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Short introduction to

Fast matrix multiplication



Algebraic Matrix Multiplication

 =( )
i j

A a ( )
i j

B b ( )
i j

C ci

j

Can be computed naively in O(n3) time.



Matrix multiplication algorithms

AuthorsComplexity

—n3

Strassen (1969)n2.81

Conjecture/Open problem: n2+o(1)   ???

Coppersmith-Winograd (1990)n2.38
…



Matrix multiplication algorithms -
Recent developments

AuthorsComplexity

Coppersmith-Winograd (1990)n2.376

Stothers (2010)n2.374

Williams (2011)n2.3729

Le Gall (2014)n2.37287

Conjecture/Open problem: n2+o(1)   ???



Multiplying 22 matrices

8 multiplications

4 additions

Works over any ring!



Multiplying nn matrices

8 multiplications

4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlg8)=O(n3) ( lgn = log2n )



“Master method” for recurrences

𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑓 𝑛 , 𝑎 ≥ 1 , 𝑏 > 1

𝑓 𝑛 = O(𝑛log𝑏 𝑎−𝜀) 

𝑓 𝑛 = O(𝑛log𝑏 𝑎)

𝑓 𝑛 = O(𝑛log𝑏 𝑎+𝜀) 

𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑛 , 𝑐 < 1

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log 𝑛)

𝑇 𝑛 = Θ(𝑓(𝑛))

[CLRS 3rd Ed., p. 94]



Strassen’s 22 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

 

 

 

 

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

( )( )

( )

( )

( )

( )

( )( )

( )( )

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B





  

 





 



 

 



11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M

  











 


7 multiplications

18 additions/subtractions

Subtraction!

Works over any ring! 

(Does not assume that multiplication is commutative)



Strassen’s nn algorithm

View each nn matrix as a 22 matrix 

whose elements are n/2  n/2 matrices 

Apply the 22 algorithm recursively

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlg7)=O(n2.81)

Exercise: If n is a power of 2, the algorithm uses

nlg7 multiplications and 6(nlg7n2) additions/subtractions 



Winograd’s 22 algorithm

1 21 22

2 1 11

3 11 21

4 12 2

S A A

S S A

S A A

S A S

 

 

 

 

1 11 11

2 12 21

3 4 22

4 22 4

M A B

M A B

M S B

M A T









11 1

12 5

21 6

22 7

C U

C U

C U

C U









7 multiplications

15 additions/subtractions

1 21 11

2 22 1

3 22 12

4 2 21

T B B

T B T

T B B

T T B

 

 

 

 

1 1 2

2 1 6

3 2 7

4 2 5

U M M

U M M

U U M

U U M

 

 

 

 

5 4 3

6 3 4

7 3 5

U U M

U U M

U U M

 

 

 

5 1 1

6 2 2

7 3 3

M S T

M S T

M S T







Works over any ring! 



Exponent of matrix multiplication

2  ≤  < 2.37287

( Many believe that =2+o(1) )

Let  be the “smallest” constant such that 

two nn matrices can be multiplies in O(n) time



Inverses / Determinants

The title of Strassen’s 1969 paper is:

“Gaussian elimination is not optimal”

Other matrix operations that can 

be performed in O(n) time:

• Computing inverses:  A1

• Computing determinants:  det(A)

• Solving systems of linear equations:  Ax = b

• Computing LUP decomposition: A = LUP

• Computing characteristic polynomials: det(A−I)

• Computing rank(A) and a corresponding submatrix



Block-wise Inversion

Provided that A and S are invertible

If M is (square, real, symmetric) positive definite,

(M=NTN, N invertible), then M satisfies the conditions above 

If M is a real invertible square matrix, M1=(MTM)1MT

Over other fields, use LUP factorization



Positive Definite Matrices

A real symmetric nn matrix A is said to be 

positive-definite (PD) iff xTAx>0 for every x≠0

Exercise: If M is PD then the matrices A and S

encountered in the inversion algorithm are also PD

Theorem: (Cholesky decomposition)

A is PD iff A=BTB where B invertible



LUP decomposition

=m

n

m

m

m

n

n

n

A
L

U

P

L is unit lower triangular

U is upper triangular

P is a permutation matrix

Can be computed in O(n) time



LUP decomposition (in pictures)
[Bunch-Hopcroft (1974)]

=

n

m A

[AHU’74, Section 6.4  p. 234]



=

n

m/2 B

Cm/2

[AHU’74, Section 6.4  p. 234]

LUP decomposition (in pictures)
[Bunch-Hopcroft (1974)]

Compute an LUP factorization of B

m

m

m

n

n

n

L1 U1

P1I D = CP1
−1



=

n

m

m

m

n

n

n

L1 U1

P1I D 

m/2 B

Cm/2

= m

m

m

n

n

n

U1

P1

EL1

IFE−1 G = D−FE−1U1

[AHU’74, Section 6.4  p. 234]

LUP decomposition (in pictures)
[Bunch-Hopcroft (1974)]

E

F

Perform row operations to zero F



[AHU’74, Section 6.4  p. 234]

U1

G’

n

m/2

m/2
= m

m

m

n

n

n

L2 P1

I

U2

H = U1P3
−1

P2

I

P3

m m

m

n

n

P3P1

L1

FE−1
=

n

A
L2

m

n

U2

H

LUP decomposition (in pictures)
[Bunch-Hopcroft (1974)]

Compute an LUP factorization of G’



LUP decomposition (in pictures)
[Bunch-Hopcroft (1974)]

Where did we use the permutations?

In the base case m=1 !



LUP decomposition - Complexity
[Bunch-Hopcroft (1974)]



Inversion  Matrix Multiplication

Exercise: Show that matrix multiplication and 

matrix squaring are essentially equivalent.



Checking Matrix Multiplication

C = AB  ?



Matrix Multiplication

Determinants / Inverses

Combinatorial applications?

Transitive closure

Shortest Paths

Perfect/Maximum matchings

Dynamic transitive closure and shortest paths

k-vertex connectivity

Counting spanning trees



BOOLEAN MATRIX 

MULTIPLICATION 

and

TRANSIVE CLOSURE



Boolean Matrix Multiplication

 =( )
i j

A a ( )
i j

B b ( )
i j

C ci

j

Can be computed naively in O(n3) time.



Algebraic 

Product

O(n)
algebraic 

operations

Boolean 

Product

Logical or ()
has no inverse!

?But, we can work
over the integers!

(modulo n+1)

O(n) operations

on O(log n)-bit words



Witnesses for 

Boolean Matrix Multiplication

A matrix W is a matrix of witnesses iff

Can we compute witnesses in O(n) time?



Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 

which (u,v)E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n) time.



Adjacency matrix 

of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph, 

then (Ak)ij=1 iff there is a path of length k from i to j.



Transitive Closure 

using matrix multiplication

Let G=(V,E) be a directed graph.

If A is the adjacency matrix of G, 

then (AI)n1 is the adjacency matrix of G*.

The matrix (AI)n1 can be computed by log n

squaring operations in O(nlog n) time.

It can also be computed in O(n) time.



(ABD*C)* EBD*

D*CE D*GBD*

A B

C D

E F

G H

X =

X* = =

TC(n) ≤ 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B



Exercise 1: Give O(n) algorithms for 

findning, in a directed graph,

a) a triangle

b) a simple quadrangle

c) a simple cycle of length k.

Hints:

1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.



MIN-PLUS MATRIX 

MULTIPLICATION

and

ALL-PAIRS 

SHORTEST PATHS

(APSP)



An interesting special case

of the APSP problem
A B

17

23

Min-Plus product

2

5

10

20

30

20



Min-Plus Products





































































125

703

48

528

5

731

571

252

1036



Solving APSP by repeated squaring

D  W

for i 1 to log2n

do D  D*D

If W is an n by n matrix containing the edge weights

of a graph. Then Wn is the distance matrix.

Thus: APSP(n)  MPP(n) log n

Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized 

by paths that use at most k edges. 



(ABD*C)* EBD*

D*CE D*GBD*

A B

C D

E F

G H

X =

X* = =

APSP(n) ≤ 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B



Algebraic 

Product

ij ik kj

k

C A B

c a b

 

 

O(n)

Min-Plus 

Product

min operation 
has no inverse!?

To be continued…



PERFECT MATCHINGS



Matchings

A matching is a subset of edges 

that do not touch one another.



Matchings

A matching is a subset of edges 

that do not touch one another.



Perfect Matchings

A matching is perfect if there

are no unmatched vertices



Perfect Matchings

A matching is perfect if there

are no unmatched vertices



Algorithms for finding 

perfect or maximum matchings

Combinatorial 

approach:

A matching M is a 

maximum matching iff it 

admits no augmenting paths



Algorithms for finding 

perfect or maximum matchings

Combinatorial 

approach:

A matching M is a 

maximum matching iff it 

admits no augmenting paths



Combinatorial algorithms for finding 

perfect or maximum matchings

In bipartite graphs, augmenting paths, and 

hence maximum matchings, can be found 

quite easily using max flow techniques.

In non-bipartite the problem is much harder. 

(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases): 

O(mn1/2) [Hopcroft-Karp] [Micali-Vazirani]



Adjacency matrix 

of a undirected graph

1

3
2

4

6

5

The adjacency matrix of an 

undirected graph is symmetric.



Matchings, Permanents, Determinants

Exercise: Show that if A is the adjacency matrix of 

a bipartite graph G, then per(A) is the number of 

perfect matchings in G.

Unfortunately computing the 

permanent is  #P-complete… 



Tutte’s matrix 
(Skew-symmetric symbolic adjacency matrix)

1

3
2

4

6

5



Tutte’s theorem

Let G=(V,E) be a graph and let A be its Tutte matrix. 

Then, G has a perfect matching iff det(A) ≢ 0.

1

3

2

4

There are perfect matchings



1

3

2

4

No perfect matchings

Tutte’s theorem

Let G=(V,E) be a graph and let A be its Tutte matrix. 

Then, G has a perfect matching iff det(A) ≢ 0.



Proof of Tutte’s theorem

Every permutation Sn defines a cycle collection

1 2 10
3 4

6 5

7

9 8



Cycle covers

1 2
3 4

6 5

7

9 8

A permutation Sn for which {i,(i)}E, 

for 1 ≤ i ≤ n, defines a cycle cover of the graph.

Exercise: If ’ is obtained from  by reversing

the direction of a cycle, then sign(’)=sign().

Depending on the 

parity of the cycle!



Reversing Cycles

Depending on the 

parity of the cycle!

7

9 8

3 4

6 5
1 2

7

9 8

3 4

6 5
1 2



Proof of Tutte’s theorem (cont.)

The permutations Sn that contain 

an odd cycle cancel each other! 

A graph contains a perfect matching 

iff it contains an even cycle cover.

We effectively sum only over even cycle covers.

Different even cycle covers define different 

monomials, which do not cancel each other out.



Proof of Tutte’s theorem (cont.)

A graph contains a perfect matching 

iff it contains an even cycle cover.

Perfect Matching  Even cycle cover



Proof of Tutte’s theorem (cont.)

A graph contains a perfect matching 

iff it contains an even cycle cover.

Even cycle cover  Perfect matching



Pfaffians



An algorithm for perfect matchings?

• Construct the Tutte matrix A.

• Compute det(A).

• If det(A) ≢ 0, say ‘yes’, otherwise ‘no’. 

Problem:
det(A) is a symbolic expression 

that may be of exponential size!

Lovasz’s

solution:

Replace each variable xij by a 

random element of Zp, where 

p=(n2) is a prime number



The Schwartz-Zippel lemma
[Schwartz (1980)] [Zippel (1979)]

Let P(x1,x2,…,xn) be a polynomial of degree d

over a field F. Let S F. If P(x1,x2,…,xn)≢0 

and a1,a2,…,an are chosen independently and 

uniformly at random from S, then

Proof by induction on n.

For n=1, follows from the fact that polynomial of 

degree d over a field has at most d roots 



Proof of Schwartz-Zippel lemma

Let k  d be the largest i such that 



Lovasz’s algorithm for 

existence of perfect matchings

• Construct the Tutte matrix A.

• Replace each variable xij by a random 

element of Zp, where p  n2 is prime.

• Compute det(A).

• If det(A)  0, say ‘yes’, otherwise ‘no’. 

If algorithm says ‘yes’, then 

the graph contains a perfect matching.

If the graph contains a perfect matching, then 

the probability that the algorithm says ‘no’, 

is at most n/p  1/n.



Exercise: In the proof of Tutte’s theorem, 

we considered det(A) to be a polynomial 

over the integers. Is the theorem true when we 

consider det(A) as a polynomial over Zp ?



Parallel algorithms

PRAM – Parallel Random Access Machine

NC - class of problems that can be solved 

in O(logkn) time, for some fixed k,  

using a polynomial number of processors

NCk - class of problems that can be solved 

using uniform bounded fan-in Boolean circuits 

of depth O(logkn) and polynomial size



Parallel matching algorithms

Determinants can be computed 

very quickly in parallel

DET  NC2

Perfect matchings can be detected

very quickly in parallel (using randomization)

PERFECT-MATCH  RNC2

Open problem:

???  PERFECT-MATCH  NC ???



Finding perfect matchings

Self Reducibility

Needs O(n2) determinant computations

Running time O(n+2)

Not parallelizable!

Delete an edge and check 

whether there is still a perfect matching

Fairly slow…



Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j}E is 

contained in a perfect matching iff (A1)ij0. 

Leads immediately to an O(n+1) algorithm:

Find an allowed edge {i,j}E , delete it and its 

vertices from the graph, and recompute A1.

Mucha-Sankowski (2004): Recomputing A1 

from scratch is very wasteful. Running time 

can be reduced to O(n) !

Harvey (2006): A simpler O(n) algorithm.



Adjoint and Cramer’s rule

1

Cramer’s rule:

A with the j-th row 

and i-th column deleted



Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j}E is 

contained in a perfect matching iff (A1)ij0. 

Leads immediately to an O(n+1) algorithm:

Find an allowed edge {i,j}E , delete it and its 

vertices from the graph, and recompute A1.

1

Still not parallelizable



Finding unique minimum weight

perfect matchings
[Mulmuley-Vazirani-Vazirani (1987)]

Suppose that edge {i,j}E has integer weight wij

Suppose that there is a unique minimum weight 

perfect matching M of total weight W

Exercise: Prove the last two claims



Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Assign each edge {i,j}E

a random integer weight wij[1,2m]

Suppose that G has a perfect matching

Lemma: With probability of at least ½, the 

minimum weight perfect matching of G is unique

Lemma holds for general collections of sets, 

not just perfect matchings



Proof of Isolating lemma
[Mulmuley-Vazirani-Vazirani (1987)]

Assign weights to all edges except {i,j}

Let aij be the largest weight for which {i,j} participates in 

some minimum weight perfect matchings

If wij<aij , then {i,j} participates in 

all minimum weight perfect matchings

An edge {i,j} is ambivalent if there is a minimum weight 

perfect matching  that contains it and another that does not

The probability that {i,j} is ambivalent is at most 1/(2m) !

{i,j} can be ambivalent only if wij=aij

If minimum not unique, at least one edge is ambivalent



Finding perfect matchings
[Mulmuley-Vazirani-Vazirani (1987)]

Choose random weights in [1,2m]

Compute determinant and adjoint

Read of a perfect matching (w.h.p.)

Is using 2m-bit integers cheating?

Not if we are willing to pay for it!

Complexity is O(mn) ≤ O(n+2)

Finding perfect matchings in RNC2

Improves an RNC3 algorithm by 

[Karp-Upfal-Wigderson (1986)]



Multiplying two N-bit numbers

[Schönhage-Strassen (1971)]

[Fürer (2007)]

[De-Kurur-Saha-Saptharishi (2008)]

For our purposes…

“School method’’



Karatsuba’s Integer Multiplication

[Karatsuba and Ofman (1962)]

x =  x1 2n/2 + x0

y =  y1 2n/2 + y0

u =  (x1 + x0)(y1 + y0)

v =  x1y1

w =  x0y0

xy =  v 2n + (u−v−w)2n/2 + w

T(n)  =  3T(n/2+1)+O(n)

T(n)  = (nlg 3) = O(n1.59)



Finding perfect matchings

[Mucha-Sankowski (2004)]

Recomputing A1 from scratch is wasteful. 

Running time can be reduced to O(n) !

[Harvey (2006)]

A simpler O(n) algorithm.

The story not over yet…



Sherman-Morrison formula

Inverse of a rank one update 

is a rank one update of the inverse

Inverse can be updated in O(n2) time



Finding perfect matchings

A simple O(n3)-time algorithm
[Mucha-Sankowski (2004)]

Compute A1

Find an edge {i,j} that appears in a perfect matching

(i.e., Ai,j  0 and (A 1)i,j 0)

Let A be a random Tutte matrix

Repeat n/2 times:

Zero all entries in the i-th and j-th rows and 

columns of A, and let Ai,j=1, Aj,i=1

Update A1



Exercise: Is it enough that the 

random Tutte matrix A, chosen at the 

beginning of the algorithm, is invertible?

What is the success probability of the algorithm

if the elements of A are chosen from Zp



Sherman-Morrison-Woodbury formula

Can be computed in O(M(n,k,n)) time

𝑨−𝟏 𝑨−𝟏𝑈

𝑨−𝟏 𝑼

Inverse of a rank k update 

is a rank k update of the inverse



A Corollary [Harvey (2009)]



Go over the edges one by one and delete an edge

if there is still a perfect matching after its deletion

Check the edges for deletion in a clever order!

Instead of selecting edges, 

as done by Rabin-Vazirani,  

we delete edges

Concentrate on small portion of the matrix

and update only this portion after each deletion

Harvey’s algorithm  [Harvey (2009)]



Can we delete edge {i,j}?

Set ai,j and aj,i to 0

Check whether the matrix is still invertible

We are only changing AS,S , where S={i,j}

New matrix is invertible iff

{i,j} can be deleted  iff ai,j bi,j  1 (mod p)



Find-Perfect-Matching(G=(V=[n],E)):

Let A be a the Tutte matrix of G

Assign random values to the variables of A

If A is singular, return ‘no’

Compute B = A1

Delete-In(V)

Return the set of remaining edges

Harvey’s algorithm  [Harvey (2009)]



If 𝑆 ⊆ 𝑉, Delete-In(S) deletes 

all possible edges connecting two vertices in S

If 𝑆, 𝑇 ⊆ 𝑉, Delete-Between(S,T) deletes 

all possible edges connecting S and T

We assume 𝑆 = 𝑇 = 2𝑘

Harvey’s algorithm  [Harvey (2009)]

Before calling 

Delete-In(S) and Delete-Between(S,T) 

keep copies of 

A[S,S], B[S,S], A[S∪T, S∪T], B[S∪T, S∪T]



Delete-In(S):

If |S| = 1 then return

Divide S in half: S = S1 ∪ S2

For i ∈ {1,2}

Delete-In(Si)

Update B[S,S]

Delete-Between(S1,S2)

Invariant: When entering and exiting, 

A is up to date, and B[S,S]=(A1)[S,S]



Delete-Between(S,T):

If |S| = 1 then

Let s ∈ S and t ∈ T

If As,t = 0 and As,t Bs,t  −1 then

// Edge {s,t} can be deleted

Set As,t = At,s = 0

Update B [S∪T, S∪T]  // (Not really necessary!)

Else

Divide in half: S = S1 ∪ S2 and T = T1 ∪ T2

For i ∈ {1, 2} and for j ∈ {1, 2}

Delete-Between(Si,Tj )

Update B[S∪T, S∪T]

Same Invariant

with B[S∪T, S∪T]



Maximum matchings

Theorem: [Lovasz (1979)] 

Let A be the symbolic Tutte matrix of G. 

Then rank(A) is twice the size of the 

maximum matching in G.

If |S|=rank(A) and A[S,*] is of full rank, 

then G[S] has a perfect matching, 

which is a maximum matching of G.

Corollary: Maximum matchings

can be found in O(n) time



“Exact matchings” [MVV (1987)]

Let G be a graph. Some of the edges are red. 

The rest are black. Let k be an integer. 

Is there a perfect matching in G

with exactly k red edges?

Exercise*: Give a randomized polynomial time 

algorithm for the exact matching problem

No deterministic polynomial time algorithm 

is known for the exact matching problem!



MIN-PLUS MATRIX 

MULTIPLICATION

and

ALL-PAIRS 

SHORTEST PATHS

(APSP)



The min-plus product of two n  n

matrices can be deduced after only 

O(n2.5) additions and comparisons. 

Fredman’s trick 
[Fredman (1976)]

It is not known how to implement 

the algorithm in O(n2.5) time. 



Algebraic Decision Trees

a17a19 ≤ b92 b72

c11=a17+b71

c12=a14+b42

...

c11=a13+b31

c12=a15+b52

...

yes no

…

2.5n

…
c11=a18+b81

c12=a16+b62

...

c11=a12+b21

c12=a13+b32

...



Breaking a square product into 

several rectangular products

A2A1

B1

B2

* min *i i
i

A B A B

MPP(n) ≤ (n/m) (MPP(n,m,n) + n2)

m

n



A Bn

m

n

m

Naïve calculation requires n2m operations

ai,r+br,j ≤  ai,s+bs,j

ai,r ai,s ≤  bs,j br,j



Fredman observed that the result can be inferred

after performing only O(nm2) operations

Fredman’s trick 
[Fredman (1976)]



Fredman’s trick (cont.)

ai,r+br,j ≤  ai,s+bs,j ai,r ai,s ≤  bs,j br,j


• Sort all the differences ai,r ai,s and bs,j br,j

• Trivially using 𝑂 𝑚2𝑛 log 𝑛 comparisons

• (Actually enough to sort separately for every 𝑟, 𝑠)

• Non-Trivially using 𝑂 𝑚2𝑛 comparisons

The ordering of the elements in the sorted list

determines the result of the min-plus product 

!!!



Sorting differences

ai,r+br,j ≤  ai,s+bs,j ai,r ai,s ≤  bs,j br,j


Number of orderings of the 𝑚2𝑛 differences 𝑎𝑖,𝑟 − 𝑎𝑖,𝑠
is at most the number of regions in ℝ𝑚𝑛 defined by the 

𝑚2𝑛 2 hyperplanes 𝑎𝑖,𝑟 − 𝑎𝑖,𝑠 = 𝑎𝑖′,𝑟′ − 𝑎𝑖′,𝑠′

Sort all 𝑎𝑖,𝑟 − 𝑎𝑖,𝑠 and all 𝑏𝑠,𝑗 − 𝑏𝑟,𝑗 and the merge

Lemma: Number of regions in ℝ𝑑 defined by 

𝑁 hyperplanes is at most 
𝑁
0
+ 𝑁

1
+⋯+ 𝑁

𝑑

Theorem: [Fredman (1976)]  If a sequence of 𝑛 items is

known to be in one of Γ different orderings, then it 

can be sorted using at most log2 Γ + 2𝑛 comparisons



All-Pairs Shortest Paths
in directed graphs with “real” edge weights

Running time Authors

𝑛3 [Floyd (1962)] [Warshall (1962)]

𝑛3

log 𝑛
log log 𝑛

1/3 [Fredman (1976)]

⋮ ⋮

𝑛3

2

Ω
log 𝑛

log log 𝑛

1/2 [Williams (2014)]



Sub-cubic equivalences
in graphs with integer edge weights in −𝑀,𝑀

[Williams-Williams (2010)]

If one of the following problems has 

an 𝑂 𝑛3−𝜀poly(log𝑀 ) algorithm, 𝜀 > 0,
then all have! (Not necessarily with the same 𝜀.)

• Computing a min-plus product

• APSP in weighted directed graphs

• APSP in weighted undirected graphs

• Finding a negative triangle

• Finding a minimum weight cycle 

(non-negative edge weights)

• Verifying a min-plus product

• Finding replacement paths



UNWEIGHTED

UNDIRECTED

SHORTEST PATHS



Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where 

(u,v)E2 if and only if (u,v)E or there 

exists wV such that (u,w),(w,v)E

Let δ (u,v) be the distance from u to v in G.

Let δ2(u,v) be the distance from u to v in G2.



Distances in G and its square G2 (cont.)

Lemma: δ2(u,v) =δ(u,v)/2 ,  for every u,vV.

Thus: δ(u,v) = 2δ2(u,v) or

δ(u,v) = 2δ2(u,v)1 

δ2(u,v) ≤ δ(u,v)/2

δ(u,v)  ≤ 2δ2(u,v)



Even distances

Lemma: If δ(u,v) = 2δ2(u,v) then for every 

neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2



Odd distances

Lemma: If δ(u,v) = 2δ2(u,v)–1 then for every 

neighbor w of v we have δ2(u,w)  δ2(u,v) and 

for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2

Exercise: Prove the lemma.



Seidel’s algorithm [Seidel (1995)]

Algorithm APD(A)

if A=J then

return J–I

else

C←APD(A2)

X←CA , deg←Ae

dij←2cij– [xij<cijdegj]

return D

end

1. If A is an all one matrix, 

then all distances are 1.

2. Compute A2, the adjacency 

matrix of the squared graph.

3. Find, recursively, the distances 

in the squared graph.

4. Decide, using one integer 

matrix multiplication, for every 

two vertices u,v, whether their 

distance is twice the distance in 

the square, or twice minus 1.
Complexity: 

O(nlog n)

Assume that A has 

1’s on the diagonal.

Boolean matrix 

multiplicaion

Integer matrix 

multiplicaion



Exercise+: Obtain a version of 

Seidel’s algorithm that uses only 

Boolean matrix multiplications.

Hint: Look at distances also modulo 3.



Distances vs. Shortest Paths

We described an algorithm for 

computing all distances.

How do we get a representation of

the shortest paths?

We need witnesses for the 

Boolean matrix multiplication.



Witnesses for 

Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(nlog n) time.



Exercise n+1:

a) Obtain a deterministic O(n)-time 

algorithm for finding unique witnesses.

b) Let 1≤d≤n be an integer. Obtain a 

randomized O(n)-time algorithm for 

finding witnesses for all positions that 

have between d and 2d witnesses.

c) Obtain an O(nlog n)-time randomized 

algorithm for finding all witnesses.

Hint: In b) use sampling.



Running time Authors

Mn [Shoshan-Zwick ’99]

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 

Edge weights in {0,1,…M}

Improves results of 

[Alon-Galil-Margalit ’91] [Seidel ’95]



DIRECTED

SHORTEST PATHS



Exercise:

Obtain an 𝑂(𝑛𝜔 log 𝑛)-time algorithm for 
computing the diameter of an unweighted

directed graph.

Exercise:

For every 𝜀 > 0, give an 𝑂(𝑛𝜔 log 𝑛)-time 
algorithm for computing 1 + 𝜀 -

approximations of all distances in an 
unweighted directed graph.



Using matrix multiplication

to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

     
     

      
     
     

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

   
     
            

    
   



Using matrix multiplication

to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

   
     
            

    
   

n

polynomial 

products

M
operations per 

polynomial 

product

 =

Mn 

operations per 

min-plus 

product

Assume:   0 ≤ aij , bij ≤ M



Trying to implement the 

repeated squaring algorithm

Consider an easy case: 

all weights are 1

D  W

for i 1 to log2n 

D  D*D

After the i-th iteration, the finite 

elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i n

The cost of the last product is n+1 !!!



Sampled Repeated Squaring  [Z (1998)]

𝐷𝑊
for 𝑖1 to log3/2𝑛 do

{

𝑠 3/2 𝑖+1

𝐵 rand(𝑉, (9𝑛 ln𝑛)/𝑠)
𝐷min{ 𝐷 , 𝐷[𝑉, 𝐵] ∗ 𝐷[𝐵, 𝑉] }

}

Choose a subset of 𝑉
of size  𝑛/𝑠

Select the columns

of 𝐷 whose 

indices are in 𝐵

Select the rows

of 𝐷 whose 

indices are in 𝐵

With high probability, 

all distances are correct!

The is also a slightly more complicated 

deterministic algorithm



Sampled Distance Products (Z ’98)

𝑛

𝑛

𝑛

|𝐵|

In the 𝑖-th iteration, 

the set 𝐵 is of size 

 𝑛/𝑠, where 

𝑠 = 3/2 𝑖+1

The matrices get 

smaller and smaller

but the elements get 

larger and larger



Sampled Repeated Squaring - Correctness

D  W

for i 1 to log3/2n do

{

s  (3/2)i+1

B  rand(V,(9n ln n)/s)

D  min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th

iteration, distances that are 

attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

 1
2

3
2

i

 1
2

3
2

i

 1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/3
9ln

(1 )

s

n
n

s

Failure 

probability :



Rectangular Matrix multiplication

[Coppersmith (1997)]  [Huang-Pan (1998)]

n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

 =n

p

p

n

n

n

Naïve complexity:        n2p



Rectangular Matrix multiplication

[Coppersmith (1997)] 

nn0.29 by n0.29n

n2+o(1) operations!

 =n

n0.29

n
0

.2
9

n

n

n

 = 0.29…



Rectangular Matrix multiplication

[Huang-Pan (1998)] 

 =n

p

p

n

n

n

Break into qq and q q sub-matrices



Complexity of APSP algorithm

The i-th iteration:

n

n/s

n

n
 /s

s = (3/2)i+1

The elements are 

of absolute value 

at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s

 
  

 

0.68 2.58M n

“Fast” matrix

multiplication

Naïve matrix

multiplication



Complexity of APSP algorithm

Exercise: 

The claim that the elements in the matrix in 

the 𝑖-th iteration are of absolute value at 

most 𝑀𝑠, where 𝑠 = 3/2 𝑖+1, is not true. 

Explain why and how it can be fixed.  



Open problem:

Can APSP in unweighted directed graphs 

be solved in O(n) time?

[Yuster-Z (2005)]

A directed graphs can be processed in O(n)

time so that any distance query can be 

answered in O(n) time.

Corollary:

SSSP in directed graphs in O(n) time.

Also obtained, using a different technique, by

[Sankowski (2005)]



The preprocessing algorithm [YZ (2005)]

𝐷 𝑊 ; 𝐵𝑉
for 𝑖1 to log3/2𝑛 do

{

𝑠 3/2 𝑖+1

𝐵 rand(𝐵, (9𝑛ln𝑛)/𝑠)
𝐷[𝑉, 𝐵]min{ 𝐷[𝑉, 𝐵] , 𝐷[𝑉, 𝐵] ∗ 𝐷[𝐵, 𝐵] }
𝐷[𝐵, 𝑉]min{ 𝐷[𝐵, 𝑉] , 𝐷[𝐵, 𝐵] ∗ 𝐷[𝐵, 𝑉] }

}



Twice Sampled Distance Products

𝑛

𝑛

𝑛

|𝐵|

𝑛

|𝐵|

|𝐵|

|𝐵|

|𝐵|
𝑛



The query answering algorithm

𝜹(𝒖, 𝒗) 𝑫[{𝒖}, 𝑽] ∗ 𝑫[𝑽, {𝒗}]

u

v

Query time: 𝑂(𝑛)



The preprocessing algorithm: Correctness

Invariant: After the 𝑖-th iteration, if 𝑢 𝐵𝑖 or 𝑣𝐵𝑖
and there is a shortest path from 𝑢 to 𝑣 that uses 

at most (3/2)𝑖 edges, then 𝐷(𝑢, 𝑣) = 𝛿(𝑢, 𝑣).

Let 𝐵𝑖 be the 𝑖-th sample.    𝐵1 𝐵2𝐵3 …

Consider a shortest path that uses at most 3/2 𝑖+1edges

 1
2

3
2

i

 1
2

3
2

i

 1
2

3
2

i
at most at most



Answering distance queries

Preprocessing 

time

Query

time
Authors

Mn2.38 n
[Yuster-Zwick 

(2005)]

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances 

can be computed in Mn2.38 time.

For dense enough graphs with small enough edge 

weights, this improves on Goldberg’s SSSP algorithm.

Mn2.38 vs. mn0.5logM



Running time Authors

(n2.38 log M)/ε [Z (1998)]

Approximate All-Pairs Shortest Paths
in graphs with non-negative integer weights

Directed graphs. 

Edge weights in {0,1, … ,𝑀}

(1+ε)-approximate distances



Open problems

An O(n) algorithm for the 

directed unweighted APSP problem?

An O(n3ε) algorithm for the APSP 

problem with edge weights in {1,2,…,n}?

An O(n2.5ε) algorithm for the SSSP problem 

with edge weights in {1,0,1,2,…, n}?



DYNAMIC

TRANSITIVE CLOSURE



Dynamic transitive closure

• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Edge-Update n2 n1.575 n1.495

Vertex-Update n2 – –

Query 1 n0.575 n1.495

(improving [Demetrescu-Italiano ’00], [Roditty ’03])

[Sankowski ’04] 



Inserting/Deleting and edge

May change (n2) entries of the 

transitive closure matrix



Symbolic Adjacency matrix 

1

3
2

4

6

5



Reachability via adjoint
[Sankowski ’04] 

Let A be the symbolic adjacency matrix of G.

(With 1s on the diagonal.)

There is a directed path from i to j in G iff



Reachability via adjoint (example)

1

3
2

4

6

5
Is there a path from 1 to 5?



Dynamic transitive closure

Dynamic matrix inverse
• Entry-Update(i,j,x) – Add x to Aij

• Row-Update(i,v) – Add v to the i-th row of A

• Column-Update(j,u) – Add u to the j-th column of A

• Query(i,j) – return (A-1)ij

• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?



O(n2) update / O(1) query algorithm
[Sankowski ’04] 

Let pn3 be a prime number

Assign random values aij2 Fp to the variables xij

Maintain A
1

over Fp

Edge-Update Entry-Update

Vertex-Update  Row-Update + Column-Update

Perform updates using the Sherman-Morrison formula

Small error probability 

(by the Schwartz-Zippel lemma)



Lazy updates

Consider single entry updates



Lazy updates (cont.)



Lazy updates (cont.)

Can be made worst-case



Even Lazier updates



Dynamic transitive closure

• Edge-Update(e) – add/remove an edge e

• Vertex-Update(v) – add/remove edges touching v.

• Query(u,v) – is there are directed path from u to v?

Edge-Update n2 n1.575 n1.495

Vertex-Update n2 – –

Query 1 n0.575 n1.495

(improving [Demetrescu-Italiano ’00], [Roditty ’03])

[Sankowski ’04] 
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Finding triangles in O(m2 /(+1)) time

[Alon-Yuster-Z (1997)]

Let  be a parameter.                                   .

High degree vertices: vertices of degree  .

Low degree vertices: vertices of degree < .

There are at most 2m/ high degree vertices

 2m



m=

 = m(-1) /(+1)
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Finding longer simple cycles

A graph G contains a Ck iff Tr(Ak)≠0 ?

We want simple cycles!



165

Color coding [AYZ ’95]

Assign each vertex v a random number c(v) from 

{0,1,...,k1}. 

Remove all edges (u,v) for which c(v)≠c(u)+1 (mod k).

All cycles of length k in the graph are now simple.

If a graph contains a Ck then with a probability of at 

least kk it still contains a Ck after this process.

An improved version works with probability 2O(k).

Can be derandomized at a logarithmic cost.


