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Abstract 

We utilize the electromagnetically-oriented 𝐿𝑇𝐼∅ dimensional basis in the matrix solution of dimensional-analysis 

(DA) problems involving mainly electromagnetic quantities, whether these quantities are lumped or distributed. 

Representations in the 𝐿𝑇𝐼∅ basis (compared with the standard 𝑀𝐿𝑇𝐼 basis) are more informative and much simpler. 

Moreover, matrix DA computations employing the 𝐿𝑇𝐼∅ basis are more efficient and much less error prone. Extensive 

discussions of two demonstrative examples expose technical details of a novel DA scheme, and clarify many important 

facets of modern dimensional analysis. 

 

Keywords- Dimensional analysis, Gauss-Jordan algorithm, Bases and regimes, Electromagnetics, Duality, The 𝐿𝑇𝐼∅ 

basis, The 𝑀𝐿𝑇𝐼 basis. 

 

 

 

1. Introduction 
This paper advocates the use of the electromagnetically-oriented 𝐿𝑇𝐼∅ dimensional basis (instead 

of the mechanically-oriented 𝑀𝐿𝑇𝐼 dimensional basis associated with the SI international system 

of units) for solving Dimensional Analysis (DA) problems involving electromagnetic quantities. 

We employ the modern DA technique of deriving dimensionless products by using the Gauss-

Jordan algorithm to transform the dimensional matrix to its reduced row echelon form (RREF). 

For comparison purposes, we solve classical DA problems using each of the 𝐿𝑇𝐼∅ and 𝑀𝐿𝑇𝐼 

dimensional bases. Representations in the 𝐿𝑇𝐼∅ basis are informative and much simpler, while 

computations according to the proposed scheme are more efficient and less error prone, especially 

when electromagnetic (EM) quantities dominate the basis (input) variables of the DA problem, 

and not necessarily its regime (output) variables. 

 

Any sought product 𝜋𝑗 of a set of physical variables is dimensionless if and only if the exponents 

of these variables are a solution of a set of 𝑝 homogeneous linear equations (not necessarily 

linearly independent) in 𝑛 unknowns, expressed in matrix form as (Chen, 1971; Hutter & Jöhnk, 

2004; Middendorf, 1986; Oladigbolu & Rushdi, 2020; Palanthandalam-Madapusi et al., 2007; 

Rushdi & Rushdi, 2016; 2020a; 2020b; Szirtes, 2007) 

 

𝑫𝒛 = 𝟎                                                                                                                                           (1) 

 

mailto:Mostafa.Roshdi@fue.edu.eg
mailto:rushdimostafa@riam.kyushu-u.ac.jp
mailto:arushdi@kau.edu.sa


International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 6, No. 2, 636-644, 2021 

https://doi.org/10.33889/IJMEMS.2021.6.2.039 

637 

where 𝑫 is a 𝑝 × 𝑛 matrix, called the dimensional matrix. This matrix has 𝑝 rows which represent 

the adopted fundamental reference dimensions (such as the 𝑀𝐿𝑇𝐼 or 𝐿𝑇𝐼∅ dimensions), and 𝑛 

columns, which denote the variable exponents in the sought dimensionless product or, with a 

gross (albeit common and appealing) abuse of notation, designate the variables themselves. We 

will designate a column twice: (a) by the correct exponent notation, and (b) by the common 

variable notation. A typical entry of this matrix is the exponent to which a reference dimension 

(row) is raised in the dimensional product formula representing the particular variable (column). 

The vector 𝒛 comprises the 𝑛 exponents in the sought dimensionless product, which are unknown 

constants, yet to be inter-related (partially determined). We note that the Gauss-Jordan algorithm 

has many features that make it an unrivaled choice for handling DA problems, whether in a 

manual or an automated fashion (Rushdi & Rushdi, 2020a; references therein). Employment of 

the 𝐿𝑇𝐼∅ dimensional basis further allows us to make the most of these advantageous features. 

 

The remainder of this paper is structured as follows. Section 2 describes the electromagnetically-

oriented 𝐿𝑇𝐼∅ dimensional basis, and presents the two transformations between the 𝐿𝑇𝐼∅ basis 

and the 𝑀𝐿𝑇𝐼 basis, two illustrative examples handling (a) the transient analysis of current in an 

RC circuit, and (b) the assessment of volumetric density of energy in an electromagnetic field are 

then presented in Sections 3 and 4, respectively. The two examples demonstrate the effectiveness 

of the proposed approach which makes the most of the Gauss-Jordan algorithm through the use of 

the 𝐿𝑇𝐼∅ basis for the dimensional analysis of EM problems. The advantages gained utilizing by 

this novel base are demonstrated by comparing the 𝐿𝑇𝐼∅-based analysis with the 𝑀𝐿𝑇𝐼-based 

one. The issue of partitioning variables into basis (input) and regime (output) ones is also 

explored in detail. Section 5 concludes the paper. 

 

2. The 𝑳𝑻𝑰∅  Dimensional Basis for Electromagnetics 
Dimensional Analysis involving electromagnetic quantities is typically based on the use of the 

𝑀𝐿𝑇𝐼 multidimensional system (Bhaskar & Nigam, 1990; Rushdi & Rushdi, 2016; 2020a; 2020b; 

Szirtes, 2007). An alternative system using the same number of fundamental dimensions is the 

𝐿𝑇𝐼∅ system, where ∅ stands for electric potential or voltage (Szirtes, 2007). This system starts as 

a system covering the two kinematic quantities of Length (𝐿) and Time (𝑇), and augments it with 

the two electric (or electromagnetic) quantities of current and potential. Likewise, in the 𝐿𝑇𝐶Φ 

system that was proposed by Kalantaroff in 1929 (Kinitsky, 1962), electric charge (𝐶) and 

magnetic flux (Φ) are taken as fundamental dimensions, in addition to Length and Time. All 

these modern multidimensional systems use four fundamental dimensions, but the split of these 

four dimensions to purely mechanical and purely electromagnetic ones is 3 + 1 for mechanically-

oriented systems (such as the 𝑀𝐿𝑇𝐼 and 𝑀𝐿𝑇𝐶 systems) and 2 + 2 for the electromagnetically-

oriented ones (such as the 𝐿𝑇𝐼∅ and 𝐿𝑇𝐶Φ systems). 

 

If an arbitrary physical quantity 𝑄 is expressed in the 𝑀𝐿𝑇𝐼 and 𝐿𝑇𝐼∅ bases by the vectors of 

indices  𝒓 =  [𝑟1   𝑟2   𝑟3   𝑟4]𝑇 and 𝑹 =  [𝑅1   𝑅2   𝑅3   𝑅4]𝑇, then these vectors are related by the 

transformations 𝒓 = 𝑻𝑹, and 𝑹 = 𝑻−𝟏 𝒓, or explicitly as 

 

[

𝑟1

𝑟2

𝑟3

𝑟4

] = [

𝟎 𝟎 𝟎
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

   

𝟏
𝟐

−𝟑
−𝟏

]  [

𝑅1

𝑅2

𝑅3

𝑅4

] ,       [

𝑅1

𝑅2

𝑅3

𝑅4

] = [

−𝟐 𝟏 𝟎
𝟑 𝟎 𝟏
𝟏 𝟎 𝟎
𝟏 𝟎 𝟎

   

𝟎
𝟎
𝟏
𝟎

]  [

𝑟1

𝑟2

𝑟3

𝑟4

].                                             (2) 
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The four vectors comprising the transformation matrix 𝑻 are the vectors of exponents for the 

variables 𝐿, 𝑇, 𝐼, and ∅ in the 𝑀𝐿𝑇𝐼 basis, while the four vectors comprising the inverse 

transformation matrix 𝑻−𝟏are the vectors of exponents for the variables 𝑀, 𝐿, 𝑇, and 𝐼 in the 𝐿𝑇𝐼∅ 

basis. For example, If 𝑄 = 𝑀 then 𝒓 =  [1   0   0   0]𝑇 and 𝑹 =  [−2   3   1   1]𝑇, i.e., 𝑀 =
𝐿−2 𝑇3 𝐼 ∅. Likewise, if 𝑄 = ∅ then 𝑹 =  [0   0   0   1]𝑇 and 𝒓 =  [1   2  − 3 − 1]𝑇, i.e., ∅ =
𝑀 𝐿2 𝑇−3 𝐼−1. The mapping between the 𝑀𝐿𝑇𝐼 set and the 𝐿𝑇𝐼∅ set is one-to-one and onto. If the 

quantity of interest 𝑄 is an electromagnetic quantity or if it is a mechanical quantity independent 

of the Mass (𝑀) dimension, then its 𝐿𝑇𝐼∅-based vector of indices 𝑹 is much simpler than its 

𝑀𝐿𝑇𝐼-based vector 𝒓. 

 

3. Transient Analysis of an RC Circuit 
Middendorf (1986) considered the situation in which a DC voltage source of value 𝑉 is imposed 

for time 𝑡 ≥ 0 on a series combination of a resistance 𝑅 and a capacitance 𝐶. The transient 

current 𝑖(𝑡) is required, and hence the variable 𝑖 must be a regime variable (Bhaskar & Nigam, 

1990), and it is placed last in a proposed dimensionless product 𝜋 = 𝑘  𝐶𝑐   𝑅𝑟  𝑉𝑣  𝑡𝜏  𝑖𝜉 , where 𝑘 

is a dimensionless constant. The most important variable among the remaining variables is 𝑡, and 

is placed immediately before 𝑖. Table 1 demonstrates the Gauss-Jordan procedure for solving this 

problem in the 𝐿𝑇𝐼∅ dimensional basis, while Table 2 demonstrates the same procedure for 

solving this problem in the 𝑀𝐿𝑇𝐼 dimensional basis. The same final solution is obtained in both 

tables. However, the 𝐿𝑇𝐼∅-based solution is obviously more efficient, and hence less error prone. 

The operations involved in the two tables include the following operations (arranged in 

decreasing complexity): floating-point row computation (𝑓), row summation/differencing (𝑠), 

row negation (𝑛), and row assignment (𝑎). The 𝐿𝑇𝐼∅-based solution requires 2 stages beyond the 

initial stage, and uses (3𝑠 + 𝑛 + 2𝑎) operations. The 𝑀𝐿𝑇𝐼-based solution requires 3 stages 

beyond the initial stage, and uses (3𝑓 + 2𝑠 + 𝑛 + 4𝑎) operations. 

 

Note that each solution encounters a row whose entries are all 0 (an all-0 row), which we 

arbitrarily omit in the next stage. This means that the matrix 𝑫 has a rank 𝑟 = 3, and a nullity or 

defect (𝑛 − 𝑟) = 2. At the last stage of each solution, the 𝑝 × 𝑛 dimensional matrix 𝑫 would be 

changed to an 𝑟 × 𝑛 matrix that is partitioned into an 𝑟 × 𝑟 unit matrix and an 𝑟 × (𝑛 − 𝑟) matrix 

𝑪. We now construct a full-rank (𝑛 − 𝑟) × 𝑛 matrix 𝑲 of exponents, which is partitioned into two 

matrices: the negative transpose −𝑪𝑻 of  𝑪, which is an (𝑛 − 𝑟) × 𝑟 matrix, left juxtapositioned 

to an (𝑛 − 𝑟) × (𝑛 − 𝑟) unit matrix. The matrix 𝑲 (called the nullspace or kernel of 𝑫) has a rank 

equal to the nullity of 𝑫.  The (𝑛 − 𝑟) by 𝑝 matrix 𝑲𝑫T is a zero matrix, and the (𝑛 − 𝑟) rows of 

𝑲 form a basis for the nullspace of 𝑫 (Rushdi & Rushdi, 2020a), and they depict a complete set 

of the dimensionless products as shown at the bottom of Table 1. There are two products: 𝜋1 =
𝑡/𝐶𝑅 and 𝜋2 = 𝑖𝑅/𝑉, which constitute a complete set of dimensionless products. According to 

the Pi Theorem of Buckingham (1914), these two dimensionless products are related as follows: 

 

𝛷 (𝜋1 , 𝜋2) = 0                                                                                                                            (3a) 

 

Finally the mathematical model of the transient current 𝑖 can be stated by expressing its regime 

𝜋2 as an arbitrary function 𝛹 (to be determined experimentally) of the other regime, namely 

 

𝜋2 =  𝛹 (𝜋1).                                                                                                                               (3b) 

 

It is well known (outside the scope of dimensional analysis) that the function 𝛹 is a decaying 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 6, No. 2, 636-644, 2021 

https://doi.org/10.33889/IJMEMS.2021.6.2.039 

639 

exponential (Middendorf,1986). 

 

In retrospect, we might have not insisted on taking current and time as regime variables. Table 3 

shows an alternative ordering of variables for the 𝐿𝑇𝐼∅-based solution in Table 1. Here, the 

Gauss-Jordan algorithm does absolutely nothing beyond constructing its initial tableau. Now, we 

obtain two products: 𝜋3 = 𝑉𝐶/𝑖𝑡 and 𝜋4 = 𝑡/𝐶𝑅 which constitute a complete set of 

dimensionless products. This new complete set is related to the old one via. 

 

𝜋3 = 1/(𝜋1 𝜋2),   𝜋4 = 𝜋1,                                                                                                          (4a) 

 

𝜋1 = 𝜋4, 𝜋2 = 1/(𝜋3 𝜋4),                                                                                                            (4b) 

 

Table 4 shows yet another ordering of variables for the 𝐿𝑇𝐼∅-based solution in Table 1. Since the 

rank of  the dimensional matrix is now known to be 3, this ordering suggests that the variables are 

partitioned into a set {𝑡, 𝐶, 𝑅} of basis variables and a set {𝑉, 𝑖} of regime variables. An 

advantage of the Gauss-Jordan algorithm is that it detects the impossibility of this partitioning, 

and corrects it en route. Contrary to widespread belief, the Gauss-Jordan algorithm does not 

necessarily partition 𝑫 into two matrices, the first of which is a unit matrix. Generally, the Gauss-

Jordan algorithm replaces 𝑫 by its reduced row echelon form (RREF), an example of which is 

shown in the second stage of Table 4. In this more general (albeit less intuitive situation), the 

algorithm employs two correct sets of basis and regime variables as {𝑡, 𝐶, 𝑉} and {𝑅, 𝑖} by 

swapping the roles of the variables 𝑅 and 𝑉 as basis or regime variables. Now, the three basis 

variables 𝑡, 𝐶, and 𝑉 are assigned to non-consecutive columns, and though the matrix under them 

is, in fact, a unit matrix, it might not readily appear as such. In the lower part of Table 4, we 

interchange the columns for 𝑅 and 𝑉 so as to place all columns with pivots consecutively at the 

left to form an identity matrix. Both parts of Table 4 yield the two products: 𝜋5 = 𝐶𝑅/𝑡 and 𝜋6 =
𝑡𝑖/𝐶𝑉 which constitute yet another complete set of dimensionless products, again related to the 

earlier sets, since 𝜋5 and 𝜋6 are the reciprocals of 𝜋4 and 𝜋3, respectively. The total number of 

complete sets of dimensionless products is at most (here strictly less than) the number of 

choosing two regime variables out of five variables (without order or repetition), which is ten. 

The non-uniqueness of the complete set of dimensionless products is occasionally cited as a 

limitation of dimensional analysis (Rushdi & Rushdi, 2020a; 2020b). However, we note that Eq. 

(3b) is the desirable solution of the problem, and it can be reached in a variety of ways, such as 

directly from Table 1, or via Table 3 together with equation. (4b). 

 

4. Volumetric Density of Energy for the Electromagnetic Field 
We consider the problem of estimating the volumetric density of energy (𝑈) in an 

electromagnetic field in a medium characterized by permittivity 𝜀 and permeability 𝜇. As usual, 

we use 𝐸 and 𝐻 to denote the electric and magnetic field intensities, respectively, and use 𝐷 and 

𝐵 to depict the electric and magnetic flux densities, respectively. A simpler version of this 

problem was considered in the seminal paper of Buckingham (1914). An expression for the 

energy per volume (𝑈) is required, and hence the variable 𝑈 must be a regime variable, and it is 

placed last in a proposed dimensionless product of the form 𝜋 = 𝑘  𝜀𝑝  𝜇𝑚  𝐸𝑒  𝐻ℎ   𝐷𝑑   𝐵𝑏  𝑈𝑢, 
where 𝑘 is a dimensionless constant. Table 5 demonstrates the Gauss-Jordan procedure for 

solving this problem in the 𝐿𝑇𝐼∅ dimensional basis, while Table 6 demonstrates the same 

procedure for solving this problem in the 𝑀𝐿𝑇𝐼 dimensional basis. The same final solution is 

obtained in both tables. However, the 𝐿𝑇𝐼∅-based solution is obviously more efficient, and hence 
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less error prone. The 𝐿𝑇𝐼∅-based solution requires 3 stages beyond the initial stage, and it 

involves (𝑓 + 9𝑠 + 2𝑛) operations. The 𝑀𝐿𝑇𝐼-based solution also requires 3 stages beyond the 

initial stage, but it involves (4𝑓 + 3𝑠 + 2𝑛 + 3𝑎) operations. The initial tableau in the 𝐿𝑇𝐼∅ case 

has much simpler and self-checking integers. Grouping the electromagnetic quantities into the 

dual pairs (𝜀, 𝜇), (𝐸, 𝐻), and (𝐷, 𝐵), we observe that, within the 𝐿𝑇𝐼∅ dimensional basis, any two 

dual quantities have identical 𝐿 and 𝑇 dimensions, and swapped 𝐼 and ∅ dimensions. 

 

 
Table 1. The Gauss-Jordan procedure for solving the circuit problem of Sec. 3 in the 𝐿𝑇𝐼∅ dimensional 

basis. 
 

 

 

 

 

 

 

Table 2. The Gauss-Jordan procedure for solving the circuit problem of Sec. 3 in the 𝑀𝐿𝑇𝐼 dimensional 

basis. 
 

 

 
 

 

 𝑐 𝑟 𝑣 𝜏 𝜉  

 
𝐶 𝑅 𝑉 𝑡 𝑖   

𝐸1
(0) 0 0 0 0 0 0 

𝐸2
(0) 1 0 0 1 0 0 

𝐸3
(0) 1 −1 0 0 1 0 

𝐸4
(0) −1 1 1 0 0 0 

𝐸2
(1) ← 𝐸2

(0) 1 0 0 1 0 0 

𝐸3
(1) ← 𝐸3

(0) − 𝐸2
(0) 0 −1 0 −1 1 0 

𝐸4
(1) ← 𝐸4

(0) + 𝐸2
(0) 0 1 1 1 0 0 

𝐸2
(2) ← 𝐸2

(1) 1 0 0 1 0 0 

𝐸3
(2)  ← −𝐸3

(1) 0 1 0 1 −1 0 

𝐸4
(2) ← 𝐸4

(1)+ 𝐸3
(1) 0 0 1 0 1 0 

𝜋1
 −1 −1 0 1 0  

𝜋2
 0 1 −1 0 1  

 𝑐 𝑟 𝑣 𝜏 𝜉  

 
𝐶 𝑅 𝑉 𝑡 𝑖   

𝐸1
(0) −1 1 1 0 0 0 

𝐸2
(0) −2 2 2 0 0 0 

𝐸3
(0) 4 −3 −3 1 0 0 

𝐸4
(0) 2 −2 −1 0 1 0 

  𝐸1
(1) ← −𝐸1

(0)   1 −1 −1 0 0 0 

𝐸2
(1) ← 𝐸2

(0) − 2 𝐸1
(0) 0 0 0 0 0 0 

𝐸3
(1) ← 𝐸3

(0)+ 4 𝐸1
(0) 0 1 1 1 0 0 

𝐸4
(1) ← 𝐸4

(0)+ 2 𝐸1
(0)

 0 0 1 0 1 0 

  𝐸1
(2) ←  𝐸1

(1) + 𝐸3
(1)   1 0 0 1 0 0 

𝐸3
(2)  ← 𝐸3

(1)   0 1 1 1 0 0 

𝐸4
(2) ← 𝐸4

(1) 0 0 1 0 1 0 

𝐸1
(3) ← 𝐸1

(2) 1 0 0 1 0 0 

𝐸3
(3) ← 𝐸3

(2)− 𝐸4
(2) 0 0 0 1 −1 0 

𝐸4
(3) ← 𝐸4

(2) 0 0 1 0 1 0 
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Table 3. The Gauss-Jordan procedure for solving the circuit problem of Sec. 3 in the 𝐿𝑇𝐼∅ dimensional 

basis with an alternative ordering of variables. 
 

 

 

 

Table 4. The Gauss-Jordan procedure for solving the circuit problem of Sec. 3 in the 𝐿𝑇𝐼∅ dimensional 

basis with a further changed ordering of variables. 
 

 

 
 

 

We now construct the null space matrix 𝑲 at the bottom of Table 5. For convenience, we 

arbitrarily multiply each of the first and third rows of 𝑲 by 2, and obtain the four products 𝜋1 =
 𝜇 𝐻2/(𝜀 𝐸2), 𝜋2 =   𝐷/(𝜀 𝐸), 𝜋3 =   𝐵2/(𝜀 𝜇 𝐸2), and 𝜋4 = 𝑈/(𝜀 𝐸2), which constitute a 

complete set of dimensionless products. A more interesting complete set for this problem would 

include besides 𝜋2 = 𝐷/(𝜀 𝐸), and 𝜋4 = 𝑈/(𝜀 𝐸2), their “dual” products 𝜋5 =  (𝜋3/𝜋1)1/2 =
 𝐵/(𝜇 𝐻), and 𝜋6 =  𝜋4/𝜋1 = 𝑈/(𝜇 𝐻2). These results can be supplemented by information 

outside the scope of dimensional analysis to deduce that 

 

𝑈 = (𝜀 𝐸2 + 𝜇 𝐻2)/2 = (𝐷2/𝜀 +  𝐵2/ 𝜇)/2.                                                                                (5) 
 

The expression suggested by Buckingham (1914) divides the one in (5) by a factor of 4𝜋. The 

reason is that at his time, the value of a complete solid angle was 1 “sphere,” while it is now 

taken as  4𝜋 steradian (Young, 1957). 

 𝜏 𝜉 𝑣 𝑐 𝑟  

 
𝑡 𝑖 𝑉 𝐶 𝑅   

𝐸1
(0) 0 0 0 0 0 0 

𝐸2
(0) 1 0 0 1 0 0 

𝐸3
(0) 0 1 0 1 −1 0 

𝐸4
(0) 0 0 1 −1 1 0 

𝜋3
 −1 −1 1 1 0  

𝜋4
 0 1 −1 0 1  

 𝜏 𝑐 𝑟 𝑣 𝜉  

 
𝑡 𝐶 𝑅 𝑉 𝑖   

𝐸1
(0) 0 0 0 0 0 0 

𝐸2
(0) 1 1 0 0 0 0 

𝐸3
(0) 0 1 −1 0 1 0 

𝐸4
(0) 0 −1 1 1 0 0 

𝐸2
(1) ← 𝐸2

(0) − 𝐸3
(0) 1 0 𝟏 0 −𝟏 0 

𝐸3
(1) ← 𝐸3

(0) 0 1 −𝟏 0 𝟏 0 

𝐸4
(1) ← 𝐸4

(0) + 𝐸3
(0) 0 0 𝟎 1 𝟏 0 

𝜋5
 −𝟏 𝟏 1 𝟎 0  

𝜋6
 𝟏 −𝟏 0 −𝟏 1  

 𝜏 𝑐 𝑣 𝑟 𝜉  

 
𝑡 𝐶 𝑉 𝑅 𝑖   

 

1 0 0 𝟏 −𝟏 0 

0 1 0 −𝟏 𝟏 0 

0 0 1 𝟎 𝟏 0 

𝜋5
 −𝟏 𝟏 𝟎 1 0  

𝜋6
 𝟏 −𝟏 −𝟏 0 1  
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Table 5. The Gauss-Jordan procedure for solving the problem of volumetric density of energy of Sec. 4 in 

the 𝐿𝑇𝐼∅ dimensional basis. In the initial tableau, any two dual quantities have identical 𝐿 and 𝑇 

dimensions, and swapped 𝐼 and ∅ dimensions. 
 

 

 

 

Table 6. The Gauss-Jordan procedure for solving the problem of volumetric density of energy of Sec. 4 in 

the 𝐿𝑇𝐼∅ dimensional basis. 
 

 

 

 
 

 𝑝 𝑚 𝑒 ℎ 𝑑 𝑏 𝑢  

 
𝜀 𝜇 𝐸 𝐻 𝐷 𝐵 𝑈   

𝐸1
(0) −1 −1 −1 −1 −2 −2 −3 0 

𝐸2
(0) 1 1 0 0 1 1 1 0 

𝐸3
(0) 1 −1 0 1 1 0 1 0 

𝐸4
(0) −1 1 1 0 0 1 1 0 

  𝐸1
(1) ← −𝐸1

(0)   1 1 1 1 2 2 3 0 

𝐸2
(1) ← 𝐸2

(0) + 𝐸1
(0) 0 0 −1 −1 −1 −1 −2 0 

𝐸3
(1) ← 𝐸3

(0)+  𝐸1
(0) 0 −2 −1 0 −1 −2 −2 0 

𝐸4
(1) ← 𝐸4

(0)− 𝐸1
(0) 0 2 2 1 2 3 4 0 

  𝐸1
(2) ←  𝐸1

(1) + 𝐸3
(1)   1 −1 0 1 1 0 1 0 

  𝐸2
(2) ←  𝐸2

(1) − 𝐸3
(1) 0 2 0 −1 0 1 0 0 

𝐸3
(2)  ← −𝐸3

(1)   0 2 1 0 1 2 2 0 

𝐸4
(2) ← 𝐸4

(1)+ 2 𝐸3
(1)

 0 −2 0 1 0 −1 0 0 

𝐸1
(3) ← 𝐸1

(2) + 𝐸2
(3) 1 0 0 0.5 1 0.5 1 0 

  𝐸2
(3) ←  𝐸2

(2)/2 0 1 0 −0.5 0 0.5 0 0 

𝐸3
(3) ← 𝐸3

(2) −  𝐸2
(2) 0 0 1 1 1 1 2 0 

𝐸4
(3) ← 𝐸4

(2) +  𝐸2
(2) 0 0 0 0 0 0 0 0 

𝜋1
 −1 1 −2 2 0 0 0  

𝜋2
 −1 0 −1 0 1 0 0  

𝜋3
 −1 −1 −2 0 0 2 0  

𝜋4
 −1 0 −2 0 0 0 1  

 𝑝 𝑚 𝑒 ℎ 𝑑 𝑏 𝑢  

 
𝜀 𝜇 𝐸 𝐻 𝐷 𝐵 𝑈   

𝐸1
(0) −1 1 1 0 0 1 1 0 

𝐸2
(0) −3 1 1 −1 −2 0 −1 0 

𝐸3
(0) 4 −2 −3 0 1 −2 −2 0 

𝐸4
(0) 2 −2 −1 1 1 −1 0 0 

  𝐸1
(1) ← −𝐸1

(0)   1 −1 −1 0 0 −1 −1 0 

𝐸2
(1) ← 𝐸2

(0) − 3 𝐸1
(0) 0 −2 −2 −1 −2 −3 −4 1   1 1 

𝐸3
(1) ← 𝐸3

(0)+ 4 𝐸1
(0) 0 2 1 0 1 2 2 0 

𝐸4
(1) ← 𝐸4

(0)+ 2 𝐸1
(0)

 0 0 1 1 1 1 2 0 

  𝐸1
(2) ←  𝐸1

(1) + 𝐸2
(2)   1 0 0 0.5 1 0.5 1 0 

  𝐸2
(2) ←  𝐸2

(1) /2 0 1 0 −0.5 0 0.5 0 0 

𝐸3
(2)  ← 𝐸3

(1) +  𝐸2
(1)   0 0 −1 −1 −1 −1 −2 0 

𝐸4
(2) ← 𝐸4

(1) 0 0 1 1 1 1 2 0 

𝐸1
(3) ← 𝐸1

(2)  1 0 0 0.5 1 0.5 1 0 

  𝐸2
(3) ←  𝐸2

(2) 0 1 0 −0.5 0 0.5 0 0 

𝐸3
(3) ← −𝐸3

(2) 0  0 1 1 1 1 2 0 

𝐸4
(3) ← 𝐸4

(2) +  𝐸3
(2) 0 0 0 0 0 0 0 0 
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5. Conclusions 
There are many benefits of employing the Gauss-Jordan algorithm for handling DA problems. In 

particular, the algorithm neither pre-supposes nor pre-calculates the rank of the dimensional 

matrix. It handles the task of determining this rank as an offshoot of its own processing at no 

extra cost. The algorithm allows a flexible partitioning of the underlying variables into basis or 

input variables and regime or output variables. The role of the algorithm is to switch from an 

initial tableau of a specific dimensional basis to a final tableau whose dimensional basis is the 

final set of ‘basis’ variables. The greater the matching between the dimensional bases of the 

initial and final tableaus, the fewer the computations needed and the less they are susceptible to 

errors. Such greater matching is achieved herein by employing the electromagnetically-oriented 

𝐿𝑇𝐼∅ basis in the initial tableau, and requiring electromagnetic quantities to constitute most of the 

basis in the final tableau. 
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