
CHAPTER 5 

Matrix 

Displacement Method 

 

5.1   INTRODUCTION 

In the last half-century, considerable progress has been made in the matrix 
analysis of structures. The topic has been generalized to finite elements, and 
extended to the stability, non-linear and dynamic analysis of structures. This 
progress is due to the simplicity, modularity and flexibility of matrix methods. 

Many textbooks covering these methods have been published including Argyris 
[4], McGuire and Gallagher [172], Livesley [160], Meek [173], Kardestuncer [88], 
ad Vanderbilt [242] among many others. In these books the displacement method 
of structural analysis is thoroughly developed, and therefore only a brief 
introduction will be presented here. 

 

5.2   FORMULATION 

In Chapter 4, the network-topological formulation of the displacement (stiffness) 
method of structural analysis has already been presented. In this section, a matrix 
formulation using the basic tools of structural analysis - equilibrium of forces, 
compatibility of displacements, and force-displacement relationships - is provided. 
The notations are chosen from the most popularly encountered versions in 
structural mechanics.  
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Consider a structure S with M members and N nodes; each node having one 
degree of freedom. The kinematical indeterminacy of S may then be determined 
as, 

 β−α=η N)S( , (5-1) 

where β is the number of constraints due to the support conditions. As an example, 
)S(η  for the planar truss S depicted in Figure 5.1(a) is given by )S(η = 2×5 − 3 = 

7, and for the space frame shown in Figure 5.1(b), it is calculated as )S(η = 6×8 
−6×4 = 24. 

6

6 6

6
2 2

2
10

 

(a) A planar truss.                           (b)  A space frame. 

Fig. 5.1   The degrees of freedom of the joints for two structures. 

One can also calculate η(S) by simple addition of the degrees of freedom of the 
joints of the structure, i.e. for the truss S, η(S) = 2 + 2 + 2 + 1= 7, and for the 
frame η(S) = 4×6 = 24. 

Let p and v represent the joint loads and joint displacements of a structure. Then 
the force-displacement relationship for the structure can be expressed as,  

 p = Kv, (5-2) 

where K is a ηN×ηN symmetric matrix, known as the stiffness matrix of the 
structure. Expanding the ith equation of the above system, the force pi can be 
expressed in terms of the displacements },...,,{ N21 αvvv  as:  

 .... NNi22i11ii αα+++= vKvKvKp  (5-3) 

A typical coefficient Kij is the value of the force pi required to be applied at the ith 
component of the structure, in order to produce a displacement vj=1 at j and zero 
displacements at all the other components. 
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As has been shown in Chapter 4, the member forces r can be related to nodal 
forces p by: 

 p = Br. (5-4) 

Similarly, the joint displacements v can be related to member distortions u by: 

 u = Btv. (5-5) 

For each individual member of the structure, the member forces can be related to 
member distortions by an element stiffness matrix km. A block diagonal matrix 
containing these element stiffness matrices is known as the unassembled stiffness 
matrix of the structure, denoted by k. Obviously: 

 r = ku. (5-6) 

This equation together with Eqs (5-4) and (5-5) yields: 

 p = BkBtv. (5-7) 

Therefore,   

 K = BkBt (5-8) 

is obtained. The matrix K is singular since the boundary conditions of the 
structure are not yet applied. For an appropriately supported structure, the deletion 
of the rows and columns of K corresponding to the support constraints results in a 
positive definite matrix, known as the reduced stiffness matrix of the structure. 

Let us illustrate the method by means of a simple example. Consider a fixed end 
beam with a load P applied at its mid span. This beam is discretized as two beam 
elements, as shown in Figure 5.2(a). The components of element forces and 
element distortions are depicted in Figure 5.2(b) and those of the entire structure 
are illustrated in Figure 5.2(c). 
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(a)  A fixed ended beam S. 
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(b)  Member forces and member distortions. 
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(c)  Nodal forces and nodal displacements of the entire structure. 

Fig. 5.2   Illustration of the analysis of simple structure. 

For each element such as element 1, the element stiffness matrix can be written as, 
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 (5-9) 

and for the entire structure we have: 
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 (5-10) 

Element stiffness matrices k1 and k2 can be easily constructed using the definition 
of kij. For a beam element, ignoring its axial deformation, these terms are shown in 
Figure 5.3. The structure has a uniform cross section and since both elements have 
the same length: 
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Fig. 5.3   The stiffness coefficients of a beam element ignoring its axial 
deformation. 
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The unassembled stiffness matrix is an 8×8 matrix of the form k: 
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Now consider the equilibrium of the joints of the structure, resulting in, 

       p1 = r1  ,    p2 = r2  ,   p3 = r5 + r3, 

 p4 = r4 + r6   ,   p5 = r7   ,    p6 = r8 .                                        (5-13) 

 

or in a matrix form we have, 
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, (5-14) 

and more compactly: 

 p = Br. (5-15) 

Consider now the compatibility of displacements as: 

  u1 = v1  ,    u2 = v2  ,   u3 = u5 = v3, 

  u4 = u6 = v4   ,   u7 = v5   ,    u8=v6 ,                    (5-16) 

and in a matrix form we have, 
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 (5-17) 

and in compact form: 

 u = Ev = Btv. (5-18) 
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The reason for matrix E being the transpose of the matrix B, has already been 
discussed in the previous chapter, however, using the principle of virtual work, a 
simple proof can be obtained. Consider:  

  W = work done by external loads = pv t
2
1  

   U = strain energy = ru t
2
1   

Equating W and U leads to E = Bt and completes the proof. 

Therefore the stiffness matrix of the entire structure can be obtained as: 

 .
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Applying the boundary conditions, 

 v1 = v2 = v5 = v6 = 0, 

leads to the formation of the following reduced stiffness matrix: 
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Since p4 = 0 and Pp3 −= , therefore 
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From this simple example, it can be seen that matrix B is a very sparse boolean 
matrix and the direct formation of BkBt using matrix multiplication requires a 
considerable amount of storage. In the following, it is shown that one can form 
BkBt with an assembling process (known also as planting), as follows: 
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Consider an element "a" of a structure, as shown in Figure 5.4, for which the 
element stiffness matrix can be written as,  
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i and j are the two end nodes of member a. Multiplication BkBt has the following 
effect on ka : 
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                      Fig. 5.4   A structural model S. 

The adjacency matrix of S is also an 8×8 matrix and the effect of node 4 being 
adjacent to node 6, is the existence of unit entries in the same locations as the 
submatrices of the element a.  One can build up the adjacency matrix of a graph by 
the addition of the effect of one member at a time. In the same way, one can also 
form the overall stiffness matrix of the structure by the addition of the contribution 
of every member in succession. As an example, for the graph shown in Figure 5.4, 
the overall stiffness matrix has the following pattern: 
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 (5-23) 

Non-zero entries are shown by ∗ . For a stiffness matrix each of these non-zero 
entries is an α×α submatrix, where a is the degrees of freedom of each node of the 
structure. As an example, for a planar truss α = 2, and for a space frame α = 6. 
The formation of the stiffness matrix by the above process is known as assembling 
or planting of the stiffness matrix of a structure. 

In the above example, the stiffness matrices could be assembled because both are 
constructed with reference to the same coordinate system. However, for a structure 
in general, the stiffness matrices should be prepared in a single coordinate system. 
On the other hand, for each element, there exists a coordinate system attached to 
the element, known as a local coordinate system. In Figure 5.5, local coordinate 
systems for members 45 and 25, and the global coordinate system for the entire 
structure are illustrated. 
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Fig. 5.5   Local y,x and global coordinate x, y systems. 

A global coordinate system can be selected arbitrarily; however, it may be 
advantageous to select this coordinate system such that the structure falls in the 
first quadrate of the plane, in order to have positive coordinates for the nodes of 
the structure. On the other hand, a local coordinate system of a member has one of 
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its axes along the member, the second axis lies in its plane of symmetry (if it has 
one) and the third axis is chosen such that it results in a right handed coordinate 
system. 

The transformation from a local coordinate to a global coordinate system can be 
performed as illustrated in Figure 5.6, in which xyz is the global system and 
x2y2z2, often denoted by zyx , is the local system. 

The relation between x1y1z1 and xyz can be expressed as: 
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(a)                                                       (b) 

Fig. 5.6   Transformation from local coordinate system to global coordinate 
system. 

Similarly x2y2z2 and x1y1z1 are related by, 
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and 
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Combining the above transformations results in, 
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where: 
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A vector in a local coordinate system Γ  and in a global coordinate system Γ are 
related by: 

 . ΓTΓ =  (5-29) 

It can easily be proved that T is an orthogonal matrix, i.e.  

 [T]-1 = [T]t. (5-30) 

In the above transformation, γ represents the tilt of the member which is quite 
often zero. Thus T can be simplified as:  
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This matrix can easily be written in terms of the coordinates of the two ends of a 
vector. Considering Figure 5.6(b), Eq. (5-31) becomes, 
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where: 

xji = xj−xi       yji = yj−yi       zji = zj−zi 
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Notice that T transforms a 3-dimensional vector from a global to a local 
coordinate system and Tt performs the reverse transformation. However, if the 
element forces or element displacements (distortions) consist of p vectors, the 
block diagonal matrix with p submatrices should be used. As an example, for a 
beam element of a space frame, with each node having 6 degrees of freedom, the 
transformation matrix is a 12×12 matrix of the form: 
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5.3   ELEMENT STIFFNESS MATRICES 

Element stiffness matrices for skeletal structures can be obtained using various 
methods. For some elements, concepts from mechanics of solids are sufficient for 
the formation of an element stiffness matrix; for others, energy methods are more 
suitable. In the following, a general method for the formation of a stiffness matrix 
is presented and then applied to bar and beam elements. The details of the 
derivations are omitted for brevity. Such details can be found in any classical book 
on the matrix analysis of structures. 

5.3.1   STIFFNESS MATRIX OF A GENERAL ELEMENT 

Consider an elastic body as shown in Figure 5.7. Suppose that some loads are 
applied at certain points (specified as nodes) 1,2,...,n. Let vit be the displacement 
of node i along the applied load pit. The loads are applied in a pseudo-static 
manner, increasing gradually from zero. Assuming a linear behaviour, the work 
done by an external force p = {p1, p2, ... , pn) through the displacement v = {v1, v2, 
... , vn} can be written as: 

 ).vp...vpv(p
2
1W nn2211 +++=  (5-35) 
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According to the principle of the conservation of energy, 

 W = U, (5-36) 

and therefore: )vp...vpvp(
2
1U nn2211 +++= . (5-37) 

Now if a small variation is given to vi while keeping the other displacement 
components constant, then the variation of v with respect to vi can be written as: 

 ].v
v
p...v

v
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2

i

2
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1

i ∂
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∂
∂

+
∂
∂

+=
∂
∂  (5-38) 

According to Castigliano´s theorem: 

 .p
v
U

i
i
=

∂
∂  (5-39) 

Thus,  
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∂
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∂

+
∂
∂

=  (5-40) 

or in a matrix form for all i=1,...,n we have: 
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. 
(5-41) 

According to the definition, the above coefficient matrix forms the stiffness matrix 
of the elastic body defined by its n nodes as illustrated in Figure 5.7. 

A typical element of the stiffness matrix kij is given by: 

  .
v
p

k
i

j
ij ∂

∂
=   (5-42) 

Using Castigliano´s first theorem: 

  .
vv

U)
v
U(

v
k

ij

2

ij
ij ∂∂

∂
=

∂
∂

∂
∂

=   (5-43) 
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Fig. 5.7   An elastic body, its nodal forces and nodal displacements. 

Similarly: 

 .
vv

U
v
pk

ij

2

j

i
ij ∂∂

∂
=

∂
∂

=  (5-44) 

Since the order of differentiation should not affect the result, we have, 

 kij = kji , (5-45) 

which is proof of the symmetry of the stiffness matrices, both for a structure and 
for an element. 

A symmetric matrix S is called positive definite, if xtSx > 0 for every non-zero 
vector x. The stiffness matrix K of a structure is positive definite since, 

ptv = (Kv)tv = vtKtv = vtKv = 2W, 

and W is always positive. 

5.3.2   STIFFNESS MATRIX OF A BAR ELEMENT 

Consider a prismatic bar element as shown in its local coordinate system, Figure 
5.8. According to the definition of such an element, only axial forces are present. 

The strain energy of this bar can be calculated as: 
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 dx 
2

EAdxdydz 
2
Edxdydz 

2
1U 2

xx
2
xxxxxx ∫∫∫∫∫∫∫ ε=ε=εσ=  (5-46) 

On the other hand: 

 .
x

ustrain x
xx ∂

∂
==ε  (5-47) 

x
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4    4
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Fig. 5.8   A bar element in its local coordinate system. 

Since the strain is constant along the bar, ux can be expressed as: 

 .AxAu 21x +=  (5-48) 

From the boundary conditions: 

0x at uu 1x ==  

   .Lx at uu 4x ==     (5-49) 

Hence: .uA  and  
L

uuA 12
14

1 =
−

=  (5-50) 

By substitution in Eq. (5-48), we have, 

 ,ux
L

uuu 1
14

x +
−

=  (5-51) 
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and from Eq. (5-46) the strain energy of the bar can be calculated as: 

 ].uuu2u[
L2

EAU 2
114

2
4 +−=  (5-52) 

Hence: 
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                     ,
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44 =
∂

∂
=  and  0kij =  for all other components. 

Therefore, the stiffness matrix of a bar element in the selected local coordinate 
system is obtained, and 
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 (5-54) 

From Eq. (5-29), we have: 

 Trr =  (5-55) 
and 

 Tuu =  (5-56) 

From the definition of an element stiffness matrix in a local coordinate system: 

 ukr = . (5-57) 

By substitution of Eqs (5-55) and (5-56) in the above equation: 

 .ut1 TkTTukTr == −  (5-58) 
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By definition of a stiffness matrix in a global coordinate system: 

 .kur =  (5-59) 

Comparison of Eq. (5-58) and Eq. (5-59) results in:  

 .t TkTk =  (5-60) 

Hence the stiffness matrix of a bar element in a global system, as shown in Figure 
5.9, can be written as: 
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Fig. 5.9   A bar element of a space truss. 
 

Denoting T in Eq. (5-32) by,  
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⎥
⎥
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⎤
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⎣

⎡
=

333231
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131211

TTT
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T . (5-61) 

k can be written as: 
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The entries of the above matrix can be found using Tij from Eq. (5.32). As an 
example, the stiffness matrix of bar 1 in the planar truss shown in Figure 5.10, can 
be obtained as: 
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Fig. 5.10   A planar truss and the selected global coordinate system. 

Therefore:  
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1k . 

5.3.3  STIFFNESS MATRIX OF A BEAM ELEMENT 

Consider a prismatic beam element as shown in Figure 5.11. The element forces 
and the element distortions, are defined by the following vectors: 
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,}r,...,r,r,r{ t
12321=r  

and 

,}u,...,u,u,u{ t
12321=u  

where r1 – r3 are the force components at end i and r4 – r6 are moment components 
at end i. Also r7 – r9 are the force and r10 – r12 are the moment components, 
respectively at the end j, and ui (i=1,...,12) are correspondingly the translations and 
rotations at the ends i and j of the element. 

x

y

z

_

_

_

ji

 

Fig. 5.11   A beam element in the local coordinate. 

Using energy methods, the stiffness matrix of the beam element in the local 
coordinate system defined in Figure 5.11 can be obtained as:  
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 (5-63) 
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In which Iy, Iz and J are the moments of inertia with respect to the y  and z  axes 
and J is the polar moment of inertia of the section. E specifies the elastic modulus 
and υ is the Poisson ratio. The length of the beam is denoted by L. 

For the two-dimensional case the columns and rows corresponding to the third 
dimension can easily be deleted, to obtain the stiffness matrix of an element of a 
planar frame. 

The stiffness matrix in a global coordinate system can be written as: 
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For the two-dimensional case, 
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The entries of k are as follows, 

z
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1111 TTk α+α=  

z
422211121121 TTTTk α+α=        z

4
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2
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333k α=  
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in which: 

L
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1 =α ,  ,
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zz

2 =α   ,
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EI4 zz

3 =α   ,
L
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3

zz
4 =α and .

L
EI2 zz

6 =α              

As an example, consider the planar frame, shown in Figure 5.12, with 
2114623 N/m102E  and m1030I  ,m104A ×=×=×= −− . For element 1 we have, 

T11 = 0         T12 = 1         T21 = − 1          T22 = 0, 

and the stiffness matrix of the element is obtained as, 
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where "sym." denotes the symmetry of the matrix. 
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Fig. 5.12   A planar frame. 

 

5.4   OVERALL STIFFNESS MATRIX OF A STRUCTURE 

Once the stiffness matrix of an element is obtained in the selected global 
coordinate system, it can be planted in the specified and initialised overall stiffness 
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matrix of the structure K, using the process described in Section 5.2. This is 
illustrated by the following simple example: 

Let S be a planar truss with an arbitrary nodal and element numbering, as shown 
in Figure 5.13. The entries of the transformation matrices of the members are 
calculated using Eq. (5-32) and Eq. (5-33) as follows: 
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3T12 −=    and for bar 3   T11 =1, T12 = 0.  
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Fig. 5.13   A planar truss and the selected global coordinate system. 
 
Now the stiffness matrices can be formed using Eq. (5-62)  as: 

For bar 1: 
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For bar 3: 
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The overall stiffness matrix of the structure is an 8×8 matrix, which can easily be 
formed by planting the three member stiffness matrices as follows: 

 

.

10000000
01000100
0075.0433.075.0433.000
00433.025.0433.025.000
0075.0433.05.1075.0433.0
01433.025.005.1433.025.0
000075.0433.075.0433.0
0000433.025.0433.025.0

2
EA

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−
−−−

−−−−
−−
−−

=K  

Partitioning K into 2×2 submatrices, it can easily be seen that it is pattern 
equivalent to the node adjacency matrix of the graph model of the structure as 
follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗⋅∗⋅
⋅∗∗⋅
∗∗∗∗
⋅⋅∗∗

=*D .  

This pattern equivalence simplifies certain problems in structural mechanics, such 
as ordering the variables for bandwidth or profile reduction, methods for 
increasing the sparsity using special cutset bases, and improving the conditioning 
of structural matrices, which will be discussed in Chapters 7 and 8. 

The matrix K is singular, since the boundary conditions have to be applied. 
Consider, 

p = Kv 

and partition it for free and constraint degrees of freedom as:  
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. (5-67) 

This equation has a mixed nature; pf  and vc have known values and pc and vf are 
unknowns. Kff is known as the reduced stiffness matrix of the structure, which is 
non-singular for a rigid structure. 

For boundary conditions such as vc = 0, it is easy to delete the corresponding rows 
and columns to obtain, 

 ,ffff vKp =  (5-68) 

from which vf can be obtained by solution of the above set of equations. In a 
computer this can be done by multiplying the diagonal entries of Kcc by a big 
number such as 1020. An alternative approach is possible by equating the diagonal 
entries of Kcc to unity and all the other entries of these rows and columns to zero. 
If vc contains some specified values, pc will have corresponding vc values. A third 
method, which is useful when a structure has more constraint degrees of freedom 
(such as many supports), consists of the formation of element stiffness matrices 
considering the corresponding constraints, i.e. to form the reduced stiffness 
matrices of the elements in place of their complete matrices. This leads to some 
reduction in storage, also at the expense of additional computational effort. 

As an example, the reduced stiffness matrix of the structure shown in Figure 5.13 
can be obtained from K, by deleting the rows and columns corresponding to the 
three supports 1, 3 and 4. 
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The solution results in the joint displacements as: 

.
EA
40u  and  

EA5.1
40u y2x2 ==  

The member distortions can easily be extracted from the displacement vector, and 
multiplication by the stiffness matrix of each member results in its member forces 
in the global coordinate system. As an example, for member 3 we have: 
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A transformation yields the member forces in the local coordinate 
systems, t

1 23.99}  99.23{−=r , t
2 10.65}  659.10{−=r  and t

3 13.33}  33.13{ −=r . 

Example:  The truss shown in Figure 5.14 has members each of the same cross 
sectional area of 15000mm2, and elastic modulus 210 kN/mm2. Vertical loads of 
10kN and 5kN are applied at node 3 and node 5, respectively. Determine the 
forces in all members: 

 

Fig. 5.14   A planar truss S. 

The force-displacement relationship for a planar bar member is obtained from Eq. 
(5-23) as follows: 
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 (5-69) 

The stiffness matrices for the members of S are determined as: 

For members 1 and 2: 
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For members 3 and 4: 
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⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

03.23202.53003.23202.530
02.53071.121002.53071.1210
03.23202.53003.23202.530
02.53071.121002.53071.1210

,  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

−−

76.51418.58876.51418.588
18.58808.76218.58808.672
76.51418.58876.51418.588

18.58808.67218.58808.672

 

For members 5 and 6: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

0.360000.36000
0000

0.360000.36000
0000

, 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

−−

03.23202.53003.23202.530
02.53071.121002.53071.1210
03.23202.53003.23202.530

02.53071.121002.53071.1210

 

For member 7: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

−−

03.23202.53003.23202.530
02.53071.121002.53071.1210
03.23202.53003.23202.530

02.53071.121002.53071.1210

 

Assembling the stiffness matrix of the entire structure and imposing the boundary 
conditions 0y

4
x
4

y
1

x
1 =δ=δ=δ=δ  results in: 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ
δ

δ
δ

δ
δ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

y
5

x
5

y
3

x
3

y
2

x
2

03.23202.5300003.23202.530
71.278500.157502.53071.1210

76.411418.5880.36000
08.382200

.sym09.429602.530
13.3632

5
0
10
0
0
0

  

The solution of the above equations results in the joint displacements: 

3x
2 10716814.4 −×=δ , 2y

2 1012241.2 −×−=δ , 2x
3 1009894.1 −×−=δ , 

2y
3 1025665.2 −×−=δ 2x

5 10824108.1 −×−=δ   and 2y
5 10521007.9 −×−=δ . 

Once the displacements are calculated, the member forces can easily be obtained 
using member stiffness matrices. 

 

5.5   GENERAL LOADING 

The joint load vector of a structure can be computed in two parts. The first part 
comes from the external concentrated loads and/or moments, which are applied at 
the joints defined as the nodes of S. The components of such loads are most easily 
specified in a global coordinate system and can be entered to the joint load vector 
p. 

The second part comes from the loads which are applied on members. These loads 
are usually defined in the local coordinate system of a member. For each member 
the fixed end actions (FEA) can be calculated using the existing classical formulae 
or tables. A simple computer program can be prepared for this purpose. The fixed 
end actions should then be rotated to the global coordinate system using the 
transformation matrix given by Eq. (5-27). The FEA should then be reversed and 
applied to the end nodes of the members. These components can be added to p to 
form the final joint load vector. After p has been prepared and the boundary 
conditions imposed, the corresponding equations should be solved to obtain the 
joint displacements of the structure. Member distortions can be extracted for each 
member in the reverse order to that used in assembling p vector. 

Example:  A portal frame is considered as shown in Figure 5. 15. The members 
are all made of sections with area A = 150cm2, moment of inertia Iz = 2×104cm4 
and elastic modulus E = 2×104kN/cm2. Calculate the joint rotations and 
displacements. 
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4m

5m

1

2 3
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1

2

3

50kN

12kN/m

 

Fig. 5.15   A portal frame and its loading. 

The equivalent joint loads are illustrated in Figure 5.16: 

x

y

74kN

1600kN.m

 
Fig. 5.16   Equivalent joint loads. 

Employing Eq. (5-66), the stiffness matrices for the members are obtained as 
follows: 

For member 1: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

40005.120005.1
75.00075.00

008.05.10008.0
40005.1

.sym75.00
008.0

104
1k , 

and for member 2: 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
=

32096.0016096.00
004.0096.0004.00

6.0006.0
32096.00

.sym004.00
6.0

104
2k .  

For member 3: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
=

40005.120005.1
75.00075.00

008.05.10008.0
40005.1

.sym75.00
008.0

104
3k . 

Assembling the stiffness matrices and imposing the boundary conditions results in 
the following equations: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

θ

δ
δ
θ

δ
δ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z
3

y
3

x
3

z
2

y
2

x
2

4

72096.05.116096.00
754.0096.0004.00

608.0006.0
72096.05.1

.sym754.00
608.0

10

0
0
0

160
0
4.7

 

Solving these equations leads to:  
 

 x
2δ = 0.0659167,  y

2δ = 2.617764E−04,    z
2θ = −8.983453E−05,  

 
x
3δ = 0.06533767, −=δy

3 2.617704E−04 and −=θz
3 1.16855E−04. 

 

5.6   COMPUTATIONAL ASPECTS OF THE MATRIX 

         DISPLACEMENT METHOD 

The main advantage of the displacement method is its simplicity for computer 
programming. This is due to the existence of a simple kinematical basis formed on 
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a special cutset basis known as cocycle basis of the graph model S of the structure. 
Such a basis does not correspond to the most sparse stiffness matrix, however, the 
sparsity is good enough, not to look for a better basis in more usual cases. 
However, if an optimal cutset basis of S is needed, then the displacement method 
has all the problems encountered in the force method, described in Chapter 6. The 
algorithm for the displacement method is summarized in the following. The 
coding for such an algorithm may be found in textbooks such as those of 
Vanderbilt [242] and Meek [173]. 

Algorithm 

Step 1:  Select a global coordinate system and number the nodes and members of 
the structure. An appropriate nodal ordering algorithm will be discussed in 
Chapter 7. 

Step 2:   After initialisation of all the vectors and matrices, read the data for the 
structure and its members. For multi-member regular structures, data can be 
generated using the method of Chapter 10. 

Step 3:   For each member of the structure:  

 (a) compute L, L*, sinα, sinβ,sinγ, cosα, cosβ, cosγ; 

 (b) compute the rotation matrix T; 

 (c) form the member stiffness matrix k  in its local coordinate system; 

(d) form the member stiffness matrix k in the selected global coordinate 
system; 

 (e) plant k in the overall stiffness matrix K of the structure. 

Step 4:   For each loaded member: 

 (a) read the fixed end actions; 

(b) transform the fixed end actions to the global coordinate system and 
reverse it to apply at joints; 

 (c) store these joint loads in the specified overall joint load vector. 

Step 5:   For each loaded joint: 

 (a) read the joint number and the applied joint loads; 
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 (b) store it in the overall joint load vector. 

Step 6:   Apply boundary conditions to the structural stiffness matrix K, to obtain 
the reduced stiffness matrix Kff. Repeat the same for the overall joint load vector. 

Step 7:   Solve the corresponding equations to obtain the joint displacements. 

Step 8:   For each member: 

 (a) extract the member distortions from the joint displacements; 

 (b) rotate the member distortions to the local coordinate system; 

 (c) compute the member stiffness matrix; 

 (d) compute the member forces and fixed end actions. 

Step 9:   Compute the final member forces. 

For an efficient displacement analysis of a structure, special considerations must 
be taken into account, which will be discussed in Chapters 7, 8 and 10 of this 
book. 
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