themselves. The example is a database of infor-

mation that a professor might store for her class. This will be implemented
as a vector of structures. The vector will store all of the class information.

Every element in the vector will be a structure, representing all information
about one particular student. For every student, the professor wants to store

(for now, this would be expanded later):

n name (a string)

n university ID number

n quiz scores (a vector of four quiz scores)

The vector variable, called student, might look like the following:

student
name
 id_no

quiz
1
 2
 3
 4
1
 C, Joe
 999
 10.0
 9.5
 0.0
 10.0
2
 Hernandez, Pete
 784
 10.0
 10.0
 9.0
 10.0
3
 Brownnose, Violet
 332
 7.5
 6.0
 8.5
 7.5

2638.2 Structures
Each element in the vector is a struct with three fields (name, id_no, quiz). The
quiz field is a vector of quiz grades. The name field is a string.

This data structure could be defined as follows:

>> student(3) ¼ struct('name','Brownnose, Violet',. . .
'id_no',332,'quiz', [7.5 6 8.5 7.5]);

>> student(1) ¼ struct('name','C, Joe',. . .
'id_no',999,'quiz', [10 9.5 0 10]);

>> student(2) ¼ struct('name','Hernandez, Pete',. . .
'id_no',784,'quiz', [10 10 9 10]);

Once the data structure has been initialized, in MATLAB we could refer to dif-

ferent parts of it. The variable student is the entire array; MATLAB just shows the
names of the fields.

>> student
student ¼
1 x 3 struct array with fields:

name
id_no
quiz

To see the actual values, one would have to refer to individual structures and/or

fields.

>> student(1)
ans ¼

name: 'C, Joe'
id_no: 999
quiz: [10 9.5000 0 10]

>> student(1).quiz
ans ¼

10.0000 9.5000 0 10.0000

>> student(1).quiz(2)
ans ¼

9.5000

>> student(3).name(1)
ans ¼
B

With a more complicated data structure like this, it is important to be able to
understand different parts of the variable. The following are examples of expres-

sions that refer to different parts of this data structure:

n student is the entire data structure, which is a vector of structs

n student(1) is an element from the vector, which is an individual struct
n student(1).quiz is the quiz field from the structure, which is a vector of

doubles

264 CHAPTER 8 Data Structures: Cell Arrays and Structures
n student(1).quiz(2) is an individual double quiz grade

n student(3).name(1) is the first letter of the third student’s name

One example of using this data structure would be to calculate and print the

quiz average for each student. The following function accomplishes this. The

student structure, as defined before, is passed to this function. The algorithm
in the function follows:

n Print column headings
n Loop through the individual students. For each,

n Sum the quiz grades

n Calculate the average
n Print the student’s name and quiz average

With the programming method, a second (nested) loop would be required to

find the running sum of the quiz grades. However, as we have seen, the sum
function can be used to sum the vector of all quiz grades for each student.

The function is defined as follows:

printAves.m
function printAves(student)
% This function prints the average quiz grade
% for each student in the vector of structs

fprintf('%-20s %-10s\n', 'Name', 'Average')
for i ¼ 1:length(student)

qsum ¼ sum([student(i).quiz]);
no_quizzes ¼ length(student(i).quiz);
ave ¼ qsum / no_quizzes;
fprintf('%-20s %.1f\n', student(i).name, ave);

end
Here is an example of calling the function:

>> printAves(student)
Name Average
C, Joe 7.4
Hernandez, Pete 9.8
Brownnose, Violet 7.4
8.2.5 Nested structures
A nested structure is a structure in which at least one member is itself a struc-
ture. For example, a structure for a line segment might consist of fields

representing the two points at the ends of the line segment. Each of these

points would be represented as a structure consisting of the x and y
coordinates.

2658.2 Structures
lineseg
endpoint1
 endpoint2
x
 y
 x
 y
2
 4
 1
 6
This shows a structure variable called lineseg that has two fields, endpoint1 and

endpoint2. Each of these is a structure consisting of two fields, x and y.

One method of defining this is to nest calls to the struct function:

>> lineseg ¼ struct('endpoint1',struct('x',2,'y',4), . . .
'endpoint2',struct('x',1,'y',6))

This method is the most efficient.

Another method would be to create structure variables first for the points, and
then use these for the fields in the struct function (instead of using another

struct function).

>> pointone ¼ struct('x', 5, 'y', 11);
>> pointtwo ¼ struct('x', 7, 'y', 9);
>> lineseg ¼ struct('endpoint1', pointone,. . .

'endpoint2', pointtwo);

A third method, the least efficient, would be to build the nested structure one

field at a time. Since this is a nested structure with one structure inside of another,

the dot operator must be used twice here to get to the actual x and y coordinates.

>> lineseg.endpoint1.x ¼ 2;
>> lineseg.endpoint1.y ¼ 4;
>> lineseg.endpoint2.x ¼ 1;
>> lineseg.endpoint2.y ¼ 6;

Once the nested structure has been created, we can refer to different parts of the

variable lineseg. Just typing the name of the variable shows only that it is a struc-

ture consisting of two fields, endpoint1 and endpoint2, each of which is a structure.

>> lineseg
lineseg ¼

endpoint1: [1 x 1 struct]
endpoint2: [1 x 1 struct]

Typing the name of one of the nested structures will display the field names and

values within that structure:

>> lineseg.endpoint1
ans ¼

x: 2
y: 4

QUICK QUESTION

How could we write a functi

‘(x,y)’ containing the x and

might be called separately

endpoints and then printed a

>> fprintf('The lin

strpoint(lineseg.

strpoint(lineseg.

The line segment cons

Answer: Since an endpoint

to an input argument in the f

operator is used within the fu

the x and y coordinates. The

is used to create the string th

266 CHAPTER 8 Data Structures: Cell Arrays and Structures
Using the dot operator twice will refer to an individual coordinate, such as in

the following example:

>> lineseg.endpoint1.x
ans ¼

2

!

on strpoint that returns a string

y coordinates? For example, it

to create strings for the two

s shown here:

e segment consists of %s and %s\n',. . .

endpoint1), . . .

endpoint2))

ists of (2, 4) and (1, 6)

structure is passed

unction, the dot

nction to refer to

sprintf function

at is returned.

strpoint.m

function ptstr ¼ strpoint(ptstruct)

% strpoint receives a struct containing x and y

% coordinates and returns a string '(x,y)'

% Format: strpoint(structure with x and y fields)

ptstr ¼ sprintf('(%d, %d)', ptstruct.x, ptstruct.y);

end
8.2.6 Vectors of nested structures
Combining vectors and nested structures, it is possible to have a vector of struc-

tures in which some fields are structures themselves. Here is an example in

which a company manufactures cylinders from different materials for indus-
trial use. Information on them is stored in a data structure in a program.

The variable cyls is a vector of structures, each of which has fields code, dimen-

sions, and weight. The dimensions field is a structure itself consisting of fields rad
and height for the radius and height of each cylinder.
cyls
dimensions
code
 rad
 height
 weight
1
 x
 3
 6
 7
2
 a
 4
 2
 5
3
 c
 3
 6
 9

2678.2 Structures
The following is an example of initializing this data structure by preallocating:

>> cyls(3) ¼ struct('code', 'c', 'dimensions',. . .
struct('rad', 3, 'height', 6), 'weight', 9);

>> cyls(1) ¼ struct('code', 'x', 'dimensions',. . .
struct('rad', 3, 'height', 6), 'weight', 7);

>> cyls(2) ¼ struct('code', 'a', 'dimensions',. . .
struct('rad', 4, 'height', 2), 'weight', 5);

Alternatively, it could be initialized by using the dot operator (which is not as
efficient):

>> cyls(3).code ¼ 'c';
>> cyls(3).dimensions.rad ¼ 3;
>> cyls(3).dimensions.height ¼ 6;
>> cyls(3).weight ¼ 9;
>> cyls(1).code ¼ 'x';
>> cyls(1).dimensions.rad ¼ 3;
>> cyls(1).dimensions.height ¼ 6;
>> cyls(1).weight ¼ 7;
>> cyls(2).code ¼ 'a';
>> cyls(2).dimensions.rad ¼ 4;
>> cyls(2).dimensions.height ¼ 2;
>> cyls(2).weight ¼ 5;

There are several layers in this variable. For example,

n cyls is the entire data structure, which is a vector of structs
n cyls(1) is an individual element from the vector, which is a struct

n cyls(2).code is the code field from the struct cyls(2); it is a character

n cyls(3).dimensions is the dimensions field from the struct cyls(3);
it is a struct itself

n cyls(1).dimensions.rad is the rad field that is from the struct cyls(1).

dimensions; it is a double number

For these cylinders, one desired calculation may be the volume of each cylin-

der, which is defined as p * r2 * h,where r is the radius and h is the height. The
following function printcylvols prints the volume of each cylinder, along with

its code for identification purposes. It calls a subfunction to calculate each

volume.

printcylvols.m
function printcylvols(cyls)
% printcylvols prints the volumes of each cylinder
% in a specialized structure
% Format: printcylvols(cylinder structure)
Continued

268 CHAPTER 8 Data Structures: Cell Arrays and Structures
% It calls a subfunction to calculate each volume

for i ¼ 1:length(cyls)
vol ¼ cylvol(cyls(i).dimensions);
fprintf('Cylinder %c has a volume of %.1f in^3\n', . . .

cyls(i).code, vol);
end
end

function cvol ¼ cylvol(dims)
% cylvol calculates the volume of a cylinder
% Format: cylvol(dimensions struct w/ fields 'rad',
% 'height')

cvol ¼ pi * dims.rad ^ 2 * dims.height;
end

The following is an example of calling this function:

>> printcylvols(cyls)
Cylinder x has a volume of 169.6 in^3
Cylinder a has a volume of 100.5 in^3
Cylinder c has a volume of 169.6 in^3

Note that the entire data structure, cyls, is passed to the function. The function
loops through every element, each of which is a structure. It prints the code field

for each, which is given by cyls(i).code. To calculate the volume of each cylinder,

only the radius and height are needed, so rather than passing the entire struc-
ture to the subfunction cylvol (which would be cyls(i)), only the dimensions field

is passed (cyls(i).dimensions). The function then receives the dimensions struc-

ture as an input argument, and uses the dot operator to refer to the rad and
height fields within it.
PRACTICE 8.5

Modify the function cylvol to calculate the surface area of the cylinder in addition to the volume.
SUMMARY
Common Pitfalls
n Confusing the use of parentheses (cell indexing) versus curly braces (con-

tent indexing) for a cell array
n Forgetting to index into a vector using parentheses or referring to a field of a

structure using the dot operator

269Exercises
Programming Style Guidelines

n Use arrays when values are the same type and represent in some sense the

same thing.

n Use cell arrays or structures when the values are logically related but not the

same type nor the same thing.
n Use cell arrays rather than character matrices when storing strings of different

lengths.

n Use cell arrays rather than structures when it is desired to loop through the
values or to vectorize the code.

n Use structures rather than cell arrays when it is desired to use names for the

different values rather than indices.
MATLAB Functions and Commands

cell

celldisp

cellplot

cellstr

iscellstr

struct

rmfield

isstruct

isfield

fieldnames
MATLAB Operators

cell arrays { }

dot operator for structs .
Exercises

1. Create a cell array that stores phrases, such as:

exclaimcell ¼ {'Bravo', 'Fantastic job'};

Pick a random phrase to print.

2. Create the following cell array:

>> ca ¼ {'abc', 11, 3:2:9, zeros(2)}

Use the reshape function to make it a 2 � 2 matrix. Then, write an expression that

would refer to just the last column of this cell array.

3. Create a 2� 2 cell array by using the cell function to preallocate and then put values

in the individual elements. Then, insert a row in the middle so that the cell array is

now 3 � 2.

4. Create three cell array variables that store people’s names, verbs, and nouns. For

example:

names ¼ {'Harry', 'Xavier', 'Sue'};
verbs ¼ {'loves', 'eats'};
nouns ¼ {'baseballs', 'rocks', 'sushi'};

Note

This is just a structure

exercise; MATLAB can

handle complex

numbers automatically

as will be seen in

Chapter 15.

270 CHAPTER 8 Data Structures: Cell Arrays and Structures
Write a script that will initialize these cell arrays, and then print sentences using one
random element from each cell array (e.g., ‘Xavier eats sushi’).

5.Write a script that will prompt the user for strings and read them in, store them in a

cell array (in a loop), and then print them out.

6. Create a row vector cell array to store the string ‘xyz’, the number 33.3, the vector 2:6,

and the logical expression ‘a’ < ‘c’. Use the transpose operator to make this a

column vector, and use reshape to make it a 2� 2matrix. Use celldisp to display all

elements.

7.Write a function convstrs that will receive a cell array of strings and a character ‘u’

or ‘l’. If the character is ‘u’, it will return a new cell array with all of the strings in

uppercase. If the character is ‘l’, it will return a new cell array with all of the strings

in lowercase. If the character is neither ‘u’ nor ‘l’, or if the cell array does not

contain all strings, the cell array that is returned will be identical to the input cell

array.

8.Write a function buildstr that will receive a character and a positive integer n.

It will create and return a cell array with strings of increasing lengths, from 1 to

the integer n. It will build the strings with successive characters in the ASCII

encoding.

>> buildstr('a',4)
ans ¼

'a' 'ab' 'abc' 'abcd'

>> buildstr('F', 5)
ans ¼

'F' 'FG' 'FGH' 'FGHI' 'FGHIJ'

9.Write a script that will create and display a cell array that will loop to store strings of

lengths 1, 2, 3, and 4. The script will prompt the user for the strings. It will error-

check, and print an error message and repeat the prompt if the user enters a string

with an incorrect length.

10.Write a script that will loop three times, each time prompting the user for a vector,

and will store the vectors in elements in a cell array. It will then loop to print the

lengths of the vectors in the cell array.

11.Create a cell array variable that would store for a student his or her name, university

ID number, and GPA. Print this information.

12.Create a structure variable that would store for a student his or her name, university

ID number, and GPA. Print this information.

13.A complex number is a number of the form a þ ib, where a is called the real part,

b is called the imaginary part, and i ¼ ffiffiffiffiffiffiffi�1
p

. Write a script that prompts the

user separately to enter values for the real and imaginary parts, and stores them

in a structure variable. It then prints the complex number in the form aþ ib. The script

should just print the value of a, then the string ‘þ i’, and then the value of b. For

example, if the script is named compnumstruct, running it would result in:

271Exercises
>> compnumstruct
Enter the real part: 2.1
Enter the imaginary part: 3.3
The complex number is 2.1 þ i3.3

14.Modify the preceding script to call a function to prompt the user for the real and

imaginary parts of the complex number, and also call a function to print the complex

number.

15.Given a vector of structures defined by the following statements:

kit(2).sub.id ¼ 123;
kit(2).sub.wt ¼ 4.4;
kit(2).sub.code ¼ 'a';
kit(2).name ¼ 'xyz';
kit(2).lens ¼ [4 7];
kit(1).name ¼ 'rst';
kit(1).lens ¼ 5:6;
kit(1).sub.id ¼ 33;
kit(1).sub.wt ¼ 11.11;
kit(1).sub.code ¼ 'q';

Which of the following expressions are valid? If the expression is valid, give its value.

If it is not valid, explain why.

kit(1).sub

kit(2).lens(1)

kit(1).code

kit(2).sub.id ¼¼ kit(1).sub.id

strfind(kit(1).name, 's')

16.Create a vector of structures experiments that stores information on subjects

used in an experiment. Each struct has four fields: num, name, weights, and height.

The field num is an integer, name is a string, weights is a vector with two values

(both of which are double values), and height is a struct with the fields feet and

inches (both of which are integers). The following is an example of what the format

might look like.

experiments

num name

weights height

1 2 feet inches

1 33 Joe 200.34 202.45 5 6

2 11 Sally 111.45 111.11 7 2

272 CHAPTER 8 Data Structures: Cell Arrays and Structures
Write a function printhts that will receive a vector in this format and will

print the height of each subject in inches. This function calls another function

howhigh that receives a height struct and returns the total height in inches.

This function could also be called separately. Here is an example of calling the

printhts function (assuming the preceding data), which calls the howhigh function:

>> printhts(experiments)
Joe is 66 inches tall
Sally is 86 inches tall

Here is an example of calling just the howhigh function:

>> howhigh(experiments(2).height)
ans ¼

86

17.Create a data structure to store information about the elements in the periodic table

of elements. For every element, store the name, atomic number, chemical symbol,

class, atomic weight, and a seven-element vector for the number of electrons in each

shell. Create a structure variable to store the information. An example for lithium

follows:

Lithium 3 Li alkali_metal 6.94 2 1 0 0 0 0 0

18. In chemistry, the pH of an aqueous solution is ameasure of its acidity. A solution with

a pH of 7 is said to be neutral, a solution with a pH greater than 7 is basic, and a

solution with a pH less than 7 is acidic. Create a vector of structures with various

solutions and their pH values. Write a function that will determine acidity. Add

another field to every structure for this.

19.A team of engineers is designing a bridge to span the Podunk River. As part of the

design process, the local flooding data must be analyzed. The following information

on each storm that has been recorded in the last 40 years is stored in a file: a code for

the location of the source of the data, the amount of rainfall (in inches), and the

duration of the storm (in hours), in that order. For example, the file might look

like this:

321 2.4 1.5
111 3.3 12.1

etc.

n Create a data file. Write the first part of the program: design a data structure to
store the storm data from the file, and also the intensity of each storm. The in-
tensity is the rainfall amount divided by the duration. Write a function to read
the data from the file (use load), copy from the matrix into a vector of structs,
and then calculate the intensities. Write another function to print all of the in-
formation in a neatly organized table.

n Add a function to the program to calculate the average intensity of the
storms.

273Exercises
n Add a function to the program to print all of the information given on the most
intense storm. Use a subfunction for this function that will return the index of
the most intense storm.
20.A script stores information on potential subjects for an experiment in a vector of

structures called subjects. The following shows an example of what the contents

might be:

>> subjects
subjects ¼
1 x 3 struct array with fields:

name
sub_id
height
weight

>> subjects(1)
ans ¼

name: 'Joey'
sub_id: 111
height: 6.7000
weight: 222.2000

For this particular experiment, the only subjects who are eligible are those whose

height or weight is lower than the average height or weight of all subjects. The script

will print the names of those who are eligible. Create a vector with sample data in a

script, and then write the code to accomplish this. Don’t assume that the length of

the vector is known; the code should be general.

21.Quiz data for a class is stored in a file. Each line in the file has the student ID number

(which is an integer) followed by the quiz scores for that student. For example,

if there are four students and three quizzes for each, the file might look like this:

44 7 7.5 8
33 5.5 6 6.5
37 8 8 8
24 6 7 8

First create the data file, and then store the data in a script in a vector of structures.

Each element in the vector will be a structure that has two members: the integer

student ID number and a vector of quiz scores. The structure will look like this:

students
quiz

id_no 1 2 3

1 44 7 7.5 8

2 33 5.5 6 6.5

3 37 8 8 8

4 24 6 7 8

274 CHAPTER 8 Data Structures: Cell Arrays and Structures

Openmirrors.com
To accomplish this, first use the load function to read all the information from the file

into a matrix. Then, using nested loops, copy the data into a vector of structures as

specified. Then, the script will calculate and print the quiz average for each student.

For example, for the previous file:

Student Quiz Ave
44 7.50
33 6.00
37 8.00
24 7.00

22.Create a nested struct to store a person’s name, address, and phone numbers. The

struct should have three fields for the name, address, and phone. The address fields

and phone fields will be structs.

23.Design a nested structure to store information on constellations for a rocket design

company. Each structure should store the constellation’s name and information on

the stars in the constellation. The structure for the star information should include

the star’s name, core temperature, distance from the sun, and whether it is a binary

star or not. Create variables and sample data for your data structure.

To remain competitive, every manufacturing enterprise must maintain strict

quality control measures. Extensive testing of new machines and products must

be incorporated into the design cycle. Once manufactured, rigorous testing for

imperfections and documentation is an important part of the feedback loop to the

next design cycle.

24.Quality control involves keeping statistics on the quality of products. A company

tracks its products and any failures that occur. For every imperfect part, a record is

kept that includes the part number, a character code, a string that describes the

failure, and the cost of both labor and material to fix the part. Create a vector of

structures and create sample data for this company. Write a script that will print the

information from the data structure in an easy-to-read format.

25.A manufacturer is testing a new machine that mills parts. Several trial runs are made

for each part, and the resulting parts that are created are weighed. A file stores, for

every part, the part identification number, the ideal weight for the part, and also the

weights from five trial runs of milling this part. Create a file in this format. Write a script

that will read this information and store it in a vector of structures. For every part print

whether the average of the trialweightswas less than, greater than, or equal to the ideal

weight.

26.Create a data structure to store information on the planets in our solar system.

For every planet, store its name, distance from the sun, and whether it is an inner

planet or an outer planet.

27.Write a script that creates a vector of line segments (where each is a nested structure

as shown in this chapter). Initialize the vector using any method. Print a table

showing the values, such as shown in the following:

275Exercises
Line From To
¼¼¼¼ ¼¼¼¼¼¼¼ ¼¼¼¼¼¼¼
1 (3, 5) (4, 7)
2 (5, 6) (2, 10)

etc.

28. Investigate the built-in function cell2struct that converts a cell array into a vector of

structs.

29. Investigate the built-in function struct2cell that converts a struct to a cell array.

CHAPTER 9
Advanced File Input
and Output
CONTENTS
KEY TERMS
9.1 Lower-Level
File I/O
Functions....278

9.2 Writing and
Reading
file input and output

file types

lower-level file I/O

functions

open the file

close the file

file identifier

permission strings

end of the file
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Spreadsheet
Files................291

9.3 Using MAT-
Files for
Variables293
This chapter extends the input and output concepts that were introduced in
Chapter 2. In that chapter, we saw how to read values entered by the user using

the input function, and also the output functions disp and fprintf that display

information in windows on the screen. For file input and output (file I/O), we
used the load and save functions that can read from a data file into a matrix,

and write from a matrix to a data file. We also saw that there are three different

operations that can be performed on files: reading from files, writing to files
(implying writing to the beginning of a file), and appending to a file (writing

to the end of a file).

There are many different file types, which use different filename extensions.
Thus far, using load and save, we have worked with files in the ASCII format

that typically use either the extension .dat or .txt. The load command works

only if there are the same number of values in each line and the values are
the same type, so that the data can be stored in amatrix, and the save command

only writes from amatrix to a file. If the data to bewritten or file to be read are in

a different format, lower-level file I/O functions must be used.

The MATLABW software has functions that can read and write data from

different file types such as spreadsheets; typically, Excel spreadsheets have
the filename extension .xls. Excel also has its own binary file type that uses

the extension .mat. These are usually called MAT-files, and can be used to store

variables that have been created in MATLAB.
277

278 CHAPTER 9 Advanced File Input and Output
In this chapter, we will introduce lower-level file input and output functions,

as well as functions that work with different file types.
9.1 LOWER-LEVEL FILE I/O FUNCTIONS

When reading from a data file, the load functionworks as long as the data in the

file are “regular”—in other words, the same kind of data on every line and in the

same format on every line—so that they can be read into a matrix. However,
data files are not always set up in this manner. When it is not possible to

use load, MATLAB has what are called lower-level file input functions that

can be used. The file must be opened first, which involves finding or creating
the file and positioning an indicator at the beginning of the file. This indicator

thenmoves through the file as it is being read from.When the reading has been

completed, the file must be closed.

Similarly, the save function can write or append matrices to a file, but if the

output is not a simple matrix, there are lower-level functions that write to files.
Again, the file must be opened first and closed when the writing has been

completed.

In general, the steps involved are:

n open the file

n read from the file, write to the file, or append to the file

n close the file

First, the steps involved in opening and closing the file will be described. Several
functions that perform themiddle step of reading from or writing to the file will

be described subsequently.
9.1.1 Opening and closing a file
Files are opened with the fopen function. By default, the fopen function opens
a file for reading. If another mode is desired, a “permission string” is used to

specify which, for example, for writing or appending. The fopen function

returns –1 if it is not successful in opening the file, or an integer value that be-
comes the file identifier if it is successful. This file identifier is then used to refer

to the file when calling other file I/O functions. The general form is

fid ¼ fopen('filename', 'permission string');

where fid is a variable (it can be named anything) and the permission strings

include:
r reading (this is the default)
w writing

a appending

2799.1 Lower-Level File I/O Functions
See help fopen for others.

After the fopen is attempted, the value returned should be tested to make sure

that the file was successfully opened. For example, if attempting to open to read
and the file does not exist, the fopen will not be successful. Since the fopen

function returns –1 if the file was not found, this can be tested to decide

whether to print an error message or to carry on and use the file. For example,
if it is desired to read from a file samp.dat:

fid ¼ fopen('samp.dat');
if fid ¼¼ -1

disp('File open not successful')
else

% Carry on and use the file!
end

Files should be closed when the program has finished reading from or writing or

appending to them. The function that accomplishes this is the fclose function,

which returns 0 if the file close was successful, or –1 if not. Individual files can be
closed by specifying the file identifier, or ifmore thanone file is open, all open files

canbe closedbypassing the string ‘all’ to the fclose function.Thegeneral formsare:

closeresult ¼ fclose(fid);

closeresult ¼ fclose('all');

The fclose function should also be checked with an if-else statement to make

sure that it was successful, so the outline of the code will be:

fid ¼ fopen('filename', 'permission string');
if fid ¼¼ -1

disp('File open not successful')
else

% do something with the file!

closeresult ¼ fclose(fid);
if closeresult ¼¼ 0

disp('File close successful')
else

disp('File close not successful')
end

end
9.1.2 Reading from files
There are several lower-level functions that read from files. The function fscanf
reads formatted data into a matrix, using conversion formats such as %d for

integers, %s for strings, and %f for floats (double values). The textscan

280 CHAPTER 9 Advanced File Input and Output
function reads text data from a file and stores the data in a cell array; it also uses

conversion formats. The fgetl and fgets functions both read strings from a file

one line at a time; the difference is that the fgets keeps the newline character if
there is one at the end of the line, whereas the fgetl function gets rid of it. All of

these functions require first opening the file, and then closing it when finished.

Since the fgetl and fgets functions read one line at a time, these functions are
typically inside some form of a loop. The fscanf and textscan functions can

read the entire data file into one data structure. In terms of level, these two func-

tions are somewhat in between the load function and the lower-level functions
such as fgetl. The file must be opened using fopen first, and should be closed

using fclose after the data have been read. However, no loop is required; they

will read in the entire file automatically into a data structure.

Wewill concentrate first on the fgetl function, which reads strings from a file one

line at a time. The fgetl function affords more control over how the data are read
than other input functions. The fgetl function reads one line of data from a file

into a string; string functions can then be used tomanipulate the data. Since fgetl

only reads one line, it is normally placed in a loop that keeps going until the end
of the file is reached. The function feof returns logical true if the end of the file has

been reached. The function call feof(fid) would return logical true if the end of

the file has been reached for the file identified by fid, or logical false if not.
A general algorithm for reading from a file into strings would be:

n Attempt to open the file.
n Check to ensure that the file open was successful.

n If opened, loop until the end of the file is reached.

n For each line in the file,
– read it into a string

– manipulate the data

n Attempt to close the file.
n Check to make sure that the file close was successful.

The following is the generic code to accomplish these tasks:

fid ¼ fopen('filename');
if fid ¼¼ -1

disp('File open not successful')
else

while feof(fid) ¼¼ 0
% Read one line into a string variable
aline ¼ fgetl(fid);
% Use string functions to extract numbers, strings,
% etc. from the line
% Do something with the data!

end
closeresult ¼ fclose(fid);

2819.1 Lower-Level File I/O Functions
if closeresult ¼¼ 0
disp('File close successful')

else
disp('File close not successful')

end
end

The permission string could be included in the call to the fopen function. For

example:

fid ¼ fopen('filename', 'r');

but the ’r’ is not necessary since reading is the default. The condition on the

while loop can be interpreted as saying “while the file end-of-file is false.”

Another way to write this is

while �feof(fid)

which can be interpreted similarly as “while we’re not at the end of the file.”

For example, assume that there is a data file subjexp.dat that has on each line
a number followed by a space followed by a character code. The type function

can be used to display the contents of this file (since the file does not have the

default extension .m, the extension on the filename must be included).

>> type subjexp.dat
5.3 a
2.2 b
3.3 a
4.4 a
1.1 b

The load function would not be able to read this into a matrix since it contains
both numbers and text. Instead, the fgetl function can be used to read each line

as a string and then string functions are used to separate the numbers and char-

acters. For example, the following just reads each line and prints the number
with two decimal places and then the rest of the string:

fileex.m
% Reads from a file one line at a time using fgetl
% Each line has a number and a character
% The script separates and prints them

% Open the file and check for success
fid ¼ fopen('subjexp.dat');
if fid ¼¼ �1

disp('File open not successful')
else

while feof(fid) ¼¼ 0
aline ¼ fgetl(fid);
Continued

282 CHAPTER 9 Advanced File Input and Output
% Separate each line into the number and character
% code and convert to a number before printing
[num charcode] ¼ strtok(aline);
fprintf('%.2f %s\n', str2num(num), charcode)

end

% Check the file close for success
closeresult ¼ fclose(fid);
if closeresult ¼¼ 0

disp('File close successful')
else

disp('File close not successful')
end

end
The following is an example of executing the previous script:

>> fileex
5.30 a
2.20 b
3.30 a
4.40 a
1.10 b
File close successful

In this example, in the loop each time the fgetl function reads one line into a
string variable. The string function strtok is then used to store the number and

the character in separate variables, both of which are string variables (the sec-

ond variable actually stores the blank space and the letter). If it is desired to
perform calculations using the number, the function str2num would be used

to convert the number stored in the string variable into a double value.
PRACTICE 9.1

Modify the script fileex to sum the numbers from the file. Create your own file in this format first.
Instead of using the fgetl function to read one line at a time, once a file has been

opened the fscanf function can be used to read from this file directly into a ma-
trix. However, the matrix must be manipulated somewhat to get it back into the
original form from the file. The format of using the function is:

mat ¼ fscanf(fid, 'format', [dimensions])

The fscanf reads into the matrix variablemat columnwise from the file identified

by fid. The ‘format’ includes conversion characters much like those used in the
fprintf function. The dimensions specify the desired dimensions of mat; if the

number of values in the file is not known, inf can be used for the second

2839.1 Lower-Level File I/O Functions
dimension. For example, the following would read in the same file just specified;

each line contains a number, followed by a space and then a character.

>> fid ¼ fopen('subjexp.dat');

>> mat ¼ fscanf(fid,'%f %c',[2 inf])
mat ¼

5.3000 2.2000 3.3000 4.4000 1.1000
97.0000 98.0000 97.0000 97.0000 98.0000

>> fclose(fid);

The fopen opens the file for reading. The fscanf then reads from each line one

double and one character, and places each pair in separate columns in thematrix

(in other words, every line in the file becomes a column in thematrix). Note that
the space in the format string is important: '%f %c' specifies that there is a float, a

space, and a character. The dimensions specify that the matrix is to have two

rows, by however many columns are necessary (equal to the number of lines
in the file). Since matrices store values that are all the same type, the characters

are stored as their ASCII equivalents in the character encoding (e.g., ‘a’ is 97).

Once this matrix has been created, it may be more useful to separate the rows

into vector variables and to convert the second back to characters, which can be

accomplished as follows:

>> nums ¼ mat(1,:);

>> charcodes ¼ char(mat(2,:))
charcodes ¼
abaab

Of course, the results from fopen and fclose should be checked but were omit-
ted here for simplicity.
PRACTICE 9.2

Write a script to read in this file using fscanf, and sum the numbers.
UICK QUESTION!

stead of using the dimensions [2 inf] in the fscanf function,

ould we use [inf 2]?

nswer: No, [inf 2] would not work. Because fscanf reads

ach row from the file into a column in the matrix, the number

of rows in the resulting matrix is known but the number of

columns is not.
Q

In

c

A

e

QUICK QUESTION!

Why is the space in the conversion string ‘%f %c’ important?

Would the following also work?

>> mat ¼ fscanf(fid,'%f%c',[2 inf])

Answer:No, it would not work. The conversion string '%f %c'

specifies that there is a real number, then a space, and then a

character. Without the space in the conversion string, it would

specify a real number immediately followed by a character

(which would be the space in the file). Then, the next time it

would be attempting to read the next real number but the file

position indicator would be pointing to the character on the

first line; the error would cause the fscanf function to halt.

The end result follows:

>> fid ¼ fopen('subjexp.dat');

>> mat ¼ fscanf(fid,'%f%c',[2 inf])

mat ¼
5.3000

32.0000

The 32 is the numerical equivalent of the space character ‘ ’, as

seen here.

>> double(' ')

ans ¼
32

284 CHAPTER 9 Advanced File Input and Output
Another option for reading from a file is to use the textscan function. The

textscan function reads text data from a file and stores the data in a cell array.

The textscan function is called, in its simplest form, as

cellarray ¼ textscan(fid, 'format');

where the ‘format’ includes conversion characters much like those used in

the fprintf function. For example, to read the file subjexp.dat we could do the
following (again, for simplicity, omitting the error-check of fopen and fclose):

>> fid ¼ fopen('subjexp.dat');
>> subjdata ¼ textscan(fid,'%f %c');
>> fclose(fid)

The format string '%f %c' specifies that on each line there is a double value
followed by a space followed by a character. This creates a 1 � 2 cell array var-

iable called subjdata. The first element in this cell array is a column vector of

doubles (the first column from the file); the second element is a column vector
of characters (the second column from the file), as shown here:

>> subjdata
subjdata ¼

[5 x 1 double] [5 x 1 char]
>> subjdata{1}
ans ¼

5.3000
2.2000
3.3000
4.4000
1.1000

2859.1 Lower-Level File I/O Functions
>> subjdata{2}
ans ¼
a
b
a
a
b

To refer to individual values from the vector, it is necessary to index into the cell
array using curly braces and then index into the vector using parentheses.

For example, to refer to the third number in the first element of the cell array:

>> subjdata{1}(3)
ans ¼

3.3000

A script that reads in these data and echo prints is shown here:

textscanex.m
% Reads data from a file using textscan
fid ¼ fopen('subjexp.dat');
if fid ¼¼ �1

disp('File open not successful')
else

% Reads numbers and characters into separate elements
% in a cell array
subjdata ¼ textscan(fid,'%f %c');
len ¼ length(subjdata{1});
for i¼ 1:len

fprintf('%.1f %c\n',subjdata{1}(i),subjdata{2}(i))
end

closeresult ¼ fclose(fid);
if closeresult ¼¼ 0

disp('File close successful')
else

disp('File close not successful')
end

end
Executing this script produces the following results:

>> textscanex
5.3 a
2.2 b
3.3 a
4.4 a
1.1 b
File close successful

286 CHAPTER 9 Advanced File Input and Output
PRACTICE 9.3

Modify the script textscanex to calculate the average of the column of numbers.
Comparison of input file functions
To compare the use of these input file functions, consider the example of a file
called xypoints.dat that stores the x and y coordinates of some data points in the

following format:

>> type xypoints.dat
x2.3y4.56
x7.7y11.11
x12.5y5.5

What we want is to be able to store the x and y coordinates in vectors so that we

can plot the points. The lines in this file store combinations of characters and

numbers, so the load function cannot be used. It is necessary to separate the
characters from the numbers so that we can create the vectors. The following

is the outline of the script to accomplish this:

fileInpCompare.m
fid ¼ fopen('xypoints.dat');

if fid ¼¼ �1
disp('File open not successful')

else
% Create x and y vectors for the data points
% This part will be filled in using different methods

% Plot the points
plot(x,y,'k*')
xlabel('x')
ylabel('y')

% Close the file
closeresult ¼ fclose(fid);
if closeresult ¼¼ 0

disp('File close successful')
else

disp('File close not successful')
end

end
We will now complete the middle part of this script using four different

methods: fgetl, fscanf (two ways), and textscan.

2879.1 Lower-Level File I/O Functions
To use the fgetl function, it is necessary to loop until the end-of-file is reached,

reading each line as a string, and parsing the string into the various components

and converting the strings containing the actual x and y coordinates to
numbers. This would be accomplished as follows:

% using fgetl
x ¼ [];
y ¼ [];
while feof(fid) ¼¼ 0

aline ¼ fgetl(fid);
aline ¼ aline(2:end);
[xstr rest] ¼ strtok(aline,'y');
x ¼ [x str2num(xstr)];
ystr ¼ rest(2:end);
y ¼ [y str2num(ystr)];

end

To instead use the fscanf function, we need to specify the format of every line in

the file as a character, a number, a character, a number, and the newline char-

acter. Since the matrix that will be created will store every line from the file in a
separate column, the dimensions will be 4 � n, where n is the number of lines

in the file (and since we do not know that, inf is specified instead). The x char-

acters will be in the first row of the matrix (the ASCII equivalent of ‘x’ in each
element), the x coordinates will be in the second row, the ASCII equivalent of ‘y’

will be in the third row, and the fourth row will store the y coordinates. The

code would be:

% using fscanf

mat ¼ fscanf(fid, '%c%f%c%f\n', [4 inf]);
x ¼ mat(2,:);
y ¼ mat(4,:);

Note that the newline character in the format string is necessary. The data file
itself was created by typing in the MATLAB Editor/Debugger, and to move

down to the next line the Enter key was used, which is equivalent to the newline
character. It is an actual character that is at the end of every line in the file. It is

important to note that if the fscanf function is looking for a number, it will skip

over whitespace characters including blank spaces and newline characters.
However, if it is looking for a character, it would read a whitespace character.

In this case, after reading in ‘x2.3y4.56’ from the first line of the file, if we had as

the format string ‘%c%f%c%f’ (without the ‘\n’), it would then attempt to read
again using ‘%c%f%c%f’, but the next character it would read for the first ‘%c’

would be the newline character—and then it would find the ‘x’ on the second

line for the ‘%f’—not what is intended! (The difference between this and the
previous example is that before we read a number followed by a character

288 CHAPTER 9 Advanced File Input and Output
on each line. Thus, when looking for the next number it would skip over the

newline character.)

Since we know that every line in the file contains both ‘x’ and ‘y’, not just any
random characters, we can build that into the format string:

% using fscanf method 2

mat ¼ fscanf(fid, 'x%fy%f\n', [2 inf]);
x ¼ mat(1,:);
y ¼ mat(2,:);

In this case the characters ‘x’ and ‘y’ are not read into the matrix, so the matrix

only has the x coordinates (in the first row) and the y coordinates (in the
second row).

Finally, to use the textscan function, we could put ‘%c’ in the format

string for the ‘x’ and ‘y’ characters, or build those in as with fscanf. If we
build those in, the format string essentially specifies that there are four col-

umns in the file, but it will only read the columns with the numbers into

column vectors in the cell array xydat. The reason that the newline character
is not necessary is that with textscan, the format string specifies what the

columns look like in the file, whereas with fscanf, it specifies the format

of every line in the file. Thus, it is a slightly different way of viewing the
file format.

% using textscan

xydat ¼ textscan(fid,'x%fy%f');
x ¼ xydat{1};
y ¼ xydat{2};

To summarize, we have now seen four methods of reading from a file.

The function load will work only if the values in the file are all the same type
and the same number of values are on every line in the file, so that they can

be read into a matrix. If this is not the case, lower-level functions must be

used. To use these, the file must be opened first and then closed when
the reading has been completed.

The fscanf function will read into a matrix, converting the characters to their
ASCII equivalents. The textscan function will instead read into a cell array that

stores each column from the file into separate column vectors of the cell array.

Finally, the fgetl function can be used in a loop to read each line from the file as
a separate string; string manipulating functions must then be used to break the

string into pieces and convert to numbers.

Note

When writing to the

screen, the value

returned by fprintf is

not seen, but could be

stored in a variable.

QUICK QUESTION!

If a data file is in the following format, which file input

function(s) could be used to read it in?

48 25 23 23

12 45 1 31

31 39 42 40

Answer:Any of the file input functions could be used, but

since the file consists of only numbers, the load function

would be the easiest.

2899.1 Lower-Level File I/O Functions
9.1.3 Writing to files
There are several lower-level functions that can write to files. We will concentrate

on the fprintf function, which can be used to write to a file and also to append to

a file.

To write one line at a time to a file, the fprintf function can be used. Like the

other low-level functions, the file must be opened first for writing (or append-

ing) and should be closed once the writing has been completed. We have, of
course, been using fprintf to write to the screen. The screen is the default output

device, so if a file identifier is not specified, the output goes to the screen;

otherwise, it goes to the specified file. The default file identifier number is
1 for the screen. The general form is

fprintf(fid, 'format', variable(s));

The fprintf function actually returns the number of bytes that was written to the

file, so if it is not desired to see that number, the output should be suppressed
with a semicolon as shown here.

The following is an example of writing to a file named tryit.txt:

>> fid ¼ fopen('tryit.txt', 'w');
>> for i ¼ 1:3

fprintf(fid,'The loop variable is %d\n', i);
end

>> fclose(fid);

The permission string in the call to the fopen function specifies that the file is
opened for writing to it. Just like when reading from a file, the results from

fopen and fclose should really be checked to make sure they were successful.

The fopen function attempts to open the file for writing. If the file already exists,
the contents are erased so it is as if the file had not existed. If the file does not

currently exist (which would be the norm), a new file is created. The fopen
could fail, for example, if there isn’t space to create this new file.

290 CHAPTER 9 Advanced File Input and Output
To see what was written to the file, we could then open it (for reading) and loop

to read each line using fgetl:

>> fid ¼ fopen('tryit.txt');

>> while �feof(fid)
aline ¼ fgetl(fid)

end

aline ¼
The loop variable is 1

aline ¼
The loop variable is 2

aline ¼
The loop variable is 3

>> fclose(fid);

Of course, we could also just display the contents using type.

Here is another example inwhich amatrix is written to a file. First, a 2� 4matrix

is created, and then it is written to a file using the format string '%d %d\n',
whichmeans that each column from thematrix will be written as a separate line

in the file.

>> mat ¼ [20 14 19 12; 8 12 17 5]
mat ¼

20 14 19 12
8 12 17 5

>> fid ¼ fopen('randmat.dat','w');
>> fprintf(fid,'%d %d\n',mat);
>> fclose(fid);

Since this is a matrix, the load function can be used to read it in.

>> load randmat.dat
>> randmat
randmat ¼

20 8
14 12
19 17
12 5

>> randmat'
ans ¼

20 14 19 12
8 12 17 5

2919.2 Writing and reading spreadsheet files
Transposing the matrix will display in the form of the original matrix. If this is

desired to begin with, the matrix variable mat can be transposed before using

fprintf to write to the file. (Of course, it would be much simpler in this case to
just use save instead!)

PRACTICE 9.4

Create a 3 � 5matrix of random integers, each in the range from 1 to 100. Write this to a file called

myrandmat.dat in a 3 � 5 format using fprintf, so that the file appears identical to the original

matrix. Load the file to confirm that it was created correctly.
9.1.4 Appending to files
The fprintf function can also be used to append to an existing file. The permis-

sion string is ‘a’, so the general form of the fopen would be:

fid ¼ fopen('filename, 'a');

Then, using fprintf (typically in a loop), wewouldwrite to the file starting at the

end of the file. The file would then be closed using fclose. What is written to the
end of the file doesn’t have to be in the same format as what is already in the file

when appending.
9.2 WRITING AND READING SPREADSHEET FILES

MATLAB has functions xlswrite and xlsread that will write to and read from

Excel spreadsheet files that have the extension .xls. (Note: This works under
Windows environments provided that Excel is loaded. Under other environ-

ments, problems may be encountered if Excel cannot be loaded as a COM

server.) For example, the following will create a 5 � 3 matrix of random inte-
gers, and then write it to a spreadsheet file ranexcel.xls that has five rows and

three columns:

>> ranmat ¼ round(rand(5,3)*100)
ranmat ¼

96 77 62
24 46 80
61 2 93
49 83 74
90 45 18

>> xlswrite('ranexcel',ranmat)

The xlsread function will read from a spreadsheet file. For example, use the fol-

lowing to read from the file ranexcel.xls:

292 CHAPTER 9 Advanced File Input and Output
>> ssnums ¼ xlsread('ranexcel')
ssnums ¼

96 77 62
24 46 80
61 2 93
49 83 74
90 45 18

In both cases the .xls extension on the filename is the default, so it can be
omitted.

These are shown in their most basic forms, when the matrix and/or spreadsheet
contains justnumbers and the entire spreadsheet is readormatrix iswritten. There

aremanyqualifiers that canbeused for these functions,however. For example, the

following would read from the spreadsheet file texttest.xls that contains:
a
 123
 Cindy
b
 333
 Suzanne
c
 432
 David
d
 987
 Burt
>> [nums, txt] ¼ xlsread('texttest.xls')
nums ¼

123
333
432
987

txt ¼
'a' '' 'Cindy'
'b' '' 'Suzanne'
'c' '' 'David'
'd' '' 'Burt'

This reads the numbers into a double vector variable nums and the text into a

cell array txt (the xlsread function always returns the numbers first and then

the text). The cell array is 4 � 3. It has three columns since the file had three
columns, but since the middle column had numbers (which were extracted

and stored in the vector nums), the middle column in the cell array txt consists

of empty strings.

A loop could then be used to echo print the values from the spreadsheet in the

original format:

>> for i ¼ 1:length(nums)
fprintf('%c %d %s\n', txt{i,1}, . . .

nums(i), txt{i,3})
end

2939.3 Using MAT-files for Variables
a 123 Cindy
b 333 Suzanne
c 432 David
d 987 Burt
9.3 USING MAT-FILES FOR VARIABLES

In addition to the functions that manipulate data files, MATLAB has functions

that allow reading variables from and saving variables to files. These files are
called MAT-files (because the extension on the filename is .mat), and they store

the names and contents of variables. Variables can be written to MAT-files,

appended to them, and read from them. (Note: MAT-files are very different
from the data files that we have worked with so far. Rather than just storing

data, MAT-files store the variable names in addition to their values. These files
are typically used only within MATLAB; they are not used to share data with

other programs.)
9.3.1 Writing variables to a file
The save command can be used to write variables to a MAT-file, or to append

variables to a MAT-file. By default, the save function writes to a MAT-file. It can

either save the entire current workspace (all variables that have been created),
or a subset of the workspace (including, for example, just one variable). The

save function will save the MAT-file in the Current Folder so it is important

to set that correctly first.

To save all workspace variables in a file, the command is

save filename

The .mat extension is added automatically to the filename. The contents of the

file can be displayed using who with the -file qualifier:

who �file filename

For example, in the following session in the Command Window, three vari-

ables are created; these are then displayed using who. Then, the variables are
saved to a file named sess1.mat. The who function is then used to display the

variables stored in that file.

>> mymat ¼ rand(3,5);
>> x ¼ 1:6;
>> y ¼ x.^2;
>> who
Your variables are:
mymat x y

294 CHAPTER 9 Advanced File Input and Output
>> save sess1

>> who �file sess1
Your variables are:
mymat x y

To save just one variable to a file, the format is

save filename variablename

For example, just the matrix variable mymat is saved to a file called sess2:

>> save sess2 mymat
>> who �file sess2
Your variables are:
mymat
9.3.2 Appending variables to a MAT-file
Appending to a file adds to what has already been saved in a file, and is accom-

plished using the -append option. For example, assuming that the variable

mymat has already been stored in the file sess2.mat as just shown, this would
append the variable x to the file:

>> save -append sess2 x
>> who -file sess2
Your variables are:
mymat x

Without specifying variable(s), just save -append would add all variables
from the Command Window to the file. When this happens, if the variable is

not in the file, it is appended. If there is a variable with the same name in the

file, it is replaced by the current value from the Command Window.
9.3.3 Reading from a MAT-file
The load function can be used to read from different types of files. As with

the save function, by default the file will be assumed to be a MAT-file, and load

can load all variables from the file or only a subset. For example, in a
new Command Window session in which no variables have yet been created,

the load function could load from the files created in the previous section:

>> who
>> load sess2
>> who
Your variables are:
mymat x

A subset of the variables in a file can be loaded by specifying them in the form:

load filename variable list

295Exercises
SUMMARY
Common Pitfalls

n Misspelling a file name, which causes a file open to be unsuccessful

n Using a lower-level file I/O function, when load or save could be used

n Forgetting that fscanf reads columnwise into a matrix, so every line in the

file is read into a column in the resulting matrix
n Forgetting that fscanf converts characters to their ASCII equivalents

n Forgetting that textscan reads into a cell array (so curly braces are necessary

to index)
n Forgetting to use the permission string ‘a’ for appending to a file (which

means the data already in the file would be lost if ’w’ was used!)

Programming Style Guidelines
n Use load when the file contains the same kind of data on every line and in

the same format on every line.
n Always close files that were opened.

n Always check to make sure that files were opened and closed successfully.

n Make sure that all data are read from a file; for example, use a conditional
loop to loop until the end of the file is reached rather than using a for loop.

n Be careful to use the correct formatting string when using fscanf or textscan.

n Store groups of related variables in separate MAT-files.

MATLAB Functions and Commands

fopen

fclose

fscanf

textscan

fgetl

fgets

feof

fprintf

xlswrite

xlsread
Exercises
1.Write a script that will read from a file x and y data points in the following format:

x 0 y 1
x 1.3 y 2.2
x 2.2 y 6
x 3.4 y 7.4

The format of every line in the file is the letter ‘x,’ a space, the x value, space, the

letter ‘y,’ space, and the y value. First, create the data file with 10 lines in this

format. Do this by using the Editor/Debugger, and then File Save As xypts.dat. The

script will attempt to open the data file and error-check to make sure that it was

opened. If so, it uses a for loop and fgetl to read each line as a string. In the loop, it

296 CHAPTER 9 Advanced File Input and Output
creates x and y vectors for the data points. After the loop, it plots these points and

attempts to close the file. The script should print whether the file was successfully

closed.

2.Modify the script from the previous problem. Assume that the data file is in exactly

that format, but do not assume that the number of lines in the file is known. Instead of

using a for loop, loop until the end of the file is reached. The number of points,

however, should be in the plot title.

Medical organizations store a lot of very personal information on their patients.

There is an acute need for improved methods of storing, sharing, and encrypting

these medical records. Being able to read from and write to the data files is just the

first step.

3. For a biomedical experiment, the names and weights of some patients have been

stored in a file named patwts.dat. For example, the file might look like this:

Darby George 166.2
Helen Dee 143.5
Giovanni Lupa 192.4
Cat Donovan 215.1

Create this data file first. Then, write a script readpatwts that will first attempt to

open the file. If the file open is not successful, an error message should be printed. If it

is successful, the script will read the data into strings, one line at a time. Print for each

person the name in the form ‘last,first’ followed by the weight. Also, calculate and

print the average weight. Finally, print whether the file close was successful. For

example, the result of running the script would look like this:

>> readpatwts
George,Darby 166.2
Dee,Helen 143.5
Lupa,Giovanni 192.4
Donovan,Cat 215.1
The ave weight is 179.30
File close successful

4. Create a data file to store blood donor information for a biomedical research

company. For every donor, store the person’s name, blood type, Rh factor, and blood

pressure information. The blood type is A, B, AB, or O. The Rh factor is þ or –. The

blood pressure consists of two readings: systolic and diastolic (both are double

numbers). Write a script to read from your file into a data structure and print the

information from the file.

5. Create a file called parts_inv.dat that stores on each line a part number, cost, and

quantity in inventory, in the following format:

123 5.99 52
456 3.97 100
333 2.22 567

297Exercises
Use fscanf to read this information, and print the total dollar amount of inventory (the
sum of the cost multiplied by the quantity for each part).

6. A data file called mathfile.dat stores three characters on each line: an operand (a

single-digit number), an operator (a one-character operator, such as þ, �, /, \, *, ^),

and then another operand (a single-digit number). For example, it might look like this:

>> type mathfile.dat
5þ2
4�3
8�1
3þ3

You are to write a script that will use fgetl to read from the file, one line at a time,

perform the specified operation, and print the result.

7. Create a file that stores on each line a letter, a space, and a real number. For example,

it might look like this:

e 5.4
f 3.3
c 2.2
f 1.1
c 2.2

Write a script that uses textscan to read from this file. It will print the sum of the

numbers in the file. The script should error-check the file open and close, and print

error messages as necessary.

8. Create a file named phonenos.dat that contains phone numbers in the following form:

6012425932
6178987654
8034562468

Read the phone numbers from the file and print them in the following form:

601-242-5932

Use load to read the phone numbers.

9. Create the file phonenos.dat as in Exercise 8. Use textscan to read the phone

numbers, and then print them in the previous format.

10.Create the file phonenos.dat as in Exercise 8. Use fgetl to read the phone numbers in

a loop, and then print them in the previous format.

11.Modify any of the previous scripts to write the phone numbers in the new format to a

new file.

12.Write a script that will prompt the user for the name of a file fromwhich to read. Loop

to error-check until the user enters a valid filename that can be opened. (Note: This

would be part of a longer program that would actually do something with the file, but

for this problem all you have to do is error-check until the user enters a valid filename

that can be read from.)

298 CHAPTER 9 Advanced File Input and Output
13.Write a script to read in division codes and sales for a company from a file that has the

following format:

A 4.2
B 3.9

Print the division with the highest sales.

14.Assume that a file named testread.dat stores the following:

110x0.123y5.67z8.45
120x0.543y6.77z11.56

Assume that the following are typed sequentially. What would the values be?

tstid ¼ fopen('testread.dat')

fileline ¼ fgetl(tstid)

[beg endline] ¼ strtok(fileline,'y')

length(beg)

feof(tstid)

15.Create a data file to store information on hurricanes. Each line in the file should

have the name of the hurricane, its speed in miles per hour, and the diameter of its

eye in miles. Then, write a script to read this information from the file and

create a vector of structures to store it. Print the name and area of the eye for

each hurricane.

16.Write a script that will loop to prompt the user for n circle radii. The script will call a

function to calculate the area of each circle, and will write the results in sentence

form to a file.

17.The wind chill factor (WCF) measures how cold it feels with a given air temperature

(T, in degrees Fahrenheit) and wind speed (V, in miles per hour). One formula for the

WCF follows:

WCF ¼ 35:7 þ 0:6 T � 35:7 ðV0:16Þ þ 0:43 T ðV0:16Þ
Create a table showing WCFs for temperatures ranging from –20 to 55 in steps
of 5, and wind speeds ranging from 0 to 55 in steps of 5. Write this to a file named

wcftable.dat.

18.Create a data file that has points in a three-dimensional space stored in the following

format:

x 2.2 y 5.3 z 1.8

Do this by creating x, y, and z vectors and then use fprintf to create the file in the

specified format.

299Exercises

Openmirrors.com
19.Create a file that contains college department names and enrollments. For example, it

might look like this:

Aerospace 201
Civil 45
Mechanical 66

Write a script that will read the information from this file and create a new file that has

just the first four characters from the department names, followed by the enrollments.

The new file will be in this form:

Aero 201
Civi 45
Mech 66

20.A software package writes data to a file in a format that includes curly braces around

each line and commas separating the values. For example, a data file mm.dat might

look like this:

{33, 2, 11}
{45, 9, 3}

Use the fgetl function in a loop to read these data in. Create a matrix that stores just

the numbers, and write the matrix to a new file. Assume that each line in the original

file contains the same number of numbers.

21.A file stores sales data (in millions) by quarter. For example, the format may look

like this:

2007Q1 4.5
2007Q2 5.2

Create the described file and then append the next quarter’s data to it.

22.Create a spreadsheet that has on each line an integer student identification

number followed by three quiz grades for that student. Read that information

from the spreadsheet into a matrix, and print the average quiz score for each

student.

23.The xlswrite function can write the contents of a cell array to a spreadsheet.

A manufacturer stores information on the weights of selected parts in a cell array.

Each row stores the part identifier code followed by weights of certain sample parts.

To simulate this, create the following cell array:

>> parts ¼ {'A22', 4.41 4.44 4.39 4.39
'Z29', 8.88 8.95 8.84 8.92}

Then, write the cell array to a spreadsheet file.

24.A spreadsheet popdata.xls stores the population every 20 years for a small town that

underwent a boom and then decline. Create this spreadsheet (include the header

300 CHAPTER 9 Advanced File Input and Output
row) and then read the headers into a cell array and the numbers into a matrix.

Plot the data using the header strings on the axis labels.

Year Population

1920 4021

1940 8053

1960 14994

1980 9942

2000 3385
25.Create a multiplication table and write it to a spreadsheet.

26.Read numbers from any spreadsheet file, and write the variable to a MAT-file.

27.Clear out any variables that you have in your Command Window. Create a matrix

variable and two vector variables.

n Make sure that you have your Current Folder set.

n Store all variables to a MAT-file.

n Store just the two vector variables in a different MAT-file.

n Verify the contents of your files using who.

28.Create a set of random matrix variables with descriptive names (e.g., ran2by2int,

ran3by3double, etc.) for use when testing matrix functions. Store all of these in a

MAT-file.

29.A data file is created as a char matrix and then saved to a file. For example:

>> cmat ¼ char('hello', 'ciao', 'goodbye')
cmat ¼
hello
ciao
goodbye
>> save stringsfile.dat cmat -ascii

Can the load function be used to read this in? What about textscan?

30.Create a file of strings as in Exercise 29 but create the file by opening a new M-file,

type in the strings, and then save it as a data file. Can the load function be used to

read this in? What about textscan?

31.Environmental engineers are trying to determine whether the underground aquifers

in a region are being drained by a new spring water company in the area. Well depth

data have been collected every year at several locations in the area. Create a data file

that stores on each line the year, an alphanumeric code representing the location,

and the measured well depth that year. Write a script that will read the data from the

file and determine whether the average well depth has declined.

CHAPTER 10
Advanced Functions
CONTENTS
KEY TERMS
10.1 Anonymous
Functions
........................301

10.2 Uses of
Function
anonymous functions

function handle

function function

nested functions

recursive functions

variable number of

arguments

outer function

inner function

recursion

infinite recursion
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
Handles.....303

10.3 Variable
Numbers of
Arguments
........................306

10.4 Nested
Functions
........................312

10.5 Recursive
Functions
........................313
Functions were introduced in Chapter 2, and then expanded on in Chapter 6. In

this chapter, several advanced features of functions and types of functions will
be described. Anonymous functions are simple one-line functions that are called

using their function handle. Other uses of function handles will also be demon-

strated, including function functions. All of the functions that we have seen so
far have had a well-defined number of input and output arguments, but we will

see that the number of arguments can be varied.Nested functions are also intro-

duced, which are functions contained within other functions. Finally, recursive
functions are functions that call themselves. A recursive function can return a

value, or may simply accomplish a task such as printing.
10.1 ANONYMOUS FUNCTIONS

An anonymous function is a very simple, one-line function. The advantage of

an anonymous function is that it does not have to be stored in an M-file. This

can greatly simplify programs, since often calculations are very simple, and the
use of anonymous functions reduces the number of M-files necessary for a pro-

gram. Anonymous functions can be created in the Command Window or in

any script. The syntax for an anonymous function follows:

fnhandle ¼ @ (arguments) functionbody;
301

302 CHAPTER 10 Advanced Functions
where fnhandle stores the function handle; it is essentially a way of referring to

the function. The handle is assigned to the variable name using the@ operator.

The arguments, in parentheses, correspond to the argument(s) that are passed
to the function, just like any other kind of function. The functionbody is the

body of the function, which is any valid MATLABW expression. For example,

here is an anonymous function that calculates and returns the area of a circle:

>> cirarea ¼ @ (radius) pi * radius .^ 2;

The function handle name is cirarea. One argument is passed to the input ar-
gument radius. The body of the function is the expression pi * radius .^ 2.

The .^ operator is used so that a vector of radii can be passed to the function.

The function is then called using the handle and passing arguments to it. The
function call using the function handle looks just like a function call using a

function name:

>> cirarea(4)
ans ¼

50.2655

>> cirarea(1:4)
ans ¼

3.1416 12.5664 28.2743 50.2655

Unlike functions stored in M-files, if no argument is passed to an anonymous
function, the parentheses must still be in the function definition and in the

function call. For example, following is an anonymous function that prints a

random real number with two decimal places, as well as a call to this function:

>> prtran ¼ @ () fprintf('%.2f\n',rand);
>> prtran()
0.95

Typing just the name of the function handle will display its contents, which is

the function definition.

>> prtran
prtran ¼

@ () fprintf('%.2f\n',rand)

This is why parentheses must be used to call the function, even though no
arguments are passed.

An anonymous function can be saved to a MAT-file, and then it can be loaded

when needed.

>> cirarea ¼ @ (radius) pi * radius .^ 2;
>> save anonfns cirarea
>> clear
>> load anonfns

30310.2 Uses of Function Handles
>> who
Your variables are:
cirarea

>> cirarea
cirarea ¼

@ (radius) pi * radius .^ 2

Other anonymous functions could be appended to this MAT-file. Even though

an advantage of anonymous functions is that they do not have to be saved in
individual M-files, it is frequently useful to save groups of related anonymous

functions in a single MAT-file. Anonymous functions that are frequently used

can be saved in aMAT-file and then loaded from this MAT-file in everyMATLAB
Command Window.

PRACTICE 10.1

Create your own anonymous functions to calculate the areas of circles, rectangles, and something

else (you decide!). Store these anonymous functions in a file called myareas.mat.
10.2 USES OF FUNCTION HANDLES

Function handles can also be created for functions other than anonymous func-

tions, both built-in and user-defined functions. For example, the following
would create a function handle for the built-in factorial function:

>> facth ¼ @factorial;

The @ operator gets the handle of the function, which is then stored in a var-
iable facth.

The handle could then be used to call the function, just like the handle for the
anonymous functions, such as the following:

>> facth(5)
ans ¼

120

Using the function handle to call the function instead of using the name of the
function does not in itself demonstrate why it is useful, so an obvious question

would be why function handles are necessary for functions other than anony-

mous functions.

10.2.1 Function functions
One reason for using function handles is to be able to pass functions to other

functions—these are called function functions. For example, let’s say we have a
function that creates an x vector. The y vector is created by evaluating a function

at each of the x points, and then these points are plotted.

304 CHAPTER 10 Advanced Functions
fnfnexamp.m

function fnfnexamp(funh)
% fnfnexamp receives the handle of a function
% and plots that function of x (which is 1:.25:6)
% Format: fnfnexamp(function handle)

x ¼ 1:.25:6;
y ¼ funh(x);
plot(x,y,'ko')
xlabel('x')
ylabel('fn(x)')
title(func2str(funh))
end

What wewant to do is pass a function to be the value of the input argument funh,
such as sin, cos, or tan. Simply passing the name of the function does not work:

>> fnfnexamp(sin)
??? Error using ¼¼> sin
Not enough input arguments.

Instead, we have to pass the handle of the function:

>> fnfnexamp(@sin)

which creates the y vector as sin(x) and then brings up the plot as seen in
Figure 10.1. The function func2str converts a function handle to a string; this

is used for the title.
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x

sin

fn
(x

)

FIGURE 10.1 Plot of sin created by passing handle of function to plot

30510.2 Uses of Function Handles
Passing the handle to the cos function instead would graph cosine instead

of sine:

>> fnfnexamp(@cos)

We could also pass the handle of any user-defined or anonymous function to

the fnfnexamp function.

There is also a built-in function str2func that will convert a string to a function

handle. A string containing the name of a function could be passed as an input
argument, and then converted to a function handle.

fnstrfn2.m
function fnstrfn2(funstr)
% fnstrfn2 receives the name of a function as a string
% it converts this to a function handle and
% then plots the function of x (which is 1:.25:6)
% Format: fnstrfn2(function name as string)
x ¼ 1:.25:6;
funh ¼ str2func(funstr);
y ¼ funh(x);
plot(x,y,'ko')
xlabel('x')
ylabel('fn(x)')
title(funstr)
end
This would be called by passing a string to the function, and would create the

same plot:

>> fnstrfn2('sin')
PRACTICE 10.2

Write a function that will receive as input arguments an x vector and a function handle, and will

create a vector y that is the function of x (whichever function handle is passed) and will also

plot the data from the x and y vectors with the function name in the title.
MATLAB has some built-in function functions. One built-in function function

is fplot, which plots a function between limits that are specified. The form of
the call to fplot is

fplot(fnhandle, [xmin xmax])

For example, to pass the sin function to fplot one would pass its handle (see

Figure 10.2 for the result):

>> fplot(@sin, [-pi pi])

The fplot function is a nice shortcut—it is not necessary to create x and y vectors,
and it plots a continuous curve rather than discrete points.

–3 –2 –1 0 1 2 3
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 10.2 Plot of sin created using fplot

306 CHAPTER 10 Advanced Functions
The function feval will evaluate a function han-

dle and execute the function for the specified

argument. For example, the following is equiva-
lent to sin(3.2):

>> feval(@sin, 3.2)
ans ¼

�0.0584
10.3 VARIABLE NUMBERS
OF ARGUMENTS

The functions that we’ve written thus far contain a

fixed number of input and output arguments. For

example, in the following function thatwehavede-
fined previously, there is one input argument and

two output arguments:
areacirc.m
function [area, circum] ¼ areacirc(rad)
% areacirc returns the area and
% the circumference of a circle
% Format: areacirc(radius)

area ¼ pi * rad .* rad;
circum ¼ 2 * pi * rad;
end
However, this is not always the case. It is possible to have a variable number of

arguments, both input and output arguments. A built-in cell array varargin can

be used to store a variable number of input arguments and a built-in cell array

varargout can be used to store a variable number of output arguments. These
are cell arrays because the arguments could be different types, and only cell ar-

rays can store different kinds of values in the various elements. The function
nargin returns the number of input arguments that were passed to the function,

and the function nargout determines how many output arguments are

expected to be returned from a function.
10.3.1 Variable number of input arguments
For example, the following function areafori has a variable number of input
arguments, either one or two. The name of the function stands for “area, feet or

inches.” If only one argument is passed to the function, it represents the radius
in feet. If two arguments are passed, the second can be a character ‘i’ indicating that

theresult shouldbein inches(foranyothercharacter, thedefaultof feet isassumed).

30710.3 Variable Numbers of Arguments
The function uses the built-in cell array varargin, which stores any number of

input arguments. The function nargin returns the number of input arguments

that were passed to the function. In this case, the radius is the first argument
passed so it is stored in the first element in varargin. If a second argument is

passed (if nargin is 2), it is a character that specifies the units.

areafori.m

Note

Curly braces are used to

refer to the elements in

the cell array varargin.
function area ¼ areafori(varargin)
% areafori returns the area of a circle in feet
% The radius is passed, and potentially the unit of
% inches is also passed, in which case the result will be
% given in inches instead of feet
% Format: areafori(radius) or areafori(radius,'i')

n ¼ nargin; % number of input arguments
radius ¼ varargin{1}; % Given in feet by default
if n ¼¼ 2

unit ¼ varargin{2};
% if inches is specified, convert the radius
if unit ¼¼ 'i'

radius ¼ radius * 12;
end

end
area ¼ pi * radius .^ 2;
end
Some examples of calling this function follow:

>> areafori(3)
ans ¼

28.2743

>> areafori(1,'i')
ans ¼

452.3893

In this case, itwas assumed that the radiuswill alwaysbepassed to the function. The

functionheader can thereforebemodified to indicate that the radiuswill bepassed,

and then a variable number of remaining input arguments (either none or one):

areafori2.m
function area ¼ areafori2(radius, varargin)
% areafori2 returns the area of a circle in feet
% The radius is passed, and potentially the unit of
% inches is also passed, in which case the result will be
% given in inches instead of feet
Continued

308 CHAPTER 10 Advanced Functions
% Format: areafori(radius) or areafori(radius,'i')

n ¼ nargin; % number of input arguments

if n ¼¼ 2
unit ¼ varargin{1};
% if inches is specified, convert the radius
if unit ¼¼ 'i'

radius ¼ radius * 12;
end

end
area ¼ pi * radius .^ 2;
end
>> areafori2(1,'i')
ans ¼

452.3893

>> areafori2(3)
ans ¼

28.2743

Note that nargin returns the total number of input arguments, not just the
number of arguments in the cell array varargin.

There are basically two formats for the function header with a variable number
of input arguments. For a function with one output argument, the options are:

function outarg ¼ fnname(varargin)

function outarg ¼ fnname(input arguments, varargin)

Either some input arguments are built into the function header, and varargin
stores anything else that is passed, or all of the input arguments go into varargin.
PRACTICE 10.3

The sum of a geometric series is given by

1 þ r þ r2 þ r3 þ r4 þ . . . þ rn

Write a function called geomser that will receive a value for r and calculate and return the sum of the

geometric series. If a second argument is passed to the function, it is the value of n; otherwise, the

function generates a random integer for n (in the range from 5 to 30). Note that loops are not

necessary to accomplish this. The following examples of calls to this function illustrate what the

result should be:

>> geomser(1,5) % 1 þ 11 þ 12 þ 13 þ 14 þ 15

ans ¼
6

30910.3 Variable Numbers of Arguments
>> g ¼ geomser(2,4) % 1 þ 21 þ 22 þ 23 þ 24

g ¼
31

>> geomser(1) % 1 þ 11 þ 12 þ 13 þ . . . ?

ans ¼
12

Note that in the last example, a random integer was generated for n (which must have been 11). Use

the following header for the function, and fill in the rest:

function sgs ¼ geomser(r, varargin)
10.3.2 Variable number of output arguments
A variable number of output arguments can also be specified. For example, one

input argument is passed to the following function typesize. The function will

always return a character specifying whether the input argument was a scalar
(‘s’), vector (‘v’), or matrix (‘m’). This character is returned through the output

argument arrtype.

Additionally, if the input argumentwas a vector, the function returns the lengthof
the vector, and if the input argument was a matrix, the function returns the

number of rows and the number of columns of thematrix. The output argument

varargout is used, which is a cell array. So, for a vector the length is returned
through varargout, and for a matrix both the number of rows and columns

are returned through varargout.

typesize.m
function [arrtype, varargout] ¼ typesize(inputval)
% typesize returns a character 's' for scalar, 'v'
% for vector, or 'm' for matrix input argument
% also returns length of a vector or dimensions of matrix
% Format: typesize(inputArgument)

[r c] ¼ size(inputval);

if r¼¼1 && c¼¼1
arrtype ¼ 's';

elseif r¼¼1 jj c¼¼1
arrtype ¼ 'v';
varargout{1} ¼ length(inputval);

else
arrtype ¼ 'm';
varargout{1} ¼ r;
varargout{2} ¼ c;

end
end

310 CHAPTER 10 Advanced Functions
>> typesize(5)
ans ¼
s

>> [arrtype, len] ¼ typesize(4:6)
arrtype ¼
v
len ¼

3

>> [arrtype, r, c] ¼ typesize([4:6;3:5])
arrtype ¼
m

r ¼
2

c ¼
3

In the examples shown here, the user must actually know the type of the argu-
ment to determine how many variables to have on the left side of the assign-

ment statement. An error will result if there are too many variables.

>> [arrtype, r,c] ¼ typesize(4:6)
Error in ¼¼> typesize at 7
[r c] ¼ size(inputval);

??? Output argument "varargout{2}" (and maybe others) not
assigned during call to "\path\typesize.m>typesize".

The function nargout can be called to determine how many output arguments
were used to call a function. For example, in the following function mysize, a

matrix is passed to the function. The function behaves like the built-in function

size in that it returns the number of rows and columns. However, if three vari-
ables are used to store the result of calling this function, it also returns the total

number of elements:

mysize.m
function [row col varargout] ¼ mysize(mat)
% mysize returns dimensions of input argument
% and possibly also total # of elements
% Format: mysize(inputArgument)

[row col] ¼ size(mat);

if nargout ¼¼ 3
varargout{1} ¼ row*col;

end
end

Note

The function nargout

does not return the

number of output

arguments in the

function header, but

the number of output

arguments expected

from the function

(meaning, the number

of variables in the vector

in the left side of the

assignment statement

when calling the

function).

31110.3 Variable Numbers of Arguments

Openmirrors.com
>> [r c] ¼ mysize(eye(3))
r ¼

3
c ¼

3

>> [r c elem] ¼ mysize(eye(3))
r ¼

3
c ¼

3
elem ¼

9

In the first call to themysize function in the previous example, the value of nargout
was2, so the functiononly returned theoutput arguments rowand col. In the second

call, sincetherewerethreevariablesontheleftof theassignmentstatement, thevalue

of nargout was 3; thus, the function also returned the total number of elements.

There are basically two formats for the function header with a variable number

of output arguments:

function varargout ¼ fnname(input args)

function [output args, varargout] ¼ fnname(input args)

Either some output arguments are built into the function header, and vararg-
out stores anything else that is returned or all go into varargout. The function is

called as follows:

[variables] ¼ fnname(input args);
QUICK QUESTION!

A temperature in degrees Centigrade is passed to a function

called converttemp. How could we write this function so that

it converts this temperature to degrees Fahrenheit, and

possibly also to degrees Kelvin, depending on the number of

output arguments? The conversions follow:

F ¼ 9

5
C þ 32

K ¼ C þ 273:15

Here are possible calls to the function:

>> df ¼ converttemp(17)

df ¼

62.6000

>> [df dk] ¼ converttemp(17)

df ¼
62.6000

dk ¼
290.1500

Answer: We could write the function two different ways: one

with only varargout in the function header, and one that has an

output argument for the degrees F and also varargout in the

function header.

Continued

QUICK QUESTION!—CONT’D

converttemp.m

function [degreesF, varargout] ¼ converttemp(degreesC)

% converttemp converts temperature in degrees C

% to degrees F and maybe also K

% Format: converttemp(C temperature)

degreesF ¼ 9/5*degreesC þ 32;

n ¼ nargout;

if n ¼¼ 2

varargout{1} ¼ degreesC þ 273.15;

end

end

converttempii.m

function varargout ¼ converttempii(degreesC)

% converttempii converts temperature in degrees C

% to degrees F and maybe also K

% Format: converttempii(C temperature)

n ¼ nargout;

varargout{1} ¼ 9/5*degreesC þ 32;

if n ¼¼ 2

varargout{2} ¼ degreesC þ 273.15;

end

end

312 CHAPTER 10 Advanced Functions
10.4 NESTED FUNCTIONS

Just as we have seen that loops can be nested, meaning one inside of another,
functions can be nested. The terminology for nested functions is that an outer

function can have within it inner functions. When functions are nested, every

function must have an end statement (much like loops). The general format
of a nested function is as follows:

outer function header

body of outer function

inner function header
body of inner function

end % inner function

more body of outer function

end % outer function

Note

31310.5 Recursive Functions
The inner function can be in any part of the body of the outer function so there

may be parts of the body of the outer function before and after the inner func-

tion. There can be multiple inner functions.

The scope of any variable is the workspace of the outermost function in which it

is defined and used. This means that a variable defined in the outer function

could be used in an inner function (without passing it). A variable defined
in the inner function could be used in the outer function, but if it is not used

in the outer function the scope is just the inner function.

For example, the following function calculates and returns the volume of a

cube. Three arguments are passed to it, the length and width of the base of

the cube and also the height. The outer function calls a nested function that
calculates and returns the area of the base of the cube.

nestedvolume.m
It is not necessary to

pass the length and

width to the inner

function, since the

scope of these variables

includes the inner

function.
function outvol ¼ nestedvolume(len, wid, ht)
% nestedvolume receives the lenght, width, and
% height of a cube and returns the volume; it calls
% a nested function that returns the area of the base
% Format: nestedvolume(length,width,height)

outvol ¼ base * ht;

function outbase ¼ base
% returns the area of the base
outbase ¼ len * wid;
end % base function

end % nestedvolume function
An example of calling this function follows:

>> v ¼ nestedvolume(3,5,7)
v ¼

105

Output arguments are different from variables. The scope of an output argu-

ment is just the nested function; it cannot be used in the outer function. In this
example, outbase can only be used in the base function; its value, for example,

could not be printed from nestedvolume. Examples of nested functions will be

used in the section on graphical user interfaces.
10.5 RECURSIVE FUNCTIONS

Recursion occurs when something is defined in terms of itself. In programming, a
recursive function is a function that calls itself. Recursion is used very commonly

in programming, although many simple examples (including some shown in

314 CHAPTER 10 Advanced Functions
this section) are actually not very efficient and can be replaced by iterative

methods (loops, or vectorized code inMATLAB). Nontrivial examples go beyond

the scope of this book, so the concept of recursion is simply introduced here.

The first example will be of a factorial. Normally, the factorial of an integer n is

defined iteratively:

n! ¼ 1 * 2 * 3 * . . . * n

For example, 4! ¼ 1 * 2 * 3 * 4, or 24.

Another, recursive definition is

n! ¼ n * (n - 1)! general case

1! ¼ 1 base case

This definition is recursive because a factorial is defined in terms of another fac-
torial. There are two parts to any recursive definition: the general (or inductive)

case and the base case. We say that in general the factorial of n is defined as n

multiplied by the factorial of (n – 1), but the base case is that the factorial of 1 is
just 1. The base case stops the recursion.

For example,

3! ¼ 3 * 2!
2! ¼ 2 * 1!

1! ¼ 1
¼ 2

¼ 6

The way this works is that 3! is defined in terms of another factorial, as 3 * 2!.
This expression cannot yet be evaluated, because first we have to find the value

of 2!. So, in trying to evaluate the expression 3 * 2!, we are interrupted by the

recursive definition. According to the definition, 2! is 2 * 1!.

Again, the expression 2 * 1! cannot yet be evaluated because first we have to

find the value of 1!. According to the definition, 1! is 1. Since we now know
what 1! is, we can continue with the expression that was just being evaluated;

now we know that 2 * 1! is 2 * 1, or 2. Thus, we can now finish the previous

expression that was being evaluated; we know that 3 * 2! is 3 * 2, or 6.

This is the way that recursion always works. With recursion, the expressions are

put on hold with the interruption of the general case of the recursive definition.

This keeps happening until the base case of the recursive definition applies. This
finally stops the recursion, and then the expressions that were put on hold are

evaluated in the reverse order. In this case, first the evaluation of 2 * 1! was

completed, and then 3 * 2!.

Theremust always be a base case to end the recursion, and the base casemust be

reached at some point. Otherwise, infinite recursionwould occur (theoretically,
although MATLAB will stop the recursion eventually).

31510.5 Recursive Functions
We have already seen the built-in function factorial in MATLAB to calculate

factorials, and we have seen how to implement the iterative definition using

a running product. Now we will instead write a recursive function called fact.
The function will receive an integer n, which we will for simplicity assume is

a positive integer, and will calculate n! using the recursive definition given

previously.
fact.m

function facn ¼ fact(n)
% fact recursively finds n!
% Format: fact(n)
if n ¼¼ 1

facn ¼ 1;
else

facn ¼ n * fact(n - 1);
end
end
The function calculates one value, using an if-else statement to choose between
the base and general cases. If the value passed to the function is 1, the function

returns 1 since 1! is equal to 1. Otherwise, the general case applies. According

to the definition, the factorial of n, which is what this function is calculating, is
defined as n multiplied by the factorial of (n – 1). So, the function assigns n *
fact(n - 1) to the output argument.

How does this work? Exactly the way the example was sketched above for 3!.

Let’s trace what would happen if the integer 3 is passed to the function:

fact(3) tries to assign 3 * fact(2)
fact(2) tries to assign 2 * fact(1)

fact(1) assigns 1
fact(2) assigns 2

fact(3) assigns 6

When the function is first called, 3 is not equal to 1, so the statement

facn ¼ n * fact(n - 1);

is executed. This will attempt to assign the value of 3 * fact(2) to facn, but this

expression cannot be evaluated yet and therefore a value cannot be assigned yet

because first the value of fact(2) must be found.

Thus, the assignment statement has been interrupted by a recursive call to the fact

function. The call to the function fact(2) results in an attempt to assign2 * fact(1),
but again this expression cannot yet be evaluated. Next, the call to the function

fact(1) results in a complete execution of an assignment statement since it assigns

just 1. Once the base case has been reached, the assignment statements that were
interrupted can be evaluated, in the reverse order.

316 CHAPTER 10 Advanced Functions
Calling the function yields the same result as the built-in factorial function, as

follows:

>> fact(5)
ans ¼

120

>> factorial(5)
ans ¼

120

The recursive factorial function is a very common example of a recursive func-

tion. It is somewhat of a lame example, however, since recursion is not neces-
sary to find a factorial. A for loop can be used just as well in programming

(or, of course, the built-in function in MATLAB).

Another, better, example is of a recursive function that does not return any-

thing, but simply prints. The following function prtwords receives a sentence,

and prints the words in the sentence in reverse order. The algorithm for the
prtwords function follows:

n Receive a sentence as an input argument.
n Use strtok tobreak the sentence into the firstwordand the rest of the sentence.

n If the rest of the sentence is not empty (i.e., if there is more to it), recursively

call the prtwords function and pass to it the rest of the sentence.
n Print the word.

The function definition follows:

prtwords.m
function prtwords(sent)
% prtwords recusively prints the words in a string
% in reverse order
% Format: prtwords(string)

[word, rest] ¼ strtok(sent);
if �isempty(rest)

prtwords(rest);
end
disp(word)
end
Here is an example of calling the function, passing the sentence “what does
this do”:

>> prtwords('what does this do')
do
this
does
what

31710.5 Recursive Functions
An outline of what happens when the function is called follows:

The function receives 'what does this do'
I

S

t breaks it into word ¼ 'what', rest ¼ ' does this do'

ince "rest" is not empty, calls prtwords, passing "rest"

The function receives ' does this do'

It breaks it into word ¼ 'does', rest ¼ ' this do'

Since "rest" is not empty, calls prtwords, passing "rest"

The function receives ' this do'

It breaks it into word ¼ 'this', rest ¼ ' do'

Since"rest"isnotempty,callsprtwords,passing"rest"

The function receives ' do'

It breaks it into word ¼ 'do', rest ¼ ''

"rest" is empty so no recursive call

Print 'do'

Print 'this'

Print 'does'

Print 'what'
In this example, the base case is when the rest of the string is empty—in other

words, the end of the original sentence has been reached. Every time the function
is called, the executionof the function is interrupted by a recursive call to the func-

tion, until the base case is reached.When the base case is reached, the entire func-

tioncanbeexecuted, includingprinting theword(in thebasecase, theword“do”).

Once that execution of the function is completed, the program returns to the

previous version of the function in which the word was “this,” and finishes

PRACTICE 10.4

For the following function,

recurfn.m

function outvar ¼ recurfn(num)

% Format: recurfn(number)

if num < 0

outvar ¼ 4;

else

outvar ¼ 3 þ recurfn(num - 1);

end
end
whatwould be returned by the call to the functionrecurfn(2.3)?Think about it, and then type in

the function and test it.

318 CHAPTER 10 Advanced Functions
the execution by printing the word “this.” This continues; the versions of the

function are finished in the reverse order, so the program ends up printing

the words from the sentence in the reverse order.
SUMMARY
Common Pitfalls

n Trying to pass just the name of a function to a function function; instead,

the function handle must be passed

n Thinking that nargin is the number of elements in varargin (it may be, but

not necessarily; nargin is the total number of input arguments)
n Forgetting the base case for a recursive function

Programming Style Guidelines

n Use anonymous functions whenever the function body consists of just a

simple expression.
n Store related anonymous functions together in one MAT-file.

n If some inputs and/or outputs will always be passed to/from a function, use

standard input arguments/output arguments for them. Use varargin and
varargout only when it is not known ahead of time whether other input/

output arguments will be needed.

n Use iteration instead of recursion when possible.
MATLAB Reserved Words

end (for functions)
MATLAB Functions and Commands

func2str

str2func

fplot

feval

varargin

varargout

nargin

nargout
MATLAB Operator

handle of anonymous functions @
Exercises
1. An approximation for a factorial can be found using Stirling’s formula:

n! �
ffiffiffiffiffiffiffiffiffiffiffi

2 p n
p n

e

� �n

Write an anonymous function to implement this.

319Exercises
2. The velocity of sound in air is 49.02
ffiffiffiffi

T
p

feet per secondwhereT is the air temperature

in degrees Rankine. Write an anonymous function that will calculate this. One

argument, the air temperature in degrees R, will be passed to the function and it will

return the velocity of sound.

3. The hyperbolic sine for an argument x is defined as

hyperbolicsineðxÞ ¼ ðex � e�x Þ=2
Write an anonymous function to implement this. Compare yours to the built-in
function sinh.

4. In special relativity, the Lorentz factor is a number that describes the effect of speed

on various physical properties when the speed is significant relative to the speed of

light. Mathematically, the Lorentz factor is given as

g ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v 2

c2

r

Write an anonymous function gamma that will receive the speed v and calculate the
Lorentz factor. Use 3 � 108 m/s for the speed of light, c.

5. Create a set of anonymous functions to do length conversions and store them in a file

named lenconv.mat. Call each a descriptive name, such as cmtoinch, to convert from

centimeters to inches.

6.Write a function that will receive data in the form of x and y vectors, and a handle to a

plot function, and will produce the plot. For example, a call to the function would look

like wsfn(x,y,@bar).

7.Write a function plot2fnhand that will receive two function handles as input

arguments, and will display in two Figure Windows plots of these functions, with the

function names in the titles. The function will create an x vector that ranges from 1 to

n (where n is a random integer in the range from 4 to 10). For example, if the function

is called as follows:

>> plot2fnhand(@sqrt, @exp)

and the random integer is 5, the Figure Window 1 would display the sqrt

function of x ¼ 1:5, and the second Figure Window would display exp(x)

for x ¼ 1:5.

8.Write an anonymous function to implement the following quadratic: 3x2 � 2x þ 5.

Then, use fplot to plot the function in the range from –6 to 6.

9. Use feval as an alternative way to accomplish the following function calls:

abs(-4)
size(zeros(4))

Use feval twice for the second one!

10.There is a built-in function function called cellfun that evaluates a function for every

element of a cell array. Create a cell array, then call the cellfun function, passing the

handle of the length function and the cell array to determine the length of every

element in the cell array.

320 CHAPTER 10 Advanced Functions
11.Write a function that will print a random integer. If no arguments are passed to the

function, it will print an integer in the range from 1 to 100. If one argument is passed,

it is the max and the integer will be in the range from 1 to max. If two arguments are

passed, they represent the min and max, and it will print an integer in the range from

min to max.

12.The velocity of sound in air is 49.02
ffiffiffiffi

T
p

feet per second where T is the air

temperature in degrees Rankine. Write a function to implement this. If just one

argument is passed to the function, it is assumed to be the air temperature in degrees

Rankine. If, however, two arguments are passed, the two arguments would be first an

air temperature and then a character ‘f’ for Fahrenheit or ‘c’ for Celsius (so this would

then have to be converted to Rankine). Note: Degrees R ¼ degrees F þ 459.67.

Degrees F ¼ 9/5 degrees C þ 32.

13.Write a function areaperim that will calculate both the area and perimeter of a

polygon. The radius r will be passed as an argument to the function. If a second

argument is passed to the function, it represents the number of sides n. If, however,

only one argument is passed, the function generates a random value for n (an integer

in the range from 3 to 8). For a polygon with n sides inscribed in a circle with a radius

of r, the area a and perimeter p of the polygon can be found by

a ¼ 1

2
nr2 sin

2p
n

� �

, p ¼ 2p r sin
p
n

� �

14.Write a function that will receive a variable number of input arguments: the length
and width of a rectangle, and possibly also the height of a box that has this rectangle

as its base. The function should return the rectangle area if just the length and width

are passed, or also the volume if the height is also passed.

15.Write a function that will receive the radius r of a sphere. It will calculate and return

the volume of the sphere (4/3 p r 3). If the function call expects two output arguments,

the function will also return the surface area of the sphere (4 p r 2).

16.A basic unit of data storage is the byte (B). One B is equivalent to eight bits. A nibble

is equivalent to four bits. Write a function that will receive the number of bytes, and

will return the number of bits. If two output arguments are expected, it will also

return the number of nibbles.

17.Write a function arcSector that receives a radius and an angle in radians of a circular

sector. The functionwill return the area of the sector and, if two output arguments are

usedwhen calling the function, the length of the circular arc of the sector. The area of

a sector is given as

A ¼ 1

2
r 2y

and the length of a circular arc is given as
l ¼ ry

321Exercises
The following are some examples of calling the function:
>> arcSector(5,pi/4)
ans ¼

9.8175
>> [a l] ¼ arcSector(3,pi/4)
a ¼

3.5343
l ¼

2.3562

18. In quantummechanics, Planck’s constant, written as h, is defined as h¼ 6.626 * 10–34

joule-seconds. The Dirac constant hbar is given in terms of Planck’s constant:

hbar ¼ h

2p

Write a function planck that will return Planck’s constant. If two output arguments
are expected, it will also return the Dirac constant.

19.The overall electrical resistance of n resistors in parallel is given as

RT ¼ 1

R1
þ 1

R2
þ 1

R3
þ . . .þ 1

Rn

� ��1

Write a function Req that will receive a variable number of resistance values and will
return the equivalent electrical resistance of the resistor network. The following are

examples of calling the function:

>> Req(100,100)
ans ¼

50

>> Req(100,330,1000)
ans ¼

71.2743

20.Write a function unwind that will receive a matrix as an input argument. It will return

a row vector created columnwise from the elements in the matrix. If the number of

expected output arguments is two, it will also return this as a column vector.

21.A script ftocmenu uses themenu function to ask the user to choose between output

to the screen and to a file. The output is a list of temperature conversions, converting

from Fahrenheit to Celsius for values of F ranging from 32 to 62 in steps of 10. If the

user chooses File, the script opens a file for writing, calls a function tempcon that

writes the results to a file (passing the file identifier), and closes the file. Otherwise, it

calls the function tempcon, passing no arguments, which writes to the screen.

In either case, the function tempcon is called by the script. If the file identifier is

passed to this function it writes to the file; otherwise, if no arguments are passed, it

writes to the screen. The function tempcon calls a subfunction that converts one

temperature in degrees F to C using the formula: C¼ (F–32) * 5/9. Here is an example

of executing the script; in this case, the user chooses the Screen button:

322 CHAPTER 10 Advanced Functions
>> ftocmenu
32F is 0.0C
42F is 5.6C
52F is 11.1C
62F is 16.7C
>>

ftocmenu.m

choice ¼ menu('Choose output mode','Screen','File');
if choice ¼¼ 2

fid ¼ fopen('yourfilename.dat','w');
tempcon(fid)
fclose(fid);

else
tempcon

end

Write the function tempcon and its subfunction.

22.The built-in function clock returns a vector with six elements representing, in order,

the year, month, day, hour, minutes, and seconds. Write a function whatday

that (using the clock function) will always return the current day. If the function call

expects two output arguments, it will also return the month. If the function

call expects three output arguments, it will also return the year.

23.The built-in function date returns a string containing the day, month, and year. Write

a function (using the date function) that will always return the current day. If

the function call expects two output arguments, it will also return the month. If the

function call expects three output arguments, it will also return the year.

24.Write a function to calculate the volume of a cone. The volume formula is V ¼ AH

where A is the area of the circular base (A ¼ pr2 where r is the radius) and H is the

height. Use a nested function to calculate A.

25.The two real roots of a quadratic equation ax2 þ bx þ c ¼ 0 (where a is nonzero) are

given by

�b � ffiffiffiffi

D
p

2 � a
where the discriminant D¼ b2 – 4 * a * c. Write a function to calculate and return the
roots of a quadratic equation. Pass the values of a, b, and c to the function. Use a

nested function to calculate the discriminant.

26.A recursive definition of an, where a is an integer and n is a non-negative integer,

follows:

an ¼ 1 if n ¼¼ 0

¼ a � an � 1 if n > 0

Write a recursive function called mypower, which receives a and n and returns
the value of an by implementing the previous definition. Note: The program should

323Exercises
not use the ^ operator anywhere; this is to be done recursively instead! Test the

function.

27.What does the following function do?
function outvar ¼ mystery(x,y)
if y ¼¼ 1

outvar ¼ x;
else

outvar ¼ x þ mystery(x,y-1);
end

Give one word to describe what this function does with its two arguments.

The Fibonacci numbers is a sequence of numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34. . . .

The sequence starts with 0 and 1. All other Fibonacci numbers are obtained by

adding the previous two Fibonacci numbers. The higher up in the sequence that

you go, the closer the fraction of one Fibonacci number divided by the previous is to

the golden ratio. The Fibonacci numbers can be seen in an astonishing number of

examples in nature, for example, the arrangement of petals on a sunflower.

28.The Fibonacci numbers is a sequence of numbers Fi:

0 1 1 2 3 5 8 13 21 34 . . .

where F0 is 0, F1 is 1, F2 is 1, F3 is 2, and so on. A recursive definition is:

F0 ¼ 0
F1 ¼ 1
Fn ¼ Fn-2 þ Fn-1 if n > 1

Write a recursive function to implement this definition. The function will receive one

integer argument n, and it will return one integer value that is the nth Fibonacci

number. Note that in this definition there is one general case but two base cases.

Then, test the function by printing the first 20 Fibonacci numbers.

29.Use fgets to read strings from a file and recursively print them backward.

30.Combinatorial coefficients can be defined recursively as follows:

C(n,m) ¼ 1 if m ¼ 0 or m ¼ n
¼ C(n-1, m-1) þ C(n-1, m) otherwise

Write a recursive function to implement this definition.

CHAPTER 11
Advanced Plotting Techniques
CONTENTS
KEY TERMS
11.1 Plot
Functions .327

11.2 Animation334

11.3 Three-
Dimensional
Plots.............335
histogram

stem plot

pie chart

area plot

bin

animation

plot properties

object

object handle

graphics primitives

object-oriented

programming

parent/children

core objects

text box

hyetograph

inverse functions
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
11.4 Customizing
Plots.............339

11.5 Handle
Graphics
and Plot
Properties.341

11.6 Plot
Applications
........................351
In Chapter 2, we introduced the use of the function plot in the MATLABW soft-

ware to get simple, two-dimensional (2D) plots of x and y points represented by
two vectors x and y. We have also seen some functions that allow customization

of these plots. In this chapter we will explore other types of plots, ways of cus-

tomizing plots, and some applications that combine plotting with functions
and file input. Additionally, animation, three-dimensional (3D) plots, and

graphics’ properties will be introduced.
11.1 PLOT FUNCTIONS

So far, we have used plot to create two-dimensional plots and bar to create bar

charts. We have seen how to clear the Figure Window using clf, and how to cre-

ate and number Figure Windows using figure. Labeling plots has been accom-
plished using xlabel, ylabel, title, and legend, and we have also seen how to

customize the strings passed to these functions using sprintf. The axis function

changes the axes from the defaults that would be taken from the data in the x
and y vectors to the values specified. Finally, the grid and hold toggle functions

print grids or not, or lock the current graph in the Figure Window so that the

next plot will be superimposed.
327

QUICK QUESTION

What are some options for pl

Answer: There are several m

you want them in a single

328 CHAPTER 11 Advanced Plotting Techniques
11.1.1 Matrix of plots
Another function that is very useful with all types of plots is subplot, which

creates a matrix of plots in the current Figure Window. Three arguments are
passed to it in the form subplot(r,c,n); where r and c are the dimensions of

the matrix and n is the number of the particular plot within this matrix. The

plots are numbered rowwise starting in the upper left corner. In many cases,
it is useful to create a subplot in a for loop so the loop variable can iterate

through the integers 1 through n.

When the subplot function is called in a loop, the first two arguments will
always be the same since they give the dimensions of the matrix. The third

argument will iterate through the numbers assigned to the elements of the ma-

trix. When the subplot function is called, it makes the specified element the
“active” plot; then, any plot function can be used complete with formatting

such as axis labeling and titles within that element.

For example, the following subplot shows the difference, in one Figure Win-

dow, between using 10 points and 20 points to plot sin(x) between

0 and 2 * p. The subplot function creates a 1 � 2 row vector of plots in the
Figure Window, so that the two plots are shown side by side. The loop variable

i iterates through the values 1 and then 2.

The first time through the loop, when i has the value 1, 10 * 1 or 10 points are
used, and the value of the third argument to the subplot function is 1. The sec-

ond time through the loop, 20 points are used and the third argument to sub-
plot is 2. Note that sprintf is used to print how many points were used in the

plot titles. The resulting FigureWindowwith both plots is shown in Figure 11.1.

subplotex.m
!

otti

et

Fig
% Demonstrates subplot using a for loop
for i ¼ 1:2

x ¼ linspace(0,2*pi,10 *i);
y ¼ sin(x);
subplot(1,2,i)
plot(x,y,'ko')
xlabel('x')
ylabel('sin(x)')
title(sprintf('%d Points',10 *i))

end
ng more than one graph?

hods, depending on whether

ure Window superim posed

(using hold on), in a matrix in a single Figure Window

(using subplot), or in multiple Figure Windows (using

figure(n)).

0 2 4 6 8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
10 Points 20 Points

x x

si
n(

x)

0 2 4 6 8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

si
n(

x)

FIGURE 11.1 Subplot to demonstrate a plot using 10 points and 20 points

32911.1 Plot Functions
11.1.2 Plot types
Besides plot and bar, there are many other plot types such as histograms, stem

plots, and pie charts, as well as other functions that customize graphs.

Described in this section are some of the other plotting functions. The func-

tions bar, barh, area, and stem essentially display the same data as the plot

function, but in different forms. The bar function draws a bar chart (as we
have seen before), barh draws a horizontal bar chart, area draws the plot

as a continuous curve and fills in under the curve that is created, and stem

draws a stem plot.

For example, the following script creates a FigureWindow that uses a 2� 2 sub-

plot to demonstrate these four plot types using the same data points (see
Figure 11.2).

subplottypes.m
% Subplot to show plot types

year ¼ 2007:2011;
pop ¼ [0.9 1.4 1.7 1.3 1.8];
subplot(2,2,1)
bar(year,pop)
Continued

FIG

Note

The third argument in

the call to the subplot

function is a single

index into the matrix

created in the

Figure Window; the

numbering is rowwise

(in contrast to the

normal columnwise

unwinding that

MATLAB uses for

matrices).

330 CHAPTER 11 Advanced Plotting Techniques
title('bar')
xlabel('Year')
ylabel('Population')
subplot(2,2,2)
barh(year,pop)
title('barh')
xlabel('Year')
ylabel('Population')
subplot(2,2,3)
area(year,pop)
title('area')
xlabel('Year')
ylabel('Population')
subplot(2,2,4)
stem(year,pop)
title('stem')
xlabel('Year')
ylabel('Population')
2007 2008 2009 2010 2011
0

0.5

1

1.5

2

Year

bar

area stem

barh

P
op

ul
at

io
n

0 0.5 1 1.5 2

2007

2008

2009

2010

2011

Year

P
op

ul
at

io
n

2007 2008 2009 2010 2011
0

0.5

1

1.5

2

Year

P
op

ul
at

io
n

2007 2008 2009 2010 2011
0

0.5

1

1.5

2

Year

P
op

ul
at

io
n

URE 11.2 Subplot to display bar, barh, area, and stem plots

QUICK QUESTION!

Could we produce the previous subplot using a loop?

Answer: Yes, we can store the names of the plots in a cell

array. These names are put in the titles, and also concatenated

with the string ‘(x,y)’ and passed to the eval function to

evaluate the function.

loopsubplot.m

% Demonstrates evaluating plot type names in order to

% use the plot functions and put the names in titles

year ¼ 2007:2011;

pop ¼ [0.9 1.4 1.7 1.3 1.8];

titles ¼ {'bar', 'barh', 'area', 'stem'};

for i ¼ 1:4

subplot(2,2,i)

eval([titles{i} '(year,pop)'])

title(titles{i})

xlabel('Year')

ylabel('Population')

end

33111.1 Plot Functions
For a matrix, the bar and barh functions will group together the values in each
row. For example:

>> groupages ¼ [8 19 43 25; 35 44 30 45]
groupages ¼

8 19 43 25
35 44 30 45

>> bar(groupages)
>> xlabel('Group')
>> ylabel('Ages')

produces the plot shown in Figure 11.3.

Note that MATLAB groups together the values in the first row and then in the

second row. It cycles through colors to distinguish the bars. The ‘stack’ op-

tion will stack rather than grouping the values, so the y value represented by
the top of the bar is the sum of the values from that row (shown in

Figure 11.4).

>> bar(groupages,'stack')
>> xlabel('Group')
>> ylabel('Ages')

A histogram is a particular type of bar chart that shows the frequency of occur-

rence of values within a vector. Histograms use what are called bins to collect

values that are in given ranges. MATLAB has a function to create a histogram,
hist. Calling the function with the form hist(vec) by default takes the values in

332 CHAPTER 11 Advanced Plotting Techniques
the vector vec and puts them into 10 bins (or, hist(vec,n) will put them into n

bins) and plots this, as shown in Figure 11.5.
1 2
0

5

10

15

20

25

30

35

40

45

Group

A
ge

s

FIGURE 11.3 Data from a matrix in a bar chart

1 2
0

20

40

60

80

100

120

140

160

Group

A
ge

s

FIGURE 11.4 Stacked bar chart of matrix data
PRACTICE 11.1

Create a file that has two lines with n numbers in each. Use load to read this into a matrix. Then, use

subplot to show the bar and stacked bar charts side by side.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Grade

Quiz Grades
#

33311.1 Plot Functions

Openmirrors.com
>> quizzes ¼ [10 8 5 10 10 6 9 7 8 10 1 8];
>> hist(quizzes)
>> xlabel('Grade')
>> ylabel('#')
>> title('Quiz Grades')

In this example, the numbers range from 1 to 10 in the vector, and there are 10
bins in the range from 1 to 10. The heights of the bins represent the number of

values that fall within that particular bin. The hist function actually returns

values; the first returned is a vector showing how many of the values from
the original vector fall into each of the bins:

>> c ¼ hist(quizzes)
c ¼

1 0 0 0 1 1 1 3 1 4

The bins in a histogram are not necessarily all the same width. Histograms are
used for statistical analyses of data;more statistics will be covered inChapter 13.

MATLAB has a function pie that will create a pie chart. Calling the functionwith
the formpie(vec)drawsapie chart, using thepercentageof eachelementof vecof

the whole (the sum). It shows these starting from the top of the circle and going

around counterclockwise. For example, the first value in the vector[11 14 8 3 1],
11 is 30%of the sum,14 is 38%of the sum, and so forth, as shown inFigure 11.6.

>> pie([11 14 8 3 1])

FIGURE 11.5 Histogram of data

30%

38%

22%

8%
3%

FIGURE 11.6 Pie chart showing percentages

A

B

C

D
F

FIGURE 11.7 Pie chart with labels from a cell array

334 CHAPTER 11 Advanced Plotting Techniques
A cell array of labels can also be passed to the pie

function; these labels will appear instead of the

percentages (shown in Figure 11.7).

>> pie([11 14 8 3 1], {'A','B','C',. . .
'D', 'F'})
PRACTICE 11.2

A chemistry professor teaches three classes. These are the course

numbers and enrollments:

CH 101 111

CH 105 52

CH 555 12

Use subplot to show this information using pie charts: the pie

chart on the left should show the percentage of students in each

course, and on the right the course numbers. Put appropriate

titles on them.
11.2 ANIMATION

In this section we will examine a couple of ways to

animate a plot. These are visuals, so the results can’t

really be shown here; it is necessary to type these into
MATLAB to see the results.

We’ll start by animating a plot of sin(x) with the
vectors:

>> x ¼ -2*pi : 1/100 : 2*pi;
>> y ¼ sin(x);

This results in enough points that we’ll be able to see

the result using the built-in comet function, which

shows the plot by first showing the point (x(1),
y(1)), and then moving on to the point (x(2),

y(2)), and so on, leaving a trail (like a comet!) of

all of the previous points.

>> comet(x,y)
The end result looks similar to the result of plot(x,y).

Another way of animating is to use the built-in functionmovie, which displays
recorded movie frames. The frames are captured in a loop using the built-in

function getframe, and are stored in amatrix. For example, the following script

33511.3 Three-Dimensional Plots
again animates the sin function. The axis function is used so that MATLAB

will use the same set of axes for all frames, and using the min and max func-

tions on the data vectors x and y will allow us to see all points. It displays the
“movie” once in the for loop, and then again when the movie function is

called.

sinmovie.m

% Shows a movie of the sin function
clear

x ¼ �2*pi: 1/5 : 2*pi;
y ¼ sin(x);
n ¼ length(x);

for i ¼ 1:n
plot(x(i),y(i),'r*')
axis([min(x)�1 max(x)þ 1 min(y)�1 max(y)þ 1])
M(i) ¼ getframe;

end
movie(M)
11.3 THREE-DIMENSIONAL PLOTS

MATLAB has functions that will display 3D plots. Many of these functions have

the same name as the corresponding 2D plot function with a “3” at the end. For

example, the 3D line plot function is called plot3. Other functions include
bar3, bar3h, pie3, comet3, and stem3.

Vectors representing x, y, and z coordinates are passed to the plot3 and stem3
functions. These functions show the points in 3D space. Clicking on the rotate

3D icon and then in the plot allows the user to rotate to see the plot from dif-

ferent angles. Also, using the grid functionmakes it easier to visualize, as shown
in Figure 11.8.

>> x ¼ 1:5;
>> y ¼ [0 �2 4 11 3];
>> z ¼ 2:2:10;
>> plot3(x,y,z,'k*')
>> grid
>> xlabel('x')
>> ylabel('y')
>> zlabel('z')
>> title('3D Plot')

For the bar3 and bar3h functions, y and z vectors are passed and the function

shows 3D bars as shown, for example, for bar3 in Figure 11.9.

1
2

3D Plot

3
4

5

–5
0

5
10

15
2

4

6

8

10

x
y

z

FIGURE 11.8 3D plot with a grid

1
2

3
4

3D Bar

5
6

0

10

20

30

40

x

y

z

FIGURE 11.9 3D bar chart

336 CHAPTER 11 Advanced Plotting Techniques
>> y ¼ 1:6;
>> z ¼ [33 11 5 9 22 30];
>> bar3(y,z)
>> xlabel('x')
>> ylabel('y')
>> zlabel('z')
>> title('3D Bar')

Amatrix can also be passed, such as a 5� 5 spiralmatrix

(which “spirals” the integers 1 to 25 or more generally
from 1 to n2 for spiral(n)), as shown in Figure 11.10.

>> mat ¼ spiral(5)
mat ¼

21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13

>> bar3(mat)
>> title('3D Spiral')
>> xlabel('x')
>> ylabel('y')
>> zlabel('z')

1

3D Spiral

2
3

4
5

1
2

3
4

5

0

5

10

15

20

25

x

y

z

FIGURE 11.10 3D plot of a spiral matrix

25%

50%

10%

15%

FIGURE 11.11 3D pie chart

33711.3 Three-Dimensional Plots
Similarly, the pie3 function shows data from a vector as a
3D pie as shown in Figure 11.11.

>> pie3([3 10 5 2])

Displaying the result of an animated plot in three dimen-
sions is interesting. For example, try the following using

the comet3 function:

>> t ¼ 0:0.001:12*pi;
>> comet3(cos(t), sin(t), t)

Other interesting 3D plot types include mesh and surf.

The mesh function draws a wireframe mesh of 3D
points, whereas the surf function uses color to display

the parametric surfaces defined by the points. MATLAB

has several functions that will create the matrices used
for the (x,y,z) coordinates for specified shapes (e.g.,
sphere and cylinder).

For example, passing an integer n to the sphere function creates n þ 1 � n þ 1

matrices for the x, y, and zmatrices, which can then be passed to themesh func-

tion (Figure 11.12) or the surf function (Figure 11.13).

–1
–0.5

Mesh of sphere

0
0.5

1

–1
–0.5

0
0.5

1
–1

–0.5

0

0.5

1

FIGURE 11.12 Mesh plot of sphere

–1
–0.5

0
0.5

1

–1
–0.5

0
0.5

1
–1

–0.5

0

0.5

1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
Surf of sphere

FIGURE 11.13 Surf plot of sphere

338 CHAPTER 11 Advanced Plotting Techniques

33911.4 Customizing Plots
>> [x,y,z] ¼ sphere(15);
>> size(x)
ans ¼

16 16
>> mesh(x,y,z)
>> title('Mesh of sphere')

Additionally, the colorbar function displays a color bar to the right of the plot,

showing the range of colors.

Note: Options for colors will be described in Chapter 14.

>> [x,y,z] ¼ sphere(15);
>> surf(x,y,z)
>> title('Surf of sphere')
>> colorbar
11.4 CUSTOMIZING PLOTS

There are many ways to customize figures in the Figure Window. Clicking on

the Plot Tools icon will bring up the Property Editor and Plot Browser, with
many options for modifying the current plot. Additionally, there are plot prop-

erties that can be modified from the defaults in the plot functions. Using the

help facility with the function name will show all of the options for that
particular plot function.

For example, thebar andbarh functions by default put a “width” of 0.8 between

bars.Whencalled asbar(x,y), thewidthof0.8 is used. If insteada third argument
is passed, it is thewidth, for example,barh(x,y,width). The following script uses

subplot to show variations on the width. A width of 0.6 results in more space

between the bars. Awidthof 1makes the bars touch eachother, andwith awidth
greater than 1, the bars actually overlap. The results are shown in Figure 11.14.

barwidths.m

% Subplot to show varying bar widths

year ¼ 2007:2011;
pop ¼ [0.9 1.4 1.7 1.3 1.8];

for i ¼ 1:4
subplot(1,4,i)
% width will be 0.6, 0.8, 1, 1.2
barh(year,pop,0.4 þ i*.2)
title(sprintf('Width ¼ %.1f',0.4 þ i*.2))
xlabel('Population')
ylabel('Year')

end

0 1 2

2007

2008

2009

2010

2011

Width = 0.6

Population

Y
ea

r

0 1 2

2007

2008

2009

2010

2011

Width = 0.8

Population

Y
ea

r

0 1 2

2007

2008

2009

2010

2011

Width = 1.0

Population
Y

ea
r

0 1 2

2007

2008

2009

2010

2011

Width = 1.2

Population

Y
ea

r

FIGURE 11.14 Subplot demonstrates varying widths in a bar chart

A

B

C

D
F

Largest Fraction of Grades

FIGURE 11.15 Exploding pie chart

340 CHAPTER 11 Advanced Plotting Techniques
PRACTICE 11.3

Use help area to find out how to change the base level on an area

chart (from the default of 0).
As another example of customizing plots, pieces of a pie

chart canbe “exploded” from the rest. In this case, two vec-

torsarepassed to thepie function: first thedatavector, then
a logicalvector; theelements forwhich the logicalvector is

truewill be exploded from (separated from) the pie chart.

A third argument—that is, a cell array of labels—can

also be passed. The result is seen in Figure 11.15.

>> gradenums ¼ [11 14 8 3 1];
>> which ¼ gradenums ¼¼ max(gradenums)
which ¼

0 1 0 0 0
>> pie(gradenums,which,. . .
{'A','B','C','D','F'})
>> title('Largest Fraction of Grades')

34111.5 Handle Graphics and Plot Properties
11.5 HANDLE GRAPHICS AND PLOT PROPERTIES

MATLAB uses what it calls Handle GraphicsW in all of its figures. All figures con-

sist of different objects, each of which is assigned a handle. The object handle is a
unique real number that is used to refer to the object.

Objects include graphics primitives such as lines and text, as well as the axes

used to orient the objects. The objects are organized hierarchically, and there
are properties associated with each object. This is the basis of object-oriented

programming: objects are organized hierarchically (e.g., a parent comes be-

fore its children in the hierarchy) and this hierarchy has ramifications in
terms of the properties; generally children inherit properties from the

parents.

The hierarchy inMATLAB, as seen inHelp, “Organization of Graphics Objects,”

can be summarized as follows:

Figure Parent
j

Axes j
#

Core objects Plot objects Children

In other words, the FigureWindow includes Axes, which are used to orient Core

objects (primitives such as line, rectangle, text) and Plot objects (which are
used to produce the different plot types, such as bar charts and area plots).
Note

The Figure Window

should not be closed,

as that would make

the object handle

invalid since the

object wouldn’t exist

anymore!
11.5.1 Plot objects and properties
The various plot functions return a handle for the plot object, which can then
be stored in a variable. In the following, the plot function plots a sin function in

a Figure Window (as shown in Figure 11.16) and returns a real number, which

is the object handle. (Don’t try to make sense of the actual number used for the
handle!)

This handle will remain valid as long as the object exists.

>> x ¼ -2*pi: 1/5 : 2*pi;
>> y ¼ sin(x);
>> hl ¼ plot(x,y)
hl ¼
159.0142

>> xlabel('x')
>> ylabel('sin(x)')

Object properties can be displayed using the get function, as shown in the fol-

lowing lines of code. This shows properties such as the Color, LineStyle, Line-

Width, and so on (and many you will not understand—don’t worry about it!).

–8 –6 –4 –2 0 2 4 6 8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x

si
n(

x)

FIGURE 11.16 Plot of sin function with default properties

342 CHAPTER 11 Advanced Plotting Techniques
>> get(hl)
DisplayName: ''
Annotation: [1 x 1 hg.Annotation]

Color: [0 0 1]
EraseMode: 'normal'
LineStyle: '�'
LineWidth: 0.5000

Marker: 'none'
MarkerSize: 6

MarkerEdgeColor: 'auto'
MarkerFaceColor: 'none'

XData: [1 x 63 double]
YData: [1 x 63 double]
ZData: [1 x 0 double]

BeingDeleted: 'off'
ButtonDownFcn: []

Children: [0 x 1 double]
Clipping: 'on'

CreateFcn: []
DeleteFcn: []

BusyAction: 'queue'
HandleVisibility: 'on'

HitTest: 'on'
Interruptible: 'on'

Selected: 'off'
SelectionHighlight: 'on'

Tag: ''

34311.5 Handle Graphics and Plot Properties
Type: 'line'
UIContextMenu: []

UserData: []
Visible: 'on'
Parent: 158.0131

XDataMode: 'manual'
XDataSource: ''
YDataSource: ''
ZDataSource: ''

A particular property can also be displayed. For example, to determine the line

width:

>> get(hl,'LineWidth')
ans ¼

0.5000

The objects, their properties, what the properties mean, and valid values can be

found in MATLAB Help. Under the Contents tab, click on Handle Graphics
Property Browser. Then, click on Plot Objects; several options can be seen. Click

on Lineseries, which is used to create figures using the plot function, to see a list

of the property names and a brief explanation of each.

For example, the Color property is a vector that stores the color of the line as

three separate values for the Red, Green, and Blue intensities, in that order. Each
value is in the range from 0 (which means none of that color) to 1. In the pre-

vious example, the Color was [0 0 1], which means no red, no green, but full

blue—in other words, the line drawn for the sin function was blue. More ex-
amples of possible values for the Color vector are:

[1 0 0] is red
[0 1 0] is green
[0 0 1] is blue
[1 1 1] is white
[0 0 0] is black
[0.5 0.5 0.5] is a shade of grey

All of the properties listed by get can be changed, using the set function. The set
function is called in the format

set(objhandle, 'PropertyName', property value)

For example, to change the line width from the default of 0.5 to 1.5:

>> set(hl,'LineWidth', 2.5)

As long as the Figure Window is still open and this object handle is still valid,
the width of the line will be increased.

The properties can also be set in the original function call. For example, the fol-
lowing will set the line width to 2.5 to begin with as seen in Figure 11.17.

>> hl ¼ plot(x,y, 'LineWidth', 2.5);

–8 –6 –4 –2 0 2 4 6 8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x

si
n(

x)

FIGURE 11.17 Plot of sin function with increased line width

344 CHAPTER 11 Advanced Plotting Techniques
PRACTICE 11.4

Create x and y vectors, and use the plot function to plot the data points represented by these

vectors. Store the handle in a variable, and do not close the Figure Window! Use get to inspect

the properties, and then set to change the line width and color.
11.5.2 Core objects
Core Objects in MATLAB are the very basic graphics primitives. A description

can be found under theMATLAB help. Under the Contents tab, click onHandle
Graphics Objects, and then Core Graphics Objects. The core objects include:

n line
n text
n rectangle
n patch
n image

Theseareallbuilt-in functions;help canbeused to learnhoweach function isused.

A line is a core graphics objects, which is produced by the plot function. The

following is an example of creating a line object, modifying some properties,
and saving the handle in a variable hl:

>> x ¼ �2*pi: 1/5 : 2*pi;
>> y ¼ sin(x);

34511.5 Handle Graphics and Plot Properties
>> hl ¼ line(x,y,'LineWidth', 6, 'Color', [0.5 0.5 0.5])
hl ¼
159.0405

As seen in Figure 11.18, this draws a reasonably thick grey line for the sin func-

tion. As before, the handle will be valid as long as the Figure Window is not

closed. Some of the properties of this object are:

>> get(hl)
Color ¼ [0.5 0.5 0.5]
EraseMode ¼ normal
LineStyle ¼ �
LineWidth ¼ [6]
Marker ¼ none
MarkerSize ¼ [6]
MarkerEdgeColor ¼ auto
MarkerFaceColor ¼ none
XData ¼ [(1 by 63) double array]
YData ¼ [(1 by 63) double array]
ZData ¼ []

etc.

The text graphics function allows text to be printed in a Figure Window,

including the special characters that are printed using \specchar, where
“specchar” is the actual name of the special character. The format of a call to

the text function is

text(x,y,'text string')
–8 –6 –4 –2 0 2 4 6 8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 11.18 A line object with modified line width and color

–4 –3 –2 –1 0 1 2 3 4
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Sin(π)→

FIGURE 11.19 A line object with a text box

346 CHAPTER 11 Advanced Plotting Techniques

Openmirrors.com
where x and y are the coordinates on the graph of the lower left corner of the text
box in which the text string appears.

To see the options for the special characters, under the Contents tab in

Help, click on Handle Graphics Property Browser, then click on Core
Objects, and then choose Text. The special characters are shown in a table

under the String property. The special characters include letters of the Greek

alphabet, arrows, and characters frequently used in equations. For example,
Figure 11.19 displays the Greek symbol for pi and a right arrow within the

text box.

>> x ¼ �4:0.2:4;
>> y ¼ sin(x);
>> hp ¼ line(x,y,'LineWidth',3);
>> thand ¼ text(2,0,'Sin(\pi)\rightarrow')

Using get will display properties of the text box, such as the following:

>> get(thand)
BackgroundColor ¼ none
Color ¼ [0 0 0]
EdgeColor ¼ none
EraseMode ¼ normal
Editing ¼ off
Extent ¼ [1.95862 �0.0670554 0.901149 0.110787]
FontAngle ¼ normal
FontName ¼ Helvetica

34711.5 Handle Graphics and Plot Properties
FontSize ¼ [10]
FontUnits ¼ points
FontWeight ¼ normal
HorizontalAlignment ¼ left
LineStyle ¼ �
LineWidth ¼ [0.5]
Margin ¼ [2]
Position ¼ [2 0 0]
Rotation ¼ [0]
String ¼ Sin(\pi)\rightarrow
Units ¼ data
Interpreter ¼ tex
VerticalAlignment ¼ middle

etc.

Although the Position specified was (2,0), the Extent is the actual extent of the
text box, which cannot be seen since the BackgroundColor and EdgeColor are

not specified. These can be changed using set. For example, the following pro-

duces the result shown in Figure 11.20:

>> set(thand,'BackgroundColor',[0.8 0.8 0.8],. . .
'EdgeColor',[1 0 0])

When the Units property has the value of “data,” which is the default as shown
before, the Extent of the text box is given by a vector [x y width height]

where x and y are the coordinates of the bottom left corner of the text box.
–4 –3 –2 –1 0 1 2 3 4
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Sin(π)→

FIGURE 11.20 Text box with a modified edge color and background color

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 11.21 A rectangle object

348 CHAPTER 11 Advanced Plotting Techniques
Another core graphics object is rectangle, which can have curvature added to it

(!!). Just calling the function rectangle without any arguments brings up a
Figure Window (shown in Figure 11.21), which at first glance doesn’t seem

to have anything in it:

>> recthand ¼ rectangle;

Using theget functionwill display theproperties, someofwhichare excerptedhere:

>> get(recthand)
Curvature ¼ [0 0]
FaceColor ¼ none
EdgeColor ¼ [0 0 0]
LineStyle ¼ �
LineWidth ¼ [0.5]
Position ¼ [0 0 1 1]
Type ¼ rectangle

The Position of a rectangle is [x y w h] where x and y are the coordinates of the

lower left point, w is the width, and h is the height. The default rectangle has a

Position of [0 0 1 1]. The default Curvature is [0 0], which means no curvature.
The values range from [0 0] (no curvature) to [1 1] (ellipse). A more interesting

rectangle object is shown in Figure 11.22.

Note: Properties can be set when calling the rectangle function, and also sub-

sequently using the set function, as follows:

34911.5 Handle Graphics and Plot Properties
>> rh ¼ rectangle('Position', [0.2, 0.2, 0.5, 0.8],. . .

'Curvature',[0.5, 0.5]);

>> axis([0 1.2 0 1.2])

>> set(rh,'Linewidth',3,'LineStyle',':')

The patch function is used to create a patch graphics object, which is made from

two-dimensionalpolygons.Asimplepatchin2Dspace isdefinedbyspecifyingthe

coordinates of three points as shown in Figure 11.23; in this case, the color red is
specified for the polygon.
0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

>> x ¼ [0 1 0.5];
>> y ¼ [0 0 1];
>> patch(x,y,'r')

Patches can also be defined in 3D space. A patch ob-
ject is defined by both the vertices and the faces of

the polygons that connect these vertices. One way
of calling this function is patch(fv) where fv is a

structure variable with fields called vertices and faces.

For example, consider a patch that has four vertices
in 3D space, given by the coordinates:

(1) (0, 0, 0)
(2) (1, 0, 0)
(3) (0, 1, 0)
(4) (0.5, 0.5, 1)
FIGURE 11.22 Rectangle object with curvature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 11.23 Simple patch

350 CHAPTER 11 Advanced Plotting Techniques
The order in which the points are given is important, as the faces describe how

the vertices are linked. To create these vertices in MATLAB and define faces that

connect them, we use a structure variable and then pass it to the patch function.

polyhedron.vertices ¼ [. . .
0 0 0
1 0 0
0 1 0
0.5 0.5 1];

polyhedron.faces ¼ [. . .
1 2 3
1 2 4
1 3 4
2 3 4];

pobj ¼ patch(polyhedron, . . .
'FaceColor',[0.8, 0.8, 0.8],. . .
'EdgeColor','black');

The polyhedron.vertices field is a matrix in which each row represents (x,y,z) co-
ordinates. The field polyhedron.faces defines the faces; for example, the first row

in the matrix specifies to draw lines from vertex 1 to vertex 2 to vertex 3 to form

the first face. The face color is set to grey and the edge color to black. The figure,
as seen in Figure 11.24, shows only two faces. Using the rotate icon on the
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 11.24 Patch object

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

FIGURE 11.25 Rotated patch object

35111.6 Plot Applications
Figure Window, the figure can be rotated so that the other edges can be seen, as

shown in Figure 11.25.
11.6 PLOT APPLICATIONS

In this section, we will show some examples that integrate plots and many of

the other concepts covered to this point in the book. For example, we will have
a function that receives an x vector, a functionhandle of a functionused to create

the y vector, andacell arrayofplot types as strings andwill generate theplots, and

we will also show examples of reading data from a file and plotting them.
11.6.1 Plotting from a function
The function below generates a Figure Window (seen in Figure 11.26) that

shows different types of plots for the same data. The data are passed as input

arguments (as an x vector and the handle of a function to create the y vector)
to the function, as is a cell array with the plot type names. The function gener-

ates the FigureWindow using the cell array with the plot type names. It creates a

function handle for each using the str2func function.

plotywithcell.m
function plotxywithcell(x, fnhan, rca)
% plotxywithcell receives an x vector, the handle
% of a function (used to create a y vector), and
% a cell array with plot type names; it creates
% a subplot to show all of these plot types
Continued

FIG

352 CHAPTER 11 Advanced Plotting Techniques
% Format: plotxywithcell(x,fn handle, cell array)

lenrca ¼ length(rca);
y ¼ fnhan(x);
for i ¼ 1:lenrca

subplot(1,lenrca,i)
funh ¼ str2func(rca {i});
funh(x,y)
title(upper(rca {i}))
xlabel('x')
ylabel(func2str(fnhan))

end
end
For example, the function could be called as follows:

>> anfn ¼ @ (x) x .^ 3;
>> x ¼ 1:2:9;
>> rca ¼ {'bar', 'area', 'plot'};
>> plotxywithcell(x, anfn, rca)

The function is general and works for any number of plot types stored in the cell

array.
1 3 5 7 9
0

100

200

300

400

500

600

700

800
BAR

x

@
(x

)x
.3

2 4 6 8
0

100

200

300

400

500

600

700

800
AREA

x

@
(x

)x
.3

0 5 10
0

100

200

300

400

500

600

700

800
PLOT

x

@
(x

)x
.3

URE 11.26 Subplot showing different file types with their names as titles

35311.6 Plot Applications
11.6.2 Plotting file data
It is often necessary to read data from a file and plot them.Normally, this entails

knowing the format of the file. For example, let us assume that a company has
twodivisions, A andB. Assume that the file ab11.dat contains four lines, with the

sales figures (in millions) for the two divisions for each quarter of 2011. For ex-

ample, the file might look like this (and the format will be exactly like this):

A5.2B6.4
A3.2B5.5
A4.4B4.3
A4.5B2.2

The following script reads in the data and plots the data as bar charts in one

FigureWindow. The script prints an errormessage if the file open is not successful

or if the file close was not successful. The axis command is used to force the x-axis
to range from0 to 3 and the y-axis from0 to 8, whichwill result in the axes shown

here. The numbers 1 and 2 would show on the x-axis rather than the division

labels A and B by default. The set function changes the XTickLabel property to
use the strings in the cell array as labels on the tickmarks on the x-axis; gca returns

the handle to the axes in the current figure (it stands for “get current axes”).

plotdivab.m
% Reads sales figures for 2 divisions of a company one
% line at a time as strings, and plots the data

fid ¼ fopen('ab11.dat');
if fid ¼¼ �1

disp('File open not successful')
else

for i ¼ 1:4
% Every line is of the form A#B#; this separates
% the characters and converts the #'s to actual
% numbers
aline ¼ fgetl(fid);
aline ¼ aline(2:length(aline));
[compa rest] ¼ strtok(aline,'B');
compa ¼ str2num(compa);
compb ¼ rest(2:length(rest));
compb ¼ str2num(compb);

% Data from every line is in a separate subplot
subplot(1,4,i)
bar([compa,compb])
set(gca, 'XTickLabel', {'A', 'B'})
axis([0 3 0 8])
ylabel('Sales (millions)')
Continued

FIG

354 CHAPTER 11 Advanced Plotting Techniques
title(sprintf('Quarter %d',i))
end
closeresult ¼ fclose(fid);
if closeresult �¼ 0

disp('File close not successful')
end

end
Running this produces the subplot shown in Figure 11.27.

As another example, a data file called compsales.dat stores sales figures
(in millions) for divisions in a company. Each line in the file stores the

sales number, followed by an abbreviation of the division name, in this

format:

5.2 X
3.3 A
5.8 P
2.9 Q

The script that follows Figure 11.28 uses the textscan function to read this in-

formation into a cell array, and then uses subplot to produce a Figure Window

that displays the information in a bar chart and in a pie chart.
A B
0

1

2

3

4

5

6

7

8

S
al

es
 (m

ill
io

ns
)

Quarter 1

A B
0

1

2

3

4

5

6

7

8

S
al

es
 (m

ill
io

ns
)

Quarter 2

A B
0

1

2

3

4

5

6

7

8

S
al

es
 (m

ill
io

ns
)

Quarter 3

A B
0

1

2

3

4

5

6

7

8
S

al
es

 (m
ill

io
ns

)

Quarter 4

URE 11.27 Subplot with customized x-axis tick labels

X A P Q
0

1

2

3

4

5

6

Division

S
al

es
 (m

ill
io

ns
)

X

A

P

Q

Sales in millions by division

FIGURE 11.28 Bar and pie charts with labels from file data

35511.6 Plot Applications
compsalesbarpie.m

% Reads sales figures and plots as a bar chart and a pie chart
fid ¼ fopen('compsales.dat');

if fid ¼¼ �1
disp('File open not successful')

else
% Use textscan to read the numbers and division codes
% into separate elements in a cell array
filecell ¼ textscan(fid,'%f %s');
% plot the bar chart with the division codes on the x ticks
subplot(1,2,1)
bar(filecell {1})
xlabel('Division')
ylabel('Sales (millions)')
set(gca, 'XTickLabel', filecell {2})
% plot the pie chart with the division codes as labels
subplot(1,2,2)
pie(filecell {1}, filecell {2})
title('Sales in millions by division')

closeresult ¼ fclose(fid);
if closeresult �¼ 0

disp('File close not successful')
end

end

356 CHAPTER 11 Advanced Plotting Techniques
SUMMARY
Common Pitfalls

n Forgetting that subplot numbers the plots rowwise rather than

columnwise

n Not realizing that the subplot function just creates a matrix within the

Figure Window. Each part of this matrix must then be filled with a plot,
using any type of plot function

n Closing a Figure Window prematurely—the properties can only be set if the

Figure Window is still open!

Programming Style Guidelines
n Always label plots
n Take care to choose the type of plot to highlight the most relevant infor-

mation
MATLAB Functions and Commands

subplot

barh

area

stem

hist

pie

comet

movie

getframe

plot3

bar3

bar3h

pie3

comet3

stem3

spiral

mesh

surf

sphere

cylinder

colorbar

line

rectangle

text

get set

patch

image
Exercises
1. Create a data file containing 10 numbers. Write a script that will load the vector from

the file, and use subplot to do an area plot and a stem plot with these data in

the same Figure Window. (Note: A loop is not needed.) Prompt the user for a title

for each plot.

2. Use subplot to show the difference between the sin and cos functions. Create an x

vector with 100 linearly spaced points in the range from –2 p to 2 p, and then two y

vectors for sin(x) and cos(x). In a 2 � 1 subplot, use the plot function to display

them, with appropriate titles.

3. Biomedical engineers are developing an insulin pump for diabetics. To do this, it

is important to understand how insulin is cleared from the body after a meal.

The concentration of insulin at any time t is described by the equation

357Exercises

Openmirrors.com
C ¼ C0 e
�30t=m
where C0 is the initial concentration of insulin, t is the time in minutes, andm is the

mass of the person in kilograms. Write a script that will graphically show how the

weight of the person influences the time for insulin to be cleared from the body.

It will show in a 2 � 1 subplot the concentration of insulin for two subjects—

one who weighs 120 lb, and one who weighs 300 lb. For both, the time should

increment from 0 to 4 minutes in steps of 0.1 minute, and the initial

concentration should be 85. The concentration over time will be shown in each

subplot, and the weight of the person should be in the title. The conversion factor is

1 lb ¼ 0.4536 kg. To better compare, use consistent axes for both plots.

4.Write a function subfnfn that will receive two function handles as input arguments,

and will display in one FigureWindow plots of these two functions, with the function

names in the titles. Use the default axes. The function will create an x vector that

ranges from 1 to n (where n is a random integer in the range from 4 to 10). For

example, if the function is called as follows:

>> subfnfn(@sqrt, @exp)

and if the random integer for n was 9, the Figure Window would look like the image

shown in Figure 11.29.
0 5

sqrt

10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 5

exp

10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

FIGURE 11.29 Subplot using function handles

358 CHAPTER 11 Advanced Plotting Techniques
Massive amounts of temperature data have been accumulated and stored in files.

To be able to comb through these data and gain insights into global temperature

variations, it is often useful to visualize the information.

5. A file called avehighs.dat stores for three locations the average high temperatures for

each month for a year (rounded to integers). There are three lines in the file; each

stores the location number followed by the 12 temperatures (this format may be

assumed). For example, the file might store:

432 33 37 42 45 53 72 82 79 66 55 46 41
777 29 33 41 46 52 66 77 88 68 55 48 39
567 55 62 68 72 75 79 83 89 85 80 77 65

Write a script that will read these data in and plot the temperatures for the three

locations separately in one Figure Window. A for loop must be used to accomplish

this. For example, if the data are as shown in the previous data block, the Figure

Window would appear as in Figure 11.30. The axis labels and titles should be as

shown.

6. Sales (in millions) from two different divisions of a company for the four quarters of

2006 are stored in vector variables, such as in the following:

div1 ¼ [4.2 3.8 3.7 3.8];
div2 ¼ [2.5 2.7 3.1 3.3];
2 4 6 8 10 12
30

40

50

60

70

80

Month

A
ve

 H
ig

h
Te

m
ps

Location 432

2 4 6 8 10 12
30

40

50

60

70

80

Month

A
ve

 H
ig

h
Te

m
ps

Location 777

2 4 6 8 10 12
30

40

50

60

70

80

Month

A
ve

 H
ig

h
Te

m
ps

Location 567

FIGURE 11.30 Subplot to display data from file using a for loop

359Exercises
Using subplot, show side by side the sales figures for the two divisions. What kind of

graph shows this in the best way? Why? In one graph, compare the two divisions.

What kind of graph shows this in the best way? Why?

7. Create an x vector that has 30 linearly spaced points in the range from –2 p to 2 p, and
then y as sin(x). Do a stem plot of these points, and store the handle in a variable.

Use get to see the properties of the stem plot, and then set to change the face color of

the marker.

8.When an object with an initial temperature T is placed in a substance that has a

temperature S, according to Newton’s law of cooling in t minutes it will reach a

temperature Tt using the formula Tt ¼ S þ (T – S) e(-kt) where k is a constant

value that depends on properties of the object. For an initial temperature of 100 and

k ¼ 0.6, graphically display the resulting temperatures from 1 to 10 minutes for two

different surrounding temperatures: 50 and 20. Use the plot function to plot two

different lines for these surrounding temperatures, and store the handle in a variable.

Note that two function handles are actually returned and stored in a vector. Use set

to change the line width of one of the lines.

9.Write a script that will draw the line y ¼ x between x ¼ 2 and x ¼ 5, with a random

thickness between 1 and 10.

10. In hydrology, hyetographs are used to display rainfall intensity during a storm. The

intensity could be the amount of rain per hour, recorded every hour for a 24-hour

period. Create your own data file to store the intensity in inches per hour every hour

for 24 hours. Use a bar chart to display the intensities.

11.Write a script that will read x and y data points from a file, and will create an area plot

with those points. The format of every line in the file is the letter “x,” space, the x

value, space, the letter “y,” space, and the y value. You must assume that the data file

is in exactly that format, but youmay not assume that the number of lines in the file is

known. The number of points will be in the plot title. The script loops until the end of

the file is reached, using fgetl to read each line as a string. For example, if the file

contains the following lines,

x 0 y 1
x 1.3 y 2.2
x 2.2 y 6
x 3.4 y 7.4

when running the script, the result will be as shown in Figure 11.31.

12.A filehouseafford.dat stores in its three lines years,median incomes, andmedian home

prices for a city.Thedollar amountsare in thousands. Forexample, itmight look like this:

2004 2005 2006 2007 2008 2009 2010 2011
72 74 74 77 80 83 89 93
250 270 300 310 350 390 410 380

Create a file in this format, and then load the information into a matrix. Create a

horizontal stacked bar chart to display the following information, with an appropriate

title. Note: Use the ‘XData’ property to put the years on the axis as shown in

Figure 11.32.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

x

4 data points

y

FIGURE 11.31 Area plot produced from x, y data read as strings from a file

0 50 100 150 200 250 300 350 400 450 500

2004

2005

2006

2007

2008

2009

2010

2011

$ (in thousands)

Median Income and Home Prices

Y
ea

r

FIGURE 11.32 Horizontal stacked bar chart of median incomes and home prices

360 CHAPTER 11 Advanced Plotting Techniques

361Exercises
13.A file houseafford.dat stores in its three lines years, median incomes, and median

home prices for a city. The dollar amounts are in thousands. For example, it might

look like this:

2004 2005 2006 2007 2008 2009 2010 2011
72 74 74 77 80 83 89 93
250 270 300 310 350 390 410 380

Create a file in this format, and then load the information into a matrix. The ratio of

the home price to the income is called the “housing affordability index.” Calculate

this for every year and plot it. The x-axis should show the years (e.g., 2004 to 2011).

Store the handle of the plot in a variable and use get to see the properties and set to

change at least one.

14.Do a quick survey of your friends to find out who prefers cheese pizza, pepperoni, or

mushroom (no other possibilities; everyone must pick one of those three choices).

Draw a pie chart to show the percentage favoring each. Label the pieces of this pizza

pie chart!

15.The number of faculty members in each department at a certain college of

engineering is:

ME 22
BM 45
CE 23
EE 33

Experiment with at least three different plot types to graphically depict this

information. Make sure that you have appropriate titles, labels, and legends

on your plots. Which type(s) work best, and why?

16.The weights of the major components for a given aircraft are important

considerations in aircraft design. The components include at the very least the

wing, tail, fuselage, and landing gear. Create a data file with values for these weights.

Load the data from your file and create a pie chart to show the percentage weight for

each component.

17.Create an x vector, and then two different vectors (y and z) based on x. Plot themwith

a legend. Use help legend to find out how to position the legend itself on the

graph, and experiment with different locations.

18.The wind chill factor (WCF) measures how cold it feels with a given air temperature

(T, in degrees Fahrenheit) and wind speed (V, in miles per hour). One formula for

WCF is

WCF ¼ 35:7 þ 0:6 T � 35:7 ðV0:16Þ þ 0:43 T ðV0:16Þ

Experiment with different plot types to display the WCF for varying wind speeds and

temperatures.

19.Write a script that will plot the sin function three times in one Figure Window, using

the colors red, green, and blue.

362 CHAPTER 11 Advanced Plotting Techniques
20.Experiment with the comet function. Try the example given when help comet is

entered and then animate your own function using comet.

21.Experiment with the comet3 function. Try the example given when help comet3 is

entered and then animate your own function using comet3.

22. Investigate the scatter and scatter3 functions.

23.The exponential and natural log functions are inverse functions. What does this

mean in terms of the graphs of the functions? Show both functions in one

Figure Window and distinguish between them.

24.The electricity generated by wind turbines annually in kilowatt-hours per year is

given in a file. The amount of electricity is determined by, among other factors, the

diameter of the turbine blade (in feet), and thewind velocity in mph. The file stores on

each line the blade diameter, wind velocity, and the approximate electricity

generated for the year. For example,

5 5 406
5 10 3250
5 15 10970
5 20 26000
10 5 1625
10 10 13000
10 15 43875
10 20 104005
20 5 6500
20 10 52000
20 15 175500
20 20 41600

Create this file, and determine how to graphically display these data.

25. In the MATLAB Help, under the Contents tab, click on Functions by Category, then

Graphics, then Handle Graphics, and then text to get the MATLAB Function

Reference on the function text (this is a lot more useful than just typing “help text”!).

Read through this, and then on the very bottom click on Text Properties for property

descriptions. Create a graph, and then use the text function to put some text on it,

including some \specchar commands to increase the font size and to print some

Greek letters and symbols.

26.The cost of producing widgets includes an initial setup cost plus an additional cost

for each widget, so the total production cost per widget decreases as the number of

widgets produced increases. The total revenue is a given dollar amount for each

widget sold, so the revenue increases as the number sold increases. The break-even

point is the number of widgets produced and sold for which the total production cost

is equal to the total revenue. The production cost might be $5000 plus $3.55 per

widget, and the widgets might sell for $10 each. Write a script that will find the

break-even point using solve (see Chapter 15), and then plot the production cost and

revenue functions on one graph for 1 to 1000 widgets. Print the break-even point on

the graph using text.

363Exercises
27.Create a rectangle object, and use the axis function to change the axes so that you

can see the rectangle easily. Change the Position, Curvature, EdgeColor, LineStyle,

and LineWidth. Experiment with different values for the Curvature.

28.Write a function that will plot cos(x) for x values ranging from –pi to pi in steps of 0.1,

using black stars (*). It will do this three times across in one Figure Window, with

varying linewidths. (Note: Even if individual points are plotted rather than a solid line,

the line width property will change the size of these points.) If no arguments are

passed to the function, the line widths will be 1, 2, and 3. If, on the other hand, an

argument is passed to the function, it is a multiplier for these values (e.g., if 3 is

passed, the line widths will be 3, 6, and 9). The line widths will be printed in the titles

on the plots.

29.Write a script that will create the rectangle (shown in Figure 11.33) with a curved

rectangle inside it and text inside that. The axes and dimensions of the Figure

Window should be as shown here (you should approximate locations based on the

axes shown in this figure). The font size for the string is 20. The curvature of the inner

rectangle is [0.5, 0.5].

30.Write a script that will display rectangles with varying curvatures and line widths, as

shown in Figure 11.34. The script will, in a loop, create a 2 � 2 subplot showing

rectangles. In all, both the x and y axes will go from 0 to 1.4. Also, in all, the lower left

corner of the rectangle will be at (0.2, 0.2), and the length and width will both be 1.

The linewidth, i, is displayed in the title of each plot. The curvature will be [0.2, 0.2] in

the first plot, then [0.4, 0.4], [0.6, 0.6], and finally [0.8, 0.8]. Recall that the subplot

function numbers the elements rowwise.
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Stormy

FIGURE 11.33 Nested rectangles with text box

0 0.5 1
0

0.5

1

i is 1

0 0.5 1
0

0.5

1

i is 2

0 0.5 1
0

0.5

1

i is 3

0 0.5 1
0

0.5

1

i is 4

FIGURE 11.34 Example of a script displaying rectangles with varying curves and line widths

364 CHAPTER 11 Advanced Plotting Techniques
31.Write a script that will start with a rounded rectangle. Change both the x and y axes

from the default to go from 0 to 3. In a for loop, change the position vector by adding

0.1 to all elements 10 times (this will change the location and size of the rectangle

each time). Create a movie consisting of the resulting rectangles. The final result

should look like the plot shown in Figure 11.35.
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

FIGURE 11.35 Curved rectangles produced in a loop

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 11.36 Patch object with black edge

365Exercises
32.Write a script that will create a two-dimensional patch object with just three

vertices and one face connecting them. The x and y coordinates of the three

vertices will be random real numbers in the range from 0 to 1. The lines used

for the edges should be black with a width of 3, and the face should be grey.

The axes (both x and y) should go from 0 to 1. For example, depending on

what the random numbers are, the Figure Window might look like

Figure 11.36.

33.Using the patch function, create a black box with unit dimensions (so, there will be

eight vertices and six faces). Set the edge color to white so that when you rotate the

figure, you can see the edges.

34.Write a function drawpatch that receives the x and y coordinates of three points as

input arguments. If the points are not all on the same straight line, it draws a

patch using these three points, and if they are all on the same line, it modifies the

coordinates of one of the points and then draws the resulting patch. To test this, it

uses two subfunctions. It calls the subfunction findlin twice to find the slope and

y-intercept of the lines first between point 1 and point 2 and then between point 2

and point 3 (e.g., the values of m and b in the form y ¼ mx þ b). It then calls the

subfunction issamelin to determine whether these are the same line or not. If they

are, it modifies point 3. It then draws a patch with a green color for the face and a red

edge. Both of the subfunctions use structures (for the points and the lines)

(Figure 11.37). For example,

>> drawpatch(2,2,4,4,6,1)

2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

FIGURE 11.37 Patch with red edge

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3
Let's play hockey!

FIGURE 11.38 Hockey rink

366 CHAPTER 11 Advanced Plotting Techniques
35.A hockey rink looks like a rectangle with curvature. Draw a hockey rink, as in

Figure 11.38.

36.Use the cylinder function to create x, y, and z matrices and pass them to the surf

function to get a surface plot. Experiment with different arguments to cylinder.

37.Get into the Help, and learn how to do a contour plot.

Openmirrors.com
CHAPTER 12
Matrix Representation of Linear
Algebraic Equations
CONTENTS
KEY TERMS
12.1 Matrix
Definitions
........................ 368

12.2 Matrix
Solutions to
Systems of
Linear
Algebraic
Equations
........................381
linear algebraic

equation

symbolic mathematics

matrix equality

square matrix

main diagonal

diagonal matrix

trace

identity matrix

banded matrix

tridiagonal matrix

lower triangular matrix

upper triangular

matrix

symmetric matrix

array operations

matrix addition

matrix subtraction

scalar multiplication

array multiplication

matrix multiplication

inner dimensions

outer dimensions

matrix inverse

matrix augmentation

dot product

cross product or outer

product

coefficients

unknowns

solution set

method of substitution

determinant

Gauss elimination

Gauss-Jordan

elimination

elementary row

operations

forward elimination

back substitution

reduced row echelon

form

skew symmetric
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
A linear algebraic equation is an equation of the form

a1x1 þ a2x2 þ a3x3 þ . . . :þ anxn ¼ b

Solutions to sets of equations in this form are important in many applications.

In the MATLABW product, to solve systems of equations, there are basically two

methods:

n Using a matrix representation

n Using the solve function (which is part of Symbolic Math Toolbox™)
367

368 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
In this chapter, we first investigate matrix and vector operations and then use

these to solve linear algebraic equations. The use of symbolic mathematics

including the solve function will be covered in Chapter 15.
12.1 MATRIX DEFINITIONS

As we have already seen, amatrix can be thought of as a table of values in which
there are both rows and columns. The general form of a matrix A (which is

sometimes written as [A]) is shown here:

A ¼
a11 a12 . . . a1n
a21 a22 . . . a2n
⋮ ⋮ ⋮ ⋮
am1 am2 . . . amn

2

6

6

4

3

7

7

5

¼ aij i ¼ 1, . . . ,m; j ¼ 1, . . . , n

This matrix has m rows and n columns, so the size is m � n.
A vector is a special case of amatrix, in which one of the dimensions (eitherm or
n) is 1. A row vector is a 1� nmatrix. A column vector is anm� 1matrix. A scalar

is a special case of amatrix in which bothm and n are 1, so it is a single value or a

1 � 1 matrix.

12.1.1 Matrix properties
In this section we will define some special properties of matrices.

Two matrices are said to be equal to each other only if all corresponding ele-
ments are equal to each other. For this to be true, their sizes must be the same

as well. The definition is [A] ¼ [B] if aij ¼ bij for all i, j.

THE PROGRAMMING CONCEPT
To test to see whether twomatrices are equal to each other or not, both matrices are passed to a

function that will return 1 for logical true if they are the same or 0 for logical false if not (or if

they are not the same size). Towrite our own function, a flag is first set to 1, for logical true. If the

two matrices are not the same size, the flag is set to 0 for false. Otherwise, using a nested for

loop, each element in the first matrix argumentmata is compared to the corresponding element

in matb; if they are not the same, the flag is set to 0 for false.
myisequal.m

function myflag ¼ myisequal(mata,matb)

% myisequal receives two matrices and returns

% logical 1 if they are equal or 0 if not

% Format: myisequal(matrix1, matrix2)

% Assume true until & unless found to be false

myflag ¼ logical(1);

36912.1 Matrix Definitions
[r c] ¼ size(mata);

if all(size(mata) �¼ size(matb))

myflag ¼ logical(0);

else

for i¼1:r
for j ¼ 1:c

if mata(i,j) �¼ matb(i,j)

myflag ¼ logical(0);

end

end

end

end

end

>> mata ¼ [2 5 8; 1:3];

>> matb ¼ [2:3:8; 1 2 3];

>> myisequal(mata,matb)

ans ¼
1

THE EFFICIENT METHOD
In MATLAB, as we have seen, the isequal function will also accomplish this:
>> isequal(mata,matb)

ans ¼
1

In addition, the isequal function will return logical 0 for false if the two matrices are not the

same size.
12.1.2 Square matrices
If a matrix has the same number of rows and columns (e.g., if m ¼¼ n), the

matrix is square. The definitions that follow in this section only apply to square

matrices.

The main diagonal of a square matrix is the set of terms aii for which the row

and column indices are the same, so from the upper left element to the lower
right. For example, for the following matrix the set of numbers is 1, 6, 11,

and 16.

370 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2

6

6

4

3

7

7

5

This is sometimes called just the diagonal.
A square matrix is a diagonal matrix if all values that are not on the diagonal are
0. The numbers on the diagonal, however, do not have to be all nonzero,

although frequently they are. Mathematically, this is written as aij ¼ 0 for
i �¼ j. The following is an example of a diagonal matrix:

4 0 0

0 9 0

0 0 5

2

4

3

5

MATLAB has a function diag that will return the diagonal of a matrix as a col-

umn vector; transposing will result in a row vector instead.

>> mymat ¼ reshape(1:16,4,4)'
mymat ¼

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

>> diag(mymat)'
ans ¼

1 6 11 16

The diag function can also be used to take a vector of length n and create an
n � n square diagonal matrix with the values from the vector on the diagonal:

>> v ¼ 1:4;
>> diag(v)
ans ¼

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

So, the diag function can be used two ways: (1) pass a matrix and it returns a
vector; or (2) pass a vector and it returns a matrix!
PRACTICE 12.1

Write a function called isdiagonal that will return logical 1 for true if a square matrix is a diagonal

matrix, or logical 0 for false if not.

37112.1 Matrix Definitions
The trace of a square matrix is the sum of all the elements on the diagonal. For

example, for the diagonal matrix created using v, it is 1 þ 2 þ 3 þ 4, or 10.
QUICK QUESTION!
How could we calculate the trace of a square matrix? Answer: See the following Programming Concept and

Efficient Method.
THE PROGRAMMING CONCEPT
To calculate the trace of a square matrix, only one loop is necessary since the only elements in

the matrix we are referring to have subscripts (i, i). So, once the size has been determined, the

loop variable can iterate from 1 through the number of rows or from 1 through the number of

columns (it doesn’t matter which, since they have the same value!). The following function

calculates and returns the trace of a square matrix, or an empty vector if the matrix

argument is not square.
mytrace.m

function outsum ¼ mytrace(mymat)

% mytrace calculates the trace of a square matrix

% or an empty vector if the matrix is not square

% Format: mytrace(matrix)

[r c] ¼ size(mymat);

if r �¼ c

outsum ¼ [];

else

outsum ¼ 0;

for i ¼ 1:r

outsum ¼ outsum þ mymat(i,i);

end

end

end

>> mymat ¼ reshape(1:16,4,4)'

mymat ¼
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

>> mytrace(mymat)

ans ¼
34

Note

i is built into MATLAB

as the square root of�1,
so another name is used

for the function that

creates an identity

matrix: eye, which

sounds like “i”

(. . . get it?).

372 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
THE EFFICIENT METHOD
In MATLAB, there is a built-in function trace to calculate the trace of a square matrix:
>> trace(mymat)

ans ¼
34
A square matrix is an identity matrix, called [I], if aij ¼ 1 for i ¼¼ j and aij ¼
0 for i �¼ j. In other words, all of the numbers on the diagonal are 1 and all

others are 0. Following is a 3 � 3 identity matrix:

1 0 0
0 1 0
0 0 1

2

4

3

5

Note that any identity matrix is a special case of a diagonal matrix.
Identity matrices are very important and useful. MATLAB has a built-in function

eye that will create an n � n identity matrix, given the value of n:

>> eye(5)
ans ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Several special cases of matrices are related to diagonal matrices.

A banded matrix is a matrix of all 0s, with the exception of the main diagonal

and other diagonals next to (above and below) the main. For example, the fol-
lowing matrix has 0s except for the band of three diagonals; this is a particular

kind of banded matrix called a tridiagonal matrix.

1 2 0 0

5 6 7 0

0 10 11 12

0 0 15 16

2

6

6

4

3

7

7

5

A lower triangular matrix has all 0s above the main diagonal. For example,
1 0 0 0

5 6 0 0

9 10 11 0

13 14 15 16

2

6

6

4

3

7

7

5

37312.1 Matrix Definitions
An upper triangular matrix has all 0s below the main diagonal. For example,

1 2 3 4

0 6 7 8

0 0 11 12

0 0 0 16

2

6

6

6

6

4

3

7

7

7

7

5

It is possible for there to be 0s on the diagonal and in the lower part or upper

part and still be a lower or upper triangular matrix, respectively.
THE EFFICIENT METHOD
MATLABhas functions triu and tril that will take amatrix andmake it into an upper triangular or

lower triangular matrix by replacing the appropriate elements with 0s.
>> mymat

mymat ¼
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

>> triu(mymat)

ans ¼
1 2 3 4

0 6 7 8

0 0 11 12

0 0 0 16

>> tril(mymat)

ans ¼
1 0 0 0

5 6 0 0

9 10 11 0

13 14 15 16
THE PROGRAMMING CONCEPT
Nested loops would be required to accomplish this without using triu or tril.
A square matrix is symmetric if aij¼ aji for all i, j. In other words, all of the values

opposite the diagonal from each other must be equal to each other. In this

374 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
example, there are three pairs of values opposite the diagonals, all of which are

equal (the 2s, 9s, and 4s).
1 2 9
2 5 4
9 4 6

" #

PRACTICE 12.2

For the following matrices:
A B C

4 3
0 1

� �

1 2 3
4 5 6

� � 1 4 2
4 0 3
2 3 6

2

4

3

5

Which are equal? Which are square?
For all square matrices:

n Calculate the trace.

n Which are symmetric?

n Which are diagonal?

n Which are lower triangular?

n Which are upper triangular?
12.1.3 Array operations
As we have seen in Chapter 5, operators that are applied term by term or ele-

ment by element, implying that the matrices must be the same size, are some-

times referred to as array operations. These include addition, subtraction,
multiplication, division, and exponentiation.

Matrix addition means adding two matrices element by element, which means

they must be of the same size. In mathematical terms, this is written cij ¼ aij þ
bij. In MATLAB, this is accomplished with the þ operator. Similar to matrix ad-

dition, matrix subtraction means to subtract term by term, so in mathematical

terms, cij ¼ aij – bij. This would also be accomplished using a nested for loop in
most languages, or by using the – (minus) operator in MATLAB.

Scalar multiplication means to multiply every element by a scalar (a number).
This would also be accomplished using a nested for loop in most languages, or

by using the * operator in MATLAB.

To multiply matrices element by element (which is notmatrix multiplication!) in
MATLAB, the .*operator is used, and thematricesmust have the samedimensions.

This is called array multiplication since it is an array operation (term by term).

>> A ¼ [1:3;4:6];
>> B ¼ [100 10 1; 10 100 1];
>> C ¼ A .* B
C ¼

100 20 3
40 500 6

37512.1 Matrix Definitions
Array division (dividing term by term or element by element) is accomplished

using the ./ or .\ operators, and array exponentiation (which is a form of array

multiplication) is done with the .^ operator.
12.1.4 Matrix multiplication
Matrix multiplication does notmeanmultiplying term by term; it is not an array

operation.Matrixmultiplication has a very specific meaning. First of all, tomul-

tiply a matrix A by a matrix B to result in a matrix C, the number of columns of
A must be the same as the number of rows of B. If the matrix A has dimensions

m � n, that means that matrix B must have dimensions n � something; we’ll

call it p.

We say that the inner dimensions must be the same. The resulting matrix C has

the same number of rows as A and the same number of columns as B (i.e., the

outer dimensions m � p). In mathematical notation,

½A�m�n½B�n�p ¼ ½C�m�p
This only defines the size of C.
The elements of thematrix C are defined as the sumof products of corresponding
elements in the rows of A and columns of B, or in other words,

cij ¼
X

n

k¼1
aikbkj

In the following example, A is 2 � 3 and B is 3 � 4; the inner dimensions are
both 3, so the matrix multiplication is possible. C will have as its size the outer
dimensions 2 � 4. The elements in C are obtained using the summation just

described. The first row of C is obtained using the first row of A and in succes-

sion the columns of B. For example, C(1,1) is 3*1þ 8*4þ 0*0 or 35. C(1,2) is
3*2 þ 8*5 þ 0*2 or 46.

A B C

3 8 0
1 2 5

� �

�
1 2 3 1
4 5 1 2
0 2 3 0

2

4

3

5 ¼ 35 46 17 19
9 22 20 5

� �

THE PROGRAMMING CONCEPT
To multiply two matrices together, three nested for loops are required. The two outer loops

iterate through the rows and columns of C, which is m � p. For each element in C (cij), the

inner loop sums aik * bkj for values of k from 1 through n. The following is a script that will

accomplish this:

376 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
mymatmult.m

% This script demonstrates matrix multiplication

A ¼ [3 8 0; 1 2 5];

B ¼ [1 2 3 1; 4 5 1 2; 0 2 3 0];

[m n] ¼ size(A);

[nb p] ¼ size(B);

if n �¼ nb

disp('Cannot perform this matrix multiplication')

else

% Preallocate C

C ¼ zeros(m,p);

% Outer 2 loops iterate through the elements in C

% which has dimensions m by p

for i ¼ 1:m

for j ¼ 1:p

% Inner loop performs the sum for each

% element in C

mysum ¼ 0;

for k ¼ 1:n

mysum ¼ mysum þ A(i,k) * B(k,j);

end

C(i,j) ¼ mysum;

end

end

% display C

C

end

>> mymatmult

C ¼
35 46 17 19

9 22 20 5
THE EFFICIENT METHOD
In MATLAB, the * operator will perform this matrix multiplication:
>> A ¼ [3 8 0; 1 2 5];

>> B ¼ [1 2 3 1; 4 5 1 2; 0 2 3 0];

>> C ¼ A * B

C ¼
35 46 17 19

9 22 20 5

37712.1 Matrix Definitions
QUICK QUESTION!
What happens if a matrix M is multiplied by an identity matrix

(of the appropriate size)?

Answer: For the size to be appropriate, the dimensions of the

identity matrix would be the same as the number of columns of

M. The result of the multiplication will always be the original

matrix M (thus, it is similar to multiplying a scalar by 1).

>> A ¼ [3 8 0; 1 2 5]

A ¼
3 8 0

1 2 5

>> A * eye(3)

ans ¼
3 8 0

1 2 5

>> B ¼ [1 2 3 1; 4 5 1 2; 0 2 3 0]

B ¼
1 2 3 1

4 5 1 2

0 2 3 0

>> [r c] ¼ size(B);

>> B * eye(c)

ans ¼
1 2 3 1

4 5 1 2

0 2 3 0
PRACTICE 12.3

Multiply these two matrices by hand and then verify the result in MATLAB.

A B
1 3
4 2

� �

2 1
�1 3

� �

12.1.5 Matrix operations
There are several common operations onmatrices, some of which we have seen

already. These include matrix transpose, matrix augmentation, and array
operations.

Amatrix transpose interchanges the rows and columns of a matrix. For a matrix

A, its transpose is written AT. For example, if

A ¼ 1 2 3
4 5 6

� �

then
AT ¼
1 4
2 5
3 6

2

4

3

5

In MATLAB, as we have seen, there is a built-in transpose operator—the
apostrophe.

378 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
If the result of multiplying a matrix A by another matrix is the identity matrix I,

then the second matrix is the inverse of matrix A. The inverse of a matrix A is

written as A–1, so

½A�½A�1� ¼ ½I�
How to actually compute the inverse A–1 of a matrix by hand is not so easy.
MATLAB, however, has a function inv to compute a matrix inverse. For exam-
ple, here a matrix is created, its inverse is found, and then it is multiplied by the

original matrix to verify that the product is in fact the identity matrix:

>> a ¼ [1 2; 2 2]
a ¼

1 2
2 2

>> ainv ¼ inv(a)
ainv ¼
�1.0000 1.0000
1.0000 �0.5000

>> a * ainv
ans ¼

1 0
0 1

Matrix augmentationmeans adding column(s) to the originalmatrix. For exam-
ple, the matrix A

A ¼
1 3 7
2 5 4
9 8 6

2

4

3

5

might be augmented with a 3 � 3 identity matrix:
1 3 7

2 5 4

9 8 6

1 0 0

0 1 0

0 0 1

�

�

�

�

�

�

3

5

2

4

Sometimes inmathematics the vertical line is shown to indicate that thematrix has
been augmented. In MATLAB, matrix augmentation can be accomplished using
square brackets to concatenate the two matrices. The square matrix a is con-

catenated with an identity matrix that has the same size as the matrix a:

>> a ¼ [1 3 7; 2 5 4; 9 8 6]
a ¼

1 3 7
2 5 4
9 8 6

37912.1 Matrix Definitions
>> [a eye(size(a))]
ans ¼

1 3 7 1 0 0
2 5 4 0 1 0
9 8 6 0 0 1

Of course, as we have seen already, it is more efficient to preallocate the matrix

to the correct dimensions to begin with. Particularly for large matrices,
augmenting a matrix in this fashion is inefficient.
12.1.6 Vector operations
Since vectors are just special cases of matrices, the matrix operations previously
described (addition, subtraction, scalar multiplication, multiplication, trans-

pose) work on vectors as well, as long as the dimensions are correct.

For vectors, we have already seen that the transpose of a row vector is a column

vector, and the transpose of a column vector is a row vector.

To multiply vectors, they must have the same number of elements, but one
must be a row vector and the other a column vector. For example, for a column

vector c and row vector r:

c ¼
5
3
7
1

2

6

6

4

3

7

7

5

r ¼ ½6 2 3 4�

Note that r is 1 � 4, and c is 4 � 1. Recall that to multiply two matrices,
½A�m�n½B�n� p ¼ ½C�m� p

so

½r�1�4½c�4�1 ¼ ½s�1�1

or, in other words, a scalar:
½6 2 3 4�
5

3

7

1

2

6

6

4

3

7

7

5

¼ 6 � 5þ 2 � 3þ 3 � 7þ 4 � 1 ¼ 61

whereas [c]4�1[r]1�4 ¼ [M]4�4, or in other words, a 4 � 4 matrix:

5

3

7

1

2

6

6

4

3

7

7

5

½6 2 3 4� ¼
30 10 15 20

18 6 9 12

42 14 21 28

6 2 3 4

2

6

6

4

3

7

7

5

380 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
In MATLAB, these operations are accomplished using the * operator, which is

the matrix multiplication operator. First, the column vector c and row vector r

are created.

>> c ¼ [5 3 7 1]';
>> r ¼ [6 2 3 4];
>> r * c
ans ¼

61

>> c * r
ans ¼

30 10 15 20
18 6 9 12
42 14 21 28
6 2 3 4

Dot product and cross product
There are also operations specific to vectors: the dot product and cross product. The
dotproduct,or innerproduct,of twovectorsaandbiswrittenasa •bandisdefinedas

a1b1 þ a2b2 þ a3b3 þ . . .þ anbn ¼
X

n

i¼1
aibi

Inotherwords, this is likematrixmultiplicationwhenmultiplyinga rowvector aby
a column vector b; the result is a scalar. This can be accomplished using the * op-

erator and transposing the second vector, or by using the dot function inMATLAB:

>> vec1 ¼ [4 2 5 1];
>> vec2 ¼ [3 6 1 2];
>> vec1* vec2'
ans ¼

31

>> dot(vec1,vec2)
ans ¼

31

The cross product or outer product a � b of two vectors a and b is defined only

when both a and b are vectors in three-dimensional space, which means that
both must have three elements. It can be defined as a matrix multiplication

of a matrix composed from the elements from a in a particular manner shown

here and the column vector b.

a� b ¼
0 �a3 a2

a3 0 �a1
�a2 a1 0

2

6

6

4

3

7

7

5

b1

b2

b3

2

6

6

4

3

7

7

5

¼ ½a2b3�a3b2, a3b1�a1b3, a1b2�a2b1�

MATLAB has a built-in function cross to accomplish this.

38112.2 Matrix Solutions to Systems of Linear Algebraic Equations
>> vec1 ¼ [4 2 5];
>> vec2 ¼ [3 6 1];
>> cross(vec1,vec2)
ans ¼

-28 11 18
12.2 MATRIX SOLUTIONS TO SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

A linear algebraic equation is an equation of the form

a1x1þ a2x2þ a3x3 þ . . . :þ anxn ¼ b

where the a’s are constant coefficients, the x’s are the unknowns, and b is a con-

stant. A solution is a sequence of numbers that satisfy the equation. For

example,

4x1 þ 5x2 � 2x3 ¼ 16

is such an equation in which there are three unknowns: x1, x2, and x3. One
solution to this equation is x1 ¼ 3, x2 ¼ 4, and x3 ¼ 8, since 4 * 3 þ 5 * 4

� 2 * 8 is equal to 16.

A system of linear algebraic equations is a set of equations of the form:

a11x1 þ a12x2 þ a13x3 þ . . . :þ a1nxn ¼ b1

a21x1 þ a22x2 þ a23x3 þ . . . :þ a2nxn ¼ b2

a31x1 þ a32x2 þ a33x3 þ . . . :þ a3nxn ¼ b3

⋮ ⋮ ⋮ ⋮ ⋮
am1x1 þ am2x2 þ am3x3 þ . . .þ amnxn ¼ bm

This is called an m � n system of equations; there are m equations and n
unknowns.

Because of the way that matrix multiplication works, these equations can be

represented in matrix form as A x ¼ b where A is a matrix of the coefficients,

x is a column vector of the unknowns, and b is a column vector of the constants
from the right side of the equations:

A x ¼ b
a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
⋮ ⋮ ⋮ ⋮ ⋮
am1 am2 am3 . . . amn

2

6

6

6

6

4

3

7

7

7

7

5

x1
x2
x3
⋮
xn

2

6

6

6

6

4

3

7

7

7

7

5

¼

b1
b2
b3
⋮
bm

2

6

6

6

6

4

3

7

7

7

7

5

A solution set is the set of all possible solutions to the system of equations (all

sets of values for the unknowns that solve the equations). All systems of linear

equations have either of the following:

382 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
n no solutions

n one solution

n infinitely many solutions

One of the main concepts of the subject of linear algebra is the different

methods of solving (or, attempting to!) systems of linear algebraic equations.
MATLAB has many functions that assist in this process.

Once the system of equations has been written in matrix form, what we want is

to solve the equation Ax¼ b for the unknowns x. To do this, we need to isolate x
on one side of the equation. If we were working with scalars, we would divide

both sides of the equation by A. In fact, with MATLAB we can use the divided
into operator to do this. However, most languages cannot do this with matri-

ces, so we instead multiply both sides of the equation by the inverse of the

coefficient matrix A:

A�1 A x ¼ A�1 b

Then, because multiplying amatrix by its inverse results in the identity matrix I,

and because multiplying any matrix by I results in the original matrix, we have:

I x ¼ A�1b

or
x ¼ A�1b

This means that the column vector of unknowns x is found as the inverse
of matrix A multiplied by the column vector b. So, if we can find the inverse
of A, we can solve for the unknowns in x.

For example, consider the following three equations with three unknowns—

x1, x2, and x3:

4x1 � 2x2 þ 1x3 ¼ 7
1x1 þ 1x2 þ 5x3 ¼ 10

-2x1 þ 3x2 � 1x3 ¼ 2

We write this in the form Ax ¼ b where A is a matrix of the coefficients, x is a
column vector of the unknowns xi, and b is a column vector of the values on the

right side of the equations:

A x b

4 �2 1

1 1 5

�2 3 �1

2

4

3

5

x1

x2

x3

2

4

3

5 ¼
7

10

2

2

4

3

5

The solution is then x ¼ A-1 b. In MATLAB there are two simple ways to solve

this. The built-in function inv can be used to get the inverse of A and then we

multiply this by b, or we can use the divided into operator.

38312.2 Matrix Solutions to Systems of Linear Algebraic Equations

Openmirrors.com
>> A ¼ [4 �2 1; 1 1 5; �2 3 �1];
>> b ¼ [7;10;2];
>> x ¼ inv(A)* b
x ¼

3.0244
2.9512
0.8049

>> x ¼ A\b
x ¼

3.0244
2.9512
0.8049

12.2.1 Solving 2 � 2 systems of equations
Although this may seem easy in MATLAB, in general, finding solutions to sys-

tems of equations is not. However, 2� 2 systems are fairly straightforward, and
there are several methods of solution for these systems for which MATLAB has

built-in functions.

Consider the following 2 � 2 system of equations:

x1 þ 2x2 ¼ 2
2x1 þ 2x2 ¼ 6

First, to visualize the solution, we will change both equations to the equation

of a straight line by writing each in the form y ¼ mx þ b (by changing x1 to x

and x2 to y):

x þ 2y ¼ 2 ! 2y ¼ �x þ 2 ! y ¼ �0.5x þ 1
2x þ 2y ¼ 6 ! 2y ¼ �2x þ 6 ! y ¼ �x þ 3

In MATLAB we can plot these lines using a script; the results are seen in
Figure 12.1.

plot2by2.m

% Plot a 2 by 2 system as straight lines
x ¼ �2:5;
y1 ¼ �0.5 * x þ 1;
y2 ¼ �x þ 3;
plot(x,y1,x,y2)
axis([-2 5 �4 6])
xlabel('x')
ylabel('y')
title('Visualize 2 x 2 system')

The intersection of the lines is the point (4, �1). In other words, x ¼ 4 and
y ¼ �1. Changing back to x1 and x2, we have x1 ¼ 4 and x2 ¼ �1. This allows
us to visualize the solution.

Note

If the determinant D is 0,

it will not be possible to

find the inverse of the

matrix A.

–2 –1 0 1 2 3 4 5
–4

–3

–2

–1

0

1

2

3

4

5

6

x

Visualize 2 x 2 system

y

FIGURE 12.1 Visualizing

2 � 2 systems of equations

as straight lines

384 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
This system of equations in matrix

form is:

A x b

1 2
2 2

� �

x1
x2

� �

¼ 2
6

� �

We have already seen that the solution
is x ¼ A-1 b, so we can solve this if we

can find the inverse of A. One method
of finding the inverse for a 2� 2matrix

involves calculating the determinant D.

For a 2 � 2 matrix

A ¼ a11 a12
a21 a22

� �

the determinant D is defined as:
D ¼ a11 a12
a21 a22

�

�

�

�

�

�

�

�

¼ a11a22�a12a21
It is written using vertical lines around the coefficients of the matrix, and is
defined as the product of the values on the diagonal minus the product of

the other two numbers.

For a 2 � 2 matrix, the matrix inverse is defined in terms of D as

A�1 ¼ 1

D

a22 �a12
�a21 a11

� �

The inverse is therefore the result of multiplying the scalar 1/D by every element

in the previous matrix. Note that this is not the matrix A, but is determined

using the elements from A in the following manner: the values on the diagonal

are reversed, and the negation operator is used on the other two values.

For our coefficient matrix,

A ¼ 1 2
2 2

� �

, D ¼ 1 2
2 2

�

�

�

�

�

�

�

�

¼ 1 � 2� 2 � 2 or � 2

so
� � � �

2 3
A�1 ¼ 1

1 � 2� 2 � 2
2 �2
�2 1

¼ 1

�2
2 �2
�2 1

¼
�1 1

1 � 1

2
4 5

and
� �

2 3

� �
x1
x2
¼
�1 1

1 � 1

2
4 5

2
6

38512.2 Matrix Solutions to Systems of Linear Algebraic Equations
Theunknowns are foundbyperforming thismatrixmultiplication.Consequently,

x1 ¼ �1 * 2 þ 1 * 6 ¼ 4
x2 ¼ 1 * 2 þ (-1/2) * 6 ¼ �1

This, of course, is the same solution as found by the intersection of the two

lines.

To do this inMATLAB, wewould first create the coefficientmatrix variable a and
column vector b.

>> a ¼ [1 2; 2 2];
>> b ¼ [2;6];

THE PROGRAMMING CONCEPT
For 2 � 2 matrices, the determinant and inverse are found using simple expressions.
>> deta ¼ a(1,1) * a(2,2) � a(1,2) * a(2,1)

deta ¼
-2

>> inva ¼ (1/deta) * [a(2,2) �a(1,2); �a(2,1) a(1,1)]

inva ¼
-1.0000 1.0000

1.0000 -0.5000
THE EFFICIENT METHOD
We have already seen that MATLAB has a built-in function, inv, to find a matrix inverse. It also

has a built-in function det to find a determinant:
>> det(a)

ans ¼
-2

>> inv(a)

ans ¼
-1.0000 1.0000

1.0000 -0.5000
PRACTICE 12.4

For the following 2 � 2 system of equations:

x1 þ 3x2 ¼ 2

2x1 þ 4x2 ¼ 5

386 CHAPTER 12 Matrix Representation of Linear Algebraic Equations

Openmirrors.com
Do the following on paper:

n Write the equations in matrix form Ax ¼ b.

n Solve by finding the inverse A–1 and then x ¼ A–1 b.

Now, get into MATLAB and check your answers.
12.2.2 Gauss and Gauss-Jordan elimination
For 2� 2 systems of equations, there are solutionmethods that are well-defined

and simple. However, for larger systems of equations, finding solutions is
frequently not as straightforward.

Two related methods of solving systems of linear equations will be described

here: Gauss elimination and Gauss-Jordan elimination. They are both based
on the observation that systems of equations are equivalent if they have the

same solution set. Also, performing simple operations on the rows of a matrix,

called elementary row operations (EROs), result in equivalent systems. These fall
into three categories:

1. Scaling: This changes a row by multiplying it by a nonzero scalar sri! ri.
2. Interchange rows: For example, interchanging rows ri and rj is written as

ri ! rj

3. Replacement: Replace a row by adding it to (or subtracting from it) a
multiple of another row. For a given row ri, this is written as

ri þ�srj ! ri

Note that when replacing row ri, nothing is multiplied by it. Instead, row rj is

multiplied by a scalar s (which could be a fraction) and that is added to or

subtracted from row ri. For example, for the matrix

4 2 3
1 4 0
2 5 3

2

4

3

5

an example of interchanging rows would be r1 ! r3, which would yield:
4 2 3

1 4 0

2 5 3

2

6

4

3

7

5

r1 ! r3

2 5 3

1 4 0

4 2 3

2

6

4

3

7

5

Now, starting with this matrix, an example of scaling would be 2r2! r2, which
means all elements in row 2 are multiplied by 2. This yields:

2 5 3

1 4 0

4 2 3

2

4

3

52r2 ! r2

2 5 3

2 8 0

4 2 3

2

4

3

5

38712.2 Matrix Solutions to Systems of Linear Algebraic Equations
Now, starting with this matrix, an example of a replacement would be r3 � 2r2
! r3. Element by element, row 3 is replaced by the element in row 3minus 2 *,

the corresponding element in row 2. This yields:

2 5 3
2 8 0
4 2 3

2

4

3

5r3 � 2r2 ! r3

2 5 3
2 8 0
0 �14 3

2

4

3

5

PRACTICE 12.5

Show the result of each of the following EROs:

4 2 3

1 4 0

2 5 3

2

6

4

3

7

5

r1 ! r2

4 2 3

1 4 0

2 5 3

2

6

4

3

7

5

r2 � 1/4 r1 ! r2

4 2 3

1 4 0

2 5 3

2

6

4

3

7

5

1/2 r1 ! r1

Both the Gauss and Gauss-Jordan methods begin with the matrix form Ax ¼ b

of a system of equations, and then augment the coefficient matrix A with the
column vector b.

Gauss elimination
The Gauss elimination method consists of:

n creating the augmented matrix [Ajb]
n applying EROs to this augmented matrix to get an upper triangular form

(this is called forward elimination)

n back substitution to solve

For example, for a 2 � 2 system, the augmented matrix would be:

a11 a12 b1
a21 a22 b2

� �

Then, elementary row operations are applied to get the augmented matrix into

an upper triangular form (i.e., the square part of the matrix on the left is in up-

per triangular form):

388 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
a’11 a’12 b’1

0 a’22 b’2

" #

So, the goal is simply to replace a21 with 0. Here, the primes indicate that the
values (may) have been changed.

Putting this back into the equation form yields

a’11 a’12

0 a’22

" #

x1

x2

" #

¼ b’1

b’2

" #

Performing this matrix multiplication for each row results in:
a’11 x1 þ a’12 x2 ¼ b’1

a’22 x2 ¼ b’2

So, the solution is

x2 ¼ b’2 / a’22

x1 ¼ (b’1 � a’12 x2) / a’11

Similarly, for a 3 � 3 system, the augmented matrix is reduced to upper trian-

gular form:

a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

2

6

4

3

7

5

!
a’11 a’12 a’13 b’1

0 a’22 a’23 b’2

0 0 a’33 b’3

2

6

4

3

7

5

(This will be done systematically by first getting a 0 in the a21 position, then a31,
and finally a32.) Then, the solution will be:

x3 ¼ b3’ / a33’

x2 ¼ (b2’ � a23’x3) / a22’

x1 ¼ (b1’ � a13’x3 � a12’x2) / a11’

Note that we find the last unknown, x3, first, then the second unknown, and
then the first unknown. This is why it is called back substitution.

As an example, consider the following 2 � 2 system of equations:

x1 þ 2x2 ¼ 2
2x1 þ 2x2 ¼ 6

As a matrix equation Ax ¼ b, this is:

1 2

2 2

" #

x1

x2

" #

¼ 2

6

" #

38912.2 Matrix Solutions to Systems of Linear Algebraic Equations
The first step is to augment the coefficient matrix A with b to get an augmented

matrix [Ajb]:
1 2 2
2 2 6

� �

For forward elimination, we want to get a 0 in the a21 position. To accomplish

this, we can modify the second line in the matrix by subtracting from it 2 * the

first row.

The way we would write this ERO follows:

1 2 2
2 2 6

� �

r2 � 2r1 ! r2
1 2 2
0 �2 2

� �

Now, putting it back in matrix equation form:
1 2
0 �2

� �

x1
x2

� �

¼ 2
2

� �

says that the second equation is now �2x2 ¼ 2, so x2 ¼ �1. Plugging into the

first equation,

x1þ2ð�1Þ ¼ 2, so x1 ¼ 4

This is back substitution.
Gauss-Jordan elimination
The Gauss-Jordan elimination method starts the same way that the Gauss

elimination method does, but then instead of back substitution, the elimina-
tion continues. The Gauss-Jordan method consists of:

n Creating the augmented matrix [Ajb]
n Forward elimination by applying EROs to get an upper triangular form

n Back elimination to a diagonal form that yields the solution

For a 2 � 2 system, this method would yield

a11 a12 b1
a21 a22 b2

� �

! a’11 0 b’1
0 a’22 b’2

� �

and for a 3 � 3 system,
a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

2

4

3

5!
a’11 0 0 b’1
0 a’22 0 b’2
0 0 a’33 b’3

2

4

3

5

Note that the resulting diagonal form does not include the right-most column.
For example, for the 2 � 2 system, forward elimination yielded the matrix:

1 2 2
0 �2 2

� �

390 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
Now, to continue with back elimination, we need a 0 in the a12 position:

1 2 2
0 �2 2

� �

r1 þ r2 ! r1
1 0 4
0 �2 2

� �

So, the solution is x1 ¼ 4; �2x2 ¼ 2 or x2 ¼ �1.

Here is an example of a 3 � 3 system:

x1 þ 3x2 ¼ 1
2x1 þ x2 þ 3x3 ¼ 6
4x1 þ 2x2 þ 3x3 ¼ 3

In matrix form, the augmented matrix [Ajb] is
1 3 0 1
2 1 3 6
4 2 3 3

2

4

3

5

For forward substitution (done systematically by first getting a 0 in the a21 po-

sition, then a31, and finally a32):

1 3 0 1

2 1 3 6

4 2 3 3

2

6

4

3

7

5

r2 � 2r1 ! r2

1 3 0 1

0 �5 3 4

4 2 3 3

2

6

4

3

7

5

r3 � 4r1 ! r3

1 3 0 1

0 �5 3 4

0 �10 3 �1

2

6

4

3

7

5

r3 � 2r2 ! r3

1 3 0 1

0 �5 3 4

0 0 �3 �9

2

6

4

3

7

5

For the Gauss method, this is followed by back substitution:
-3x3 ¼ �9
x3 ¼ 3

-5x2 þ 3(3) ¼ 4
-5x2 ¼ �5
x2 ¼ 1

x1 þ 3(1) ¼ 1
x1 ¼ �2

For the Gauss-Jordan method, this is instead followed by back elimination:

1 3 0 1

0 �5 3 4

0 0 �3 �9

2

6

4

3

7

5

r2 þ r3 ! r2

1 3 0 1

0 �5 0 �5
0 0 �3 �9

2

6

4

3

7

5

1 0 0 �22 3
r1 þ 3=5r2 ! r1 0 �5 0 �5
0 0 �3 �9

4 5

39112.2 Matrix Solutions to Systems of Linear Algebraic Equations
Thus,

x1 ¼ �2
-5x2 ¼ �5

x2 ¼ 1

-3x3 ¼ �9
x3 ¼ 3

Here’s an example of performing these substitutions using MATLAB:

>> a ¼ [1 3 0; 2 1 3; 4 2 3]
a ¼

1 3 0
2 1 3
4 2 3

>> b ¼ [1 6 3]'
b ¼

1
6
3

>> ab ¼ [a b]
ab ¼

1 3 0 1
2 1 3 6
4 2 3 3

>> ab(2,:) ¼ ab(2,:) � 2 * ab(1,:)
ab ¼

1 3 0 1
0 -5 3 4
4 2 3 3

>> ab(3,:) ¼ ab(3,:) � 4 * ab(1,:)
ab ¼

1 3 0 1
0 -5 3 4
0 -10 3 -1

>> ab(3,:) ¼ ab(3,:) � 2 * ab(2,:)
ab ¼

1 3 0 1
0 -5 3 4
0 0 -3 -9

>> ab(2,:) ¼ ab(2,:) þ ab(3,:)
ab ¼

1 3 0 1
0 -5 0 -5
0 0 -3 -9

392 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
>> ab(1,:) ¼ ab(1,:) þ 3/5 * ab(2,:)
ab ¼

1 0 0 -2
0 -5 0 -5
0 0 -3 -9
12.2.3 Reduced row echelon form
The Gauss-Jordan method results in a diagonal form; for example, for a 3 � 3

system:

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

2

4

3

5!
a’11 0 0 b’1
0 a’22 0 b’2
0 0 a’33 b’3

2

4

3

5

Reduced row echelon form takes this one step further to result in all 1s rather than
the a’s, so that the column of b’s is the solution. All that is necessary to accom-

plish this is to scale each row.

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

2

4

3

5!
1 0 0 b’1
0 1 0 b’2
0 0 1 b’3

2

4

3

5

In other words, we are reducing [Ajb] to [Ijb’]. MATLAB has a built-in function

to do this, called rref. For example, for the previous example:

>> a ¼ [1 3 0; 2 1 3; 4 2 3];
>> b ¼ [1 6 3]';
>> ab ¼ [a b];
>> rref(ab)
ans ¼

1 0 0 -2
0 1 0 1
0 0 1 3

The solution is found from the last column, so x1 ¼ �2, x2 ¼ 1, and x3 ¼ 3.

To get this in a column vector in MATLAB:

>> x ¼ ans(:,end)
x ¼

-2
1
3

12.2.4 Finding a matrix inverse by reducing
an augmented matrix
For a system of equations larger than a 2� 2 system, one method of finding the
inverse of a matrix A mathematically involves augmenting the matrix with an

identity matrix of the same size, and then reducing it. The algorithm is:

393Summary
n Augment the matrix with I: [AjI].
n Reduce it to the form [IjX]; X will be A–1.

For example, in MATLAB we can start with a matrix, augment it with an identity

matrix, and then use the rref function to reduce it.

>> a ¼ [1 3 0; 2 1 3; 4 2 3];
>> rref([a eye(size(a))])
ans ¼

1.0000 0 0 -0.2000 -0.6000 0.6000
0 1.0000 0 0.4000 0.2000 -0.2000
0 0 1.0000 0 0.6667 -0.3333

In MATLAB, the inv function can be used to verify the result.

>> inv(a)
ans ¼

-0.2000 -0.6000 0.6000
0.4000 0.2000 -0.2000

0 0.6667 -0.3333
SUMMARY
Common Pitfalls

n Confusing matrix multiplication and array multiplication. Array opera-

tions, including multiplication, division, and exponentiation, are per-

formed term by term (so the arrays must have the same size); the operators

are .*, ./, .\, and .^. For matrix multiplication to be possible, the inner di-
mensions must agree and the operator is *.

n Forgetting that to augment one matrix with another, the number of rows

must be the same in each.

Programming Style Guidelines

n Use vectorized code when performing matrix operations.

MATLAB Functions and Commands

diag

trace

eye

triu

tril

inv

dot

cross

det

rref

magic

pascal
MATLAB Operators

* matrix multiplication

\ matrix division

394 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
Exercises
1. For the following matrices A, B, and C:

A ¼ 1 4
3 2

� �

B ¼
2 1 3
1 5 6
3 6 0

2

4

3

5 C ¼ 3 2 5
4 1 2

� �

n Which are symmetric?
n For all square matrices, give their trace.

n Give the result of 3 * A.

n Give the result of A * C.

n Are there any other matrix multiplications that can be performed? If so,

list them.

2. For the following vectors and matrices A, B, and C:

A ¼ 4 1 �1
2 3 0

� �

B ¼ 1 4½ � C ¼ 2
3

� �

Perform the following operations, if possible. If not, just say it can’t be done!
A * B
B * C
C * B
B þ CT

3. Given the following matrices:

A ¼
3 2 1
0 5 2
1 0 3

2

4

3

5 B ¼
2
1
3

2

4

3

5 I ¼
1 0 0
0 1 0
0 0 1

2

4

3

5

Perform the following MATLAB operations, if they can be done. If not, explain why.
A * B
B * A
I þ A
A .* I
trace(A)

4.Write a function issquare that will receive an array argument, and will return

logical 1 for true if it is a square matrix, or logical 0 for false if it is not.

5.What is the value of the trace of an n � n identity matrix?

6.Write a function mymatdiag that will receive a matrix argument, and will return a

vector consisting of the main diagonal (without using the built-in diag function).

Note: This is only possible if the argument is a square matrix, so the function should

first check this by calling the issquare function from Exercise 4. If the argument is a

square matrix, the function will return the diagonal; otherwise, it will return an empty

vector.

395Exercises
7.Write a function that will receive a square matrix as an input argument, and will

return a row vector containing the diagonal of the matrix. If the function is called

with a vector of two variables on the left side of the assignment, the function will

also return the trace of the matrix. (Note: It will only return the trace if there

are two variables on the left side of the assignment.) You may assume that

the matrix is square. The function must preallocate the diagonal vector to the

correct size.

8.Write a function randdiag that will return an n � n diagonal matrix, with random

integers each in the range from low to high on the diagonal. Three arguments are

passed to the function, in the following order: the value of n, low, and high.

9.Write a function myeye to return an n � n identity matrix (without using eye).

10.Write a function myupp that will receive an integer argument n, and will return an

n � n upper triangular matrix of random integers.

11.When using the Gauss elimination to solve a set of algebraic equations, the solution

can be obtained through back substitution when the corresponding matrix is in its

upper triangular form. Write a function istriu that receives a matrix variable and

returns a logical 1 if the matrix is in upper triangular form, or a logical 0 if not. Do this

problem two ways: using loops and using built-in functions.

12.Write a function to determine whether a square matrix is a diagonal matrix. This

function will return logical 1 for true if it is, or logical 0 if not.

13.Write a function mymatsub that will receive two matrix arguments and will

return the result of subtracting the elements in one matrix from another (by looping

and subtracting term by term). If it is not possible to subtract, return an emptymatrix.

14.Write a function to receive a matrix and return its transpose (for more programming

practice, do not use the built-in operator for the transpose).

15.We have already seen the zeros function, which returns a matrix of all 0s. Similarly,

there is a function ones that returns a matrix of all 1s. (Note: No, there aren’t

functions called twos, threes, fifteens—just ones and zeros!) However, write a fives

function that will receive two arguments for the number of rows and columns and

will return a matrix with that size of all 5s.

16.The functionmagic(n) returns an n� nmagicmatrix, which is amatrix for which the

sum of all rows, columns, and the diagonal are the same. Investigate this built-in

function.

17.The function pascal(n) returns an n � n matrix made from Pascal’s triangle.

Investigate this built-in function, and then write your own.

18.Rewrite the following system of equations in matrix form:

4x1 � x2 þ 3x4 ¼ 10
-2x1 þ 3x2 þ x3 �5x4 ¼ �3
x1 þ x2 � x3 þ 2x4 ¼ 2
3x1 þ 2x2 � 4x3 ¼ 4

Set it up in MATLAB and use any method to solve.

396 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
19. For the following 2 � 2 system of equations:

-3x1 þ x2 ¼ �4
-6x1 þ 2x2 ¼ 4

n In MATLAB, rewrite the equations as equations of straight lines and plot them to

find the intersection.

n Solve for one of the unknowns and then substitute into the other equation to

solve for the other unknown.

n Find the determinant D.

n How many solutions are there? One? None? Infinite?

20. For the following 2 � 2 system of equations:

-3x1 þ x2 ¼ 2
-6x1 þ 2x2 ¼ 4

n Rewrite the equations as equations of straight lines and plot them to find the

intersection.

n Solve for one of the unknowns and then substitute into the other equation to

solve for the other unknown.

n Find the determinant D.

n How many solutions are there? One? None? Infinite?

21.Write a function to return the determinant of a 2 � 2 matrix.

22. For a 2 x 2 system of equations, Cramer’s rule states that the unknowns x are

fractions of determinants. The numerator is found by replacing the column of

coefficients of the unknown by constants b. Thus,

x1 ¼
b1 a12
b2 a22

�

�

�

�

�

�

�

�

D
and x2 ¼

a11 b1
a21 b2

�

�

�

�

�

�

�

�

D

Use Cramer’s rule to solve the following 2 � 2 system of equations:

-3x1 þ 2x2 ¼ �1
4x1 � 2x2 ¼ �2

23.Write a function to implement Cramer’s rule (see Exercise 22).

24.Write a function to return the inverse of a 2 � 2 matrix.

25.Given the following 2 � 2 system of equations:

3x1 þ x2 ¼ 2
2x1 ¼ 4

Use all methods presented in the text to solve it, and to visualize the solution. Do all of

the math by hand, and then also use MATLAB.

397Exercises
26.ERO practice: Show the result of each of the following EROs:

4 2 3

1 4 0

2 5 3

2

6

6

4

3

7

7

5

1/4 r1 ! r1

4 2 3

1 4 0

2 5 3

2

6

6

4

3

7

7

5

r2 ! r3

4 2 3

1 4 0

2 5 3

2

6

6

4

3

7

7

5

r3 � 2r2 ! r3

27. For the following 2 � 2 system of equations:
3x1 þ 2x2 ¼ 4
x1 ¼ 2

n Write it in matrix form.

n Using the method for 2 � 2 systems, find the determinant D.

n Use D to find the inverse of A.

n Use the Gauss elimination method to find the solution.

n Use the Gauss-Jordan method to find the solution.

n Check your work in MATLAB.

28. For the following set of equations:

2x1 þ 2x2 þ x3 ¼ 2
x2 þ 2x3 ¼ 1

x1 þ x2 þ 3x3 ¼ 3

n Put the set in the augmented matrix [Ajb].
n Solve using Gauss.

n Solve using Gauss-Jordan.

n In MATLAB, create the matrix A and column vector b. Find the inverse and

determinant of A. Solve for x.

29.Given the following system of equations:

x1 � 2x2 þ x3 ¼ 2
2x1 � 5x2 þ 3x3 ¼ 6
x1 þ 2x2 þ 2x3 ¼ 4

2x1 þ 3x3 ¼ 6

Write this inmatrix form and use either Gauss or Gauss-Jordan to solve it. Check your

answer using MATLAB.

398 CHAPTER 12 Matrix Representation of Linear Algebraic Equations
30.Write a function that will augment a matrix with an identity matrix of the appropriate

dimensions, without using any built-in functions (except size). This function will

receive a matrix argument, and will return the augmented matrix.

31.Write a function myrrefinv that will receive a square matrix A as an argument, and

will return the inverse of A. The function cannot use the built-in inv function; instead,

it must augment the matrix with I and use rref to reduce it to the form [IjA–1].

Examples of calling it are:

>> a ¼[4 3 2; 1 5 3; 1 2 3]
a ¼

4 3 2
1 5 3
1 2 3

>> inv(a)
ans ¼
0.3000 -0.1667 -0.0333

0 0.3333 -0.3333
-0.1000 -0.1667 0.5667

>> disp(myrrefinv(a))
0.3000 -0.1667 -0.0333

0 0.3333 -0.3333
-0.1000 -0.1667 0.5667

32. For the following set of equations:

2x1 þ 2x2 þ x3 ¼ 2
x2 þ 2x3 ¼ 1

x1 þ x2 þ 3x3 ¼ 3

n In MATLAB, create the coefficient matrix A and vector b. Solve for x using the

inverse, using the built-in function.

n Create the augmented matrix [Ajb] and solve using the rref function.

33.Analyzing electric circuits can be accomplished by solving sets of equations. For a

particular circuit, the voltages V1, V2, and V3 are found through the system:

V1 ¼ 5
-6V1 þ 10V2-3V3 ¼ 0
-V2þ51V3 ¼ 0

Put these equations in matrix form and solve in MATLAB.

Some operations are easier to do if a matrix (in particular, if it is really large) is

partitioned into blocks. Partitioning into blocks also allows utilization of grid computing

or parallel computing, where the operations are spread over a grid of computers. For

example, if

399Exercises
A ¼

1 �3 2 4

2 5 0 1

�2 1 5 �3
�1 3 1 2

2

6

6

6

6

4

3

7

7

7

7

5

it can be partitioned into
A11 A12

A21 A22

� �

where
A11 ¼ 1 �3
2 5

� �

, A12 ¼ 2 4
0 1

� �

, A21 ¼ �2 1
�1 3

� �

, A22 ¼ 5 �3
1 2

� �
If B is the same size,

B ¼
2 1 �3 0
1 4 2 �1
0 �1 5 �2
1 0 3 2

2

6

6

4

3

7

7

5

partition it into

B11 B12

B21 B22

� �
34.Create the matrices A and B, and partition them in MATLAB. Show that matrix

addition, matrix subtraction, and scalar multiplication can be performed block by

block, and concatenated for the overall result.

35. For matrix multiplication, use the following blocks:

A � B ¼ A11 A12

A21 A22

� �

B11 B12

B21 B22

� �

¼ A11B11 þ A12B21 A11B12 þ A12B22

A21B11 þ A22B21 A21B12 þ A22B22

� �

Perform this in MATLAB for the given matrices.
36.We have seen that a square matrix is symmetric if aij ¼ aji for all i, j. We say that a

square matrix is skew symmetric if aij ¼�aji for all i, j. Note that this means that all

of the values on the diagonal must be 0. Write a function that will receive a square

matrix as an input argument, and will return logical 1 for true if the matrix is skew

symmetric or logical 0 for false if not.

CHAPTER 13
Basic Statistics, Sets, Sorting,
and Indexing
CONTENTS
KEY TERMS
13.1 Statistical
Functions
........................402

13.2 Set
Operations
........................408

13.3 Sorting412
mean

sorting

index vectors

searching

arithmetic mean

average

outlier

harmonic mean

geometric mean

standard deviation

variance

mode

median

set operations

ascending order

descending order

selection sort

sequential search

key

binary search
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
13.4 Index
Vectors.......419

13.5 Searching
........................422
There are a lot of statistical analyses that can be performed on data sets. In the

MATLABW software, the statistical functions are in the data analysis help topic

called datafun.

In general, we will write a data set of n values as

x ¼ {x1, x2, x3, x4, . . ., xn}

In MATLAB, this will generally be represented as a row vector called x.

Statistics can be used to characterize properties of a data set. For example, con-

sider a set of exam grades {33, 75, 77, 82, 83, 85, 85, 91, 100}. What is a “nor-

mal,” “expected,” or “average” exam grade? There are several ways that this
could be interpreted. Perhaps the most common is the mean grade, which is

found by summing the grades and dividing by the number of them (the result

of that would be 79). Another way of interpreting that would be the grade
found the most often, which would be 85. Also, the value in the middle of

the list, 83, could be used. Another property that is useful to know is how

spread out the data values are within the data set.
401

402 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
This section will cover some simple statistics, as well as set operations that can

be performed on data sets. Some statistical functions require that the data set be

sorted, so sorting will also be covered. Using index vectors is a way of represent-
ing the data in order, without physically sorting the data set. Finally, searching

for values within a data set or a database is useful, so some basic searching tech-

niques will be explained.
13.1 STATISTICAL FUNCTIONS

MATLAB has built-in functions for many statistics; the simplest of which we

have already seen (e.g.,min andmax to find the minimum or maximum value

in a data set).

>> x ¼ [9 10 10 9 8 7 3 10 9 8 5 10];
>> min(x)
ans ¼

3

>> max(x)
ans ¼

10

Both of these functions also return the index of the smallest or largest value; if

there is more than one occurrence, it returns the first. For example, in the fol-

lowing data set 10 is the largest value; it is found in three elements in the vector
but the index returned is the first element in which it is found (which is 2):

>> x ¼ [9 10 10 9 8 7 3 10 9 8 5 10];
>> [maxval, maxind] ¼ max(x)
maxval ¼

10
maxind ¼

2

For matrices, the min and max functions operate columnwise by default:

>> mat ¼ [9 10 17 5; 19 9 11 14]
mat ¼

9 10 17 5
19 9 11 14

>> [minval, minind] ¼ min(mat)
minval ¼

9 9 11 5

minind ¼
1 2 2 1

40313.1 Statistical Functions
To find the minimum (or maximum) for each row, the dimension of 2 (which

is how MATLAB refers to rows) can be specified as the third argument to the

min (or max) function. The second argument must be an empty vector:

>> min(mat,[],2)
ans ¼

5
9

These functions can also compare vectors or matrices (with the same dimen-

sions) and return the minimum (or maximum) values from corresponding el-

ements. For example, the following iterates through all elements in the two
vectors, comparing corresponding elements, and returning the minimum

for each:

>> x ¼ [3 5 8 2 11];
>> y ¼ [2 6 4 5 10];
>> min(x,y)
ans ¼

2 5 4 2 10

Some of the other functions in the datafun help topic that have been described
already include sum, prod, cumsum, cumprod, and hist. Other statistical op-

erations, and the functions that perform them in MATLAB, will be described in

the rest of this section.

13.1.1 Mean
The arithmetic mean of a data set is what is usually called the average of the

values, or in other words, the sum of the values divided by the number of values
in the data set. Mathematically, we would write this as

P

n

i¼1

xi

n

THE PROGRAMMING CONCEPT
Calculating a mean, or average, would normally be interpreted as looping through the elements

of a vector, adding them together, and then dividing by the number of elements:
mymean.m

function outv ¼ mymean(vec)
% mymean returns the mean of a vector
% Format: mymean(vector)

mysum ¼ 0;
Continued

404 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
THE PROGRAMMING CONCEPT—CONT’D
for i ¼ 1:length(vec)
mysum ¼ mysum þ vec(i);

end
outv ¼ mysum/length(vec);
end

>> x ¼ [9 10 10 9 8 7 3 10 9 8 5 10];
>> mymean(x)
ans ¼

8.1667
THE EFFICIENT METHOD
There is a built-in function, mean, in MATLAB to accomplish this:
>> mean(x)
ans ¼

8.1667
For a matrix, the mean function operates columnwise. To find the mean of

each row, the dimension of 2 is passed as the second argument to the func-
tion, as is the case with the functions sum, prod, cumsum, and cumprod

(the [] as a middle argument is not necessary for these functions like it is

for min and max).

>> mat ¼ [8 9 3; 10 2 3; 6 10 9]
mat ¼

8 9 3
10 2 3
6 10 9

>> mean(mat)
ans ¼

8 7 5

>> mean(mat,2)
ans ¼

6.6667
5.0000
8.3333

40513.1 Statistical Functions
Sometimes a value that is much larger or smaller than the rest of the data (called

an outlier) can throw off the mean. For example, in the following all of the

numbers in the data set are in the range from 3 to 10, with the exception of
the 100 in the middle. Because of this outlier, the mean of the values in this

vector is actually larger than any of the other values in the vector.

>> xwithbig ¼ [9 10 10 9 8 100 7 3 10 9 8 5 10];
>> mean(xwithbig)
ans ¼

15.2308

Typically, an outlier like this represents an error of some kind, perhaps in the data
collection. To handle this, sometimes theminimum andmaximum values from a

datasetarediscardedbefore themeaniscomputed. Inthisexample,a logicalvector

indicatingwhichelementsareneither the largestnorsmallestvalues isusedto index
into the original data set, resulting in removing theminimum and themaximum.

>> xwithbig ¼ [9 10 10 9 8 100 7 3 10 9 8 5 10];
>> length(xwithbig)
ans ¼

13

>> newx ¼ xwithbig(xwithbig �¼ min(xwithbig) & . . .
xwithbig �¼ max(xwithbig))

newx ¼
9 10 10 9 8 7 10 9 8 5 10

>> length(newx)
ans ¼

11

Insteadof just removing theminimumandmaximumvalues, sometimes the largest
and smallest 1%or 2%of values are removed, especially if the data set is very large.

There are several other means that can be computed. The harmonic mean of the
n values in a vector or data set x is defined as

n
1

x1
þ 1

x2
þ 1

x3
þ . . .

1

xn

This could be implemented in an anonymous function using the built-in sum

function. For example, the following anonymous function calculates this, and

stores the handle in a variable called harmhand.

>> harmhand ¼ @ (x) length(x) / sum(1 ./ x);
>> x ¼ [9 10 10 9 8 7 3 10 9 8 5 10];
>> harmhand(x)
ans ¼

7.2310

Note

Statistics Toolbox™ has

functions for these

means, called

harmmean and

geomean, as well as

a function trimmean

that trims the highest

and lowest 2% of data

values.

406 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
The geometric mean of the n values in a vector x is defined as the nth root of the

product of the data set values.
ffi

x1�x2�x3� . . .� xnn
p

The following anonymous function implements this definition, using prod:
>> geomhand ¼ @ (x) prod(x)^(1/length(x));
>> geomhand(x)
ans ¼

7.7775
13.1.2 Variance and standard deviation
The standard deviation and variance are ways of determining the spread of the

data. The variance is usually defined in terms of the arithmetic mean as:

var ¼
P

n

i¼1

ðxi �meanÞ2

n� 1

Sometimes, the denominator is defined as n rather than n – 1. The default
definition in MATLAB uses n – 1 for the denominator, so we will use that

definition here.

For example, for the vector [8, 7, 5, 4, 6], there are n ¼ 5 values so n – 1 is 4.

Also, the mean of this data set is 6. The variance would be

var ¼ ð8� 6Þ2 þ ð7� 6Þ2 þ ð5� 6Þ2 þ ð4� 6Þ2 þ ð6� 6Þ2
4

¼ 4þ 1þ 1þ 4þ 0

4
¼ 2:5

The built-in function to calculate the variance is called var:
>> xvals ¼ [8 7 5 4 6];
>> myvar ¼ var(xvals)
yvar ¼

2.5000

The standard deviation is the square root of the variance:

sd ¼ ffiffiffiffiffiffiffiffi

var
p

The built-in function in MATLAB for the standard deviation is called std;
the standarddeviation canbe found either as the sqrtof the variance, or using std:

>> shortx ¼ [2 5 1 4];
>> myvar ¼ var(shortx)
myvar ¼

3.3333

40713.1 Statistical Functions
>> sqrt(myvar)
ans ¼

1.8257

>> std(shortx)
ans ¼

1.8257

The less spread out the numbers are, the smaller the standard deviation will be,
since it is a way of determining the spread of the data. Likewise, themore spread

out the numbers are, the larger the standard deviation will be. For example,
here are two data sets that have the same number of values and also the same

mean, but the standard deviations are quite different:

>> x1 ¼ [9 10 9.4 9.6];
>> mean(x1)
ans ¼

9.5000
>> std(x1)
ans ¼

0.4163

>> x2 ¼ [2 17 �1.5 20.5];
>> mean(x2)
ans ¼

9.5000
>> std(x2)
ans ¼

10.8704

13.1.3 Mode
The mode of a data set is the value that appears most frequently. The built-in

function in MATLAB for this is called the mode.

>> x ¼ [9 10 10 9 8 7 3 10 9 8 5 10];
>> mode(x)
ans ¼

10

If there is more than one value with the same (highest) frequency, the smaller
value is the mode. In the following case, since 3 and 8 appear twice in the

vector, the smaller value (3) is the mode:

>> x ¼ [3 8 5 3 4 1 8];
>> mode(x)
ans ¼

3

Therefore, if no value appears more frequently than any other, the smallest

value in the vector will be the mode of the vector.

408 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
13.1.4 Median
Themedian is defined only for a data set that has been sorted first, meaning that

the values are in order. The median of a sorted set of n data values is defined as
the value in the middle, if n is odd, or the average of the two values in the mid-

dle if n is even. For example, for the vector [1 4 5 9 12], the middle value is 5.

The function in MATLAB is called median:

>> median([1 4 5 9 12])
ans ¼

5

For the vector [1 4 5 9 12 33], the median is the average of the 5 and 9 in the

middle:
>> median([1 4 5 9 12 33])

ans ¼
7

If the vector is not in sorted order to begin with, the median function will still
return the correct result (it will sort the vector automatically). For example,

scrambling the order of the values in the first example will still result in a me-

dian value of 5.

>> median([9 4 1 5 12])
ans ¼

5

PRACTICE 13.1

For the vector [1 1 3 6 9], find the

n Minimum

n Maximum

n Arithmetic mean

n Geometric mean

n Harmonic mean

n Variance

n Standard deviation

n Mode

n Median
13.2 SET OPERATIONS

MATLAB has several built-in functions that perform set operations on vectors.
These include union, intersect, unique, setdiff, and setxor. All of these func-

tions can be useful when working with data sets, and all return vectors that are

40913.2 Set Operations
sorted from lowest to highest (ascending order). Additionally, there are two “is”

functions that work on sets: ismember and issorted.

For example, given the following vectors:

>> v1 ¼ 6:�1:2
6 5 4 3 2

>> v2 ¼ 1:2:7
v2 ¼

1 3 5 7

the union function returns a vector that contains all of the values from the two
input argument vectors, without repeating any.

>> union(v1,v2)
ans ¼

1 2 3 4 5 6 7

The intersect function instead returns all of the values that can be found in both
of the two input argument vectors.

>> intersect(v1,v2)
ans ¼

3 5

The setdiff function receives two vectors as input arguments, and returns a
vector consisting of all of the values that are contained in the first vector argu-

ment but not the second. Therefore, the order of the two input arguments is

important.

>> setdiff(v1,v2)
ans ¼

2 4 6

>> setdiff(v2,v1)
ans ¼

1 7

The function setxor receives two vectors as input arguments, and returns a vec-

tor consisting of all of the values from the two vectors that are not in the inter-
section of these two vectors. In other words, it is the union of the two vectors

obtained using setdiff when passing the vectors in different orders as before.

>> setxor(v1,v2)
ans ¼

1 2 4 6 7

>> union(setdiff(v1,v2), setdiff(v2,v1))
ans ¼

1 2 4 6 7

410 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
The set function unique returns all of the unique values from a set argument:

>> v3 ¼ [1:5 3:6]
v3 ¼

1 2 3 4 5 3 4 5 6

>> unique(v3)
ans ¼

1 2 3 4 5 6

Many of the set functions return vectors that can be used to index into the orig-

inal vectors as optional output arguments. For example, the two vectors v1 and
v2 were defined previously as follows:

>> v1
v1 ¼

6 5 4 3 2

>> v2
v2 ¼

1 3 5 7

The intersect function returns, in addition to the vector containing the
values in the intersection of v1 and v2, an index vector into v1 and an

index vector into v2 such that outvec is the same as v1(index1) and also

v2(index2).

>> [outvec, index1, index2] ¼ intersect(v1,v2)
outvec ¼

3 5

index1 ¼
4 2

index2 ¼
2 3

Using these vectors to index into v1 and v2 will return the values from the in-

tersection. For example, this expression returns the second and fourth elements

of v1 (it puts them in ascending order):

>> v1(index1)
ans ¼

3 5

This returns the second and third elements of v2:

>> v2(index2)
ans ¼

3 5

41113.2 Set Operations
The function ismember receives two vectors as input arguments, and returns

a logical vector that is the same length as the first argument, containing

logical 1 for true if the element in the first vector is also in the second,
or logical 0 for false if not. The order of the arguments matters for this

function.

>> v1
v1 ¼

6 5 4 3 2

>> v2
v2 ¼

1 3 5 7

>> ismember(v1,v2)
ans ¼

0 1 0 1 0

>> ismember(v2,v1)
ans ¼

0 1 1 0

Using the result from the ismember function as an index into the first vector

argument will return the same values as the intersect function (although not

necessarily sorted).

>> logv ¼ ismember(v1,v2)
logv ¼

0 1 0 1 0

>> v1(logv)
ans ¼

5 3

>> logv ¼ ismember(v2,v1)
logv ¼

0 1 1 0

>> v2(logv)
ans ¼

3 5

The issorted function will return logical 1 for true if the argument is sorted in
ascending order (lowest to highest), or logical 0 for false if not.

>> v3 ¼ [1:5 3:6]
v3 ¼

1 2 3 4 5 3 4 5 6

412 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
>> issorted(v3)
ans ¼

0

>> issorted(v2)
ans ¼

1

>> issorted(v1)
ans ¼

0

In the next section, we will see how to sort a vector.

PRACTICE 13.2

Create two vector variables vec1 and vec2 that contain seven random integers, each in the range

from 1 to 20. Do each of the following operations by hand first, and then check in MATLAB:

n union

n intersection

n setdiff

n setxor

n unique (for each)
13.3 SORTING

Sorting is the process of putting a list in order—either descending (highest to

lowest) or ascending (lowest to highest) order. For example, here is a list of
n integers, visualized as a column vector.
1
 85
2
 70
3
 100
4
 95
5
 80
6
 91
What is desired is to sort this in ascending order in place—by rearranging this

vector, not creating another. The following is one basic algorithm:

n Look through the vector to find the smallest number, and then put it in the
first element in the vector. How? By exchanging it with the number cur-

rently in the first element.

41313.3 Sorting
n Then, scan the rest of the vector (from the second element down) looking

for the next smallest (or, the smallest in the rest of the vector). When

found, put it in the first element of the rest of the vector (again, by
exchanging).

n Continue doing this for the rest of the vector. Once the next-to-last number

has been placed in the correct location in the vector, by default the last
number has been as well.

What is important in each pass through the vector is not knowing what the
smallest value is, but where it is so that the exchange can be made.

This table shows the progression. The left column shows the original vector.
The second column (from the left) shows that the smallest number, 70, is

now in the first element in the vector. It was put there by exchanging with what

had been in the first element, 85. This continues element by element, until the
vector has been sorted.
85 70 70 70 70 70
70
 85
 80
 80
 80
 80
100
 100
 100
 85
 85
 85
95
 95
 95
 95
 91
 91
80
 80
 85
 100
 100
 95
91
 91
 91
 91
 95
 100
This is called the selection sort; it is one of many different sorting algorithms.
THE PROGRAMMING CONCEPT
The following function implements the selection sort to sort a vector:
mysort.m

function outv ¼ mysort(vec)
% mysort sorts a vector using the selection sort
% Format: mysort(vector)

% Loop through the elements in the vector to end-1
for i ¼ 1:length(vec)-1

low ¼ i; % stores the index of the smallest
%Select the smallest number in the rest of the vector
for j ¼ i þ 1:length(vec)

if vec(j) < vec(low)
low ¼ j;

end
end

414 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
% Exchange elements
temp ¼ vec(i);
vec(i) ¼ vec(low);
vec(low) ¼ temp;

end
outv ¼ vec;
end

>> vec ¼ [85 70 100 95 80 91];
>> vec ¼ mysort(vec)
vec ¼

70 80 85 91 95 100
THE EFFICIENT METHOD
MATLAB has a built-in function, sort, that will sort a vector in ascending order:
>> vec ¼ [85 70 100 95 80 91];
>> vec ¼ sort(vec)
vec ¼

70 80 85 91 95 100

Descending order can also be specified. For example,

>> sort(vec,'descend')
ans ¼

100 95 91 85 80 70
For matrices, the sort function will by default sort each column. To sort by

rows, the dimension 2 is specified. For example,

>> mat
mat ¼

4 6 2
8 3 7
9 7 1

>> sort(mat) % sorts by column
ans ¼

4 3 1
8 6 2
9 7 7

41513.3 Sorting
>> sort(mat,2) % sorts by row
ans ¼

2 4 6
3 7 8
1 7 9

13.3.1 Sorting vectors of structures
Whenworkingwithavectorofstructures, it is commontosortbasedonaparticular

field that iswithin the structures. For example, recall thevectorof structuresused to
store information on different software packages that was created in Chapter 8.
packages
item_no
4

cost
1

price
 code
1
 123
 19.99
 39.95
 g
2
 56
 5.99
 49.99
 l
3
 587
 1.11
 33.33
 w
Here is a function that sorts this vector of structures in ascending order based on

the price field.

mystructsort.m

function outv ¼ mystructsort(structarr)
% mystructsort sorts a vector of structs on the price field
% Format: mystructsort(structure vector)

for i ¼ 1:length(structarr)-1
low ¼ i;
for j ¼ i þ 1:length(structarr)

if structarr(j).price < structarr(low).price
low ¼ j;

end
end
% Exchange elements
temp ¼ structarr(i);
structarr(i) ¼ structarr(low);
structarr(low) ¼ temp;

end
outv ¼ structarr;
end

Note that only the price field is compared in the sort algorithm, but the entire
structure is exchanged. Consequently, each element in the vector, which is a

structure of information about a particular software package, remains intact.

416 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
Recall that we created a function printpackages also in Chapter 8 that prints the

information in a nice table format. Calling themystructsort function and also the

function to print will demonstrate this:

>> printpackages(packages)

Item # Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 l
587 11.11 33.33 w

>> packByPrice ¼ mystructsort(packages);
>> printpackages(packByPrice)

Item # Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l

This function only sorts the structures based on the price field. A more general

function is shown in the following, which receives a string that is the name of
the field. The function checks first to make sure that the string that is passed is a

valid field name for the structure. If it is, it sorts based on that field, and if not, it

returns an empty vector.

Strings are created consisting of thenameof the vector variable, followedbyparen-

thesescontaining theelementnumber, theperiod,andfinally thenameofthe field.
The strings are created using square brackets to concatenate the pieces of the string,

and the int2str function is used to convert the element number to a string. Then,

using the eval function, the vector elements are compared to determine the lowest.

generalPackSort.m

function outv ¼ generalPackSort(inputarg, fname)
% generalPackSort sorts a vector of structs
% based on the field name passed as an input argument

if isfield(inputarg,fname)
for i ¼ 1:length(inputarg)-1

low ¼ i;
for j ¼ i þ 1:length(inputarg)

if eval(['inputarg(' int2str(j) ').' fname]) < . . .
eval(['inputarg(' int2str(low) ').' fname])
low ¼ j;

end
end
% Exchange elements

41713.3 Sorting
temp ¼ inputarg(i);
inputarg(i) ¼ inputarg(low);
inputarg(low) ¼ temp;

end
outv ¼ inputarg;

else
outv ¼ [];

end
end

The following are examples of calling the function:

>> packByPrice ¼ generalPackSort(packages,'price');
>> printpackages(packByPrice)

Item # Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l

>> packByCost ¼ generalPackSort(packages,'cost');
>> printpackages(packByCost)

Item # Cost Price Code

456 5.99 49.99 l
587 11.11 33.33 w
123 19.99 39.95 g

>> packByProfit ¼ generalPackSort(packages,'profit')
packByProfit ¼

[]
QUICK QUESTION!
Is this generalPackSort function truly general?Would it work for

any vector of structures, not just one configured like packages?

Answer: It is fairly general. It will work for any vector

of structures. However, the comparison will only work for

numerical or character fields. Thus, as long as the field is a

number or character, this function will work for any vector of

structures. If the field is a vector itself (including a string), it

will not work.
13.3.2 Sorting strings
For a matrix of strings, the sort function works exactly as shown previously for

numbers. For example,

418 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
>> words ¼ char('Hello', 'Howdy', 'Hi', 'Goodbye', 'Ciao')
words ¼
Hello
Howdy
Hi
Goodbye
Ciao

The following sorts column by column using the ASCII equivalents of the char-
acters. It can be seen from the results that the space character comes before the

letters of the alphabet in the character encoding:

>> sort(words)
ans ¼
Ce
Giad
Hildb
Hoolo
Howoyye

To sort on the rows instead, the second dimension must be specified.

>> sort(words,2)
ans ¼
Hello
Hdowy

Hi
Gbdeooy

Caio

It can be seen that the blank space comes before the letters of the alphabet in the

character encoding, and also that the uppercase letters come before the lower-

case letters.

How could the strings be sorted alphabetically? MATLAB has a function

sortrows that will do this. The way it works is that it examines the strings

column by column starting from the left. If it can determine which letter
comes first, it picks up the entire string and puts it in the first row. In this

example, the first two strings are placed based on the first character,
C and G. For the other three strings, they all begin with H so the next

column is examined. In this case the strings are placed based on the second

character, e, i, o.

>> sortrows(words)
ans ¼
Ciao
Goodbye
Hello
Hi
Howdy

41913.4 Index Vectors
The sortrows function sorts each row as a block, or group, and it will also work

on numbers. In this example the rows beginning with 3 and 4 are placed first.

Then, for the rows beginning with 5, the values in the second column (6 and 7)
determine the order.

>> mat ¼ [5 7 2; 4 6 7; 3 4 1; 5 6 2]
mat ¼

5 7 2
4 6 7
3 4 1
5 6 2

>> sortrows(mat)
ans ¼

3 4 1
4 6 7
5 6 2
5 7 2

In order to sort a cell array of strings, the sort function can be used. For
example,

>> engcellnames ¼ {'Chemical','Mechanical',. . .
'Biomedical','Electrical', 'Industrial'};

>> sort(engcellnames')
ans ¼

'Biomedical'
'Chemical'
'Electrical'
'Industrial'
'Mechanical'
13.4 INDEX VECTORS

Using index vectors is an alternative to sorting a vector. With indexing, the vec-

tor is left in its original order. An index vector is used to “point” to the values in
the original vector in the desired order.

For example, here is a vector of exam grades:
grades
1 2
 3
 4
 5
 6
5 70
 100
 95
 80
 91
8

In ascending order, the lowest grade is in element 2, the next lowest grade is in

element 5, and so on. The index vector grade_index gives the order that follows.

Note

This is a particular

type of index vector in

which all of the indices

of the original vector

appear in the desired

order.

420 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
grade_index
1
 2
 3
 4
 5
 6
2
 5
 1
 6
 4
 3
The index vector is then used as the indices for the original vector. To get the

grades vector in ascending order, the indices used would be grades(2), grades(5),

and so on. Using the index vector to accomplish this, grades(grade_
index(1)) would be the lowest grade, 70, and grades(grade_index(2))

would be the second-lowest grade. In general, grades(grade_index(i))

would be the ith lowest grade.

To create these in MATLAB:

>> grades ¼ [85 70 100 95 80 91];
>> grade_index ¼ [2 5 1 6 4 3];
>> grades(grade_index)
ans ¼

70 80 85 91 95 100

In general, instead of creating the index vectormanually as shown here, the pro-
cedure to initialize the index vector is to use a sort function. The following is the

algorithm:

n Initialize the values in the index vector to be the indices 1, 2, 3, . . . to the

length of the original vector.
n Use any sort algorithm, but compare the elements in the original vector

using the index vector to index into it (e.g., using grades(grade_index(i)) as

previously shown).
n When the sort algorithm calls for exchanging values, exchange the elements

in the index vector, not in the original vector.

Here is a function that implements this algorithm:

createind.m

function indvec ¼ createind(vec)
% createind returns an index vector for the
% input vector in ascending order
% Format: createind(inputVector)

% Initialize the index vector
len ¼ length(vec);
indvec ¼ 1:len;

for i ¼ 1:len-1
low ¼ i;
for j ¼ i þ 1:len

42113.4 Index Vectors
% Compare values in the original vector
if vec(indvec(j)) < vec(indvec(low))

low ¼ j;
end

end
% Exchange elements in the index vector
temp ¼ indvec(i);
indvec(i) ¼ indvec(low);
indvec(low) ¼ temp;

end
end

For example, for the grades vector just given:

>> clear grade_index

>> grade_index ¼ createind(grades)
grade_index ¼

2 5 1 6 4 3

>> grades(grade_index)
ans ¼

70 80 85 91 95 100
13.4.1 Indexing into vectors of structures
Often, when the data structure is a vector of structures, it is necessary to iterate

through the vector in order by different fields. For example, for the packages

vector defined previously, it may be necessary to iterate in order by the cost,
or by the price fields.

Rather than sorting the entire vector of structures based on these fields, it may

be more efficient to index into the vector based on these fields; so, for example,
to have an index vector based on cost and another based on price.
packages
item_no
 cost
 price
 code
 cost_ind
 price_ind
1
 123
 19.99
 39.95
 g
 1
 2
 1
 3
2
 456
 5.99
 49.99
 l
 2
 3
 2
 1
3
 587
 11.11
 33.33
 w
 3
 1
 3
 2
These index vectors would be created as before, comparing the fields but ex-

changing the entire structures. Once the index vectors have been created, they
can be used to iterate through the packages vector in the desired order. For ex-

ample, the function to print the information from packages has been modified

422 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
so that in addition to the vector of structures, the index vector is also passed,

and the function iterates using that index vector.

printpackind.m

function printpackind(packstruct, indvec)
% printpackind prints a table showing all
% values from a vector of packages structures
% using an index vector for the order
% Format: printpackind(vector of packages, index vector)

fprintf('Item # Cost Price Code\n')
no_packs ¼ length(packstruct);
for i ¼ 1:no_packs

fprintf('%6d %6.2f %6.2f %3c\n', . . .
packstruct(indvec(i)).item_no, . . .
packstruct(indvec(i)).cost, . . .
packstruct(indvec(i)).price, . . .
packstruct(indvec(i)).code)

end
end

>> printpackind(packages,cost_ind)
Item # Cost Price Code
456 5.99 49.99 l
587 11.11 33.33 w
123 19.99 39.95 g

>> printpackind(packages,price_ind)
Item # Cost Price Code
587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l
PRACTICE 13.3

Modify the function createind to create the cost_ind index vector.
13.5 SEARCHING

Searching means looking for a value (a key) in a list or in a vector. We have

already seen that MATLAB has a function, find, which will return the indices
in an array that meet a criterion. To examine the programming methodologies,

we will in this section examine two search algorithms:

n sequential search

n binary search

42313.5 Searching

Openmirrors.com
13.5.1 Sequential search
A sequential search isaccomplishedbyloopingthroughthevectorelementbyelement

starting fromthebeginning, looking for thekey.Normally the indexof theelement in
which the key is found is what is returned. For example, here is a function that will

search a vector for a key and return the index or the value 0 if the key is not found:

seqsearch.m

function index ¼ seqsearch(vec, key)
% seqsearch performs an inefficient sequential search
% through a vector looking for a key; returns the index
% Format: seqsearch(vector, key)

len ¼ length(vec);
index ¼ 0;

for i ¼ 1:len
if vec(i) ¼¼ key

index ¼ i;
end

end
end

Here are two examples of calling this function:

>> values ¼ [85 70 100 95 80 91];
>> key ¼ 95;
>> seqsearch(values, key)
ans ¼

4

>> seqsearch(values, 77)
ans ¼

0

This example assumes that the key is found only in one element in the vector.

Also, although it works, it is not a very efficient algorithm. If the vector is large,

and the key is found in the beginning, this still loops through the rest of the
vector. An improved version would loop until the key is found or the entire vec-

tor has been searched. In other words, a while loop is used rather than a for
loop; there are two parts to the condition.

smartseqsearch.m

function index ¼ smartseqsearch(vec, key)
% Smarter sequential search; searches a vector
% for a key but ends when it is found
% Format: smartseqsearch(vector, key)

Continued

424 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
len ¼ length(vec);
index ¼ 0;
i ¼ 1;

while i < len && vec(i) �¼ key
i ¼ i þ 1;

end

if vec(i) ¼¼ key
index ¼ i;

end
end
13.5.2 Binary search
The binary search assumes that the vector has been sorted first. The algorithm is
similar to the way it works when looking for a name in a phone directory

(which is sorted alphabetically). To find the value of a key:

n Look at the element in the middle:

n If that is the key, the index has been found.

n If it is not the key, decide whether to search the elements before or after
this location and adjust the range of values in which the search is taking

place and start this process again.

Toimplement this,wewillusevariables lowandhigh tospecify therangeofvalues in

which to search. Tobegin, the valueof lowwill be1, and thevalueofhighwill be the

lengthof the vector. The variablemidwill be the indexof the element in themiddle
of the range from low to high. If the key is not found atmid, there are two possible

ways toadjust the range. If thekey is less thanthevalueatmid,wechangehigh tomid

– 1. If the key is greater than the value atmid, we change low tomid þ 1.

An example is to search for the key of 91 in the vector
1
 2
 3
 4
 5
 6
70
 80
 85
 91
 95
 100
The following table shows what will happen in each iteration of this search

algorithm.
Iteration
 Low
 High
 Mid
 Found?
 Action
1
 1
 6
 3
 No
 Move low to mid þ 1
2
 4
 6
 5
 No
 Move high to mid – 1
3
 4
 4
 4
 Yes
 Done! Index is mid

42513.5 Searching
The key was found in the fourth element of the vector.

Another example: Search for the key of 82.
Iteration
 Low
 High
 Mid
 Found?
 Action
1
 1
 6
 3
 No
 Move high to mid �1
2
 1
 2
 1
 No
 Move low to mid þ 1
3
 2
 2
 2
 No
 Move low to mid þ 1
4
 3
 2
 This ends it!
The value of low cannot be greater than high; thismeans that the key is not in the

vector. So, the algorithm repeats until either the key is found or until low> high,
which means that the key is not there.

The following function implements this binary search algorithm. The function
receives two arguments: the sorted vector and a key (alternatively, the function

could sort the vector). The values of low and high are initialized to the first and

last indices in the vector. The output argument outind is initialized to 0, which is
the value that the functionwill return if the key is not found. The function loops

until either low is greater than high, or until the key is found.

binsearch.m

function outind ¼ binsearch(vec, key)
% binsearch searches through a sorted vector
% looking for a key using a binary search
% Format: binsearch(sorted vector, key)

low ¼ 1;
high ¼ length(vec);
outind ¼ 0;

while low <¼ high && outind ¼¼ 0
mid ¼ floor((low þ high)/2);
if vec(mid) ¼¼ key

outind ¼ mid;
elseif key < vec(mid)

high ¼ mid � 1;
else

low ¼ mid þ 1;
end

end
end

The following are examples of calling this function:

>> vec ¼ round(rand(1,7)�29þ1)
vec ¼

2 11 25 1 5 7 6

426 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
>> svec ¼ sort(vec)
svec ¼

1 2 5 6 7 11 25

>> binsearch(svec, 4)
ans ¼

0

>> binsearch(svec, 25)
ans ¼

7

>> binsearch(svec, 5)
ans ¼

3

The binary search can also be implemented as a recursive function. The follow-

ing recursive function implements this binary search algorithm. The function

receives four arguments: a sorted vector, a key to search for, and the values
of low and high (which to begin with will be 1 and the length of the vector).

It will return 0 if the key is not in the vector or the index of the element in which

it is found. The base cases in the algorithm are when low > high, which means
that the key is not in the vector, or when it is found. Otherwise, the general case

is to adjust the range and call the binary search function again.

recbinsearch.m

function outind ¼ recbinsearch(vec, key, low, high)
% recbinsearch recursively searches through a vector
% for a key; uses a binary search function
% The min and max of the range are also passed
% Format: recbinsearch(vector, key, rangemin, rangemax)

mid ¼ floor((low þ high)/2);

if low > high
outind ¼ 0;

elseif vec(mid) ¼¼ key
outind ¼ mid;

elseif key < vec(mid)
outind ¼ recbinsearch(vec,key,low,mid-1);

else
outind ¼ recbinsearch(vec,key,midþ1,high);

end
end

Examples of calling this function follow:

>> recbinsearch(svec, 5,1,length(svec))
ans ¼

3

427Exercises
>> recbinsearch(svec, 25,1,length(svec))
ans ¼

7

>> recbinsearch(svec, 4,1,length(svec))
ans ¼

0

SUMMARY
Common Pitfalls

n Forgetting thatmax andmin return the index of only the first occurrence of
the maximum or minimum value.
n Not realizing that a data set has outliers that can drastically alter the results

obtained from the statistical functions.

n When sorting a vector of structures on a field, forgetting that although only
the field in question is compared in the sort algorithm, entire structures

must be interchanged.
n Forgetting that a data set must be sorted before using a binary search.

Programming Style Guidelines

n Remove the largest and smallest numbers from a large data set

before performing statistical analyses, to handle the problem of

outliers.
n Use sortrows to sort strings stored in a matrix alphabetically; for cell arrays,

sort can be used.

n When it is necessary to iterate through a vector of structures in order based
on several different fields, it may be more efficient to create index vectors

based on these fields rather than sorting the vector of structures multiple

times.
MATLAB Functions and Commands

mean

var

std

mode

median

union

intersect

unique

setdiff

setxor

ismember

issorted

sort

sortrows
Exercises
1. Experimental data values are stored in a file. Create a file in a matrix form with

random values for testing. Write a script that will load the data, and then determine

the difference between the largest and smallest numbers in the file.

Note

The function is not

receiving a vector;

rather, all of the values

are separate

arguments.

428 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
2. The range of a data set is the difference between the largest value and the smallest.

A data file called tensile.dat stores the tensile strength of some aluminum samples.

Create a test data file; read in the tensile strengths and print the minimum,

maximum, and the range.

3.Write a functionmymin that will receive any number of arguments andwill return the

minimum. For example,

>> mymin(3, 6, 77, 2, 99)
ans ¼
2

4. In a marble manufacturing plant, a quality control engineer randomly selects eight

marbles from each of the two production lines and measures the diameter of each

marble in millimeters. For each data set here, determine the mean, median, mode,

and standard deviation using built-in functions.

Prod. line A:15.94 15.98 15.94 16.16 15.86 15.86 15.90 15.88
Prod. line B:15.96 15.94 16.02 16.10 15.92 16.00 15.96 16.02

Suppose that the desired diameter of the marbles is 16 mm. Based on the results you

have, which production line is better in terms of meeting the specification? (Hint:

Think in terms of the mean and the standard deviation.)

5. The chemical balance of a swimming pool is important for the safety of the

swimmers. The pH level of a pool has been measured every day and the results are

stored in a file. Create a data file to simulate these measurements; the values should

be random numbers in the range from 7 to 8. Read the pH values from the file and

calculate the mean and standard deviation of the pH values.

6. A batch of 500-ohm resistors is being tested by a quality engineer. A file called

testresist.dat stores the resistance of some resistors that have been measured. The

resistances have been stored one per line in the file. Create a data file in this format.

Then, load the information and calculate and print the mean, median, mode, and

standard deviation of the resistances. Also, calculate how many of the resistors are

within 1% of 500 ohms.

7.Write a function calcvals that will calculate themaximum,minimum, andmean value

of a vector based on how many output arguments are used to call the function. The

following are examples of function calls:

>> vec¼[4 9 5 6 2 7 16 0];
>> [mmax, mmin, mmean]¼ calcvals(vec)
mmax¼

16
mmin¼

0
mmean¼

6
>> [mmax, mmin]¼ calcvals(vec)

429Exercises
mmax¼
16

mmin¼
0

>> mmax¼ calcvals(vec)
mmax¼

16

8.Write a script that will do the following. Create two vectors with 20 random integers

in each; in one, the integers should range from 1 to 5, and in the other, from 1 to 500.

For each vector, would you expect the mean and median to be approximately the

same? Would you expect the standard deviation of the two vectors to be

approximately the same? Answer these questions, and then use the built-in

functions to find the minimum, maximum, mean, median, standard deviation, and

mode of each. Do a histogram for each in a subplot. Run the script a few times to see

the variations.

9.Write a function that will return the mean of the values in a vector, not including

the minimum and maximum values. Assume that the values in the vector are

unique. It is okay to use the built-in mean function. To test this, create a vector

of 10 random integers, each in the range from 0 to 50, and pass this vector to the

function.

10.Amoving average of a data set x¼ {x1, x2, x3, x4, . . ., xn} is defined as a set

of averages of subsets of the original data set. For example, amoving average of every

two terms would be 1/2 � {x1 þ x2, x2 þ x3, x3 þ x4, . . ., xn-1 þ xn}.

Write a function that will receive a vector as an input argument, and will calculate

and return the moving average of every two elements.

11.Write a function mymedian that will receive a vector as an input argument, and will

sort the vector and return themedian. Any built-in functionsmay be used, except the

median function. Loops may not be used.

12. In statistical analyses, quartiles are points that divide an ordered data set into four

groups. The second quartile, Q2, is the median of the data set. It cuts the data set in

half. The first quartile, Q1, cuts the lower half of the data set in half. Q3 cuts the upper

half of the data set in half. The interquartile range is defined as Q3 – Q1. Write a

function that will receive a data set as a vector and will return the interquartile range.

Eliminating or reducing noise is an important aspect of any signal processing. For

example, in image processing noise can blur an image. Onemethod of handling this is

called median filtering.

13.A median filter on a vector has a size; for example, a size of 3 means calculating the

median of every three values in the vector. The first and last elements are left alone.

Starting from the second element to the next-to-last element, every element of a

vector vec(i) is replaced by the median of [vec(i � 1) vec(i) vec(i þ 1)]. For example, if

the signal vector is

signal ¼ [5 11 4 2 6 8 5 9]

430 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
the median filter with a size of 3 is

medianFilter3 ¼ [5 5 4 4 6 6 8 9]

Write a function to receive the original signal vector and return the median filtered

vector.

14.Modify the function from Exercise 13 so that the size of the filter is also passed as an

input argument.

15.What is the difference between themean and themedian of a data set if there are only

two values in it?

16.A student missed one of four exams in a course and the professor decided to use the

“average” of the other three grades for the missed exam grade. Which would be

better for the student: the mean or the median if the three recorded grades were 99,

88, and 95? What if the grades were 99, 70, and 77?

17.Aweighted mean is used when there are varying weights for the data values. For a

data set given by x ¼ {x1, x2, x3, x4, . . ., xn} and corresponding weights for

each xi, w ¼ {w1, w2, w3, w4, . . ., wn}, the weighted mean is

P

n

i¼1
xiwi

P

n

i¼1
wi

For example, assume that in an economics course there are three quizzes and
two exams, and the exams are weighted twice as much as the quizzes. If the quiz

scores are 95, 70, and 80 and the exam scores are 85 and 90, the weighted mean

would be:

95 � 1þ 70 � 1þ 80 � 1þ 85 � 2þ 90 � 2
1þ 1þ 1þ 2þ 2

¼ 595

7
¼ 85

Write a function that will receive two vectors as input arguments: one for the data
values and one for the weights, and will return the weighted mean.

18.A production facility is producing some nails that are supposed to have a diameter of

0.15 inch. At five different times, 10 sample nails were measured; their diameters

were stored in a file that has five lines and 10 diameters in each. First, create a data

file to simulate these data. Then, write a script to print the mean and standard

deviation for each of the five sets of sample nails.

19.The coefficient of variation is useful when comparing data sets that have quite

different means. The formula is CV ¼ (standard deviation/mean) � 100%. A history

course has two different sections; their final exam scores are stored in two separate

rows in a file. For example,

99 100 95 92 98 89 72 95 100 100
83 85 77 62 68 84 91 59 60

431Exercises
Create the data file, read the data into vectors, and then use the CV to compare the

two sections of this course.

20.Write a function allparts that will read in lists of part numbers for parts produced by

two factories. These are contained in data files called xyparts.dat and qzparts.dat.

The function will return a vector of all parts produced, in sorted order (with no

repeats). For example, if the file xyparts.dat contains

123 145 111 333 456 102

and the file qzparts.dat contains

876 333 102 456 903 111

calling the function would return the following:

>> partslist ¼ allparts
partslist ¼
102 111 123 145 333 456 876 903

21.The set functions can be used with cell arrays of strings. Create two cell arrays to

store (as strings) course numbers taken by two students. For example,

s1 ¼ {'EC 101', 'CH 100', 'MA 115'};
s2 ¼ {'CH 100', 'MA 112', 'BI 101'};

Use a set function to determine which courses the students have in common.

22.A vector v is supposed to store unique random numbers. Use set functions to

determine whether or not this is true.

23.A function generatevec generates a vector of n random integers (where n is a positive

integer), each in the range from 1 to 100, but all of the numbers in the vector must be

different from each other (no repeats). So, it uses rand to generate the vector and then

uses another function alldiff that will return logical 1 for true if all of the numbers in

the vector are different, or logical 0 for false if not in order to check. The generatevec

function keeps looping until it does generate a vectorwithnnon-repeating integers. It

also counts how many times it has to generate a vector until one is generated with n

nonrepeating integers and returns the vector and the count. Write the alldiff function.

generatevec.m

function [outvec, count] ¼ generatevec(n)
trialvec ¼ round(rand�99)þ1;
count ¼ 1;
while �alldiff(trialvec)

trialvec ¼ round(rand�99)þ1;
count ¼ count þ 1;

end
outvec ¼ trialvec;
end

432 CHAPTER 13 Basic Statistics, Sets, Sorting, and Indexing
24.Write a functionmydsort that sorts a vector in descending order (using a loop, not the

built-in sort function).

25. In product design, it is useful to gauge how important different features of the

product would be to potential customers. Onemethod of determining which features

are most important is a survey in which people are asked “Is this feature important to

you?” when shown a number of features. The number of potential customers who

responded “Yes” is then tallied. For example, a company conducted such a survey for

10 different features; 200 people took part in the survey. The data were collected into

a file that might look like this:

1 2 3 4 5 6 7 8 9 10
30 83 167 21 45 56 55 129 69 55

A Pareto chart is a bar chart in which the bars are arranged in decreasing values.

The bars on the left in a Pareto chart indicate the most important features. Create a

data file, and then a subplot to display the data with a bar chart organized by

question on the left and a Pareto chart on the right.

26.DNA is a double-stranded helical polymer that contains basic genetic information in

the form of patterns of nucleotide bases. The patterns of the base molecules A, T, C,

and G encode the genetic information. Construct a cell array to store some DNA

sequences as strings, such as

TACGGCAT
ACCGTAC

and then sort these alphabetically. Next, construct a matrix to store some DNA

sequences of the same length and then sort them alphabetically.

27.Write a function matsort to sort all of the values in a matrix (decide whether the

sorted values are stored by row or by column). It will receive one matrix argument

and return a sorted matrix. Do this without loops, using the built-in functions sort

and reshape. For example:

>> mat
mat ¼

4 5 2
1 3 6
7 8 4
9 1 5

>> matsort(mat)
ans ¼

1 4 6
1 4 7
2 5 8
3 5 9

28.Write a function that will receive two arguments: a vector and a character (either ‘a’

or ‘d’) and will sort the vector in the order specified by the character (ascending or

descending).

433Exercises
29.Write a function that will receive a vector and will return two index vectors: one for

ascending order and one for descending order. Check the function by writing a script

that will call the function and then use the index vectors to print the original vector in

ascending and descending order.

30.Write a functionmyfind that will search for a key in a vector and return the indices of

all occurrences of the key, like the built-in find function. It will receive two

arguments—the vector and the key—andwill return a vector of indices (or the empty

vector [] if the key is not found).

CHAPTER 14
Sights and Sounds
CONTENTS
KEY TERMS
14.1 Sound
Files.............435

14.2 Image
Processing
........................437
sound signal

sampling

frequency

audio file formats

pixels

true color

RGB

colormap

Graphical user

interfaces

event

callback function
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
14.3 Introduction
to Graphical
User
Interfaces
........................446
The MATLABW product has functions that manipulate audio or sound files and

also images. This chapter will start with a brief introduction to some of the

sound processing functions. Image processing functions will be introduced,
and the two basic methods for representing color in images will be explained.

Finally, this chapter will introduce the topic of graphical user interfaces from a

programming standpoint.
14.1 SOUND FILES

A sound signal is an example of a continuous signal that is sampled to result in a
discrete signal. In this case, sound waves traveling through the air are recorded

as a set ofmeasurements that can then be used to reconstruct the original sound

signal, as closely as possible. The sampling rate or sampling frequency is the
number of samples taken per time unit, for example, per second. Sound signals

are usually measured in Hertz (Hz).

In MATLAB, the discrete sound signal is represented by a vector, and the fre-

quency is measured in Hertz. MATLAB has several MAT-files that store for var-

ious sounds the signal vector in a variable y and the frequency in a variable Fs.
These MAT-files include chirp, gong, laughter, splat, train, and handel. There

is a built-in function, sound, that will send a sound signal to an output device

such as speakers.
435

436 CHAPTER 14 Sights and Sounds
The following function call:

>> sound(y,Fs)

will play the sound represented by the vector y at the frequency Fs. For example,

to hear a gong, load the variables from the MAT-file and then play the sound
using the sound function:

>> load gong
>> sound(y,Fs)

Sound is a wave; the amplitudes are what are stored in the sound signal

variable y. These are supposed to be in the range from�1 to 1. The plot function

can be used to display the data. For example, the following script creates a sub-
plot that displays the signals from chirp and from train, as shown inFigure 14.1.

chirptrain.m

% Display the sound signals from chirp and train
load chirp
subplot(2,1,1)
plot(y)
ylabel('Amplitude')
title('Chirp')
subplot(2,1,2)
ylabel('Amplitude')
title('Train')
FIGURE 14.1 Amplitudes from chirp and train

43714.2 Image Processing
The first argument to the sound function can be an n � 2 matrix for stereo

sound. Also, the second argument can be omitted when calling the sound func-

tion, in which case the default sample frequency of 8192 Hz is used. This is the
frequency stored in the built-in sound MAT-files.

>> load train
Fs
Fs ¼

8192
PRACTICE 14.1

If you have speakers, try loading one of the soundMAT-files, and use the sound function to play the

sound. Then, change the frequency—for instance, multiply the variable Fs by 2 and by 0.5—and play

the sounds again.

>> load train

>> sound(y, Fs)

>> sound(y, Fs * 2)

>> sound(y, Fs * .5)
MATLAB has several other functions that read sound or audio files and play

them. In audio files, sampled data for each audio channel are stored. Several

audio file formats are used in industry on different computer platforms. Audio
files with the extension .au were developed by Sun Microsystems, and typically

they are used with Java and Unix, whereas Windows PCs typically use .wav files

that were developed by Microsoft.

MATLAB has functions wavread that will read a .wav file, wavrecord that will

record, wavwrite that will write a sound file, and wavplay that will play one.

The default frequency for these functions is 11,025 Hz.

For .au files, there are functions auread to read and auwrite towrite in this format.

14.2 IMAGE PROCESSING

Images are represented as grids, or matrices, of picture elements (called pixels).

In MATLAB an image is typically represented as a matrix in which each element

corresponds to a pixel in the image. Each element that represents a particular
pixel stores the color for that pixel. There are two basic ways that the color can

be represented:

n True color, or RGB, in which the three color components are stored

(red, green, and blue, in that order)

n Index into a colormap, in which the value stored is an integer that refers to a
row in a matrix called a colormap. The colormap stores the red, green, and

blue components in three separate columns.

438 CHAPTER 14 Sights and Sounds
For an image that has m � n pixels, the true color matrix would be a three-

dimensional (3D) matrix with the size m � n � 3. The first two dimensions

represent the coordinates of the pixel. The third index is the color component:
(:,:,1) is the red, (:,:,2) is the green, and (:,:,3) is the blue.

The indexed representation instead would be an m � nmatrix of integers, each
of which is an index into a colormap matrix, which is size p � 3 (where p is the

number of colors available in that particular colormap). Each row in the color-

map has three numbers representing one color: first the red, then the green, and
then the blue component.
14.2.1 Colormaps
When an image is represented using a colormap, there are two matrices:

n The colormap matrix, which has dimensions p � 3 where p is the number

of available colors. Every row stores three real numbers in the range from

0 to 1, representing the red, green, and blue components of the color.
n The image matrix, with dimensions m � n. Every element is an index into

the colormap, which means that it is an integer in the range 1 to p.

Image matrix
1 n

x

1

m

1 2 3
1

x

p

Colormap matrix

MATLAB has several built-in colormaps that are named; these can be seen and

can be set using the built-in function colormap. The reference page on

colormap displays them. Calling the function colormap without passing
any arguments will return the current colormap, which by default is called jet.

The following stores the current colormap in a variable map, gets the size of the
matrix (which will be the number of rows in this matrix, or in other words, the

number of colors, by three columns), and displays the first five rows in this

colormap. If the current colormap is thedefault jet, the followingwill be the result:

43914.2 Image Processing
>> map ¼ colormap;
>> [r c] ¼ size(map)
r ¼

64
c ¼

3
>> map(1:5,:)
ans ¼

0 0 0.5625
0 0 0.6250
0 0 0.6875
0 0 0.7500
0 0 0.8125

This shows that there are 64 rows, or in other words, 64 colors, in this particular

colormap. It also shows that the first five colors are shades of blue.

The format for calling the image function is

image(mat)

where the matrix mat represents the colors in an m � n image (m � n pixels in

the image). If the matrix has the size m � n, then each element is an index into
the current colormap.

One way to display the colors in the jet colormap (which has 64 colors) is to cre-

ate a matrix that stores the values 1 through 64, and pass that to the image func-
tion, as shown in Figure 14.2. When the matrix is passed to the image function,

the value in each element in the matrix is used as an index into the colormap.

For example, the value in cmap(1,2) is 9, so the color displayed in location

(1,2) in the image will be the color represented by the 9th row in the colormap.

By using the numbers 1 through 64, we can see all colors in this colormap. The
figure shows that the first colors are shades of blue, the last colors are shades of

red, and in between are shades of aqua, green, yellow, and orange.

>> cmap ¼ reshape(1:64, 8,8)
cmap ¼

1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63
8 16 24 32 40 48 56 64

>> image(cmap)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

FIGURE 14.2 Columnwise display of the 64 colors in the jet colormap

440 CHAPTER 14 Sights and Sounds

Openmirrors.com
Another example creates a 5 � 5 matrix of random integers in the range from
1 to the number of colors (stored in a variable r); the resulting image appears in

Figure 14.3.

>> mat ¼ round(rand(5)*(r � 1) þ 1)
54 33 13 45 32
2 46 44 25 58

44 28 20 56 53
25 20 35 55 42
54 13 10 38 53

>> image(mat)

Of course, these “images” are rather crude; the elements representing the pixel

colors are quite large blocks. A larger matrix would result in something more
closely resembling an image, as shown in Figure 14.4.

>> mat ¼ round(rand(500)*(r � 1) þ 1);
>> image(mat)

Although MATLAB has built-in colormaps, it is also possible to create others

using any color combinations. For example, the following creates a customized
colormap with just three colors: black, white, and red. This is then set to be the

FIGURE 14.4 A 500 � 500 display of random colors

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

FIGURE 14.3 A 5 � 5 display of random colors from the jet colormap

44114.2 Image Processing

FIGURE 14.5 Random colors from a custom colormap

442 CHAPTER 14 Sights and Sounds
current colormap by passing the colormap matrix to the colormap function.
Then, a 40 � 40 matrix of random integers in the range 1 to 3 (since there

are just three colors) is created, and that is passed to the image function; the

results are shown in Figure 14.5.

>> mycolormap ¼ [0 0 0; 1 1 1; 1 0 0]
mycolormap ¼

0 0 0
1 1 1
1 0 0

>> colormap(mycolormap)
>> mat ¼ round(rand(40)*(3�1)þ1);
>> image(mat)

The numbers in the colormap do not have to be integers; real numbers repre-
sent different shades as seen with the default colormap jet. For example, the

following colormap gives us a way to visualize different shades of red as shown

in Figure 14.6.

>> colors ¼ [0 0 0; 0.2 0 0; 0.4 0 0; . . .
0.6 0 0; 0.8 0 0; 1 0 0];

>> colormap(colors)
>> vec ¼ 1:length(colors);
>> image(vec)

FIGURE 14.6 Shades of red

44314.2 Image Processing
PRACTICE 14.2

Given the following colormap, “draw” the scene

shown in Figure 14.7. (Hint: Preallocate the

image matrix. The fact that the first color in the

colormap is white makes this easier.)

>> mycolors¼ [1 1 1; 0 1 0; 0 0.5 0; . . .

0 0 1; 0 0 0.5; 0.3 0 0];
FIGURE 14.7 Draw this
14.2.2 True color matrices
True color matrices are another way to
represent images. True color matrices

are 3D matrices. The first two coordi-

nates are the coordinates of the pixel.
The third index is the color component;
(:,:,1) is the red, (:,:,2) is the
tree with grass and sky

green, and (:,:,3) is the blue component. Each element in the matrix is of

the type uint8, which is an unsigned integer type storing values in the range
from 0 to 255. The minimum value, 0, represents the darkest hue available,

so all 0s results in a black pixel. The maximum value, 255, represents the

FIGURE 14.8 Image from

a true color matrix

444 CHAPTER 14 Sights and Sounds
brightest hue. For example, if

the values for given pixel coor-

dinates px and py are: (px,
py,1) is 255, (px,py,2) is 0,

and (px,py,3) is 0, then that

pixel will be bright red. All
255s results in a white pixel.

The image functiondisplays the

information in the 3Dmatrix as
an image. For example, the fol-

lowing creates a 2 � 2 image as

shown in Figure 14.8. The ma-
trix is 2� 2� 3 where the third

dimensionis thecolor.Thepixel

in location (1,1) is red, the pixel
in location (1,2) is blue, the

pixel in location (2,1) is green,
and the pixel in location (2,2)

is black. It is necessary to cast

the matrix to the type uint8.
>> mat(1,1,1) ¼ 255;
>> mat(1,1,2) ¼ 0;
>> mat(1,1,3) ¼ 0;
>> mat(1,2,1) ¼ 0;
>> mat(1,2,2) ¼ 0;
>> mat(1,2,3) ¼ 255;
>> mat(2,1,1) ¼ 0;
>> mat(2,1,2) ¼ 255;
>> mat(2,1,3) ¼ 0;
>> mat(2,2,1) ¼ 0;
>> mat(2,2,2) ¼ 0;
>> mat(2,2,3) ¼ 0;
>> mat ¼ uint8(mat);
>> image(mat)

The function imread can read in an image file, for example, a JPEG (.jpg) file.

The function reads color images into a 3D matrix.

>> myimage1 ¼ imread('Fishing_1.JPG');
>> size(myimage1)
ans ¼

1536 2048 3

In this case, the image is represented as a true color matrix. This indicates that
the image has 1536� 2048 pixels. The image function displays the information

in this 3D matrix as an image, as shown in Figure 14.9.

>> image(myimage1)

200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200 1400 1600 1800 2000

FIGURE 14.9 Image from a JPEG file displayed using image

44514.2 Image Processing
The image can be changed by manipulating the numbers in the matrix. For ex-

ample, multiplying every number by 0.75 will result in a range of values from

0 to 191 instead of 0 to 255. Since the larger numbers are brighter, this has the
effect of dimming the hues in the pixels, as shown in Figure 14.10.

>> dimmer ¼ 0.75*myimage1;
>> image(dimmer)
200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200 1400 1600 1800 2000

FIGURE 14.10 Image dimmed by manipulating the matrix

FIGURE 14.11 Create this true color matrix

446 CHAPTER 14 Sights and Sounds
PRACTICE 14.3

Create the 3 � 3 (� 3) true color matrix shown in Figure 14.11 (the axes are defaults).
14.3 INTRODUCTION TO GRAPHICAL USER
INTERFACES

Graphical user interfaces, or GUIs, are essentially objects that allow users to have

input using graphical interfaces such as pushbuttons, sliders, radio buttons,
toggle buttons, pop-up menus, and so forth. GUIs are an example of object-

oriented programming in which there is a hierarchy. For example, the parent

may be a Figure Window and its children would be graphics objects such as
pushbuttons and text boxes.

Theparentuser interfaceobject canbea figure,uipanel,oruibuttongroup.A figure
is a FigureWindowcreatedby the figure function.Auipanel is ameansof grouping

together user interface objects (the “ui” stands for user interface). Auibuttongroup

is a means of grouping together buttons (both radio buttons and toggle buttons).

InMATLAB there are two basic methods for creating GUIs: writing the GUI pro-

gram from scratch, or using the built-in Graphical User Interface Development
Environment (GUIDE). GUIDE allows the user to graphically lay out the GUI

and MATLAB generates the code for it automatically. However, to be able to

44714.3 Introduction to Graphical User Interfaces
understand and modify this code, it is important to understand the underlying

programming concepts. Therefore, this section will concentrate on the pro-

gramming methodology.

A Figure Window is the parent of any GUI. Just calling the figure function will

bring up a blank FigureWindow. Assigning the handle of this FigureWindow to

a variable and then using the get function will show the default properties.
These properties, such as the color of the window, its position on the screen,

and so forth can be changed using the set function or when calling the figure

function to begin with. For example,

>> f ¼ figure;

brings up a grey figure box near the top of the screen as shown in Figure 14.12.

Some of its properties are excerpted here:

>> get(f)
Color ¼ [0.8 0.8 0.8]
Colormap ¼ [(64 by 3) double array]
Position ¼ [360 502 560 420]
Units ¼ pixels
Children ¼ []
Visible ¼ on
FIGURE 14.12 Placement of figure within screen

448 CHAPTER 14 Sights and Sounds
The position vector specifies [left bottom width height]. The first two

numbers, the left and bottom, are the distance that the lower left corner of

the figure box is from the lower left of the monitor screen (first from the left
and then from the bottom). The last two are the width and height of the figure

box itself. All of these are in the default units of pixels.

The ‘Visible’ property “on” means that the Figure Window can be seen. When
creating a GUI, however, the normal procedure is to create the parent Figure

Window but make it invisible. Then, all user interface objects are added to it,

and properties are set. When everything has been completed, the GUI is made
visible.

Most user interface objects are created using the uicontrol function. The ‘Style’
property defines the type of object, as a string. For example, ‘text’ is the Style of a

static text box, which is normally used as a label for other objects in the GUI, or

for instructions.

The following example creates a GUI that just consists of a static text box in a

FigureWindow. The figure is first created but made invisible. The color is white,
and it is given a position. Storing the handle of this figure in a variable allows

the script to refer to it later on, to set properties, for example. The uicontrol

function is used to create a text box, position it (the vector specifies the [left
bottom width height] within the Figure Window itself), and put a string in it.

Note that the position is within the Figure Window, not within the screen. A

name is put on the top of the figure. The movegui function moves the GUI
(the figure) to the center of the screen. Finally, when everything has been com-

pleted, the GUI is made visible.

simpleGui.m

function simpleGui
% simpleGui creates a simple GUI with just a static text box
% Format: simpleGui or simpleGui()

% Create the GUI but make it invisible for now while
% it is being initialized
f ¼ figure('Visible', 'off','Color','white','Position',. . .

[300, 400, 450,250]);
htext ¼ uicontrol('Style','text','Position', . . .

[200,50, 100, 25], 'String','My First GUI string');

% Put a name on it and move to the center of the screen
set(f,'Name','Simple GUI')
movegui(f,'center')

% Now the GUI is made visible
set(f,'Visible','on');
end

FIGURE 14.13 Simple GUI with a static text box

44914.3 Introduction to Graphical User Interfaces
The FigureWindow shown in Figure 14.13 will appear

in the middle of the screen. The static text box requires

no interaction with the user.

In the next example, we will allow the user to enter a

string in an editable text box, and then theGUIwill print

the user’s string in red. In this example, there will be user
interaction. First the user must type in a string, and once

this happens the user’s entry in the editable text box will

no longer be shown but instead the string that the user
typed will be displayed in a larger red font in a static text

box. When the user’s action (which is called an event)

causes a response, what happens is that a callback func-
tion is called, or invoked. This is a nested functionwithin

the GUI function. The algorithm for this example is:
n Create the Figure Window, but make it invisible.

n Make the color of the figure white, put a title on it, and move it to the
center.

n Create a static text box with an instruction to enter a string.

n Create an editable text box.
n The Style of this is ‘edit’.

n The callback function must be specified since the user’s entry of a string

necessitates a response (the function handle of the nested function is
used).

n Make the GUI visible so that the user can see the instruction and type in a

string.
n When the string is entered, the callback function callbackfn is called. Note

that in the function header, there are two input arguments, source and

eventdata. The input argument source refers to the handle of the uicontrol
object that called it; eventdata can store in a structure information about

actions performed by the user (e.g., pressing keys).

n The algorithm for the nested function callbackfn is:
n Make the previous GUI objects invisible.

n Get the string that the user typed. (Note: Either source or the function

handle name huitext can be used to refer to the object in which the string
was entered.)

n Create a static text box to print the string in red with a larger font.

n Make this new object visible.

guiWithEditbox.m

function guiWithEditbox
% guiWithEditbox has an editable text box
% and a callback function that prints the user's
% string in red

450 CHAPTER 14 Sights and Sounds
% Format: guiWithEditbox or guiWithEditbox()

% Create the GUI but make it invisible for now
f ¼ figure('Visible', 'off','Color','white','Position',. . .

[360, 500, 800,600]);
% Put a name on it and move it to the center of the screen
set(f,'Name','GUI with editable text')
movegui(f,'center')
% Create two objects: a box where the user can type and
% edit a string and also a text title for the edit box
hsttext ¼ uicontrol('Style','text',. . .

'BackgroundColor','white',. . .
'Position',[100,425,400, 55],. . .
'String','Enter your string here');

huitext ¼ uicontrol('Style','edit',. . .
'Position',[100,400,400,40], . . .
'Callback',@callbackfn);

% Now the GUI is made visible
set(f,'Visible','on');

% Call back function
function callbackfn(source,eventdata)

% callbackfn is called by the 'Callback' property
% in the editable text box
set([hsttext huitext],'Visible','off');
% Get the string that the user entered and print
% it in big red letters
printstr ¼ get(huitext,'String');
hstr ¼ uicontrol('Style','text',. . .

'BackgroundColor','white',. . .
'Position',[100,400,400,55],. . .
'String',printstr,. . .
'ForegroundColor','Red','FontSize',30);

set(hstr,'Visible','on')
end

end
When the Figure Window is first made visible, the static text and the editable

text box are shown. In this case, the user entered “hi and how are you?” Note

that to enter the string, the user must first click the mouse in the editable text
box. The string that was entered by the user is shown in Figure 14.14.

After the user enters the string and hits the Enter key, the callback function is

executed; the results are shown in Figure 14.15.

Now, we’ll add a pushbutton to the GUI. This time, the user will enter a string

but the callback function will be invoked when the pushbutton is pushed.

FIGURE 14.14 String entered by user in editable text box

FIGURE 14.15 Result from the callback function

45114.3 Introduction to Graphical User Interfaces

452 CHAPTER 14 Sights and Sounds
guiWithPushbutton.m

function guiWithPushbutton
% guiWithPushbutton has an editable text box and a pushbutton
% Format: guiWithPushbutton or guiWithPushbutton()

% Create the GUI but make it invisible for now while
% it is being initialized
f ¼ figure('Visible', 'off','Color','white','Position',. . .

[360, 500, 800,600]);
hsttext ¼ uicontrol('Style','text','BackgroundColor', 'white',. . .

'Position',[100,425,400, 55],. . .
'String','Enter your string here');

huitext ¼ uicontrol('Style','edit','Position',[100,400, 400,40]);
set(f,'Name','GUI with pushbutton')
movegui(f,'center')

% Create a pushbutton that says "Push me!!"
hbutton ¼ uicontrol('Style','pushbutton','String',. . .

'Push me!!', 'Position',[600,50,150,50], . . .
'Callback',@callbackfn);

% Now the GUI is made visible
set(f,'Visible','on');

% Call back function
function callbackfn(source,eventdata)

% callbackfn is called by the 'Callback' property
% in the pushbutton
set([hsttext huitext hbutton],'Visible','off');
printstr ¼ get(huitext,'String');
hstr ¼ uicontrol('Style','text','BackgroundColor',. . .

'white', 'Position',[100,400,400,55],. . .
'String',printstr, . . .
'ForegroundColor','Red','FontSize',30);

set(hstr,'Visible','on')
end

end
In this case, the user types the string into the edit box. Hitting Enter, however,

does not cause the callback function to be called; instead, the user must

push the button with the mouse. The callback function is associated with

the pushbutton object. So, pushing the button will bring up the string in a
larger red font. The initial configuration with the pushbutton is shown in

Figure 14.16.

FIGURE 14.16 GUI with a pushbutton

45314.3 Introduction to Graphical User Interfaces
PRACTICE 14.4

Create a GUI that will convert a length from inches to centimeters. The GUI should have an editable

text box in which the user enters a length in inches, and a pushbutton that says “Convert me!”

Pushing the button causes the GUI to calculate the length in centimeters and display that. The

callback function that accomplishes this should leave all objects visible. That means that the

user can continue converting lengths until the Figure Window is closed. The GUI should display

a default length to begin with (e.g., 1 in.). For example, calling the function might bring up the

Figure Window shown in Figure 14.17.

Then, when the user enters a length (e.g., 5.2 in.) and pushes the button, the Figure Window will

show the new calculated length in centimeters (as seen in Figure 14.18).

FIGURE 14.17 Length conversion GUI

with pushbutton

FIGURE 14.18 Result from conversion

GUI

454 CHAPTER 14 Sights and Sounds

Openmirrors.com
Another GUI object that can be created is a slider. The slider object has a nu-
merical value, and can be controlled by either clicking on the arrows to move

the value up or down, or by sliding the bar with the mouse. By default the nu-
merical value ranges from 0 to 1, but these values can be modified using the

‘Min’ and ‘Max’ properties.

The function guiSlider creates in a Figure Window a slider that has a minimum
value of 0 and a maximum value of 5. It uses text boxes to show the minimum

and maximum values, and also the current value of the slider.
guiSlider.m

function guiSlider
% guiSlider is a GUI with a slider

f ¼ figure('Visible', 'off','Color','white','Position',. . .
[360, 500, 300,300]);

% Minimum and maximum values for slider
minval ¼ 0;
maxval ¼ 5;

% Create the slider object
slhan ¼ uicontrol('Style','slider','Position',[80,170,100, 50], . . .

'Min', minval, 'Max', maxval,'Callback', @callbackfn);
% Text boxes to show the minimum and maximum values
hmintext ¼ uicontrol('Style','text','BackgroundColor ','white', . . .

'Position', [40, 175, 30,30], 'String', num2str(minval));
hmaxtext ¼ uicontrol('Style', 'text','BackgroundColor', 'white',. . .

'Position', [190, 175, 30,30], 'String', num2str(maxval));
% Text box to show the current value (off for now)

FI

45514.3 Introduction to Graphical User Interfaces
hsttext ¼ uicontrol('Style','text','BackgroundColor', 'white',. . .
'Position',[120,100,40,40],'Visible', 'off');

set(f,'Name','Slider Example')
movegui(f,'center')
set(f,'Visible','on');

% Call back function displays the current slider value
function callbackfn(source,eventdata)

% callbackfn is called by the 'Callback' property
% in the slider

num¼get(slhan, 'Value');
set(hsttext,'Visible','on','String',num2str(num))

end
end
Calling the function brings up the initial configuration shown in Figure 14.19.

Then, when the user interacts by sliding the bar or clicking on an arrow, the cur-

rent value of the slider is shown under it, as shown in Figure 14.20.

PRACTICE 14.5

Use the Help browser to find the property that controls the increment value on the slider, and modify

the guiSlider function to move in increments of 0.5, regardless of whether an arrow or slider is used.

It is possible to have a callback function invoked, or called, by multiple objects.
For example, the function guiMultiplierIf has two editable text boxes for numbers

to be multiplied together, as well as a pushbutton that says “Multiply me!” as

shown in Figure 14.21. Three static text boxes show the ‘x’, ‘¼’, and the result
FIGURE 14.21 Multiplier GUIGURE 14.19 GUI with slider FIGURE14.20 GUI with slider result shown

456 CHAPTER 14 Sights and Sounds
of the multiplication. The callback function is associated with both the pushbut-

ton and the second editable text box. The callback function uses the input argu-

ment source to determine which object called it; it displays the result of the
multiplication in red if called by the editable text box, or it displays the result

in green if called by the pushbutton.
guiMultiplierIf.m

function guiMultiplierIf
% guiMultiplierIf has 2 edit boxes for numbers and
% multiplies them
% Format: guiMultiplierIf or guiMultiplierIf()

f ¼ figure('Visible', 'off','Color','white','Position',. . .
[360, 500, 300,300]);

firstnum ¼ 0;
secondnum ¼ 0;
product ¼ 0;

hsttext ¼ uicontrol('Style','text','BackgroundColor',' white',. . .
'Position',[120,150,40,40],'String','X');

hsttext2 ¼ uicontrol('Style','text','BackgroundColor', 'white',. . .
'Position',[200,150,40,40],'String','¼');

hsttext3 ¼ uicontrol('Style','text','BackgroundColor', 'white',. . .
'Position',[240,150,40,40],'Visible','off');

huitext ¼ uicontrol('Style','edit','Position',[80,170,40, 40],. . .
'String',num2str(firstnum));

huitext2 ¼ uicontrol('Style','edit','Position',[160,170,40, 40],. . .
'String',num2str(secondnum),. . .
'Callback',@callbackfn);

set(f,'Name','GUI Multiplier')
movegui(f,'center')

hbutton ¼ uicontrol('Style','pushbutton',. . .
'String','Multiply me!',. . .
'Position',[100,50,100,50], 'Callback',@callbackfn);

set(f,'Visible','on');

function callbackfn(source,eventdata)
% callbackfn is called by the 'Callback' property
% in either the second edit box or the pushbutton

firstnum¼str2num(get(huitext,'String'));

45714.3 Introduction to Graphical User Interfaces
secondnum¼str2num(get(huitext2,'String'));
set(hsttext3,'Visible','on',. . .

'String',num2str(firstnum *secondnum))
if source ¼¼ hbutton

set(hsttext3,'ForegroundColor','g')
else

set(hsttext3,'ForegroundColor','r')
end

end
end
GUI functions can also have multiple callback functions. In the example gui-

WithTwoPushbuttons, there are two buttons that could be pushed (see
Figure 14.22). Each of them has a unique callback function associated with

it. If the top button is pushed, its callback function prints red exclamation

points (as shown in Figure 14.23). If the bottom button is instead pushed,
its callback function prints blue asterisks.
FIGURE 14.22 GUI with two pushbuttons and

two callback functions

FIGURE 14.23 The result from the first callback

function

458 CHAPTER 14 Sights and Sounds
function guiWithTwoPushbuttons.m

function guiWithTwoPushbuttons
% guiWithTwoPushbuttons has two pushbuttons, each
% of which has a separate callback function
% Format: guiWithTwoPushbuttons

% Create the GUI but make it invisible for now while
% it is being initialized
f ¼ figure('Visible', 'off','Color','white',. . .

'Position', [360, 500, 400,400]);
set(f,'Name','GUI with 2 pushbuttons')
movegui(f,'center')

% Create a pushbutton that says "Push me!!"
hbutton1 ¼ uicontrol('Style','pushbutton','String',. . .

'Push me!!', 'Position',[150,275,100,50], . . .
'Callback',@callbackfn1);

% Create a pushbutton that says "No, Push me!!"
hbutton2 ¼ uicontrol('Style','pushbutton','String',. . .

'No, Push me!!', 'Position',[150,175,100,50], . . .
'Callback',@callbackfn2);

% Now the GUI is made visible
set(f,'Visible','on');

% Call back function for first button
function callbackfn1(source,eventdata)

% callbackfn is called by the 'Callback' property
% in the first pushbutton

set([hbutton1 hbutton2],'Visible','off');
hstr ¼ uicontrol('Style','text',. . .

'BackgroundColor', 'white', 'Position',. . .
[150,200,100,100], 'String','!!!!!', . . .
'ForegroundColor','Red','FontSize',30);

set(hstr,'Visible','on')
end

% Call back function for second button
function callbackfn2(source,eventdata)

% callbackfn is called by the 'Callback' property
% in the second pushbutton

set([hbutton1 hbutton2],'Visible','off');
hstr ¼ uicontrol('Style','text',. . .

'BackgroundColor','white', . . .
'Position',[150,200,100,100],. . .
'String','*****', . . .

45914.3 Introduction to Graphical User Interfaces
'ForegroundColor','Blue','FontSize',30);
set(hstr,'Visible','on')

end

end
If the first button is pushed, the first callback function is called, which would
produce the image in Figure 14.23.

Plots and images can be imbedded in a GUI. In the next example, guiSliderPlot

shows a plot of sin(x) from 0 to the value of a slider bar. The axes are positioned
within the Figure Window, and then when the slider is moved the callback

function plots. Note the use of the ‘Units’ property: when set to ‘normalized’,

the Figure Window can be resized and all of the objects will resize accordingly.
function guiSliderPlot.m

function guiSliderPlot
% guiSliderPlot has a slider
% It plots sin(x) from 0 to the value of the slider
% Format: guisliderPlot

f ¼ figure('Visible', 'off','Position',. . .
[360, 500, 400,400]);

% Minimum and maximum values for slider
minval ¼ 0;
maxval ¼ 4 *pi;
% Create the slider object
slhan ¼ uicontrol('Style','slider','Position',[140,280,100, 50], . . .

'Min', minval, 'Max', maxval,'Callback', @callbackfn);
% Text boxes to show the min and max values and slider value
hmintext ¼ uicontrol('Style','text','BackgroundColor', 'white', . . .

'Position', [90, 285, 40,15], 'String', num2str(minval));
hmaxtext ¼ uicontrol('Style','text', 'BackgroundColor', 'white',. . .

'Position', [250, 285, 40,15], 'String', num2str(maxval));
hsttext ¼ uicontrol('Style','text','BackgroundColor', 'white',. . .

'Position', [170,340,40,15],'Visible','off');
% Create axes handle for plot
axhan ¼ axes('Units','Pixels','Position', [100,50,200,200]);

set(f,'Name','Slider Example with sin plot')
movegui(f,'center')
set([slhan,hmintext,hmaxtext,hsttext,axhan], 'Units','normalized')
set(f,'Visible','on');

% Call back function displays the current slider value & plots sin
function callbackfn(source,eventdata)

Continued

460 CHAPTER 14 Sights and Sounds
% callbackfn is called by the 'Callback' property
% in the slider
num¼get(slhan, 'Value');
set(hsttext,'Visible','on','String',num2str(num))
x ¼ 0:num/50:num;
y ¼ sin(x);
plot(x,y);

end
end
F

Figure 14.24 shows the initial configuration of the window, with the slider bar,

static text boxes to the left and right showing the minimum and maximum

values, and the axes positioned underneath.

After the slider bar is moved, the callback function plots sin(x) from 0 to the

position of the slider bar, as shown in Figure 14.25.
IGURE 14.24 The axes are positioned in the GUI

FIGURE 14.25 Plot shown in a GUI Figure Window

46114.3 Introduction to Graphical User Interfaces
The next example illustrates several features: radio buttons, grouping objects
together (in this case in a button group), and the use of normalized units when

setting the positions. The GUI presents the user with a choice of colors using

two radio buttons, only one of which can be pressed at any given time. The
GUI prints a string to the right of the radio buttons, in the chosen color.

The function uibuttongroup creates a mechanism for grouping together
the buttons. Since only one button can be chosen at a time, there is a

type of callback function called SelectionChangeFcn that is called when

a button is chosen.

This function gets from the button group which button is chosen with the

‘SelectedObject’ property. It then chooses the color based on this. This property

is initially set to the empty vector, so that neither button is selected; the default
is that the first button would be selected.

The ‘Units’ property of the objects is set to ‘Normalized’, which means that
rather than specifying in pixels the position, it is done as a percentage of the

Figure Window. This allows the Figure Window to be resized.

guiWithButtongroup.m

function guiWithButtongroup
% guiWithButtongroup has a button group with 2 radio buttons
% Format: guiWithButtongroup

% Create the GUI but make it invisible for now while
% it is being initialized
f ¼ figure('Visible', 'off','Color','white','Position',. . .

[360, 500, 400,400]);

% Create a button group
grouph ¼ uibuttongroup('Parent',f,'Units','Normalized',. . .

'Position',[.2 .5 .4 .4], 'Title','Choose Color',. . .
'SelectionChangeFcn',@whattodo);

% Put two radio buttons in the group
toph ¼ uicontrol(grouph,'Style','radiobutton',. . .

'String','Blue','Units','Normalized',. . .
'Position', [.2 .7 .4 .2]);

both ¼ uicontrol(grouph, 'Style','radiobutton',. . .
'String','Green','Units','Normalized',. . .
'Position',[.2 .4 .4 .2]);

% Put a static text box to the right
texth ¼ uicontrol('Style','text','Units','Normalized',. . .

'Position',[.6 .5 .3 .3],'String','Hello',. . .
'Visible','off','BackgroundColor','white');

set(grouph,'SelectedObject',[]) % No button selected yet

set(f,'Name','GUI with button group')
movegui(f,'center')
% Now the GUI is made visible
set(f,'Visible','on');

function whattodo(source, eventdata)
% whattodo is called by the 'SelectionChangeFcn' property
% in the button group

which ¼ get(grouph,'SelectedObject');

if which ¼¼ toph
set(texth,'ForegroundColor','blue')

else
set(texth,'ForegroundColor','green')

end

set(texth,'Visible','on')
end

end

FIGURE 14.26 Button group with radio buttons FIGURE 14.27 Button group: choice of color for string

463Summary
Figure 14.26 shows the initial configuration of the GUI: the button group is in

place, as are the buttons (but neither is chosen).

Once a radio button has been chosen, the SelectionChosenFcn chooses the

color for the string, which is printed in a static text box on the right as shown
in Figure 14.27.

The uibuttongroup function is used specifically to group together buttons;

other objects can be grouped together similarly using the uipanel function.
SUMMARY
Common Pitfalls

n Confusing true color and colormap images.
n Forgetting that uicontrol object positions are within the Figure Window,

not within the screen.

Programming Style Guidelines

n Make a GUI invisible while it is being created, so that everything becomes visible

at once.

MATLAB Functions and Commands

chirp

gong

laughter

splat

train

handel
Continued

464 CHAPTER 14 Sights and Sounds
MATLAB Functions and Commands—cont’d

sound

wavread

wavrecord

wavwrite

wavplay

colormap

jet

image

imread

uipanel

uibuttongroup

uicontrol

movegui
Exercises
1. Load two of the built-in MAT-file sound files (e.g., gong and chirp). Store the sound

vectors in two separate variables. Determine how to concatenate these so that the

sound function will play one immediately followed by the other; fill in the blank here:

sound(, 8192)

2. The following function playsound plays one of the built-in sounds. The function has a

cell array that stores the names. When the function is called, an integer is passed,

which is an index into this cell array indicating the sound to be played. The default is

‘train’, so if the user passes an invalid index, the default is used. The appropriate

MAT-file is loaded. If the user passes a second argument, it is the frequency at which

the sound should be played (otherwise, the default frequency is used). The function

prints what sound is about to be played and at which frequency, and then actually

plays this sound. You are to fill in the rest of the following function. Here are examples

of calling it (you can’t hear it here, but the sound will be played!).

>> playsound(�4)
You are about to hear train at frequency 8192.0
>> playsound(2)
You are about to hear gong at frequency 8192.0
>> playsound(3,8000)
You are about to hear laughter at frequency 8000.0

function playsound(caind, varargin)
%This function plays a sound

soundarray ¼ {'chirp','gong','laughter','splat','train'};
if caind < 1 jj caind > length(soundarray)

caind ¼ length(soundarray);
end
mysound ¼ soundarray{caind};
eval(['load ' mysound])

% Fill in the rest

3.Write a script that will create the image shown in Figure 14.28 using a colormap.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

FIGURE 14.28 Image displaying four colors using a custom colormap

465Exercises
4.Write a script that will create the same image as in Exercise 3, using a 3D true color

matrix.

5.Write a script that will generate a 50 � 50 image of pixels. The lower triangular part

(including the diagonal) will be all white. The upper triangular part will be randomly

either red or green for each element, as shown in Figure 14.29.

6. A script rancolors displays random colors in the Figure Window as shown in

Figure 14.30. It starts with a variable nColors, which is the number of random colors

to display (e.g., below this is 10). It then creates a colormap variable mycolormap,

which has that many random colors, meaning that all three of the color components

(red, green, and blue) are random real numbers in the range from 0 to 1. For example, if

the output is not suppressed, the variable might store the following values:

>> rancolors
mycolormap ¼

0.3804 0.0119 0.6892
0.5678 0.3371 0.7482
0.0759 0.1622 0.4505
0.0540 0.7943 0.0838
0.5308 0.3112 0.2290
0.7792 0.5285 0.9133
0.9340 0.1656 0.1524
0.1299 0.6020 0.8258
0.5688 0.2630 0.5383
0.4694 0.6541 0.9961

The script then displays these colors in an image in the Figure Window.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

FIGURE 14.29 Triangular image of random red and green

FIGURE 14.30 Rainbow of random colors

Note

Ignore the numbers

on the y-axis in

Figure 14.30 (they

are defaults).

466 CHAPTER 14 Sights and Sounds

FIGURE 14.31 Depiction of brightness perception

FIGURE 14.32 Checkerboard

467Exercises
7. It is sometimes difficult for the human eye to perceive the

brightness of an object correctly. For example, in Figure 14.31, the

middle of both images is the same color, and yet, because of the

surrounding colors, the one on the left looks lighter than the one

on the right.

Write a script to generate a Figure Window similar to this one.

Two 3� 3matrices were created. Using the default colormap, the

middle elements in both were given a value of 12. For the image

on the left, all other elements were given a value of 1, and for the

image on the right, all other elements were given the value 32. Use

subplot to display both images side by side (the axes shown here

are the defaults).

8.Write a script that will produce the output shown in Figure 14.32.

Use eye and repmat to generate the required matrix efficiently.

Also, use axis image to correct the aspect ratio.
In a random walk, every time a “step” is taken, a direction is randomly chosen.

Watching a random walk as it evolves, by viewing it as an image, can be very

entertaining. However, there are actually very practical applications of randomwalks;

they can be used to simulate diverse events such as the spread of a forest fire or the

growth of a dendritic crystal.

9. The following function simulates a “random walk,” using a matrix to store the

random walk as it progresses. To begin with, all elements are initialized to 1. Then,

468 CHAPTER 14 Sights and Sounds

Openmirrors.com
the “middle” element is chosen to be the starting point for the random walk; a 2 is

placed in that element. (Note: These numbers will eventually represent colors.) Then,

from this starting point another element next to the current one is chosen randomly

and the color stored in that element is incremented; this repeats until one of the

edges of the matrix is reached. Every time an element is chosen for the next element,

it is done randomly by either adding or subtracting one to/from each coordinate (x

and y), or leaving it alone. The resulting matrix that is returned is an n � n matrix.

function walkmat ¼ ranwalk(n)
walkmat ¼ ones(n);
x ¼ floor(n/2);
y ¼ floor(n/2);
color ¼ 2;
walkmat(x,y) ¼ color;
while x �¼ 1 && x �¼ n && y �¼ 1 && y �¼ n

x ¼ x þ randint(1,1,[�1 1]);
y ¼ y þ randint(1,1,[�1 1]);
color ¼ color þ 1;
walkmat(x,y) ¼ mod(color,65);

end

You are to write a script that will call this function twice (once passing 8 and once

passing 100) and display the resulting matrices as images side by side. Your script

must create a custom colormap that has 65 colors; the first is white and the rest

are from the colormap jet. For example, the result may look like Figure 14.33.

(Note that with the 8 � 8 matrix, the colors are not likely to get out of the blue
FIGURE 14.33 Random walk

FIGURE 14.34 Guessing game

469Exercises
range, but with 100 � 100, it cycles through all colors

multiple times until an edge is reached.)

10.A script colorguess plays a guessing game. It creates an n� n

matrix, and randomly picks one element in the matrix. It

prompts the user to guess the element (meaning the row

index and column index). Every time the user guesses, that

element is displayed as red. When the user correctly guesses

the randomly picked element, that element is displayed in

blue and the script ends. Here is an example of running the

script (the randomly picked element in this case is (8,4)). Only

the last version of the Figure Window is shown in

Figure 14.34.

>> colorguess

Enter the row #: 4
Enter the col #: 5
Enter the row #: 10
Enter the col #: 2
Enter the row #: 8
Enter the col #: 4

11.Write a script that will create a colormap that has nine colors: three shades each of

red, green, and blue. It then creates a 25� 25 imagematrix in which every element is

a random integer in the range from 1 to 9. Next, it creates a new image matrix in

which any pixel that is a shade of a particular color is replaced by that color. The

images are to be shown side by side, as seen in Figure 14.35.
FIGURE 14.35 Subplot of image shades

470 CHAPTER 14 Sights and Sounds

Openmirrors.com
12. Put a JPEG file in your Current Folder and use imread to load it into a matrix.

Calculate and print the mean separately of the red, green, and blue components in

the matrix and also the standard deviation for each.

13. Some image acquisition systems are not very accurate, and the result is noisy images.

To see this effect, put a JPEG file in your Current Folder and use imread to load it.

Then, create a new imagematrix by randomly adding or subtracting a value n to every

element in this matrix. Experiment with different values of n. Create a script that will

use subplot to display both images side by side, using imshow instead of image.

14.The dynamic range of an image is the range of colors in the image (the minimum

value to the maximum value). Put a JPEG file into your Current Folder. Read the

image into a matrix. Use the built-in functions min and max to determine the

dynamic range, and print the range. Note that if the image is a true color image, the

matrixwill be 3D; thus, it will be necessary to nest the functions three times to get the

overall minimum and maximum values.

15.A part of an image is represented by an n � n matrix. After performing data

compression and then data reconstruction techniques, the resulting matrix has

values that are close to but not exactly equal to the original matrix. For example, the

following 4 � 4matrix variable orig_im represents a small part of a true color image,

and fin_im represents the matrix after it has undergone data compression and then

reconstruction.

orig_im ¼
156 44 129 87
18 158 118 102
80 62 138 78

155 150 241 105
fin_im ¼

153 43 130 92
16 152 118 102
73 66 143 75

152 155 247 114

Write a script that will simulate this by creating a square matrix of random integers,

each in the range from 0 to 255. It will then modify this to create the new matrix by

randomly adding or subtracting a random number (in a relatively small range, say

0 to 10) from every element in the original matrix. Then, calculate the average

difference between the two matrices.

16. Put a JPEG file into your Current Folder. Type in the following script, using your own

JPEG filename.

I1 ¼ imread('xxx.jpg');
[r c h] ¼ size(I1);
Inew(:,:,:) ¼ I1(:,c:-1:1,:);
figure(1)
subplot(2,1,1)
image(I1);
subplot(2,1,2)
image(Inew);

FIGURE 14.36 Slider with

count

471Exercises
Determine what the script does. Put comments into the script to explain it step by

step. Also, try it using imshow instead of image.

17. Put two different JPEG files into your Current Folder. Read both into matrix variables.

To superimpose the images, if the matrices are the same size, the elements can

simply be added element by element. However, if they are not the same size, one

method of handling this is to crop the larger matrix to be the same size as the smaller,

and then add them. Write a script to do this.

18.Write a function that will create a simple GUI with one static text box near themiddle

of the Figure Window. Put your name in the string, and make the background color of

the text box white.

19.Write a function that will create a GUI with one editable text box near the middle of

the Figure Window. Put your name in the string. The GUI should have a callback

function that prints the user’s string twice, one under the other.

20.Write a function that creates a GUI to calculate the area of a rectangle. It should have

edit text boxes for the length and width, and a pushbutton that causes the area to be

calculated and printed in a static text box.

21.Write a function that creates a simple calculator with a GUI. The GUI should have two

editable text boxes in which the user enters numbers. There should be four push-

buttons to show the four operations (þ, –, *, /). When one of the four pushbuttons

is pressed the type of operation should be shown in a static text box between the two

editable text boxes and the result of the operation should be displayed in a static text

box. If the user tries to divide by zero display an error message in a static text box.

22.Write a function that will create a GUI in which there is a plot of cos(x). There should

be two editable text boxes in which the user can enter the range for x.

23.Write a function that will create a GUI in which there is a plot. Use a button group to

allow the user to choose among several functions to plot.

24.Modify any example GUI from the chapter to use normalized units instead of pixels.

25.Modify any example GUI to use the ‘HorizontalAlignment’ property to left-justify text

within an edit text box.

26.Modify the gui_slider example in the text to include a persistent count variable in

the callback function that counts how many times the slider is moved. This count

should be displayed in a static text box in the upper right corner, as shown in

Figure 14.36.

27.The wind chill factor (WCF) measures how cold it feels with a given air temperature

(T, in degrees Fahrenheit) and wind speed (V, in miles per hour). The formula is

approximately

WCF ¼ 35:7þ 0:6 T� 35:7ðV0:16Þ þ 0:43 TðV0:16Þ
Write a GUI function that will display sliders for the temperature andwind speed. The
GUI will calculate the WCF for the given values, and display the result in a text box.

Choose appropriate minimum and maximum values for the two sliders.

CHAPTER 15
Advanced Mathematics
CONTENTS
KEY TERMS
15.1 Fitting Curves
to Data473

15.2 Complex
Numbers...481

15.3 Symbolic
Mathematics
........................488
curve fitting

best fit

symbolic mathematics

polynomials

degree

order

discrete

continuous

data sampling

interpolation

extrapolation

least squares

regression

complex number

real part

imaginary part

purely imaginary

complex conjugate

magnitude

complex plane
M

©

ATLABW: A Practical Introduction to Prog

2012 Elsevier Inc. All rights reserved.
ramming and Problem Solving
15.4 Calculus:
Integration
and
Differentiation
...........................495
In this chapter, selected advancedmathematics and related built-in functions in

the MATLABW software are introduced. In many applications data are sampled,
which results in discrete data points. Fitting a curve to the data is often desired.

Curve fitting is finding the curve that best fits the data.

This chapter first explores fitting curves that are simple polynomials to data.
Other topics include complex numbers and a brief introduction to differenti-

ation and integration in calculus. Symbolic mathematics means doing mathe-

matics on symbols. Some of the symbolic math functions, all of which are
in the Symbolic Math Toolbox in MATLAB, are also introduced, including

the solve function for solving equations. (Note that this is a Toolbox, and as
a result may not be universally available.)
15.1 FITTING CURVES TO DATA

MATLAB has several curve-fitting functions; the Curve Fitting Toolbox has

many more of these functions. Some of the simplest curves are polynomials

of different degrees, which are described next.
473

Note

This is a mathematical

expression, not

MATLAB!

474 CHAPTER 15 Advanced Mathematics
15.1.1 Polynomials
Simple curves are polynomials of different degrees or orders. The degree is the

integer of the highest exponent in the expression. For example:

n A straight line is a first-order (or degree 1) polynomial of the form axþ b, or

more explicitly ax1 þ b.
n Aquadratic isasecond-order(ordegree2)polynomialof the formax2þbxþc.

n A cubic (degree 3) is of the form ax3 þ bx2 þ cx þ d.

MATLABrepresents apolynomial as a rowvectorof coefficients. For example, the
polynomial x3 þ 2x2 � 4x þ 3 would be represented by the vector [1 2 �4 3].

The polynomial 2x4 � x2 þ 5 would be represented by [2 0 �1 0 5]; note the

zero terms for x3 and x1.

The built-in functions sym2poly and poly2sym convert from symbolic expres-

sions to polynomial vectors and vice versa. For example:

>> myp ¼ [1 2 �4 3];
>> poly2sym(myp)
ans ¼
x^3 þ 2 *x^2 - 4 * x þ 3
>> mypoly ¼ [2 0 �1 0 5];
>> poly2sym(mypoly)
ans ¼
2 * x^4 - x^2 þ 5

>> sym2poly(ans)
ans ¼

2 0 -1 0 5

The roots function in MATLAB can be used to find the roots of an equation
represented by a polynomial. For example, for the mathematical function

f(x) ¼ 4x3 � 2x2 � 8x þ 3

to solve the equation f(x) ¼ 0:

>> roots([4 �2 �8 3])
ans ¼

-1.3660
1.5000
0.3660

The function polyvalwill evaluate a polynomial p at x; the form is polyval(p,x).

For example, the polynomial �2x2 þ x þ 4 is evaluated at x ¼ 3, which yields

�2 * 9 þ 3 þ 4, or �11:

>> p ¼ [-2 1 4];
>> polyval(p,3)
ans ¼

-11

47515.1 Fitting Curves to Data

Openmirrors.com
The argument x can be a vector:

>> polyval(p,1:3)
ans ¼

3 -2 -11

>> polyval(p, [5 7])
ans ¼

-41 -87
15.1.2 Curve fitting
Data can be either discrete (e.g., a set of object weights) or continuous. In many
applications, continuous properties are sampled, such as:

n The temperature recorded every hour
n The speed of a car recorded every one-tenth of a mile

n The mass of a radioactive material recorded every second as it decays

n Audio from a sound wave as it is converted to a digital audio file

Sampling provides data in the form of (x,y) points, which can then be plotted.

For example, let’s say the temperature was recorded every hour one afternoon

from 2 to 6 pm; the vectors might be:

>> x ¼ 2:6;
>> y ¼ [65 67 72 71 63];

and then the plot might look like Figure 15.1.
1 2 3 4 5 6 7
60

65

70

75

Time

Temperatures one afternoon

Te
m

pe
ra

tu
re

s

FIGURE 15.1 Plot of temperatures sampled every hour
15.1.3 Interpolation and
extrapolation
Inmany cases, estimating values other than at

the sampled data points is desired. For exam-

ple, we might want to estimate the tempera-
ture at 2:30 pm or at 1 pm. Interpolation

means estimating the values in between

recorded data points. Extrapolation is esti-
mating outside of the bounds of the recorded

data. One way to do this is to fit a curve to the

data, and use this for the estimations. Curve
fitting is finding the curve that “best fits”

the data.

Simple curves are polynomials of different

degrees as described previously. Thus, curve

fitting involves finding the best polynomials
to fit the data—for example, for a quadratic

476 CHAPTER 15 Advanced Mathematics
polynomial in the form ax2 þ bx þ c, it means finding the values of a, b, and c

that yield the best fit. Finding the best straight line that goes through data would

mean finding the values of a and b in the equation ax þ b.

MATLAB has a function to do this, called polyfit. The function polyfit finds the

coefficients of the polynomial of the specified degree that best fits the data using

a least squares algorithm. There are three arguments passed to the function: the
vectors that represent the data, and the degree of the desired polynomial. For

example, to fit a straight line (degree 1) through the points representing tem-

peratures, the call to the polyfit function would be

>> polyfit(x,y,1)
ans ¼

0.0000 67.6000

which says that the best straight line is of the form 0x þ 67.6.

However, from the plot (shown in Figure 15.2), it looks like a quadratic would be

a much better fit. The following would create the vectors and then fit a polyno-
mial of degree 2 through the data points, storing the values in a vector called coefs.

>> x ¼ 2:6;
>> y ¼ [65 67 72 71 63];
>> coefs ¼ polyfit(x,y,2)
coefs ¼

-1.8571 14.8571 41.6000
1 2 3 4 5 6 7
60

65

70

75

Time

Temperatures one afternoon

Te
m

pe
ra

tu
re

s

FIGURE 15.2 Sampled temperatures with straight-line fit

47715.1 Fitting Curves to Data
This says that MATLAB has determined that the best quadratic that fits these

data points is �1.8571x2 þ 14.8571x þ 41.6. So, the variable coefs now

stores a coefficient vector that represents this polynomial.

The function polyval can then be used to evaluate the polynomial at specified

values. For example, we could evaluate at every value in the x vector:

>> curve ¼ polyval(coefs,x)
curve ¼

63.8857 69.4571 71.3143 69.4571 63.8857

This results in y values for each point in the x vector, and stores them in a vector

called curve. Putting all of this together, the following script called polytemp creates
the x and y vectors, fits a second-order polynomial through these points, and

plots both the points and the curve on the same figure. Calling this results in

the plot seen in Figure 15.3. The curve doesn’t look very smooth on this plot,
but that is because there are only five points in the x vector.

polytemp.m
% Fits a quadratic curve to temperature data
x ¼ 2:6;
y ¼ [65 67 72 71 63];
coefs ¼ polyfit(x,y,2);
curve ¼ polyval(coefs,x);
plot(x,y,'ro',x,curve)
xlabel('Time')
ylabel('Temperatures')
title('Temperatures one afternoon')
axis([1 7 60 75])
70

75
Temperatures one afternoon

es
PRACTICE 15.1

To make the curve smoother, modify the script polytemp to

create a new x vector with more points for plotting the

curve. Note that the original x vector for the data points

must remain as is.
1 2 3 4 5 6 7
60

65

Time

Te
m

pe
ra

tu
r

FIGURE 15.3 Sampled temperatures shown with a quadratic

curve
To estimate the temperature at different times,
polyval can be used for discrete x points; it does

not have to be used with the entire x vector. For

example, to interpolate between the given data
points and estimate what the temperature was

at 2:30 pm, 2.5 would be used.

>> polyval(coefs,2.5)
ans ¼

67.1357

478 CHAPTER 15 Advanced Mathematics
Also, polyval can be used to extrapolate beyond the given data points. For ex-

ample, to estimate the temperature at 1 pm:

>> polyval(coefs,1)
ans ¼

54.6000

The better the curve fit, the more exact these interpolated and extrapolated

values will be.

Using the subplot function, we can loop to show the difference between fitting

curves of degrees 1, 2, and 3 to some data. For example, the following script will

accomplish this for the temperature data. (Note: The variable morex stores 100
points so the graph will be smooth.)

polytempsubplot.m
% Fits curves of degrees 1-3 to temperature
% data and plots in a subplot
x ¼ 2:6;
y ¼ [65 67 72 71 63];
morex ¼ linspace(min(x),max(x));
for pd ¼ 1:3

coefs ¼ polyfit(x,y,pd);
curve ¼ polyval(coefs,morex);
subplot(1,3,pd)
plot(x,y,'ro',morex,curve)
xlabel('Time')
ylabel('Temperatures')
title(sprintf('Degree %d',pd))
axis([1 7 60 75])

end
Executing the script

>> polytempsubplot

creates the Figure Window shown in Figure 15.4.
15.1.4 Least squares
The polyfit function uses the least squares regressionmethod. To find the equa-

tion of the straight line y¼mxþ b that best fits using a least squares regression,
the equations for m and b are:

m¼ n
P

xiyi �
P

xi
P

yi

n
P

x2i � ðPxiÞ2
b¼ �y �m�x

where n is the number of points in x and y, all summations are from i ¼ 1 to n,
and �y and �x represent the means of the vectors y and x. These equations will not

2 4 6
60

65

70

75

Time

Te
m

pe
ra

tu
re

s

Degree 1

2 4 6
60

65

70

75

Time

Te
m

pe
ra

tu
re

s

Degree 2

2 4 6
60

65

70

75

Time

Te
m

pe
ra

tu
re

s

Degree 3

FIGURE 15.4 Subplot to show temperatures with curves of degrees 1, 2, and 3

47915.1 Fitting Curves to Data
be derived here; the derivations can be found in the MATLAB help browser by

doing a search for “least squares.”

Least squares regression is implemented in the following in a function mylinfit
that receives two vectors x and y, and returns the values of m and b. This is the

same algorithm used by the polyfit function for a degree 1 polynomial, so it

returns the same values.

mylinfit.m
function [m,b] ¼ mylinfit(x,y)
% mylinfit implements a least squares regression for a
% straight line of the form y ¼ mxþb
% Format: mylinfit(x,y)

n ¼ length(x); % Assume y has same length

numerator ¼ n * sum(x .* y) � sum(x)*sum(y);
denom ¼ n * sum(x .^ 2) � (sum(x))^2;
m ¼ numerator/denom;

b ¼ mean(y) � m*mean(x);
end

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3
–2

–1

0

1

2

3

4

FIGURE 15.5 The line y ¼ x and three data points

Tabl
by Le

x

–1

1

2

Table 15.1 y Coordinates Predicted
by Line y ¼ x

x Data y Predicted y Difference

–1 –1 –1 0

1 0 1 –1

2 3 2 1

480 CHAPTER 15 Advanced Mathematics
>> x ¼ [-1 1 2];
>> y ¼ [-1 0 3];
>> [m b] ¼ mylinfit(x,y)
m ¼

1.2143
b ¼

-0.1429
>> polyfit(x,y,1)
ans ¼

1.2143 -0.1429

The least squares fit minimizes the sum of

the squares of the differences between the

actual data and the data predicted by the
line. The “best” straight line in this case has

been identified as y¼ 1.2143x� 0.1429.

If we did not know that was the best
straight line, we might instead guess that

the line that best fits the data is the line

y ¼ x. The plot is shown in Figure 15.5.
This straight line goes through one of the points, but “splits” the other two

points, in that one is one unit below the line and the other is one above the
line. So, it seems as if it fits the data well. However, we will compare this to

the line found by polyfit and the function mylinfit.

Table 15.1 shows the x coordinates, y coordinates of the original points, y co-

ordinates predicted by the line y ¼ x, and the differences (data – predicted).

The sumof thedifferences squared is 0þ1þ1, or2.According to the least squares
algorithm, however, the values using the line y¼ 1.2143x – 0.1429 are shown in

Table 15.2. The sum of the squares of these differences is 1.7857, which is better

than (a smaller number than) the sum of the squares of the differences obtained
for the straight line above. In fact, polyfitminimizes the sum of the squares.

MATLAB has another related function, interp1, that does a table look-up to in-
terpolate or extrapolate. There are several ways to call this function (using help

describes them). The default method that is used is ‘linear’, which gives a linear

interpolation.
e 15.2 y Coordinates Predicted
ast Squares Regression

Data y Predicted y Difference

–1 –1.3571 0.3571

0 1.0714 –1.0714

3 2.2857 0.7143

Note

This is the way

mathematicians usually

writeacomplexnumber;

in engineering it is often

written as a þ bj,

where j is
ffiffiffiffiffiffiffi�1

p
. A

48115.2 Complex Numbers

Openmirrors.com
For example, for the previous time and temperature vectors:

>> x ¼ 2:6;
>> y ¼[65 67 72 71 63];

The interp1 functioncouldbeusedtointerpolatebetweenthepoints; forexample,

>> interp1(x,y,3.5)
ans ¼

69.5000

>> interp1(x,y,2.5)
ans ¼

66

To extrapolate using the linear interpolation method, which is the default, the
strings ‘linear’ and ‘extrap’ would also be passed.

>> interp1(x,y,1,'linear','extrap')
ans ¼

63

>> interp1(x,y,7,'linear','extrap')
ans ¼

55

15.2 COMPLEX NUMBERS

A complex number is generally written in the form

z ¼ a þ bi

where a is called the real part of the number z, b is the imaginary part of z, and i

is
ffiffiffiffiffiffiffi�1

p
.

complex number is

purely imaginary if it is

of the formz¼bi (inother

words, if a is 0).
Wehave seen that inMATLABboth i and j are built-in functions that return
ffiffiffiffiffiffiffi�1

p
(so, they can be thought of as built-in constants). Complex numbers can be cre-

ated using i or j, such as “5þ 2i” or “3 – 4j”. The multiplication operator is not
required between the value of the imaginary part and the constant i or j.
QUICK QUESTION!
Is the value of the expression “3i” the same as “3 * i”?

Answer: It depends on whether i has been used as a variable

name or not. If i has been used as a variable (e.g., an iterator

variable in a for loop), then the expression “3 * i” will use the

defined value for the variable, and the result will not be a

complex number. Therefore, it is a good idea when working

with complex numbers to use 1i or 1j rather than just i or j. The

expressions 1i and 1j always result in a complex number,

regardless of whether i and j have been used as variables.

>> i ¼ 5;

>> i

i ¼
5

>> 1i

ans ¼
0 þ 1.0000i

482 CHAPTER 15 Advanced Mathematics
MATLAB also has a function complex that will return a complex number. It

receives two numbers, the real and imaginary parts in that order, or just

one number, which is the real part (so the imaginary part would be 0). The fol-
lowing are examples of creating complex numbers in MATLAB:

>> z1 ¼ 4 þ 2i
z1 ¼

4.0000 þ 2.0000i

>> z2 ¼ sqrt(-5)
z2 ¼

0 þ 2.2361i

>> z3 ¼ complex(3,-3)
z3 ¼

3.0000 � 3.0000i

>> z4 ¼ 2 þ 3j
z4 ¼

2.0000 þ 3.0000i

>> z5 ¼ (-4) ^ (1/2)
ans ¼

0.0000 þ 2.0000i

>> myz ¼ input('Enter a complex number: ')
Enter a complex number: 3 þ 4i
myz ¼

3.0000 þ 4.0000i

Note that even when j is used in an expression, i is used in the result. MATLAB

shows the type of the variables created here in theWorkspaceWindow (or using
whos) as double (complex). MATLAB has functions real and imag that return

the real and imaginary parts of complex numbers.

>> real(z1)
ans ¼

4

>> imag(z3)
ans ¼

-3

In order to print a complex number, the disp function will display both parts
automatically:

>> disp(z1)
4.0000 þ 2.0000i

48315.2 Complex Numbers
The fprintf function will only print the real part unless both parts are printed

separately:

>> fprintf('%f\n', z1)
4.000000

>> fprintf('%f %f\n', real(z1), imag(z1))
4.000000 2.000000

>> fprintf('%f þ %fi\n', real(z1), imag(z1))
4.000000 þ 2.000000i

The function isreal returns logical 1 for true if there is no imaginary part of the

argument, or logical 0 for false if the argument does have an imaginary part
(even if it is 0). For example,

>> isreal(z1)
ans ¼

0

>> z6 ¼ complex(3)
z5 ¼

3

>> isreal(z6)
ans ¼

0

>> isreal(3.3)
ans ¼

1

For the preceding variable z6, even though it shows the answer as 3, it is

really stored as 3 þ 0i, and that is how it is displayed in the Workspace Win-
dow. Therefore, isreal returns logical false since it is stored as a complex

number.
15.2.1 Equality for complex numbers
Two complex numbers are equal to each other if both their real parts and imag-

inary parts are equal. In MATLAB, the equality operator can be used.

>> z1 ¼¼ z2
ans ¼

0

>> complex(0,4) ¼¼ sqrt(-16)
ans ¼

1

484 CHAPTER 15 Advanced Mathematics
15.2.2 Adding and subtracting complex numbers
For two complex numbers z1 ¼ a þ bi and z2 ¼ c þ di,

z1 þ z2 ¼ (a þ c) þ (b þ d)i

z1 � z2 ¼ (a � c) þ (b � d)i

As an example, we will write a function in MATLAB to add two complex num-

bers together and return the resulting complex number.

THE PROGRAMMING CONCEPT
In most cases, to add two complex numbers together you would have to separate the real and

imaginary parts, and add them to return your result.
addcomp.m

function outc ¼ addcomp(z1, z2)
% addcomp adds two complex numbers z1 and z2 &
% returns the result
% Adds the real and imaginary parts separately
% Format: addcomp(z1,z2)

realpart ¼ real(z1) þ real(z2);
imagpart ¼ imag(z1) þ imag(z2);
outc ¼ realpart þ imagpart * 1i;

end
>> addcomp(3 þ 4i, 2 - 3j)
ans ¼

5.0000 þ 1.0000i
THE EFFICIENT METHOD
MATLAB automatically does this to add two complex numbers together (or subtract).
addcomp2.m

function outc ¼ addcomp2(z1,z2)
% addcomp2 adds two complex numbers z1 and z2 &
% returns the result
% Format: addcomp(z1,z2)
outc ¼ z1 þ z2;

end
>> addcomp2(3 þ 4i, 2 - 3j)
ans ¼

5.0000 þ 1.0000i

48515.2 Complex Numbers
15.2.3 Multiplying complex numbers
For two complex numbers z1 ¼ a þ bi and z2 ¼ c þ di,

z1 * z2 ¼ (a þ bi) * (c þ di)

¼ a *c þ a *di þ c *bi þ bi *di

¼ a *c þ a *di þ c *bi � b *d

¼ (a *c � b *d) þ (a *d þ c *b)i

For example, for the complex numbers

z1 ¼ 3 þ 4i
z2 ¼ 1 � 2i

the result of the multiplication would be defined mathematically as

z1 * z2 ¼ (3 *1 � �8) þ (3 *-2 þ 4 * 1)i ¼ 11 �2i

This is, of course, automatic in MATLAB:

>> z1 * z2
ans ¼
11.0000 � 2.0000i
15.2.4 Complex conjugate and absolute value
The complex conjugate of a complex number z¼ aþ bi is �z ¼ a � bi. Themag-

nitude, or absolute value, of a complex number z is zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

. In MATLAB,

there is a built-in function conj for the complex conjugate, and the abs function
returns the absolute value.

>> z1 ¼ 3 þ 4i
z1 ¼

3.0000 þ 4.0000i

>> conj(z1)
ans ¼

3.0000 � 4.0000i

>> abs(z1)
ans ¼

5

15.2.5 Complex equations represented as polynomials
We have seen that MATLAB represents polynomials as a row vector of coef-
ficients; this can be used when the expressions or equations involve complex

numbers, also. For example, the polynomial z2 þ z � 3 þ 2i would be

486 CHAPTER 15 Advanced Mathematics
represented by the vector [1 1 �3 þ 2i]. The roots function in MATLAB can

be used to find the roots of an equation represented by a polynomial. For

instance, to solve the equation z2 þ z – 3 þ 2i ¼ 0:

>> roots([1 1 � 3 þ 2i])

ans ¼

-2.3796 þ 0.5320i
1.3796 � 0.5320i

The polyval function can also be used with this polynomial. For example:

>> cp ¼ [1 1 � 3 þ 2i]
cp ¼

1.0000 1.0000 -3.0000 þ 2.0000i

>> polyval(cp,3)
ans ¼

9.0000 þ 2.0000i
15.2.6 Polar form
Any complex number z ¼ a þ bi can be thought of as a point (a,b) or vector in
a complex plane in which the horizontal axis is the real part of z, and

the vertical axis is the imaginary part of z. So, a and b are the Cartesian or

rectangular coordinates. Since a vector can be represented by either its rectan-
gular or polar coordinates, a complex number can also be given by its

polar coordinates r and y, where r is the magnitude of the vector and y is

an angle.

To convert from the polar coordinates to the rectangular coordinates:

a ¼ r cos y
b ¼ r sin y

To convert from the rectangular to polar coordinates:

r ¼ jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

y ¼ arctan
b

a

0

@

1

A

So, a complex number z ¼ a þ bi can be written as r cos y þ (r sin y)i, or
z ¼ r (cos y þ i sin y)

48715.2 Complex Numbers
Since eiy ¼ cos y þ i sin y, a complex number can also be written as z ¼ reiy. In

MATLAB, r can be found using the abs function, while there is a built-in func-

tion to find y, called angle.

>> z1 ¼ 3 þ 4i;
r ¼ abs(z1)
r ¼

5

>> theta ¼ angle(z1)
theta ¼

0.9273

>> r * exp(i * theta)
ans ¼

3.0000 þ 4.0000i
15.2.7 Plotting
Several methods are commonly used for plotting complex data:

n Plot the real parts versus the imaginary parts using plot.

n Plot only the real parts using plot.

n Plot the real and the imaginary parts in one figure with a legend, using plot.
n Plot the magnitude and angle using polar.

Using the plot function with a single complex number or a vector of complex
numbers will result in plotting the real parts versus the imaginary parts; for ex-

ample, plot(z) is the same as plot(real(z), imag(z)). Another example: For the

complex number z1¼3þ4i, this will plot the point (3,4) (using a large asterisk
so we can see it!) as shown in Figure 15.6.

>> z1 ¼ 3 þ 4i;
>> plot(z1,'*', 'MarkerSize', 12)
>> xlabel('Real part')
>> ylabel('Imaginary part')
>> title('Complex number')
PRACTICE 15.2

Create the following complex variables:

c1 ¼ complex(0,2);

c2 ¼ 3 þ 2i;

c3 ¼ sqrt(-4);

488 CHAPTER 15 Advanced Mathematics
Then, carry out the following:

n Get the real and imaginary parts of c2.

n Print the value of c1 using disp.

n Print the value of c2 in the form ‘a þ bi’.

n Determine whether any of the variables are equal to each other.

n Subtract c2 from c1.

n Multiply c2 by c3.

n Get the complex conjugate and magnitude of c2.

n Put c1 in polar form.

n Plot the real part versus the imaginary part for c2.
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Real part

Complex number

Im
ag

in
ar

y
pa

rt

FIGURE 15.6 Plot of complex number
15.3 SYMBOLIC MATHEMATICS

Symbolic mathematics means doing mathematics on symbols (not numbers!).

For example, aþ a is 2a. The symbolicmath functions are in the Symbolic Math
Toolbox in MATLAB. Toolboxes contain related functions and are add-ons to

MATLAB. (Therefore, this may or may not be part of your own system.) Sym-

bolic Math Toolbox includes an alternative method for solving equations, and
is therefore covered in this chapter.

48915.3 Symbolic Mathematics
To find out about the symbolic functions, help can be used:

help toolbox\symbolic
15.3.1 Symbolic variables and expressions
MATLAB has a type called sym for symbolic variables and expressions; these

work with strings. For example, to create a symbolic variable a and perform
the addition just described, first a symbolic variable would be created by pass-

ing the string ‘a’ to the sym function:

>> a ¼ sym('a');
>> a þ a
ans ¼
2 * a

Symbolic variables can also store expressions. For example, the variables b and
c store symbolic expressions:

>> b ¼ sym('x^2');
>> c ¼ sym('x^4');

All basic mathematical operations can be performed on symbolic variables and

expressions (e.g., add, subtract, multiply, divide, raise to a power, etc.). The fol-

lowing are examples:

>> c/b
ans ¼
x^2

>> b^3
ans ¼
x^6

>> c*b
ans ¼
x^6

>> b þ sym('4 * x^2')
ans ¼
5 * x^2

It can be seen from the last example that MATLAB will collect like terms in these

expressions, adding the x2 and 4x2 to result in 5x2.

The following creates a symbolic expression by passing a string, but the terms
are not automatically collected:

>> sym('z^3 þ 2 * z^3')
ans ¼
z^3 þ 2 * z^3

490 CHAPTER 15 Advanced Mathematics

Openmirrors.com
If, on the other hand, z is a symbolic variable to begin with, quotes are

not needed around the expression, and the terms are automatically

collected:

>> z ¼ sym('z');
>> z^3 þ 2 * z^3
ans ¼
3 * z^3

If usingmultiple variables as symbolic variable names is desired, the syms func-

tion is a shortcut instead of using sym repeatedly. For example,

>> syms x y z

does the same thing as

>> x ¼ sym('x');
>> y ¼ sym('y');
>> z ¼ sym('z');
15.3.2 Simplification functions
There are several functions that workwith expressions, and simplifying the terms.
Not all expressions can be simplified, but the simplify function does whatever it

can to simplify expressions, including gathering like terms. For example,

>> x ¼ sym('x');
>> myexpr ¼ cos(x)^2 þ sin(x)^2
myexpr ¼
cos(x)^2 þ sin(x)^2
>> simplify(myexpr)
ans ¼
1

The functions collect, expand, and factor work with polynomial expressions.
The collect function collects coefficients, such as the following:

>> x ¼ sym('x');
>> collect(x^2 þ 4 * x^3 þ 3 * x^2)
ans ¼
4 * x^2 þ 4 * x^3

The expand function will multiply out terms, and factor will do the reverse:

>> expand((x þ 2)*(x - 1))
ans ¼
x^2 þ x - 2

>> factor(ans)
ans ¼
(x þ 2)*(x - 1)

49115.3 Symbolic Mathematics
If the argument is not factorable, the original input argument will be returned

unmodified.

The subs function will substitute a value for a symbolic variable in an expres-
sion. For example,

>> myexp ¼ x^3 þ 3 * x^2 � 2
myexp ¼
x^3 þ 3 * x^2 - 2
>> subs(myexp,3)
ans ¼

52

If there are multiple variables in the expression, one will be chosen by default

for the substitution (in this case, x), or the variable for which the substitution is

to be made can be specified:

>> syms a b x
>> varexp ¼ a * x^2 þ b * x;
>> subs(varexp,3)
ans ¼
9 * a þ 3 * b

>> subs(varexp,'a',3)
ans ¼
3 * x^2 þ b *x

With symbolic math, MATLAB works by default with rational numbers, mean-
ing that results are kept in fractional forms. For example, performing the addi-

tion 1/3 þ 1/2 would normally result in a double value:

>> 1/3 þ 1/2
ans ¼

0.8333

However, by making the expression symbolic, the result is symbolic also. Any

numeric function (e.g., double) could change that:

>> sym(1/3 þ 1/2)
ans ¼
5/6
>> double(ans)
ans ¼

0.8333

The numden function will separately return the numerator and denominator

of a symbolic expression:

>> sym(1/3 þ 1/2)
ans ¼
5/6

–6 –4 –2
–150

–100

–50

0

50

100

150

200

250

300

350

x

FIGURE 15.7 Plot produced us

492 CHAPTER 15 Advanced Mathematics

Openmirrors.com
>> [n, d] ¼ numden(ans)
n ¼
5
d ¼
6

>> [n, d] ¼ numden((x^3 þ x^2)/x)
n ¼
x^2 *(x þ 1)
d ¼
x

15.3.3 Displaying expressions
The pretty function will display these expressions using exponents. For example:

>> b ¼ sym('x^2')
b ¼
x^2

>> pretty(b)
2

x

There are several plot functions in MATLAB with names beginning with “ez”

that perform the necessary conversions from symbolic expressions to numbers
0 2 4 6
x

3 + 3x2 – 2

ing ezplot
and plot them. For example, the func-
tion ezplot will draw a two-dimensional

plot in the x-range from�2 p to 2 p, with
the expression as the title. The expression

>> ezplot('x^3 þ 3 * x^2 � 2')

produces the figure that is shown in

Figure 15.7. The domain for the ezplot

function can also be specified; for exam-
ple, to change the x-axis to the range 0 to

p, it is specified as a vector. The result is

shown in Figure 15.8.

>> ezplot('cos(x)',[0 pi])
15.3.4 Solving equations
We’ve seen already several methods for
solving simultaneous linear equations,

using a matrix representation. MATLAB
can also solve sets of equations using

symbolic math.

0 0.5 1 1.5 2 2.5 3

–1

–0.5

0

0.5

1

x

cos(x)

FIGURE 15.8 Result from ezplot with custom x-axis

49315.3 Symbolic Mathematics
The function solve solves an equation and returns the solution(s) as symbolic

expressions. The solution can be converted to numbers using any numeric func-

tion, such as double:

>> x ¼ sym('x');
>> solve('2 * x^2 þ x ¼ 6')
ans ¼
3/2
-2

>> double(ans)
ans ¼

1.5000
-2.0000

If an expression is passed to the solve function rather than an equation, it will

set the expression equal to 0 and solve the resulting equation. For example, the
following will solve 3x2 þ x ¼ 0:

>> solve('3 * x^2 þ x')
ans ¼

0
-1/3

494 CHAPTER 15 Advanced Mathematics
If there is more than one variable, MATLAB chooses which to solve for. In the

following example, the equation ax2 þ bx ¼ 0 is solved. There are three vari-

ables. As can be seen from the result, which is given in terms of a and b, the
equation was solved for x. MATLAB has rules built in that specify how to choose

which variable to solve for. For example, xwill always be the first choice if it is in

the equation or expression.

>> solve('a * x^2 þ b * x')
ans ¼

0
-b/a

However, it is possible to specify which variable to solve for:

>> solve('a * x^2 þ b * x','b')
ans ¼
-a * x

MATLAB can also solve sets of equations. In this example, the solutions for x, y,
and z are returned as a structure consisting of fields for x, y, and z. The individual

solutions are symbolic expressions stored in fields of the structure.

>> solve('4 * x - 2 * y þ z ¼ 7','x þ y þ 5 * z ¼ 10','-2 * x þ 3 * y -
z ¼ 2')
ans ¼

x: [1 x 1 sym]
y: [1 x 1 sym]
z: [1 x 1 sym]

To refer to the individual solutions, which are in the structure fields, the dot

operator is used.

>> x ¼ ans.x
x ¼
124/41

>> y ¼ ans.y
y ¼
121/41

>> z ¼ ans.z
z ¼
33/41

The double function can then be used to convert the symbolic expressions to
numbers, and store the results from the three unknowns in a vector.

>> double([x y z])
ans ¼

3.0244 2.9512 0.8049

49515.4 Calculus: Integration and Differentiation
15.4 CALCULUS: INTEGRATION
AND DIFFERENTIATION

MATLAB has functions that perform common calculus operations on a math-

ematical function f(x), such as integration and differentiation.
15.4.1 Integration and the trapezoidal rule
The integral of a function f(x) between the limits given by x ¼ a and x ¼ b is

written as

ðb

a

fðxÞdx

and is defined as the area under the curve f(x) from a to b, as long as the
function is above the x-axis. Numerical integration techniques involve ap-

proximating this.

One simple method of approximating the area under a curve is to draw

a straight line from f(a) to f(b) and calculate the area of the resulting

trapezoid as

ðb� aÞ f ðaÞ þ f ðbÞ
2

In MATLAB, this could be implemented as a function.
THE PROGRAMMING CONCEPT
Here is a function to which the function handle and limits a and b are passed:
trapint.m

function int ¼ trapint(fnh, a, b)
% trapint approximates area under a curve f(x)
% from a to b using a trapezoid
% Format: trapint(handle of f, a, b)
int ¼ (b-a) * (fnh(a) þ fnh(b))/2;

end
To call it, for example, for the function f (x) ¼ 3x2 � 1, an anonymous function is defined and its

handle is passed to the trapint function.

>> f ¼ @ (x) 3 * x .^ 2 � 1;
approxint ¼ trapint(f, 2, 4)
approxint ¼

58

496 CHAPTER 15 Advanced Mathematics
THE EFFICIENT METHOD
MATLAB has a built-in function trapz that will implement the trapezoidal rule. Vectors with the

values of x and y ¼ f (x) are passed to it. For example, using the anonymous function defined

previously:
>> x ¼ [2 4];
>> y ¼ f(x);
>> trapz(x,y)
ans ¼

58
An improvement on this is to divide the range from a to b into n intervals,

apply the trapezoidal rule to each interval, and sum them. For example, for

the preceding if there are two intervals, you would draw a straight line from
f(a) to f((aþb)/2), and then from f((aþb)/2) to f(b).
THE PROGRAMMING CONCEPT
The following is a modification of the previous function to which the function handle, limits, and

the number of intervals are passed:
trapintn.m

function intsum ¼ trapintn(fnh, lowrange,highrange, n)
% trapintn approximates area under a curve f(x) from
% a to b using a trapezoid with n intervals
% Format: trapintn(handle of f, a, b, n)
intsum ¼ 0;
increm ¼ (highrange � lowrange)/n;
for a ¼ lowrange: increm : highrange � increm

b ¼ a þ increm;
intsum ¼ intsum þ (b-a) * (fnh(a) þ fnh(b))/2;

end

end
For example, this approximates the integral of the previous function that is given with two

intervals:

>> trapintn(f,2,4,2)
ans ¼

55

49715.4 Calculus: Integration and Differentiation
THE EFFICIENT METHOD
To use the built-in function trapz to accomplish the same thing, the x vector is created with the

values 2, 3, and 4:
>> x ¼ 2:4;
>> y ¼ f(x)
>> trapz(x,y)
ans ¼

55
In these examples, straight lines, which are first-order polynomials, were used.

Other methods involve higher-order polynomials. The built-in function quad

uses Simpson’s method. Three arguments are normally passed to it: the handle
of the function, and the limits a and b. For example, for the previous function:

>> quad(f,2,4)
ans ¼

54

15.4.2 Differentiation
The derivative of a function y¼ f(x) is written as dy

dx f ðxÞ or f'(x), and is defined as

the rate of change of the dependent variable ywith respect to x. The derivative is

the slope of the line tangent to the function at a given point.

MATLAB has a function polyder, which will find the derivative of a polynomial.

For example, for the polynomial x3þ 2x2� 4xþ 3, which would be represented
by the vector [1 2 �4 3], the derivative is found by:

>> origp ¼ [1 2 �4 3];
>> diffp ¼ polyder(origp)
diffp ¼

3 4 -4

which shows that the derivative is the polynomial 3x2 þ 4x � 4. The function

polyval can then be used to find the derivative for certain values of x, such as for
x ¼ 1, 2, and 3:

>> polyval(diffp, 1:3)
ans ¼

3 16 35

The derivative can be written as the limit

f 0ðxÞ ¼ lim
h!0

fðx þ hÞ � fðxÞ
h

and can be approximated by a difference equation.
Recall that MATLAB has a built-in function, diff, which returns the differences
between consecutive elements in a vector. For a function y ¼ f(x) where x is a

498 CHAPTER 15 Advanced Mathematics
vector, the values of f'(x) can be approximated as diff(y) divided by diff(x).

For example, the equation x3 þ 2x2 � 4x þ 3 can be written as an anonymous

function. It can be seen that the approximate derivative is close to the values
found using polyder and polyval.

>> f ¼ @ (x) x .^ 3 þ 2 * x .^ 2 � 4 * x þ 3;
>> x ¼ 0.5 : 3.5
x ¼

0.5000 1.5000 2.5000 3.5000
>> y ¼ f(x)
y ¼

1.6250 4.8750 21.1250 56.3750
>> diff(y)
ans ¼

3.2500 16.2500 35.2500
>> diff(x)
ans ¼

1 1 1
>> diff(y) ./ diff(x)
ans ¼

3.2500 16.2500 35.2500

15.4.3 Calculus in Symbolic Math Toolbox
There are several functions in Symbolic Math Toolbox to perform calculus op-

erations symbolically (e.g., diff to differentiate and int to integrate). To learn

about the int function, for example, from the Command Window:

>> help sym/int

For instance, to find the indefinite integral of the function f(x) ¼ 3x2 � 1:

>> syms x
>> int(3 * x^2 � 1)
ans ¼
x^3 - x

To instead find the definite integral of this function from x ¼ 2 to x ¼ 4:

>> int(3 * x^2 � 1, 2, 4)
ans ¼
54

Limits can be found using the limit function. For example, for the difference
equation described previously:

>> syms x h
>> f
f ¼

@ (x) x .^3 þ 2 .*x.^2 � 4 .* x þ 3

>> limit((f(xþh)- f(x))/h,h,0)
ans ¼
3 * x^2-4 þ 4 *x

499Summary
To differentiate, instead of the anonymous function we write it symbolically:

>> syms x f
>> f ¼ x^3 þ 2 * x^2 � 4 * x þ 3
f ¼
x^3 þ 2 *x^2 - 4 *x þ 3

>> diff(f)
ans ¼
3 *x^2 - 4 þ 4 *x
PRACTICE 15.3

For the function 2x2 � 5x þ 3:

n Find the indefinite integral of the function.

n Find the definite integral of the function from x ¼ 2 to x ¼ 5.

n Approximate the area under the curve from x ¼ 2 to x ¼ 5.

n Find its derivative.

n Approximate the derivative.
SUMMARY
Common Pitfalls

n Forgetting that the fprintf function by default only prints the real part of a
complex number

n Extrapolating too far away from the data set

Programming Style Guidelines

n The better the curve fit, the more exact interpolated and extrapolated values

will be.

n When working with symbolic expressions, it is generally easier to make all
variables symbolic variables to begin with.
MATLAB Functions and Commands

sym2poly

poly2sym

roots

polyval

polyfit

interp1

complex

real

imag

isreal

conj

angle

polar

sym

syms

simplify

collect

expand

factor

subs

numden

pretty

ezplot

solve

trapz

quad

polyder

int

limit

500 CHAPTER 15 Advanced Mathematics
Exercises
1. Express the following polynomials as row vectors of coefficients:

2x3 � 3x2 þ x þ 5
3x4 þ x2 þ 2x � 4

2. Find the roots of the equation f (x) ¼ 0 for the following function. Also, create x

and y vectors and plot this function in the range �3 to 3 to visualize the solution.

f(x) ¼ 3x2 � 2x � 5

3. Evaluate the polynomial expression 3x3 þ 4x2 þ 2x � 2 at x ¼ 4, x ¼ 6, and x ¼ 8.

4. Sometimes the roots of polynomial equations are complex numbers. For example,

create the polynomial row vector variable pol:

>> pol ¼ [3 6 5];

Use the roots function to find the roots. Also, use ezplot(poly2sym(pol)) to view a

plot. Then, change the last number in pol from 5 to �7 and again find the roots and

view the plot.

5. Create a vector x that contains the integers 1 through 20. Create a vector y that

stores 20 random integers, each in the range �2 to þ2. Fit a straight line through

these points. Plot the data points and the straight line on the same graph.

6. The compliance or elasticity of the lung is defined as:

Compliance ¼ DVolume

DPressure

In a biomedical engineering physiology lab, a spirometer was used to measure the
volume of the lungs at a given pressure, which was measured by a pressure

transducer. The following data were collected:

Pressure Volume

0 cm H2O 1.750 L

5 cm H2O 2.500 L

10 cm H2O 3.750 L

15 cm H2O 4.000 L

20 cm H2O 4.750 L
Write a script that creates vectors to represent these data. Next, the script will find

the straight line that best fits the data, and plots the data as circles and also the

straight line on the same graph. The slope of this line is the actual compliance of the

lung and chest wall. Label your axes and put a title on it.

7. The voltage in a circuit is determined at various times, as follows:

time: 1 2 3 4 5 6 7
voltage: 1.1 1.9 3.3 3.4 3.1 3.3 7.1

501Exercises
Fit a straight line through the data points, and then plot this line along with the

sample voltages. According to your straight line, determine at what time the voltage

would be 5.

8.Write a script that will generate a vector of 10 random integers, each in the range 0 to

100. If the integers are evenly distributed in this range, then when arranged in order

from lowest to highest, they should fall on a straight line. To test this, fit a straight line

through the points and plot both the points and the line with a legend. For example,

when tested, the random integers might be

95 23 61 49 89 76 46 2 82 44

and the plot might look like the one in Figure 15.9.
1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
random points
straight line

FIGURE 15.9 Straight line curve fit to random integers
9.Write a function that will receive data points in the form of x and y vectors. If the

lengths of the vectors are not the same, then they can’t represent data points, so an

error message should be printed. Otherwise, the function will fit a polynomial of a

random degree through the points, and will plot the points and the resulting curve

with a title specifying the degree of the polynomial. The degree of the polynomial

must be less than the number of data points, n, so the function must generate a

random integer in the range from 1 to n � 1 for the polynomial degree.

10.Temperature readings were performed every hour (starting at 1 pm, but the end time

could vary) and stored in a vector called readings. Write a function called halffit that

receives this vector as an argument and uses a quadratic interpolation (second order)

to determine what the temperature was every half hour between the actual recorded

temperatures. The function then plots, on one graph, the original temperature

502 CHAPTER 15 Advanced Mathematics
readings (using a circle for the points), the interpolated temperatures at the half

hours (using a þ for these points), and the quadratic curve that was used for the

interpolation. Place a legend on the graph to distinguish the curves. The number of

hours that was used for the original vector may not be assumed. For example, the

function might be called as follows:

>> readings ¼ [33, 40, 42, 41, 39, 32];
>> halffit(readings)

The Figure Window would look like Figure 15.10.
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
32

34

36

38

40

42

44
readings
half hour interp
curve

FIGURE 15.10 Temperatures interpolated every half hour
11. Some data points have been created in which the y values rise to a peak and then fall

again. However, instead of fitting a quadratic curve through these points, what is

desired is to fit two straight lines through these points: one that goes through all

points from the beginning through the point with the largest y value, and another

that starts with the point with the largest y value through the last point. Write a

function fscurve that will receive as input arguments the x and y vectors, and will

plot the original points as red stars (*) and the two lines (with default colors, line

widths, etc.). Figure 15.11 shows the Figure Window resulting from an example of

calling the function.

>> y ¼ [2 4.3 6.5 11.11 8.8 4.4 3.1];
>> x ¼ 1:length(y);
>> fscurve(x,y)

1 2 3 4 5 6 7
0

2

4

6

8

10

12
original points
first part
second part

FIGURE 15.11 Two straight lines

503Exercises
You may not assume that you know anything about the data except that you may

assume that they do rise to a peak and then fall again.

12.Vectors x and y have been created to represent x and y points. The vectors have the

same length (let’s call this n). Write a function called fitsubs that receives these

vectors and graphically displays the difference between fitting polynomials of degree

1, 2, 3, . . . n� 1 to the data. For example, if the data are as shown in the following, the

Figure Window would look like Figure 15.12.

>> x ¼ 1:4;
>> y ¼ [23 35 46 39];
>> fitsubs(x,y)

13.Create vectors for four points. Fit a straight line through the points, and also a

quadratic. Plot both of these, and the points, on one figure with legends.

14.Create a data file that stores data points (the x values in one column and then the

y values in a second column). Write a script that will execute the following:

n Read the data points.

n Fit a straight line to the points.

n Create a vector diffv that stores for every x value the difference between the

actual y value and the y value predicted by the straight line.

n Find and print the standard deviation of the vector diffv.

n Plot the original data points and the line.

n Print how many of the actual y values were greater than the predicted.

n Print howmany of the actual data y values were within 1 (þ or�) of the predicted

y value.

0 2 4
20

25

30

35

40

45

50
Degree 1

0 2 4
20

25

30

35

40

45

50

0 2 4
20

25

30

35

40

45

50
Degree 3Degree 2

FIGURE 15.12 Subplot to demonstrate curves of increasing degrees

504 CHAPTER 15 Advanced Mathematics
15.The temperature (in degrees Fahrenheit) was recorded every three hours for a day at a

particular location. Using a 24-hour clock where midnight is 0, for example, the data

might be:

Time: 0 3 6 9 12 15 18 21
Temp: 55.5 52.4 52.6 55.7 75.6 77.7 70.3 66.6

n Create vectors for the data.

n Plot the data.

n Find a curve that fits the data.

n At what time(s) was it 60 degrees? 65 degrees?

Data on the flow of water in rivers and streams are of great interest to civil

engineers, who design bridges, and to environmental engineers, who are concerned

with the environmental impact of catastrophic events such as flooding.

16.The Mystical River’s water flow rate on a particular day is shown in Figure 15.13 and

the table that follows it. The time is measured in hours and the water flow rate is

measured in cubic feet per second. Write a script that will fit polynomials of degree 3

and 4 to the data and create a subplot for the two polynomials. Plot also the original

data as black circles in both plots. The titles for the subplots should include the degree

of the fitted polynomial. In addition, include appropriate x and y labels for the plots.

0 10 20 30
600

800

1000

1200

1400

1600

1800

2000

Time

Fl
ow

 R
at

e
Polynomial of order 3

0 10 20 30
800

1000

1200

1400

1600

1800

2000

Time

Fl
ow

 R
at

e

Polynomial of order 4

FIGURE 15.13 Mystical River flow rates

505Exercises
Time 0 3 6 9 12 15 18 21 24

Flow Rate 800 980 1090 1520 1920 1670 1440 1380 1300
17.Write a function that will receive x and y vectors representing data points. You
may assume that the vectors are the same length, and that the values in the x

vector are all positive, although not necessarily integers. The function will fit

polynomials of degrees 2 and 3 to these points. It will plot the original data points

with black stars (*), and also the curves (with 100 points each in the range given by

the x vector so that the curves look very smooth). It will also generate one random

integer x value and use the curves to interpolate at that x value. The range of the

random integer must be within the range of the original x vector so that it is

interpolating, not extrapolating (e.g., in the following example the x values

range from 0.5 to 5.5 so the random integer generated is in the range 1 to 5).

The interpolated values should be plotted with red stars (*), and the mean of

the two should be plotted with a red circle (the axes and the colors for the

curves are defaults, however). For example, the plot in Figure 15.14 was

generated by calling the function and passing x and y vectors (and the random

integer was 4).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

FIGURE 15.14 Random interpolated value

506 CHAPTER 15 Advanced Mathematics
18.The distance (in miles) and speed of a car (in miles per hour) are measured at several

points along a highway and are to be stored in a file and then read into a variable

called tripdata. For example, tripdata MIGHT contain:

1 44
10 45
50 65

100 60
150 55

It may be assumed that there are two columns; the first is the distance, and the

second is the speed. It may not be assumed that the number of rows is known. The

algorithm is:

n Create the data file and load it into a matrix variable, then separate the data into

two vectors.

n Fit a straight line to the data.

n Plot the data points and the line on the same graph, with appropriate labels on

the axes (not just ‘x’ and ‘y’!).

19.Write a function that will receive x and y vectors representing data points. The

functionwill create, in one FigureWindow, a plot showing these data points as circles

and also in the top part a second-order polynomial that best fits these points and on

the bottom a third-order polynomial. The top plot will have a line width of 3 and will

be a grey color. The bottom plot will be blue, and have a line width of 2. For example,

the Figure Window might look like Figure 15.15.

0 2 4 6 8 10 12
0

5

10

15

20

0 2 4 6

Third order

Second order

8 10 12
0

5

10

15

20

FIGURE 15.15 Subplot of second- and third-order polynomials with various line properties

507Exercises
The axes are the defaults. Note that changing the line width also changes the

size of the circles for the data points. You do not need to use a loop.

20.The depth of snow in inches has been measured in a very cold location

every week since the snow began accumulating. At this point, the season

has changed and it is getting warmer, so the pile of snow is beginning to

recede but it hasn’t all gone away yet. The depths that have been recorded

every week are stored in a file called snowd.dat. For example, it might

contain the following:

8 20 31 42 55 65 77 88 95 97 89 72 68 53 44

Write a script that will predict in which week the snow will be totally gone

by fitting a quadratic curve through the data points. This will be called the

“snow gone week number” and will be rounded up. For example, if the data are

as previously shown, the snow would be gone by week number 18. The script

will produce a plot in the format shown in Figure 15.16, showing the original

data points from the file and also the curve (from week 1 through the snow-gone

week). The snow-gone week number will also be printed in the title. The x-axis

should range from 0 to the snow-gone week number, and the y-axis from 0 to the

maximum snow accumulation.

21.A data file called acme.dat stores the Acme Products Corporation’s costs and sales

for every quarter last year. There are four lines in the file, each consisting of the costs

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

Snow gone week 18

Weeks

D
ep

th
 in

 in
ch

es

FIGURE 15.16 Prediction of snow melt

508 CHAPTER 15 Advanced Mathematics
for the quarter followed by the sales. For example, the file might contain the

following:

2.2 4.4
4 3.8
6.5 6.5

11.1 10.5

Write a script that will load this into a matrix and then separate the costs and

sales into vectors. Create a Figure Window that shows bar charts for the costs,

sales, and profits for the four quarters. Next, extrapolate to determine what the

costs are likely to be in the next quarter (assuming a linear progression).

22. Store the following complex numbers in variables, and print them in the

form a þ bi.

3 � 2i
ffiffiffiffiffiffiffi�3

p

23.Create the following complex variables:

c1 ¼ 2 � 4i;
c2 ¼ 5 þ 3i;

509Exercises
Perform the following operations on the variables:

n Add them.

n Multiply them.

n Get the complex conjugate and magnitude of each.

n Put them in polar form.

24.Represent the expression z3 � 2z2 þ 3 � 5i as a row vector of coefficients, and store

this in a variable compoly. Use the roots function to solve z3� 2z2þ 3� 5i¼ 0. Also,

find the value of compoly when z ¼ 2 using polyval.

25.Determine how to use the polar function to plot the magnitude and angle of a

complex number in polar form.

26.The real parts and imaginary parts of complex numbers are stored in separate

variables. For example:

>> rp ¼ [1.1 3 6];
>> ip ¼ [2 0.3 4.9];

Determine how to use the complex function to combine these separate parts into

complex numbers, such as:

1.1000 þ 2.0000i 3.0000 þ 0.3000i 6.0000 þ 4.9000i

27. Solve the simultaneous equations x � y ¼ 2 and x2 þ y ¼ 0 using solve. Plot the

corresponding functions, y ¼ x � 2 and y ¼ �x2, on the same graph with an x range

from �5 to 5.

28. For the following set of equations,

2x1 þ 2x2 þ x3 ¼ 2
x2 þ 2x3 ¼ 1

x1 þ x2 þ 3x3 ¼ 3

write it in symbolic form and solve using the solve function. From the symbolic
solution, create a vector of the numerical (double) equivalents.

29. For the following system of equations,

4x1 � x2 þ 3x4 ¼ 10
�2x1 þ 3x2 þ x3 � 5x4 ¼ �3

x1 þ x2 � x3 þ 2x4 ¼ 2
3x1 þ 2x2 � 4x3 ¼ 4

use the solve function to solve it. Verify the answer using any other method (in
MATLAB!!).

30.Biomedical engineers are developing an insulin pump for diabetics. To do this, it is

important to understand how insulin is cleared from the body after a meal. The

concentration of insulin at any time t is described by the equation

C ¼ C0 e
�30t=m

510 CHAPTER 15 Advanced Mathematics
where C0 is the initial concentration of insulin, t is the time in minutes, andm is the

mass of the person in kilograms. Use solve to determine for a person whose mass is

65 kg how long it will take an initial concentration of 90 to reduce to 10. Use double

to get your result in minutes.

31.To analyze electric circuits, it is often necessary to solve simultaneous equations. To

find the voltages Va, Vb, and Vc at nodes a, b, and c, the equations are:

2ðVa� VbÞ þ 5ðVa� VcÞ � e�t ¼ 0
2ðVb� VaÞ þ 2Vb þ 3ðVb� VcÞ ¼ 0

Vc ¼ 2 sinðtÞ
Find out how to use the solve function to solve for Va, Vb, andVc so that the solution
will be returned in terms of t.

32.The reproduction of cells in a bacterial colony is important for many environmental

engineering applications such as wastewater treatments. The formula

log ðN Þ ¼ logðN0Þ þ t=T logð2Þ
can be used to simulate this, where N0 is the original population, N is the population
at time t, and T is the time it takes for the population to double. Use the solve

function to determine the following: If N0 ¼ 102, N ¼ 108, and t ¼ 8 hours, what

will be the doubling time T? Use double to get your result in hours.

33.Using the symbolic function int, find the indefinite integral of the function 4x2 þ 3,

and the definite integral of this function from x¼�1 to x¼ 3. Also, approximate this

using the trapz function.

34.Use the quad function to approximate the area under the curve 4x2þ 3 from�1 to 3.

First, create an anonymous function and pass its handle to the quad function.

35.Use the polyder function to find the derivative of 2x3 � x2 þ 4x � 5.

Index
A
abs, 34
Absolute value, complex

number, 485
action, 87
Algorithm, 46
all, 163, 165
and, 85
angle, 487
Animation, plots, 334–335
Anonymous function
function handle, 301–302
saving, 303

ans, 7, 8
any, 163
Appending, 64, 65
area, 329, 330f, 340
Arguments to functions, 69,

72–73, 178–179, 184–185
variable number of,

306–311
Array multiplication,

374–375
Array operations, 157,

374–375
array operators, 158–159
Arrays, 22, 245
ASCII, 19
Assignment operator, 6
Assignment statement, 6–10
Associativity, 12
Audio files, see Sound files
Augmented matrix, reduction, 388
Average, see mean
Axis, 59, 62–63, 327
axis, 327
Note: Page numbers followed by b indic
B
Back elimination, 390, 416
Back substitution, Gauss elimination,

387, 388, 389, 390
Banded matrix, 372
bar, 61, 327, 329, 330f, 339–340,

354–356
bar3, 335–336
barh, 329, 330f
bar3h, 335–336
Base workspace, 197
Bin, 331–333
Binary operator, 11
Binary search, 424–427
blanks, 216
Block partitioning, 398
Boolean expression, 83
Branching statements, 83
Breakpoints, 204–205
Bug, 202
Built-in functions, 13–15

C
Calculus
differentiation, 497–498
integration and trapezoidal rule,

495–497
symbolic math, 498–499
trapezoidal rule, 495–497

Call back function, 449, 450–454,
451f

Call-by-value method, 184
Call, function, 13
Cascaded if-else, 94
Casting, 16–17
ceil, 14
ate boxes, f indicate figures, and t indicat
cell, 246
Cell arrays, 246
column vector cell array, 246–247
creation, 246–247
elements and attributes

cell indexing, 248, 249, 250
comma-separated list, 248–249
content indexing, 247
string storage, 250–252

2 � 2 matrix, 247
referring and displaying elements

and attributes, 247–250
row vector cell array, string storing,

246
celldisp, 249
Cell indexing, 248, 249, 250
cellplot, 249
cellstr, 251
char, 16, 20, 220, 235
Character, 19, 215
Character encoding, 19
Character set, 19
char strings, 250–251
char type, 16
chirp, 435, 436–437, 436f
Class, 15
classes, 15
clear, 9
clear command, 199
clf, 61, 327
clock, 18
Close file, 280
collect, 490
Colon operator, 22–23
colormap, 438–443
Column vector, 21, 25
e tables. 511

512 Index
comet, 334
comet3, 337
Command History Window, 6
Command Window, 4, 5f, 84
Comma-separated list, 248–249, 260
Comment, scripts, 49
Compiler, 47
complex, 481–488
Complex numbers, 481–488

absolute value, 485
addition and subtraction, 484
complex conjugate, 485–486
equality, 483
multiplication, 485
multiplication operator, 481–482
plotting, 487–488
polar form, 486–487
polynomial representation, 485–486
real and imaginary parts, 482

Computer program, 45, 47
Concatenation

strings, 218–220
vectors, 23

Condition, 83, 87
Conditional loops, 115
conj, 485
Constants, 15
Content indexing, 247, 248–249
Control characters, 216
Conversion character, 53
cos, 63, 64f
Counted loops, 115
Counting, 143–144
cross, 380–381
Cross product, vectors, 380–381
cumprod, 124, 168, 403–405
cumsum, 137, 168, 403–405
Current Directory, 5
Current Folder, 5, 6, 47
Curve fitting, 475

discrete/continuous data, 475
interpolation and extrapolation
least squares, 478–481
polyfit, 476
polynomials, 474–475
sample data, 475

cylinder function, 366

D
Database, 246
datafun, 401
Data structures, 245

cell array, see Cell arrays
database, 246
structs, 246
structures, see Structures

date, 232
dbcont, 204–205
dbquit, 204–205
dbstop, 204–205
deblank, 224–225
Debugging

Editor/Debugger, 204–205
error types, 202–203
function stubs, 205–206
tracing, 203–204

Decrementing, variables, 8
Default input device, 46
Default output device, 46
Delimiter, 230
demo, 4
det, 385
Determinant, matrix, 384
diag, 370
Diagonal matrix, 370
diff, 497–498
Differentiation, calculus, 497–498
Dimensions of matrices, 29–34
disp, 52, 53, 89, 253–254, 277,

482–483
Divided into, 11, 39t, 382–383
Division, 11
Documentation, 49
dot, 380
Dot operator, 253
Dot product, vectors, 380–381
double, 15, 16–17, 20–21, 255, 264,

279–280, 491, 493, 494–495
Double precision, 15

E
echo, 204
Echo printing , 120, 126–127
Editor/Debugger, 204–205
Elementary row operations (EROs),

386
elements, 21
Elementwise, operators for matrices,

165
Ellipsis, 11
else, 83, 91, 93, 94, 95
elseif clause, 94–98

logical expressions, 98
Empty string, 50, 216
Empty vector, 35–37
end, 31, 87, 116, 139, 312–313
End of file, 280
Equality, 84t
Equal matrices, 368–369
Error-checking

integers, 146–148
while loop, 145–148

Error message, 52
Error, types, 202–203
eval, 233, 233f, 236, 256, 331
eventdata, 449
Excel, spreadsheet file reading

and writing, 291–293
Executable file, 47
Execute, 47
exp(x), 15, 192, 193
expand, 490
Exponential notation, 54
Exponentiation, 11
Extrapolation, 475–478, 481
eye, 372
ezplot, 492, 492f

F
factor, 490
Factorial, 118
factorial, 118, 303
false, 16, 83, 84–85, 87, 90–91,

102–103, 139, 140, 160–161,
162, 163–164, 226–227, 234,
411, 483

fclose, 279, 280, 283–284, 289
feof, 280
feof(fid), 280
feval, 306
fgetl, 279–280, 282, 290
fgets, 279–280
Field, 245, 252
fieldnames, 256
Field width, 54
figure, 61, 327, 446, 447f
File

appending data, 65
closing, 278–279
data writing, 64–65
input and output, 63–67, 277
lower-level functions, 66, 277,

278–291
modes, 64
opening, 278–279
reading, 65–67, 279–280
spreadsheet file reading and

writing, 291–293
writing, 289–291

513Index
File identifier, 278–279
File input and output
file types, 277
lower-level file I/O functions,

see Lower-level file I/O
functions

MAT-files, 293–294
writing and reading spreadsheet

files, 291–293
find, 164
findstr, 228–229, 238
fix, 14
fliplr, 31, 32
flipud, 31, 32, 68
Floating point representation, 15
floor, 14
fopen, 278–279, 281, 283–284, 289
for loop, 116–128
combining with if statements,

125–126
input, 126–128
nested loops, 128–139
not using iterator variable in action,

126
preallocating vectors, 123–124
sums and products, 117–124
vector sums and products,

119–123
format compact, 10–11
format long, 10
format loose, 10–11
format short, 10
Format string, 52–53
Formatting, 52
Forward elimination, 387, 389
fplot, 305
fprintf, 52–53, 54, 56, 130, 221, 223,

238–244, 254, 277, 282–283,
289, 291, 483, 499

fscanf, 279–280, 282–283, 284,
295

func2str, 304
Function, 69–70, 177–178, 182
anonymous function, 301–303
calling, 71–72
function handle, 303–306
header, 69, 70, 71, 73, 178–179,

180, 182, 184, 185, 188, 190,
255, 307–308, 311, 449

local variables, 74–75
nested function, 312–313
passing multiple arguments,

72–74
passing no arguments, 184–185
recursive function, 313–318, 426
calling, 316–317
infinite recursion, 314

return more than one value,
178–182

return nothing, 177–178
return values, 13, 45–46, 178,

183–184
user-defined functions, 68,

177–185
variable number of arguments
input arguments, 306–309
output arguments, 309–311

function, 69, 177–178
Function functions, 303–306
Function handle, 301–302
function functions, 303–306

Function stubs, 205–206

G
Gauss elimination, 386–392
Gauss-Jordan elimination, 386–392
gca, 353–354
Geometric mean, 406
get, 341–343
getframe, 334–335
Global variable, 199
Graphical User Interface

Development Environment
(GUIDE), 446–447

Graphical user interfaces (GUIs),
446–463

callback function, 449–454, 451f,
457–459, 457f

defined, 446
event, 449–450
figure placement, 447, 447f
figure, uipanel, and uibuttongroup

object, 446
nested function, 449–450
objects

button group, 461, 463, 463f
editable text box, 450, 451f
normalized units, 461
push button, 452–454, 453f
radio button, 463, 463f
slider, 435–471, 454, 455, 455f
static text box, 449, 449f

plot, 460, 461f
position vector, 448
‘SelectedObject’ property, 461
‘Style’ property, 448
‘Units’ property, 461–463
‘Visible’ property, 448

Graphics
core objects, 344–351
primitives, 341
properties, 341–351

Greater than, 84
grid, 61, 327, 335, 336f
GUIs, see Graphical user interfaces

H
H1 line, 49
Handle Graphics and plot properties
Color property, 343
core objects

BackgroundColor and

EdgeColor, 347, 347f
line object, 344–345, 345f, 346,

346f
patch function, 349, 349f, 350
rectangle object, 348, 348f, 349f
specchar, 345–346
vertices and faces, 349–351

get, 341–343
graphics primitives, 341
set, 343

Harmonic mean, 405
help, 4, 13–15
helpbrowser, 4
help debug, 204
Help topics, 13, 14, 58, 401, 403
hist, 331–333, 403
Histogram, 331–333
hold, 61, 327

I
i, 15
Identifier names, 9, 104
Identity matrix, 372, 378,

392–393
if statement, 87–91
assignment statement, 89–90
calling the function, 90
Command Window, 88
logical true and false

representation, 90–91
if-else statement, 91–93,

117–124
cascading, 94
nested if-else statements, 93–98

imag, 482
image, 439, 440–442

514 Index
Image processing, 437–446
colormap

defined, 437
jet, 438–439, 440f

pixels, 437–438
true color, 437
matrices, 443–446

Imaginary part, 481
imread, 444
Incrementing, variables, 8
Indexing, 419–422

cell, 248, 249, 250
content, 247, 248–249
linear, 28, 36–37, 165
row and column, 27
subscripted, 27, 28
vectors of structures, 421–422

Index vectors, 24, 402, 419–422
algorithm, 420
vectors of structures, 421–422

Inequality, 84, 107t
inf, 15, 39t, 282–283, 287
Infinite loop, 139
Infinite recursion, 314
info, 4
Initializing, variables, 8
Inner function, 312–313
Inner loop, 128
Inner parentheses, 12
Inner product, vectors, 380
input, 49–52, 216
Input argument, 69
Input/output statements, 49–57
int, 498
Integer

types, 15–16, 17
unsigned, 15–16, 443–444

interp1, 480, 481
Interpolation, 475, 480, 481
Interpreter, 47
intersect, 408–409, 410, 411
int8, int16, int32, int64, 15–16
intmax, 16
intmin, 16
int2str, 234–235, 416
inv, 378, 382–383, 385, 393
is, 102–104
iscellstr, 251
ischar, 234
isempty, 103–104
isequal, 165, 168, 369
isfield, 256
iskeyword, 104
isletter, 102–103, 168, 234
ismember, 408–409, 411
isreal, 483
issorted, 408–409, 411–412
isspace, 234
isstruct, 256
Iterator variable, 116, 126

J
j, 15
jet, 438–439, 440f

K
Key words, 9, 104

L
Leading blanks, 216, 219, 224,

231–233, 235
Least squares regression, 478–481
legend, 61, 63, 327, 487
length, 29, 30, 31, 50–51,

68–69
Less than, 84, 107t
limit, 498–499
line, 344
Linear algebraic equation, 367, 381

matrix solutions to systems of linear
equations
augmented matrix reduction,
392–393

2 � 2 systems of equations,
383–386

Gauss elimination, 386, 387–389
Gauss-Jordan elimination, 386,

389–392
overview, 381–393
Reduced Row Echelon Form, 392

symbolic mathematics and
solving simultaneous linear
equations, 492

Linear indexing, 28, 36–37, 165
Line object, 344–345, 345f, 346f
Line types, 60, 61
linspace, 23
load, 64, 65–66, 277, 278, 280,

281–282, 286, 288, 290–291,
294

Local variable, 74–75, 197
logical, 16, 84–85, 90–91, 102, 162,

165–166, 411–412, 483
Logical error, 202, 203
Logical expression, 83, 85, 98, 168
Logical false, 90–91, 102–103,
160–161, 226–227, 234, 251,
256, 280, 483

Logical operator, 83, 85
Logical true, 85, 90–91, 102–103,

160–166, 226–227, 234, 251,
256, 280

Logical vectors, 160–166, 168, 340,
405, 411

lookfor, 4, 49
Loop statements, 115, 116

action, 115
conditional, 115, 116, 139, 145
counted, 115, 116
for loops, 116–117

combining with if statements,
125–126, 137–139

input, 126–128
loop variable, 116
nested loops, 128–139
defined, 128
inner loop, 128
outer loop, 131

not using iterator variable in
action, 116, 126

preallocating vectors, 123–124
sums and products, 117–124
factorial, 118
running product, 118
running sum, 117

vector sums and products,
119–123

nested loops and matrices,
133–137

vectorizing, see Vectorizing
while loops, 139, 140, 141
counting, 143–144
error-checking user input,
145–148

file reading, 141–142
input, 142–143
multiple conditions, 141

lower, 225–226
Lower-level file I/O functions, 66,

277, 278–291
appending to files, 291
file opening and closing, 278–279
reading from files

data and echo prints, 285
generic code, 280–281
lower-level functions, 279–280

writing to files, 289–291
Lower triangular matrix, 372

515Index
M
Machine language, 47
magic, 393t
Main diagonal, square matrix,

369–370
Main program, 186, 189–190, 192,

205
Markers, plot, 60–61
MAT-file
appending to file, 294
reading, 294
sound files, 435, 436, 437
variables, 293–294
writing to file, 293–294

Matrix, 368–381
array operations, 374–375
augmentation, 377,

378–379
configuration, 31
dimensions, 29–34
element modification, 27–29
linear algebraic equations

coefficients, 381
divided into operator, 382
elementary row operations,

386
Gauss elimination, 386,

387–389
Gauss-Jordan elimination, 386,

389–392
matrix inverse, augmentedmatrix

reduction, 392–393
reduced row echelon form, 392
solution set, 381–382
solving 2 � 2 systems of

equations, 383–386
matrix multiplication, 375–377
matrix operations, 377–379
multiplication, 375–377
nested loops and matrices,

133–137
operations, 377–379
printing, 55–57
properties, 368–369
solutions to systems of linear

equations, 386–392
square matrices, 369–374
banded matrix, 372
diagonal matrix, 370
identity matrix, 372
lower triangular matrix, 372
main diagonal, 369–370
symmetric matrix, 373–374
trace, 371–372
tridiagonal matrix, 372
upper triangular matrix, 373

three-dimensional, 37–38
variable creation, 25–29
vector, 368
vector operations, 379–381

Matrix addition, 374
Matrix augmentation, 378
Matrix transpose, 377
max, 125, 168, 334–335, 402–403,

404–405
Mean, 403–406
geometric mean, 406
harmonic mean, 405

mean, 404–405
median, 408
menu, 100–102, 192
Menu-driven program, 191–197
mesh, 337–339, 338f
meshgrid, 169–171
M-file, 4, 47, 48, 69, 177–178, 187,

189, 193–196, 301–302, 303
min, 125, 168, 334–335, 402–403,

404–405
Mnemonic name, 9
mode , data set, 407
Mode, file, 64–65
Modular programs, 186–188
M-files, 187
program execution, 187–188
program running, 188

movegui, 448
movie, 334–335
Multiplication, 11
array, 158, 374–375
matrix, 374–377, 380–381, 388

N
namelengthmax, 9
NaN, 15
nargin, 306, 307, 308
nargout, 306, 310–311
Nested functions, 301, 312–313,

449–450
Nested if-else, 93–98
Nested loops
combining with if statements,

137–139
for loop, 128–139
matrices, 133–137

Nested parentheses, 368
Nested structures, 264–266
newline character, 53
not, 85
numden, 491–492
numel, 30–31
num2str, 234–235

O
Object code, 47
Object handle , 306, 341, 343
Object-oriented children, 341
ones, 26–27, 162
Open file, 278–279
Operand, 11
Operators
Boolean, 85
logical, 83, 85, 86t
precedence rules, 12, 86t, 166t
relational, 83, 84, 160–161
types, 11

or, 85
otherwise, 98
Outer function, 312–313
Outer loop, 128
Outer product, vectors, 380–381
Outlier, 405
Output argument, 69, 70, 71

P
pascal, 395
patch, 349–350, 349f
Permission strings, 278–279, 281,

289, 291
Persistent variables, 199–201
pi, 15, 160, 346
pie, 333–334, 340, 354–356
pie3, 335, 337
Pixel, 437–438
Place holder, 53, 54, 205
Plot
animation, 334–335
applications, 351–355

file data plotting, 353–355
plotting from function,

351–352
colors, 60
complex numbers, 486–488
customization, 339–340, 340f
file data plotting, 353–355
function
axis, 59, 59f
color, line types and marker

types, 60–61
data points, vectors, 59, 60f

516 Index
Plot (Continued)
Handle Graphics, see Handle

Graphics and plot properties
labeling plots, 327
line types, 60, 61
markers, 60–61
matrix, 328, 329f
matrix of plots, 328
plotting from function, 351–352
properties, 341–351
script customization, 58–63
simple functions, 61–63
symbols, 60–61
three-dimensional plots, 335–339

colorbar function, 339
3D bar chart, 335–336, 336f
3D pie chart, 337, 337f
3D space, 335
spiral matrix, 336–337, 337f
surf plot of sphere, 337–339,

338f
wireframe mesh, 337–339, 338f

types, 329–334
bar, barh, area, and stem

functions, 329–330, 330f,
331

bar chart, 331, 332f
bins, 331–333
hist function, 331–333
histograms, 329, 331–333, 333f
pie charts, 329, 333–334, 334f
stacked bar chart, 331, 332f
stem plots, 329

plot, 58, 60, 233, 327–334, 344–345,
436–437

plot3, 335
polar, 487
Polar coordinates, complex number,

486
polyder, 497–498
polyfit, 476, 478–480
Polynomials, 474–475

complex equation representation,
485–486

poly2sym, 474
polyval, 474–475, 477–478, 486,

497–498
Preallocate, vector, 123–124
Precedence rules, 12, 86t, 166t
pretty, 492
Primary function, 189,

190–191
prod, 168, 403–405, 406
Program organization,
186–191

Prompt, 4, 46, 50
Pseudo-random numbers, 17–18

Q
quad, 497
quit, 4

R
rand, 18, 19, 26–27, 38
randi, 19
randint, 19
randn, 19
Random numbers, 17–19
real, 482
Real part, complex number, 481
rectangle, 341, 348
Rectangle object, 348, 348f, 349f
Recursive function, 313–318
Reduced Row Echelon Form, 392
Regression, 478–480
Relational expression, 83–87
Relational operator, 83, 84, 160–161
rem, 14
repmat, 33–34, 258
Reserved words, 9
reshape, 31–32
Return value, 13
RGB color, 437
rmfield, 254–255
roots, 474, 485–486
rot90, 31, 32–33
round, 14, 26
Row vector, 21, 22–25, 368
rref, 392, 393
Run, 47
Running product, 118
Running sum, 117
Runtime error, 202

S
Sampling, 475
Saturation arithmetic, 17
save, 63–67, 277, 278, 293, 294
Scalar, 21, 368
Scalar multiplication, 374
Scalar operations, 157
Scientific notation, 65
Scope, 197–201, 313–314
Script

documentation, 49
file creation, 47–49
input and output, 57
plot customization, 58–63

Script file, 4, 47, 177
Searching, 422–423

binary search, 424–427

recursive function, 426

sequential search, 423–424
SelectionChangeFcn, 461
SelectionChosenFcn, 463
Selection sort, 413–414
Selection statements, 83, 105–114

if-else statement, 91–93
if statement, 87–91

logical true and false
representation, 90–91

“is” functions, 102–104
logical operators, 85
logical true and false, 84–85
menu function, 100–102
nested if-else statements, 93–98
cascading if-else statement, 94
elseif clause, see elseif clause
logical expressions, 93–94

operator precedence rules, 86–87,
86t

relational expressions, 83–87
relational operators, 84, 84t
switch statement, 98–100
truth table, 85, 86t

Sequential search, 423–424
set, 343
setdiff, 408–410
Set operations, vectors, 408–412
setxor, 408–410
Side effects, 183
sign, 14–15
simplify, 490
sin, 63, 64f, 233, 304f, 306f, 342f,

344f
sind, 236
single, 15
single and double type, 15
size, 29, 96
Slider, 454
solve, 362, 367, 368
sort, 414–415, 417–418
Sorting, 412–419

algorithm, 412–413
indexing, 419–422

vectors of structures, 421–422

selection sort, 413–414
sort, 414–415

517Index
strings, 417–419
vectors of structures, 415–417

sortrows, 418–419
sound, 435, 436, 437
Sound files
audio file formats, 437
.au files, 437
chirp and train signals, 436–437,

436f
MAT-files, 435, 436
sampling frequency, 435
sound signal, 435
.wav files, 437

Source, 449, 455–457
Source code, 47
sphere, 337–339, 338f
spiral, 336–337, 337f
Spreadsheet files, 291–293
sprintf, 220, 221–222, 222f, 224,

238b, 239, 257, 327,
328–329

sqrt, 319
Square matrix, 370
Standard deviation, 406–407
Statistical functions
mean

arithmetic mean, 403–404
geometric mean, 406
harmonic mean, 405
outlier, 405

median, 408
mode, 407
variance and standard deviation,

406–407
std, 406–407
stem, 329, 330f
stem3, 335
Step value, 22–23
strcat, 218–219
strcmp, 226–227
strcmpi, 227, 238
strfind, 228–229, 238b
str2func, 305, 351–352
String, 20–21, 215
number conversions, 234–235
operations

changing case, 225–226
comparing strings, 226–227
concatenation, 218–220
customization, 220–224
evaluating strings, 233
finding, replacing, and separating

strings, 228–232
whitespace character removal,
224–225

sorting, 417–419
storing in cell array, 250–252
string and number types

conversion, 234–237
variable creation, 215–218

strncmp, 227
strncmpi, 227
str2num, 235–238, 282
strrep, 230, 232
strtok, 230, 231, 232, 282
strtrim, 225, 229
struct, 252–253, 265
Structures, 264–265
fields, 252
indexing into vectors of structures,

421–422
nested structures, 264–266

dot operator, 266, 267

passing to functions, 255
related functions, 256–257
sorting vectors of structures,

415–417
variable creation and modification,

252–254
vectors of structures, 257
dot operator, 259–260
nested structures, 266–268
repmat to preallocate, 258

strvcat, 219, 220, 250–251
Subfunction, 189–191
subplot, 328–329, 331, 332,

339–340, 478, 479f
subs, 491
Subscript, 23, 24, 27, 228,

247–248
Subscripted indexing, 27, 28
Substring, 216
Subtraction, 11
sum, 260–261, 264, 403–405
surf, 337–339, 338f
switch, 98–100
sym, 489
Symbolic mathematics, 488
calculus, 495–499
displaying expressions, 492
overview, 488–494
simplification functions, 490–492
solving simultaneous linear

equations, 492–494
symbolic variables and expressions,

489–490
Symmetric matrix, 373–374
sym2poly, 474
syms, 490
Syntax error, 202

T
Temporary variable, 89–90
text, 345–346
textscan, 279–280, 283–284, 286,

288, 354–356
Three-dimensional matrices, 37–38
Three-dimensional plots, 335–339
tic/toc, 171
Timing code, 171–172
title, 58, 327
Token, 230–231
Top-down design, 46
trace, 371–372
Trace, square matrix, 371–372
Tracing, 203–204
Trailing blanks, 216
Trailing zeros, 54
train, 435, 436–437, 436f
Transposition, vectors, 25
Trapezoidal rule, 495–497
trapint, 495
trapz, 496, 497
Tridiagonal matrix, 372
tril, 373
triu, 373
true, 16, 83, 84–85, 87, 90–91, 93–94,

102, 139, 140, 160–161, 162,
163–164, 340, 411, 483

True color, 437
True color matrices, 443–446, 444f
Truth table, logical operators, 86t
Two-dimensional plots, 58–63,

327–334, 339–340
type, 15, 47, 65
Type casting, 16–17

U
uibuttongroup, 446, 461, 463
uicontrol, 448
uint8, uint16, uint32, uint64, 15–16
uipanel, 446, 463
Unary operator, 11
union, 408–409
unique, 408–409, 410
Unsigned integers, 15–16, 443–444
unsigned integer types, 15–16
Unwind, 28, 56

518 Index
upper, 225–226
Upper triangular matrix, 373
User, 6, 50
User-defined functions, 68–75,

177–185
body, 178
end, 178
header, 178
help, 178
M-file, 177–178
passing arguments to functions,

184–185
returning more than one value,

178–182
returning no values, 182–183
returning one value, 177–178
returning values vs. printing,

183–184

V
var, 406
varargin, 306, 307, 308
varargout, 306, 309–310
Variable

creation, 6
decrementing, 8
incrementing, 8
initializing, 8
local, 197
MAT-file

appending to file, 291

names, 8
persistent, 199–201
scope, 197–201
persistent variables, 199–201

structure creation andmodification,
252–254

writing to file, 289–291
Variable number of arguments,
306–311

input arguments, 306–309
output arguments, 309–311

Variance, 406–407
Vector

column vector creation, 25
element modification, 23–25
empty vector, 35–37
functions, 34–35
indexing into vectors of structures,

421–422
for loops

preallocating vectors, 123–124
sums and products, 117–124

operations, 379–381
preallocate, 123–124
printing, 55–57
row vector creation, 22–25
set operations, 408–412
sorting vectors of structures,

415–417
strings as, 216–218
structures, 257–264
nested structures, 264–266

types, 21–38, 368–381
Vectorized code, 166

diff, 169–170
features, MATLAB, 168
“is” functions, 168
logical vectors

any and all functions, 163
operator precedence rules, 166,

166t
or and and operators, 165, 165t
programming concept, 160b,

162b
relational operators, 160–161
script algorithm, 164–165
loops and selection statements,

168–169
meshgrid, 170–171
timing, 171–172
vectors and matrices
function arguments, 159–160
loops, 155–156
operations, 156–158

Vectorizing
input, 142–143
logical vectors, 160–166
multiple conditions, 141

W
while loops

counting, 143–144
error-checking user input,

145–148
file reading, 141–142

Whitespace characters, 216, 224–225
who, 9–10, 293–294
whos, 9–10, 482
Workspace Window, 6, 7, 9, 16–17,

253, 482, 483

X
xlabel, 58, 327
xlsread, 291–292
xlswrite, 291
xor, 85

Y
ylabel, 58, 327

Z
zeros, 26–27, 162

	Cover Page
	Title Page
	Copyright Page
	Dedication
	CONTENTS
	Preface
	Motivation
	Modifications in Second Edition
	Key Features
	Side-by-Side Programming Concepts and Built-in Functions
	Systematic Approach
	File Input/Output
	User-Defined Functions
	Advanced Programming Concepts
	Problem-Solving Tools
	Plots, Imaging, and Graphical User Interfaces
	Vectorized Code

	Layout of Text
	Pedagogical Features
	Additional Book Resources

	Acknowledgments
	1 Introduction to MATLAB
	1.1 Getting into MATLAB
	1.2 The MATLAB Desktop Environment
	1.3 Variables and Assignment Statements
	Initializing, incrementing, and decrementing
	Variable names

	1.4 Expressions
	The format function and ellipsis
	Operators
	Operator precedence rules

	Built-in functions and help
	Constants
	Types
	Random numbers
	Generating random integers

	1.5 Characters and Encoding
	1.6 Vectors and Matrices
	Creating row vectors
	The colon operator and linspace function
	Referring to and modifying elements

	Creating column vectors
	Creating matrix variables
	Referring to and modifying matrix elements

	Dimensions
	Changing dimensions

	Using functions with vectors and matrices
	Empty vectors
	Three-dimensional matrices

	Summary

	2 Introduction to MATLAB Programming
	2.1 Algorithms
	2.2 MATLAB Scripts
	Documentation

	2.3 Input and Output
	Input Function
	Output statements: disp and fprintf
	Printing vectors and matrices

	2.4 Scripts with Input and Output
	2.5 Scripts to Produce and Customize Simple Plots
	The plot function
	Customizing a plot: color, line types, marker types

	Simple related plot functions

	2.6 Introduction to File Input/Output (Load and Save)
	Writing data to a file
	Appending data to a data file
	Reading from a file
	Example: Load from a file and plot the data

	2.7 User-Defined Functions That Return a Single Value
	Function definitions
	Calling a function
	Calling a user-defined function from a script
	Simple programs

	Passing multiple arguments
	Functions with local variables

	Summary

	3 Selection Statements
	3.1 Relational Expressions
	3.2 The if Statement
	Representing logical true and false

	3.3 The If-else Statement
	3.4 Nested if-Else Statements
	The elseif clause

	3.5 The switch statement
	3.6 The menu function
	3.7 The ``is´´ functions in MATLAB
	Summary

	4 Loop Statements
	4.1 The For Loop
	Finding sums and products
	Sums and products with vectors
	Preallocating a vector

	Combining for loops with if statements
	For loops that do not use the iterator variable in the action
	Input in a for loop

	4.2 Nested For Loops
	Nested loops and matrices
	Combining nested for loops and if statements

	4.3 While Loops
	Multiple conditions in a while loop
	Reading from a file in a while loop
	Input in a while loop
	Counting in a while loop
	Error-checking user input in a while loop
	Error-checking for integers

	Summary

	5 Vectorized Code
	5.1 Loops with Vectors and Matrices
	5.2 Operations on Vectors and Matrices
	5.3 Vectors and Matrices as Function Arguments
	5.4 Logical Vectors
	Logical built-in functions

	5.5 Vectorizing Code
	5.6 Timing
	Summary

	6 MATLAB Programs
	6.1 More Types of User-Defined Functions
	Functions that return more than one value
	Functions that accomplish a task without returning values
	Functions that return values versus printing
	Passing arguments to functions

	6.2 MATLAB Program Organization
	Modular programs
	Subfunctions

	6.3 Application: Menu-Driven Modular Program
	6.4 Variable Scope
	Persistent variables

	6.5 Debugging Techniques
	Types of errors
	Tracing
	Editor/Debugger
	Function stubs

	Summary

	7 String Manipulation
	7.1 Creating String Variables
	Strings as vectors

	7.2 Operations on Strings
	Concatenation
	Creating customized strings
	Applications of customized strings: prompts, labels, arguments to functions

	Removing white space characters
	Changing case
	Comparing strings
	Finding, replacing, and separating strings
	Evaluating a string

	7.3 The "is" functions for strings
	7.4 Converting Between String and Number Types
	Summary

	8 Data Structures: Cell Arrays and Structures
	8.1 Cell Arrays
	Creating cell arrays
	Referring to and displaying cell array elements and attributes
	Storing strings in cell arrays

	8.2 Structures
	Creating and modifying structure variables
	Passing structures to functions
	Related structure functions
	Vectors of structures
	Nested structures
	Vectors of nested structures

	Summary

	9 Advanced File Input and Output
	9.1 Lower-level File I/O Functions
	Opening and closing a file
	Reading from files
	Comparison of input file functions

	Writing to files
	Appending to files

	9.2 Writing and reading spreadsheet files
	9.3 Using MAT-files for Variables
	Writing variables to a file
	Appending variables to a MAT-file
	Reading from a MAT-file

	Summary

	10 Advanced Functions
	10.1 Anonymous Functions
	10.2 Uses of Function Handles
	Function functions

	10.3 Variable Numbers of Arguments
	Variable number of input arguments
	Variable number of output arguments

	10.4 Nested Functions
	10.5 Recursive Functions
	Summary

	11 Advanced Plotting Techniques
	11.1 Plot Functions
	Matrix of plots
	Plot types

	11.2 Animation
	11.3 Three-Dimensional Plots
	11.4 Customizing Plots
	11.5 Handle Graphics and Plot Properties
	Plot objects and properties
	Core objects

	11.6 Plot Applications
	Plotting from a function
	Plotting file data

	Summary

	12 Matrix Representation of Linear Algebraic Equations
	12.1 Matrix Definitions
	Matrix properties
	Square matrices
	Array operations
	Matrix multiplication
	Matrix operations
	Vector operations
	Dot product and cross product

	12.2 Matrix Solutions to Systems of Linear Algebraic Equations
	Solving 2 x 2 systems of equations
	Gauss and Gauss-Jordan elimination
	Gauss elimination
	Gauss-Jordan elimination

	Reduced row echelon form
	Finding a matrix inverse by reducing an augmented matrix

	Summary

	13 Basic Statistics, Sets, Sorting, and Indexing
	13.1 Statistical Functions
	Mean
	Variance and standard deviation
	Mode
	Median

	13.2 Set Operations
	13.3 Sorting
	Sorting vectors of structures
	Sorting strings

	13.4 Index Vectors
	Indexing into vectors of structures

	13.5 Searching
	Sequential search
	Binary search

	Summary

	14 Sights and Sounds
	14.1 Sound Files
	14.2 Image Processing
	Colormaps
	True color matrices

	14.3 Introduction to Graphical User Interfaces
	Summary

	15 Advanced Mathematics
	15.1 Fitting Curves to Data
	Polynomials
	Curve fitting
	Interpolation and extrapolation
	Least squares

	15.2 Complex Numbers
	Equality for complex numbers
	Adding and subtracting complex numbers
	Multiplying complex numbers
	Complex conjugate and absolute value
	Complex equations represented as polynomials
	Polar form
	Plotting

	15.3 Symbolic Mathematics
	Symbolic variables and expressions
	Simplification functions
	Displaying expressions
	Solving equations

	15.4 Calculus: Integration and Differentiation
	Integration and the trapezoidal rule
	Differentiation
	Calculus in Symbolic Math Toolbox

	Summary

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

