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Abstract

Matrix Calculus[3] is a very useful tool in many engineering prob-
lems. Basic rules of matrix calculus are nothing more than ordinary
calculus rules covered in undergraduate courses. However, using ma-
trix calculus, the derivation process is more compact. This document
is adapted from the notes of a course the author recently attends. It
builds matrix calculus from scratch. Only prerequisites are basic cal-
culus notions and linear algebra operation.

To get a quick executive guide, please refer to the cheat sheet in
section(4).

To see how matrix calculus simplify the process of derivation, please
refer to the application in section(3.4).
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1 Introductory Example

We start with an one variable linear function:

f(x) = ax (1)

To be coherent, we abuse the partial derivative notation:

∂f

∂x
= a (2)

Extending this function to be multivariate, we have:

f(x) =
∑
i

aixi = aTx (3)

Where a = [a1, a2, . . . , an]T and x = [x1, x2, . . . , xn]T. We first compute
partial derivatives directly:

∂f

∂xk
=
∂(
∑

i aixi)

∂xk
= ak (4)

for all k = 1, 2, . . . , n. Then we organize n partial derivatives in the following
way:

∂f

∂x
=



∂f

∂x1
∂f

∂x2
...
∂f

∂xn


=


a1
a2
...
an

 = a (5)

The first equality is by proper definition and the rest roots from ordinary
calculus rules.

Eqn(5) is analogous to eqn(2), except the variable changes from a scalar
to a vector. Thus we want to directly claim the result of eqn(5) without
those intermediate steps solving for partial derivatives separately. Actually,
we’ll see soon that eqn(5) plays a core role in matrix calculus.

Following sections are organized as follows:

• Section(2) builds commonly used matrix calculus rules from ordinary
calculus and linear algebra. Necessary and important properties of lin-
ear algebra is also proved along the way. This section is not organized
afterhand. All results are proved when we need them.

• Section(3) shows some applications using matrix calculus. Table(1)
shows the relation between Section(2) and Section(3).

• Section(4) concludes a cheat sheet of matrix calculus. Note that this
cheat sheet may be different from others. Users need to figure out
some basic definitions before applying the rules.
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Table 1: Derivation and Application Correspondance
Derivation Application

2.1-2.7 3.1
2.9,2.10 3.2
2.8,2.11 3.3

2 Derivation

2.1 Organization of Elements

From the introductary example, we already see that matrix calculus does
not distinguish from ordinary calculus by fundamental rules. However, with
better organization of elements and proving useful properties, we can sim-
plify the derivation process in real problems.

The author would like to adopt the following definition:

Definition 1. For a scalar valued function f(x), the result
∂f

∂x
has the same

size with x. That is

∂f

∂x
=



∂f

∂x11

∂f

∂x12
. . .

∂f

∂x1n
∂f

∂x21

∂f

∂x22
. . .

∂f

∂x2n
...

...
. . .

...
∂f

∂xm1

∂f

∂xm2
. . .

∂f

∂xmn


(6)

In eqn(2), x is a 1-by-1 matrix and the result
∂f

∂x
= a is also a 1-by-1

matrix. In eqn(5), x is a column vector(known as n-by-1 matrix) and the

result
∂f

∂x
= a has the same size.

Example 1. By this definition, we have:

∂f

∂xT
= (

∂f

∂x
)T = aT (7)

Note that we only use the organization definition in this example. Later we’ll
show that with some matrix properties, this formula can be derived without

using
∂f

∂x
as a bridge.

2.2 Deal with Inner Product

Theorem 1. If there’s a multivariate scalar function f(x) = aTx, we have
∂f

∂x
= a.
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Proof. See introductary example.

Since aTx is scalar, we can write it equivalently as the trace of its own.
Thus,

Proposition 2. If there’s a multivariate scalar function f(x) = Tr
[
aTx

]
,

we have
∂f

∂x
= a.

Tr [•] is the operator to sum up diagonal elements of a matrix. In the
next section, we’ll explore more properties of trace. As long as we can
transform our target function into the form of theorem(1) or proposition(2),
the result can be written out directly. Notice in proposition(2), a and x are
both vectors. We’ll show later as long as their sizes agree, it holds for matrix
a and x.

2.3 Properties of Trace

Definition 2. Trace of square matrix is defined as: Tr [A] =
∑

iAii

Example 2. Using definition(1,2), it is very easy to show:

∂Tr [A]

∂A
= I (8)

since only diagonal elements are kept by the trace operator.

Theorem 3. Matrix trace has the following properties:

• (1) Tr [A+B] = Tr [A] + Tr [B]

• (2) Tr [cA] = cTr [A]

• (3) Tr [AB] = Tr [BA]

• (4) Tr [A1A2 . . . An] = Tr [AnA1 . . . An−1]

• (5) Tr
[
ATB

]
=
∑

i

∑
j AijBij

• (6) Tr [A] = Tr
[
AT
]

where A,B are matrices with proper sizes, and c is a scalar value.

Proof. See wikipedia [5] for the proof.

Here we explain the intuitions behind each property to make it eas-
ier to remenber. Property(1) and property(2) shows the linearity of trace.
Property(3) means two matrices’ multiplication inside a the trace operator
is commutative. Note that the matrix multiplication without trace is not
commutative and the commutative property inside the trace does not hold
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for more than 2 matrices. Property (4) is the proposition of property (3) by
considering A1A2 . . . An−1 as a whole. It is known as cyclic property, so that
you can rotate the matrices inside a trace operator. Property (5) shows a
way to express the sum of element by element product using matrix product
and trace. Note that inner product of two vectors is also the sum of ele-
ment by element product. Property (5) resembles the vector inner product
by form(ATB). The author regards property (5) as the extension of inner
product to matrices(Generalized Inner Product).

2.4 Deal with Generalized Inner Product

Theorem 4. If there’s a multivariate scalar function f(x) = Tr
[
ATx

]
, we

have
∂f

∂x
= A. (A, x can be matrices).

Proof. Using property (5) of trace, we can write f as:

f(x) = Tr
[
ATx

]
=
∑
ij

Aijxij (9)

It’s easy to show:
∂f

∂xij
=
∂(
∑

ij Aijxij)

∂xij
= Aij (10)

Organize elements using definition(1), it is proved.

With this theorem and properties of trace we revisit example(1).

Example 3. For vector a, x and function f(x) = aTx

∂f

∂xT
(11)

=
∂(aTx)

∂xT
(12)

(f is scalar) =
∂(Tr

[
aTx

]
)

∂xT
(13)

(property(3)) =
∂(Tr

[
xaT

]
)

∂xT
(14)

(property(6)) =
∂(Tr

[
axT

]
)

∂xT
(15)

(property of transpose) =
∂(Tr

[
(aT)TxT

]
)

∂xT
(16)

(theorem(4)) = aT (17)

The result is the same with example(1), where we used the basic definition.

The above example actually demonstrates the usual way of handling a
matrix derivative problem.
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2.5 Define Matrix Differential

Although we want matrix derivative at most time, it turns out matrix differ-
ential is easier to operate due to the form invariance property of differential.
Matrix differential inherit this property as a natural consequence of the fol-
lowing definition.

Definition 3. Define matrix differential:

dA =


dA11 dA12 . . . dA1n

dA21 dA22 . . . dA2n
...

...
. . .

...
dAm1 dAm2 . . . dAmn

 (18)

Theorem 5. Differential operator is distributive through trace operator:
dTr [A] = Tr [dA]

Proof.

LHS = d(
∑
i

Aii) =
∑
i

dAii (19)

RHS = Tr


dA11 dA12 . . . dA1n

dA21 dA22 . . . dA2n
...

...
. . .

...
dAm1 dAm2 . . . dAmn

 (20)

=
∑
i

dAii = LHS (21)

Now that matrix differential is well defined, we want to relate it back
to matrix derivative. The scalar version differential and derivative can be
related as follows:

df =
∂f

∂x
dx (22)

So far, we’re dealing with scalar function f and matrix variable x.
∂f

∂x
and

dx are both matrix according to definition. In order to make the quantities
in eqn(22) equal, we must figure out a way to make the RHS a scalar. It’s
not surprising that trace is what we want.

Theorem 6.

df = Tr

[
(
∂f

∂x
)Tdx

]
(23)

for scalar function f and arbitrarily sized x.
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Proof.

LHS = df (24)

(definition of scalar differential) =
∑
ij

∂f

∂xij
dxij (25)

RHS = Tr

[
(
∂f

∂x
)Tdx

]
(26)

(trace property (5)) =
∑
ij

(
∂f

∂x
)ij(dx)ij (27)

(definition(3)) =
∑
ij

(
∂f

∂x
)ijdxij (28)

(definition(1)) =
∑
ij

∂f

∂xij
dxij (29)

= LHS (30)

Theorem(6) is the bridge between matrix derivative and matrix differ-
ential. We’ll see in later applications that matrix differential is more con-
venient to manipulate. After certain manipulation we can get the form of
theorem(6). Then we can directly write out matrix derivative using this
theorem.

2.6 Matrix Differential Properties

Theorem 7. We claim the following properties of matrix differential:

• d(cA) = cdA

• d(A+B) = dA+ dB

• d(AB) = dAB +AdB

Proof. They’re all natural consequences given the definition(3). We only
show the 3rd one in this document. Note that the equivalence holds if LHS
and RHS are equivalent element by element. We consider the (ij)-th element.

LHSij = d(
∑
k

AikBkj) (31)

=
∑
k

(dAikBkj +AikdBkj) (32)

RHSij = (dAB)ij + (AdB)ij (33)

=
∑
k

dAikBkj +
∑
k

AikdBkj (34)

= LHSij (35)
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Example 4. Given the function f(x) = xTAx, where A is square and x is
a column vector, we can compute:

df = dTr
[
xTAx

]
(36)

= Tr
[
d(xTAx)

]
(37)

= Tr
[
d(xT)Ax+ xTd(Ax)

]
(38)

= Tr
[
d(xT)Ax+ xTdAx+ xTAdx

]
(39)

(A is constant) = Tr
[
dxTAx+ xTAdx

]
(40)

= Tr
[
dxTAx

]
+ Tr

[
xTAdx

]
(41)

= Tr
[
xTATdx

]
+ Tr

[
xTAdx

]
(42)

= Tr
[
xTATdx+ xTAdx

]
(43)

= Tr
[
(xTAT + xTA)dx

]
(44)

Using theorem(6), we obtain the derivative:

∂f

∂x
= (xTAT + xTA)T = Ax+ATx (45)

When A is symmetric, it simplifies to:

∂f

∂x
= 2Ax (46)

Let A = I, we have:
∂(xTx)

∂x
= 2x (47)

Example 5. For a non-singular square matrix X, we have XX−1 = I.
Take matrix differentials at both sides:

0 = dI = d(XX−1) = dXX−1 +Xd(X−1) (48)

Rearrange terms:
d(X−1) = −X−1dXX−1 (49)

2.7 Schema of Hanlding Scalar Function

The above example already demonstrates the general schema. Here we con-
clude the process:

1. df = dTr [f ] = Tr [df ]

2. Apply trace properties(see theorem(3)) and matrix differential prop-
erties(see theorem(7)) to get the following form:

df = Tr
[
ATx

]
(50)
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3. Apply theorem(6) to get:
∂f

∂x
= A (51)

To this point, you can handle many problems. In this schema, matrix
differential and trace play crucial roles. Later we’ll deduce some widely used
formula to facilitate potential applications. As you will see, although we rely
on matrix differential in the schema, the deduction of certain formula may
be more easily done using matrix derivatives.

2.8 Determinant

For a background of determinant, please refer to [6]. We first quote some
definitions and properties without proof:

Theorem 8. Let A be a square matrix:

• The minor Mij is obtained by remove i-th row and j-th column of A
and then take determinant of the resulting (n-1) by (n-1) matrix.

• The ij-th cofactor is defined as Cij = (−1)i+jMij.

• If we expand determinant with respect to the i-th row, det(A) =
∑

j AijCij.

• The adjugate of A is defined as adj(A)ij = (−1)i+jMji = Cji. So
adj(A) = CT

• For non-singular matrix A, we have: A−1 = adj(A)
det(A) = CT

det(A)

Now we’re ready to show the derivative of determinant. Note that de-
terminant is just a scalar function, so all techniques discussed above is
applicable. We first write the derivative element by element. Expanding
determinant on the i-th row, we have:

∂ det(A)

∂Aij
=
∂(
∑

j AijCij)

∂Aij
= Cij (52)

First equality is from determinant definition and second equality is by the
observation that only coefficient of Aij is left. Grouping all elements using
definition(1), we have:

∂ det(A)

∂A
= C = adj(A)T (53)

If A is non-singular, we have:

∂ det(A)

∂A
= (det(A)A−1)T = det(A)(A−1)T (54)

10
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Next, we use theorem(6) to give the differential relationship:

d det(A) = Tr

[
(
∂ det(A)

∂A
)TdA

]
(55)

= Tr
[
(det(A)(A−1)T)TdA

]
(56)

= Tr
[
det(A)A−1dA

]
(57)

In many practical problem, the log determinant is more widely used:

∂ ln det(A)

∂A
=

1

det(A)

∂ det(A)

∂A
= (A−1)T (58)

The first equality comes from chain rule of ordinary calculus( ln det(A) and
det(A) are both scalars). Similarly, we derive for differential:

d ln det(A) = Tr
[
A−1dA

]
(59)

2.9 Vector Function and Vector Variable

The above sections show how to deal with scalar functions. In order to deal
with vector function, we should restrict our attention to vector variables.
It’s no surprising that the tractable forms in matrix calculus is so scarse.
If we allow matrix functions and matrix variables, given the fact that fully
specification of all partial derivatives calls for a tensor, it will be difficult to
visualize the result on a paper. An alternative is to stretch functions and
variables such that they appear as vectors.

An annoying fact of matrix calculus is that, when you try to find reference
materials, there are always two kinds of people. One group calculates as the
transpose of another. Many online resources are not coherent, which mislead
people.

We borrow the following definitions of Hessian matrix[7] and Jacobian
matrix[8] from Wikipedia:

H(f) =



∂2f
∂x21

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x22

· · · ∂2f
∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2n


(60)

J =


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn

 (61)
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Note two things about second order derivative:

• By writting the abbreviation
∂2f

∂x2 ∂x1
, people mean

∂

∂x2

(
∂f

∂x1

)
by

convention. That is, first take derivative with respect to x1 and then
take derivative with respect to x2.

• The Hessian matrix can be regarded as first compute the
∂f

∂x
(us-

ing definition(1) to organize), and then compute a vector-function-to-

vector-variable derivative treating
∂f

∂x
as the function.

Bearing this in mind, we find Hessian matrix and Jacobian matrix ac-
tually have contradictory notion of organization. In order to be coherent in
this document, we adopt the Hessian style. That is, each row corresponds
to a variable, and each column corresponds to a function. To be concrete:

Definition 4. For a vector function f = [f1, f2, . . . , fn]T, and fi = fi(x)
where x = [x1, x2, . . . , xm]T, we have the following definition:

∂f

∂x
=



∂f1
∂x1

∂f2
∂x1

. . .
∂fn
∂x1

∂f1
∂x2

∂f2
∂x2

. . .
∂fn
∂x2

...
...

. . .
...

∂f1
∂xm

∂f2
∂xm

. . .
∂fn
∂xm


(62)

Example 6. According to definition(4), we revisit the definition of Hessian
and Jacobian.

Given twice differentiable function f(x), the Hessian is defined as:

H(f) =
∂

∂x

(
∂f

∂xT

)
(63)

Given two variables x and y, if we want to transform x into y, the
Jacobian is defined as:

J = det

(
(
∂x

∂y
)T
)

= det

(
∂x

∂y

)
(64)

Note ”Jacobian” is the shorthand name of ”Jacobian determinant”, which
is the determinant of ”Jacobian matrix”. Due to the transpose invariance
of determinant, the second equality shows that it does not matter which
organization method we use if we only want to do compute the Jacobian,
rather than Jacobin matrix. However, if we’re to write out the Jacobin
matrix, this may be a pitfall depending on what organization of vector-to-
vector derivative we define.
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2.10 Vector Function Differential

In the previous sections, we relate matrix differential with matrix derivatvie
using theorem(6). This theorem bridges the two quantities using trace. Thus
we can handle the problem using preferred form intechangeably. (As is seen:
calculating derivative of determinant is more direct; calculating differential
of inverse is tractable.)

In this section, we provide another theorem to relate vector function
differential to vector-to-vector derivatives. Amazingly, it takes a cleaner
form.

Theorem 9. Consider the definition(4), we have: df = (
∂f

∂x
)Tdx

Proof. Apparently, df has n components, so we prove element by element.
Consider the j-th component:

LHSj = dfj (65)

=
m∑
i=1

∂fj
∂xi

dxi (66)

RHSj = ((
∂f

∂x
)Tx)j (67)

=
m∑
i=1

(
∂f

∂x
)Tjixi (68)

=
m∑
i=1

(
∂f

∂x
)ijxi (69)

=
m∑
i=1

(
∂f

∂x
)ijxi (70)

=
m∑
i=1

(
∂fj
∂xi

)xi = LHSj (71)

Note that the trace operator is gone compared with theorem(6) due to
the nice way of defining matrix vector multiplication. We can have a similar
schema of handling vector-to-vector derivatives using this scheme. We don’t
bother to list the schema again. Instead, we provide an example.

Example 7. Consider the variable transformation:x = σΛ−0.5WTξ, where
σ is a real value, Λ is full rank diagonal matrix, and W is orthonormal
square matrix (namelyWWT = WTW = I). Compute the absolute value of
Jacobian.

13
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First, we want to find
∂x

∂ξ
. This can be easily done by computing the

differential:
dx = d(σΛ−0.5WTξ) = σΛ−0.5WTdξ (72)

Applying theorem(9), we have:

∂x

∂ξ
= (σΛ−0.5WT)T (73)

Thus,

Jm = (
∂x

∂ξ
)T = ((σΛ−0.5WT)T)T = σΛ−0.5WT (74)

where Jm is the Jacobian matrix and J = det(Jm). Then we use some
property of determinant to calculate the absolute value of Jacobian:

|J | = |det(Jm)| (75)

=
√
|det(Jm)| |det(Jm)| (76)

=
√
|det(JT

m)| |det(Jm)| (77)

=
√
|det(JT

mJm)| (78)

=
√
|det(JmJT

m)| (79)

=
√
|det(WΛ−0.5σσΛ−0.5WT)| (80)

=
√
|det(σ2WΛ−1WT)| (81)

If the dimension of x and ξ is d and we define Σ = WΛWT. A nice result
is calculated:

|J | = σd det(Σ)−1/2 (82)

which we’ll see an application of generalizing the multivariate Gaussian dis-
tribution.

Theorem 10. When f and x are of the same size, with definition(4):

(
∂f

∂x
)−1 =

∂x

∂f
(83)

Proof. Using theorem(9):

df = (
∂f

∂x
)Tdx (84)

((
∂f

∂x
)T)−1df = dx (85)

dx = ((
∂f

∂x
)−1)Tdf (86)

(87)

14
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Using theorem(9 in the reverse direction:

∂x

∂f
= (

∂f

∂x
)−1 (88)

This result is consistent with scalar derivative. It is useful in manipulat-
ing variable substitutions(the inverse of Jacobian is the Jacobian of reverse
substitution).

2.11 Chain Rule

In the schemas we conclude above, differential is convenient in many prob-
lems. For derivative, the nice aspect is that we have chain rule, which is an
analogy to the chain rule in ordinary calculus. However, one should be very
careful applying this chain rule, for the multiplication of matrix requires
dimension agreement.

Theorem 11. Suppose we have n column vectors x(1), x(2), . . . , x(n), each
is of length l1, l2, . . . , ln. We know x(i) is a function of x(i−1), for all i =
2, 3, . . . , n. The following relationship holds:

∂x(n)

∂x(1)
=
∂x(2)

∂x(1)
∂x(3)

∂x(2)
. . .

∂x(n)

∂x(n−1)
(89)

Proof. Under definition(4), theorem(9) holds. We apply this theorem to
each consecutive vectors:

dx(2) = (
∂x(2)

∂x(1)
)Tdx(1) (90)

dx(3) = (
∂x(3)

∂x(2)
)Tdx(2) (91)

. . . (92)

dx(n) = (
∂x(n)

∂x(n−1)
)Tdx(n−1) (93)

Plug previous one into next one, we have:

dx(n) = (
∂x(n)

∂x(n−1)
)T . . . (

∂x(3)

∂x(2)
)T(

∂x(2)

∂x(1)
)Tdx(1) (94)

= (
∂x(2)

∂x(1)
∂x(3)

∂x(2)
. . .

∂x(n)

∂x(n−1)
)Tdx(1) (95)

Applying theorem(9) again in the reverse direction, we have:

∂x(n)

∂x(1)
=
∂x(2)

∂x(1)
∂x(3)

∂x(2)
. . .

∂x(n)

∂x(n−1)
(96)
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Proposition 12. Consider a chain of: x a scalar, y a column vector, z a
scalar. z = z(y), yi = yi(x), i = 1, 2 . . . , n. Apply the chain rule, we have

∂z

∂x
=
∂y

∂x

∂z

∂y
=

n∑
i=1

∂yi
∂x

∂z

∂yi
(97)

Now we explain the intuition behind. x, z are both scalar, so we’re
basically calculating the derivative in ordinary calculus. Besides, we have a

group of ”bridge variables”, yi.
∂yi
∂x

∂z

∂yi
is just the result of applying scalar

chain rule on the chain:x→ yi → z. The separate results of different bridge
variables are additive! To see why I make this proposition, interested readers
can refer to the comments in the corresponding LATEX source file.

Example 8. Show the derivative of (x−µ)TΣ−1(x−µ) to µ (for symmetric
Σ−1).

∂[(x− µ)TΣ−1(x− µ)]

∂µ
(98)

=
∂[x− µ]

∂µ

∂[(x− µ)TΣ−1(x− µ)]

∂[x− µ]
(99)

(example(4)) =
∂[x− µ]

∂µ
2 Σ−1(x− µ) (100)

(d[x− µ] = −I dµ) = −I 2 Σ−1(x− µ) (101)

= −2Σ−1(x− µ) (102)

3 Application

3.1 The 2nd Induced Norm of Matrix

The induced norm of matrix is defined as [4]:

||A||p = max
x

||Ax||p
||x||p

(103)

where || • ||p denotes the p-norm of vectors. Now we solve for p = 2. (By
default, || • || means || • ||2)

The problem can be restated as:

||A||2 = max
x

||Ax||2

||x||2
(104)

since all quantities involved are non-negative. Then we consider a scaling of
vector x′ = tx, thus:

||A||2 = max
x′

||Ax′||2

||x′||2
= max

x

||tAx||2

||tx||2
= max

x

t2||Ax||2

t2||x||2
= max

x

||Ax||2

||x||2
(105)
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This shows the invariance under scaling. Now we can restrict our attention
to those x with ||x|| = 1, and reach the following formulation:

Maximize f(x) = ||Ax||2 (106)

s.t. ||x||2 = 1 (107)

The standard way to handle this constrained optimization is using La-
grange relaxation:

L(x) = f(x)− λ(||x||2 − 1) (108)

Then we apply the general schema of handling scalar function on L(x). First
take differential:

dL(x) = dTr [L(x)] (109)

= Tr [d(L(x))] (110)

= Tr
[
d(xTATAx− λ(xTx− 1))

]
(111)

= Tr
[
2xTATAdx− λ(2xTdx)

]
(112)

= Tr
[
(2xTATA− 2λxT)dx

]
(113)

Next write out derivative:

∂L

∂x
= 2ATAx− 2λx (114)

Let
∂L

∂x
= 0, we have:

(ATA)x = λx (115)

That means x is the eigen vector of (ATA) (normalized to ||x|| = 1), and λ
is corresponding eigen value. We plug this result back to objective function:

f(x) = xT(ATAx) = xT(λx) = λ (116)

which means, to maximize f(x), we should pick the maximum eigen value:

||A||2 = max f(x) = λmax(ATA) (117)

That is:

||A|| =
√
λmax(ATA) = σmax(A) (118)

where σmax denotes the maximum singular value. If A is real symmetric,
σmax(A) = λmax(A).

Now we consider a real symmetric A and check whether:

λ2max(A) = max
x

||Ax||2

||x||2
= max

x

xTATAx

xTx
(119)

17



HU, Pili Matrix Calculus

Proof. Since ATA is real symmetric, it has an orthnormal basis formed by
n eigen vectors, v1, v2, . . . , vn, with eigen values λ1 ≥ λ2 ≥ · · · ≥ λn. We
can write x =

∑
i civi, where ci =< x, vi >. Then,

xTATAx

xTx
(120)

(vk is an orthnormal set) =

∑
i λic

2
i∑

i c
2
i

(121)

≤
∑

i λ1c
2
i∑

i c
2
i

(122)

= λ1 (123)

Now we have proved an upper bound for ||A||2. We show this bound is
achievable by assigning x = v1.

3.2 General Multivaraite Gaussian Distribution

The first time I came across multivariate Gaussian distribution is in my
sophomore year. However, at that time, the multivariate version is optional,
and the text book only gives us the formula rather than explaining any
intuition behind. I had trouble remembering the formula, since I don’t
know why it is the case.

During the Machine Learning course[12] I take recently, the rationale
becomes clear to me. We’ll start from the basic notion, generalize it to mul-
tivariate isotropic Gaussian, and then use matrix calculus to derive the most
general version. The following content is adapted from the corresponding
course notes and homework exercises.

We start from the univariate Gaussian[9]:

G(x|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (124)

The intuition behind is:

• Use one centroid to represent a set of samples coming from the same
Gaussian mixture, which is denoted by µ.

• Allow the existence of error. We express the reverse notion of ”error”
by ”likelihood”. We want the density function describing the distribu-
tion that the farther away, the less likely a sample is drawn from the
mixture. We want this likelihood to decrease in a accelerated man-
ner. Negative exponential is one proper candidate, say exp{−D(x, µ)},
where D measures the distance between sample and centroid.

• To fit human’s intuition, the ”best” choice of distance measure is Eu-
clidean distance, since we live in this Euclidean space. So far, we have
exp{−(x− µ)2}
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• How fast the likelihood decreases should be controlled by a parameter,

say exp{−(x−µ)
2

σ }. σ can also be thought to control the uncertainty.

Now we already get Gaussian distribution. The division by 2 in the exponent
is only to simplify deductions. Writting σ2 instead of σ is to align with some
statistic quantities. The rest term is basically used to do normalization,
which can be derived by extending the 1-D Gaussian integral to a 2-D area
integral using Fubini’s thorem[11]. Interested reader can refer to [10].

Now we’re ready to extend the univariate version to multivariate version.
The above four characteristics appear as simple interpretation to everyone
who learned Gaussian distribution before. However, they’re the real ”ax-
ioms” behind. Now consider an isotropic Gaussian distribution and we start
with perpendicular axes. The uncertainty along each axis is the same, so
the distance measure is now ||x − µ||22 = (x − µ)T(x− µ). The exponent is
exp{− 1

2σ2 (x−µ)T(x−µ)}. Integrating over the volume of x can be done by
transforming it into iterated form using Fubini’s theorem. Then we simply
apply the method that we deal with univariate Gaussian integral. Now we
have multivariate isotropic Gaussian distribution:

G(x|µ, σ2) =
1

(2π)d/2σd
exp{− 1

2σ2
(x− µ)T(x− µ)} (125)

where d is the dimension of x, µ.
We are just one step away from a general Gaussian. Suppose we have a

general Gaussian, whose covariance is not isotropic nor does it all along the
standard Euclidean axes. Denote the sample from this Gaussian by ξ. We
can first apply a rotation on ξ to bring it back to the standard axes, which
can be done by left multiplying an orthongonal matrix W T . Then we scale
each component of Wξ by different ratio to make them isotropic, which can
be done by left multiplying a diagonal matrix Λ−0.5. The exponent −0.5 is
simply to make later discussion convenient. Finally, we multiply it by σ to
be able to control the uncertainty at each direction again. The transform
is given by x = σΛ−0.5WTξ. Plugging this back to eqn(125), we derive the
following exponent:

exp{− 1

2σ2
(x− µ)T(x− µ)} (126)

= exp{− 1

2σ2
(σΛ−0.5WTξ − µ)T(σΛ−0.5WTξ − µ)} (127)

= exp{− 1

2σ2
(ξ − µξ)Tσ2WΛ−1WT(ξ − µξ)} (128)

= exp{−1

2
(ξ − µξ)TΣ−1(ξ − µξ)} (129)

where we let µξ = Eξ, and we plugged in the following result:

µ = Ex = E[σΛ−0.5WTξ] = σΛ−0.5WTEξ = σΛ−0.5WTµξ (130)
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Now we only need to find the normalization factor to make it a probability
distribution. Note eqn(125) integrates to 1, which is:∫

G(x|µ, σ2)dx =

∫
1

(2π)d/2σd
exp{− 1

2σ2
(x− µ)T(x− µ)}dx = 1 (131)

Transforming variable from x to ξ causes a scaling by absolute Jacobian,
which we already calculated in example(7). That is:∫

1

(2π)d/2σd
exp{−1

2
(ξ − µξ)TΣ−1(ξ − µξ)}|J |dξ = 1 (132)∫

σd det(Σ)−1/2

(2π)d/2σd
exp{−1

2
(ξ − µξ)TΣ−1(ξ − µξ)}dξ = 1 (133)∫

1

(2π)d/2 det(Σ)1/2
exp{−1

2
(ξ − µξ)TΣ−1(ξ − µξ)}dξ = 1 (134)

The term inside integral is just the general Gaussian density we want to
find:

G(x|µ,Σ) =
1

(2π)d/2 det(Σ)1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)} (135)

3.3 Maximum Likelihood Estimation of Gaussian

Given N samples, xt, t = 1, 2, . . . , N , independently indentically distributed
that are drawn from the following Gaussian distribution:

G(xt|µ,Σ) =
1

(2π)d/2 det(Σ)1/2
exp{−1

2
(xt − µ)TΣ−1(xt − µ)} (136)

solve the paramters θ = {µ,Σ}, that maximize:

p(X|θ) =
N∏
t=1

G(xt|θ) (137)

It’s more conveninent to handle the log likelihood as defined below:

L = ln p(X|θ) =

N∑
t=1

lnG(xt|θ) (138)

We write each term of L out to facilitate further processing:

L = −Nd
2

ln(2π)− N

2
ln |Σ| − 1

2

∑
t

(xt − µ)TΣ−1(xt − µ) (139)

Taking derivative of µ, the first two terms are gone and the third term is
already handled by example(8):

∂L

∂µ
=
∑
t

Σ−1(xt − µ) (140)
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Let
∂L

∂µ
= 0, we solve for µ = 1

N

∑
t xt. Then take derivative of Σ. It eaiser

to be handled using our trace schema:

dL = d[−N
2

ln |Σ|] + d[−1

2

∑
t

(xt − µ)TΣ−1(xt − µ)] (141)

The first term is:

d[−N
2

ln |Σ|] (142)

= −N
2

d ln |Σ| (143)

(section(2.8)) = −N
2

Tr
[
Σ−1dΣ

]
(144)

The second term is:

d[−1

2

∑
t

(xt − µ)TΣ−1(xt − µ)] (145)

= −1

2
dTr

[∑
t

(xt − µ)TΣ−1(xt − µ)

]
(146)

= −1

2
dTr

[∑
t

(xt − µ)(xt − µ)TΣ−1

]
(147)

(example(5)) = −1

2
Tr

[
[
∑
t

(xt − µ)(xt − µ)T](−Σ−1dΣΣ−1)

]
(148)

=
1

2
Tr

[
Σ−1[

∑
t

(xt − µ)(xt − µ)T]Σ−1dΣ

]
(149)

Then we have:

∂L

∂Σ
= −N

2
Σ−1 +

1

2
Σ−1[

∑
t

(xt − µ)(xt − µ)T]Σ−1 (150)

Let
∂L

∂Σ
= 0, we solve for Σ = 1

N

∑
t (xt − µ)(xt − µ)T.

3.4 Least Square Error Inference: a Comparison

This application is rather simple. The purpose is to compare the derivation
with and without matrix calculus.

3.4.1 Problem Definition

Here we consider a simple version: 1

1Sid Jaggi, Dec 2011, Final Exam Q1 of CUHK ERG2013
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Given the linear system with noise y = Ax+n, where x is the input, y is
the output and n is the noise term. A as the system parameter is a known
p× q matrix. Now we have one observation of output, ŷ. We want to infer
the ”most possible” corresponding input x̂ defined by the following formula:
2

x̂ = arg min
x:ŷ=Ax+n

||n||2 (151)

3.4.2 Ordinary Formulation and Derivation

First, we write the error function explicitly:

f(x) = ||ŷ −Ax||2 (152)

=

p∑
i=1

(ŷi − (Ax)i)
2 (153)

=

p∑
i=1

(ŷi −
q∑
j=1

Aijxj)
2 (154)

This is the quadratic form of all xk, k = 1, 2 . . . q. We take derivative of
xk:

∂f

∂xk
=

p∑
i=1

[2(ŷi −
q∑
j=1

Aijxj)(−Aik)] (155)

= −2

p∑
i=1

[(ŷi − (Ax)i)Aik] (156)

= −2 < (ŷ − (Ax)), Ak > (157)

= −2AT
k (ŷ −Ax) (158)

where Ak is the k-th column of A and < ., . > denotes the inner product of

two vectors. We let all
∂f

∂xk
= 0 and put the q equations together to get the

matrix form:

∂f

∂x1
∂f

∂x2
...
∂f

∂xq


=


−2AT

1 (ŷ −Ax)
−2AT

2 (ŷ −Ax)
...

−2AT
q (ŷ −Ax)

 = −2AT(ŷ −Ax) = 0 (159)

2Assuming Gaussian noise, the maximum likelihood inference results in the same ex-
pression of least squares. For simplicity, we ignore the argument of this conclusion. Read-
ers can refer to the previous example to see the relation between least squares and Gaussian
distribution.
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We solve for:
x = (ATA)−1ATŷ (160)

when (ATA) is invertible.

3.4.3 Matrix Formulation and Derivation

The error function can be written as:

f(x) = ||ŷ −Ax||2 (161)

= (ŷ −Ax)T(ŷ −Ax) (162)

We apply the trace schema to obtain the differential:

df = dTr
[
(ŷ −Ax)T(ŷ −Ax)

]
(163)

= Tr
[
d(ŷ −Ax)T(ŷ −Ax) + (ŷ −Ax)Td(ŷ −Ax)

]
(164)

= −Tr
[
(dx)TAT(ŷ −Ax) + (ŷ −Ax)TAdx

]
(165)

= −Tr
[
(ŷ −Ax)TAdx+ (ŷ −Ax)TAdx

]
(166)

= −2Tr
[
(ŷ −Ax)TAdx

]
(167)

The derivative is:
∂f

∂x
= −2AT(ŷ −Ax) (168)

We let
∂f

∂x
= 0 and get the same result.

3.4.4 Remarks

Without matrix calculus, we can still achieve the goal. Every step is straight-
forward using ordinary calculus, except for the last one where we organize
everything into the matrix form.

With matrix calculus, we utilize those well established matrix operators,
like matrix multiplication. Thus the notation is sharply simplified. Com-
paring the two derivations, we find the one with matrix calculus is absent of
annoying summations. This should be very advantegeous in more complex
expressions.

This example aims to disclose the essence of matrix calculus. Whenever
we need new rules, it’s always workable in traditional calculus way.
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4 Cheat Sheet

4.1 Definition

For scalar function f and matrix variable x, the derivative is:

∂f

∂x
=



∂f

∂x11

∂f

∂x12
. . .

∂f

∂x1n
∂f

∂x21

∂f

∂x22
. . .

∂f

∂x2n
...

...
. . .

...
∂f

∂xm1

∂f

∂xm2
. . .

∂f

∂xmn


(169)

For column vector function f and column vector variable x, the derivative
is:

∂f

∂x
=



∂f1
∂x1

∂f2
∂x1

. . .
∂fn
∂x1

∂f1
∂x2

∂f2
∂x2

. . .
∂fn
∂x2

...
...

. . .
...

∂f1
∂xm

∂f2
∂xm

. . .
∂fn
∂xm


(170)

For m× n matrix A, the differential is:

dA =


dA11 dA12 . . . dA1n

dA21 dA22 . . . dA2n
...

...
. . .

...
dAm1 dAm2 . . . dAmn

 (171)

4.2 Schema for Scalar Function

1. df = dTr [f ] = Tr [df ]

2. Apply trace properties(see theorem(3)) and matrix differential prop-
erties(see theorem(7)) to get the following form:

df = Tr
[
ATx

]
(172)

3. Apply theorem(6) to get:
∂f

∂x
= A (173)
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4.3 Schema for Vector Function

1. Apply (possibly) trace properties(see theorem(3)) and matrix differ-
ential properties(see theorem(7)) to get the following form:

df = ATx (174)

2. Apply theorem(9) to get:
∂f

∂x
= A (175)

4.4 Properties

Trace properties and differential properties are collected in one list as follows:

1. Tr [A+B] = Tr [A] + Tr [B]

2. Tr [cA] = cTr [A]

3. Tr [AB] = Tr [BA]

4. Tr [A1A2 . . . An] = Tr [AnA1 . . . An−1]

5. Tr
[
ATB

]
=
∑

i

∑
j AijBij

6. Tr [A] = Tr
[
AT
]

7. d(cA) = cdA

8. d(A+B) = dA+ dB

9. d(AB) = dAB +AdB

10. dTr [A] = Tr [dA]

4.5 Frequently Used Formula

For matrix A, column vector x:

• ∂Tr [A]

∂A
= I

• ∂xTAx

∂x
= Ax+ATx

• ∂xTx

∂x
= 2x

• ∂Ax

∂x
= AT
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• ∂xTAx

∂xxT
=

∂

∂x
(
∂xTAx

∂x
) = AT +A

• dTr [A] = Tr [IdA]

• Tr
[
d(xTAx)

]
= Tr

[
(xTAT + xTA)dx

]
• Tr

[
d(xTx)

]
= Tr

[
2xTdx

]
When A = AT those formulae are simplified to:

• ∂xTAx

∂x
= 2Ax

• ∂xTAx

∂xxT
= 2A

• Tr
[
d(xTAx)

]
= Tr

[
2(xTA)dx

]
The inverse: (for non-singular A)

• d(X−1) = −X−1dXX−1

Note we only have inverse formula for differential. Unless X is a scalar,

we have difficulty organize the elements of
∂(X−1)

∂X
, which should be a 4-D

tensor.
The determinant series: (for non-singular A)

• ∂ det(A)

∂A
= C (C is cofactor matrix)

• ∂ det(A)

∂A
= (adj(A))T (adj(A) is adjugate matrix)

• ∂ det(A)

∂A
= (det(A)A−1)T = det(A)(A−1)T

• ∂ ln det(A)

∂A
= (A−1)T

• d det(A) = Tr
[
det(A)A−1dA

]
• d ln det(A) = Tr

[
A−1dA

]
Note the trace operator can not be ignored in the differential formula, or
the quantity at different sides of equality may be of different size. Although
we derive this series from derivative to differential and from ordinary de-
terminant to log determinant. However, the last one( differential of log
determinant) is simplest for memorizing. Others could be derive quickly
from it(using our bridging theorems).
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4.6 Chain Rule

For all column vectors x(i):

∂x(n)

∂x(1)
=
∂x(2)

∂x(1)
∂x(3)

∂x(2)
. . .

∂x(n)

∂x(n−1)
(176)

Caution:

• The chain rule works only for our definition. Other definition may
result in reverse order of multiplication.

• The chain rule here is listed only for completeness of the current topic.
Use of chain rule is depricated. Most work can be done using the trace
and differential schema.
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Appendix

Message from Initiator(2012.04.03)

My three passes so far:

1. Learn the trace schema in the lecture.

2. Organize notes when doing the first homework.

3. In mid-term review, I revisited most properties.

Not until finishing the current version of this document do I grasp some
details. It’s very likely that everything is smooth when you read it. However,
it may become a problem repeating some derivations. Those definitions I
adopted are not all the initial version. Sometimes, I find it ugly to express
certain result. Then I turn back modify the definition. Anyway, I don’t
see a unified dominant definition. If you check the history and talk page
of Wikipedia[3], you’ll find editing-wars happen every now and then. Even
the single matrix calculus page is not coherent[3], let alone other pages.
A precaution is, if you can not figure out the definition from the context,
you’d better don’t trust that formula. The safest thing is to learn his way
of derivation and derive from your own definition. I also call for everyone’s
review of this document. It doesn’t matter what background you have, for
we try to build the system from scratch. I myself is an engineer rather than
mathematician. When I first read others work, like [13], I bother to repeat
the derivations and find some part is incorrect. That’s why I reorganize my
written notes, in order for me to reference in the future.

Shiney is a lazy girl who don’t bother to derive anything but also wish
to learn matrix calculus. Thus I compose all my notes for her. Besides, she
wants to learn LATEX in a fast food fashion. This document actually contains
most things she needs in writing, from which the source and outcome are
straightforward to learn.

Message Once in Cheat Sheet Section(2012.04.03)

This section is not yet available. I plan to sum up later. By the time I
initiate this document, I had three passes of matrix calculus (appendix).
The 4-th pass is left for me to refresh the mind in some future day.

Nevertheless, I think I already covered essential schema, property, for-
mula, etc. Not all of them are in the form of theorems or propositions. A
large part is covered using examples. Putting them all in one paper may be
a good cheat sheet.

BTW, I also advocates version control and online collaboration tools
for academic use. Such great platform should not be enjoyed by mere IT
industry. I’ll be glad if someone can contribute this section. Learning to

29



HU, Pili Matrix Calculus

use github costs no more than one hour. I’ll of course pull any reasonable
modifications from anyone. Typos, suggestions, technical fix, etc, will be
acknowledged in the following section.

Amemdment Topics

20120424 The derivation of multivariate Fisher information matrix and Cramer-
Rao bound uses quite a lot matrix calculus. It may be a good example
of showing basic concepts. What’s more, the derivation of general
version(covariance T (X) with E[T (X)] = ψ(θ)) benifits from chain
rule. Fisher information do not seem of as wide interest as those
applications shown above. Thus I temporarily keep it away from this
tutorial.
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