

PC Based Basic Principle Simulators and IAEA Activities

Matthias KRAUSE, Tatjana JEVREMOVIC Nuclear Power Technology Development Section

First Meeting of the Technical Working Group for Small Modular Reactors (TWG-SMR) April 23 – 26, 2018

OUTLINE Monday 19 February 2018

60 Years

16:45 – 17:10

IAEA PC Simulators in E&T in Member States

✤ iPWR Simulator

Department of Nuclear Energy

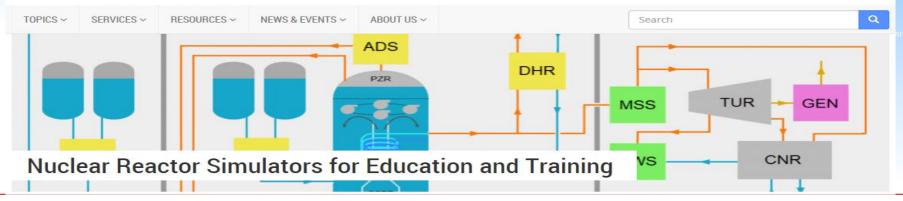
Fostering Sustainable Nuclear Energy for the Future

IAEA Programme Objective

"Assist Member States in training nuclear researchers, engineers, and nuclear regulators"

Systematic Education and Training on various topics

IAEA established an Education & Training Courses based on **active learning (learning-by-doing)** with nuclear reactor simulation computer programs (**basic principle simulators**) to assist Member States in educating & training their nuclear professionals.


- Basic Principle Simulators provide a thorough demonstration of the basic operational principles of <u>NPPs</u> by illustrating general concepts, and demonstrating and displaying fundamental physical processes of the plant:
 - o Operational characteristics
 - Reactivity control systems
 - o Safety systems
 - Responses to transients and accidents.

Used in Reactor Technology Assessment Stage

- The best technology for a national objective and needs
- o Training in reactor technologies
- Learning of the technology specifics: ARIS data base →

Computer based tools are a state of the art learning approach

- EXAMPLES are PC simulators of nuclear power plants' operation and responses to various inputs (transients, accidents) with illustrative screens and graphs to provide the plant's response
- IAEA PC based simulators are designed to provide insight and understanding of the general design and operational characteristic of various power reactor systems:
 - PWR, BWR, WWER, PHWR, iPWR and have

Focus on education and training in classrooms, and not licensing or reactor operator training, or benchmarking against other computer codes and methods

TYPES of Simulators

Basic Principle Simulators

- Operate on personal computers (PC) and are provided for a broad audience of technical and nontechnical personnel as an introductory educational & training set of tools
- Configuration suited to classroom & self - learning tool as complement to textbooks and manuals
- Provides subsystem training and overall plant training (startup, shutdown, malfunctions)

Engineering Simulators

 Computer based simulation tools able to calculate and display in real time the physical parameters of NPP
 Maintenance and retraining

Full Scope Simulators

Indispensable in the licensed training of the NPP control room operators:
Plant operation in a control room environment

Procedure based, cognitive skill based, team work

TYPES of Simulators

ROLE

Provide initial and fundamental educational training about NPP (including NPP personnel before NPP is built & full scope simulator in service)
 Provide knowledge of system interfaces, integration and interactions

SPECIFICS

- Relatively low cost and affordable
- Can use highly portable, standard PC platforms
- □ Mathematical models are easily configurable and provide flexibility of use
- □ Can use graphic icons, control pop-ups, time trends for user interfaces instead of hardwired panels

The use of the IAEA PC based basic principle simulators in education and training is aimed at **enhancing understanding of nuclear technologies through learning-by-doing:**

Hands-on experiential training is highly suitable for operators, maintenance technicians, suppliers, regulators and engineers

Train the Trainer

Base for Technology Assessment

Basic Principle Simulators

List of the IAEA PC-Based Basic Principle Simulators

Pressurized Water Reactor (PWR) Simulators

- Gen II Pressurized Water Reactor (PWR)
- □ 2-Loop Large PWR (Korean-OPR 1000)
- □ Russian-type PWR (WWER-1000)
- □ Advanced Passive PWR (AP-600)
- Integral Pressurized Water Reactor (SMR)

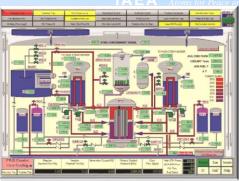
Issued in January 2017

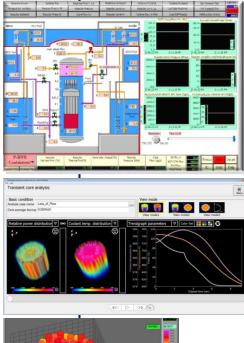
Boiling Water Reactor (BWRs) Simulators

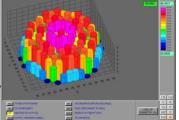
- □ Advanced Boiling Water Reactor (BWR)
- □ Advanced Passive BWR (ESBWR)

Pressurized Heavy Water Reactor (PHWR)

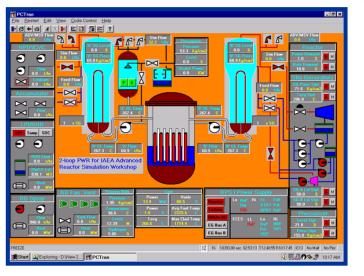
- Conventional PHWR
- □ Advanced PHWR (Candu-6)


Part-Task Simulator

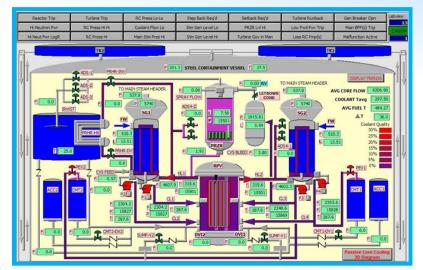

□ Micro-Physics Simulator (Lite)


Under Development

- Sodium Cooled Fast Reactor (SFR)
- High Temperature Gas Cooled Reactor (HTGR)


List of PC-Based Simulators

Simulator Name	Туре	Developer	Funded by
Standard 2-Loop PWR	A generic two-loop PWR with inverted U-bend steam generators and dry containment similar to existing Westinghouse, Framatome or KWU designs.	Micro-Simulation Technology of USA	IAEA
2-Loop Large PWR	Represents Korea's 1000 MWe Optimized PWR	KAERI	Korea
Advanced PWR	Largely based on Westinghouse AP- 600 PWR with passive safety systems	Cassiopeia Technologies Inc. (CTI) of Canada	IAEA
WWER-1000	WWER-1000 reactor is a vessel-type Light Water Reactor where chemically purified water with boric acid serves as coolant and moderator.	Moscow Engineering and Physics Institute in Russia	Russia
Standard BWR	A typical 1300 MWe BWR with internal recirculation pumps similar to ABWR plant	Cassiopeia Technologies Inc. (CTI) of Canada	IAEA
Advanced BWR	Represents GE's ESBWR with passive safety features	Cassiopeia Technologies Inc. (CTI) of Canada	IAEA
Conventional Pressurized Heavy Water Reactor (PHWR)	Represents a 700 MWe class CANDU- 6 reactor	Cassiopeia Technologies Inc. (CTI) of Canada	IAEA
Advanced PHWR	Represents the ACR-700 system	Cassiopeia Technologies Inc. (CTI) of Canada	IAEA
Micro-Physics Simulator (Lite)	Core Physics Simulator (Part Task)	Nuclear Engineering Ltd. (NEL)- Japan	NEL Japan
iPWR	Small Modular Reactor (SMR)	TECNATOM- Spain	IAEA Available 2017
PWRsim	Pressurized water reactor	KSU - Sweden NEW	KSU Available 2017
BWRsim	Boiling Water Reactor	KSU – Sweden	KSU Available 2017


Preparation of the training materials

CFE, Interns

Basic Principle Simulators: Audience?

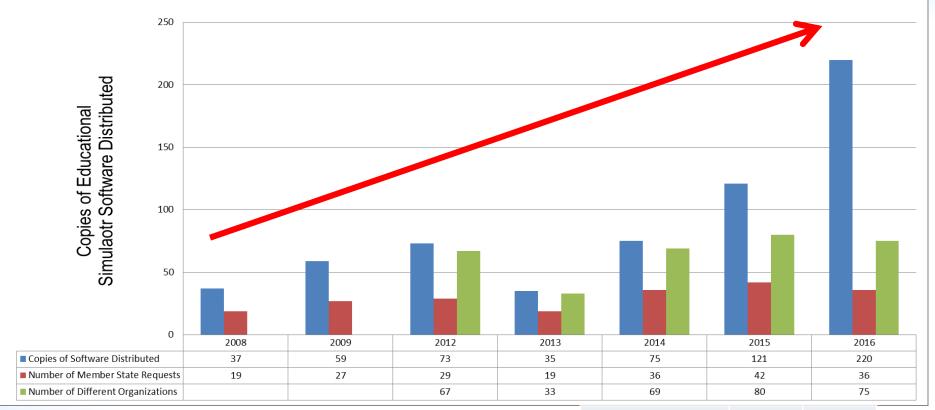
Effective hands-on educational & training tools

The use of the IAEA PC based basic principle simulators in education and training is aimed at **enhancing understanding of nuclear technologies through learning-by-doing:**Support Reactor Technology Assessment

Train the Trainer

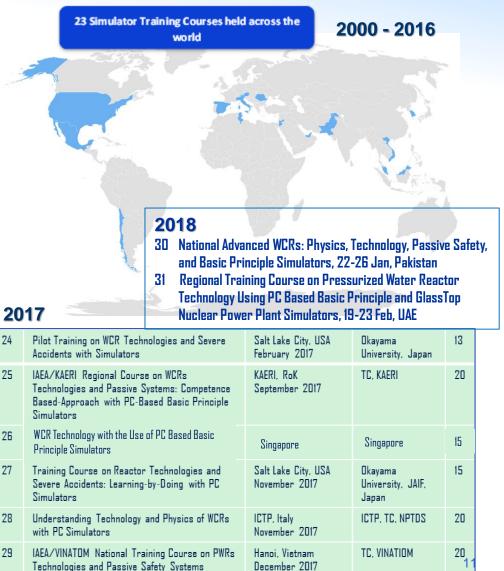
→ Hands-on experiential training is highly suitable for operators, maintenance technicians, suppliers, regulators and engineers.

TM ON DEVELOPING A SYSTEMATIC EDUCATION AND TRAINING APPROACH USING PERSONAL COMPUTER BASED SIMULATORS FOR NUCLEAR POWER PROGRAMMES HELD IN VIENNA, AUSTRIA, 15 – 19 MAY, 2017

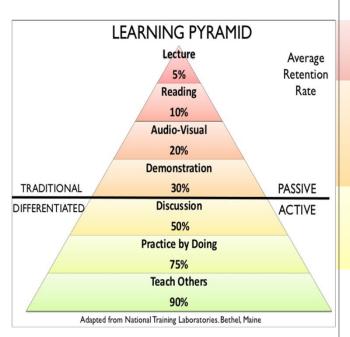

TECDOC January 2018 TM – Continuation: 23-27 April 2018 Wuhan, China

32 experts from 21 Member States

Software Distribution



	2017	1Q 2018	
Copies Distributed	562	65	
No. of MS Requests	25	9	
No. of Organizations	63	9	10


Human Capacity Building: Active Learning with Education and **Training Courses Using PC Based Basic Simulators** Understanding Physics and Technology of WCRs/FRs/HTGRs

No.	Year	Dates	Title	Location	Funding Organization	
1	1999	November 22- 26	Workshop on Reactor Simulator Development	Vienna, Austria	NPTDS	
2	2000	16-27 October	Workshop on the Application and Development of Advanced Nuclear Reactor Simulators for Educational Purposes	Trieste, Italy	NPTDS	
3	2001	29 October to 9 November	Workshop on Advanced Nuclear Simulation	Trieste, Italy	ICTP-NPTDS	
1	2002	14 - 25 October	Workshop on Advanced Nuclear Power Plant Simulation	Trieste, Italy	ICTP-NPTDS	
5	2003	27 October – 7 November	Workshop on Nuclear Power Plant Simulators for Education	Trieste, Italy	ICTP-NPTDS	
5	2004	8 to 19 November	Workshop on Nuclear Power Plant Simulators for Education	Trieste, Italy	ICTP-NPTDS	
7	2005	31 October – 11 November	Workshop on Nuclear Power Plant Simulators for Education	Trieste, Italy	ICTP-NPTDS	
8	2006	3-7 July	Workshop on NPP Simulators for Education	Bucharest, Romania	TC Project ROM9026	
9	2007	29 October - 9 November	Workshop on Nuclear Power Plant Simulators for Education	Trieste, Italy	ICTP-NPTDS	
10	2009	12 - 23 October	Workshop on NPP Simulators for Education	Trieste, Italy	ICTP-NPTDS	
11	2011	3 - 14 October	Workshop on Enhancing Nuclear Engineering through the Use of the IAEA PC-based Nuclear Power Plant Simulators	Milano, Italy	NPTDS	
12	2012	3-4 October	Present paper at European Nuclear Power Plant Simulation Forum 2012	Barcelona, Spain	NPDTS	
13	2013	4 - 15 November	Course on Physics and Technology of Water Cooled Reactors through the Use of PC-Based Simulators	Madrid, Spain	In cooperation	
14	2013	03-07 June	Interregional Course on Fundamentals of Pressurized Water Reactors with PC-Based Simulators	Daejeon, Korea	TC Inter- regional	27
15	2014	15-19 December	Understanding the Physics and Technology of Advanced Passively Safe Water-Cooled Nuclear Reactors using Basic Principles Simulators	Bangi, MALAYSIA	TC Funded	24
16	2015	16-28 February	Physics and Technology of Water-Cooled Reactors through the use of PC-based Simulators	Trieste, Italy	ICTP-NPTDS	35/ 118
17	2015	4-8 May	Understanding the Physics and Technology of Advanced Passively Safe Water-Cooled Nuclear Reactors using Basic Principles Simulators	Santiago, CHILE	TC Funded	15
18	2015	1-5 June	Course on Fundamentals of Pressurized Water Reactors with PC-based Simulators	Daejeon, Korea	In cooperation with KAERI	20
19	2015	22-27 November	Course on Fundamentals of Pressurized Water Reactors with PC-based Simulators	Amman, Jordan	TC Funded	16
20	2015	7-18 December	Physics and Technology of Water-Cooled	TAMU,	TC Funded	28
21	2016	May 23- June 3	Reactors through the use of PC-based Simulators Physics and Technology of PWRs with PC-based Simulators	Texas Daejeon, Korea	In cooperation with KAERI	18
22	2016	11-15 July	Understanding the Physics and Technology of PWRs through the use of PC-based Simulators	Tunis, Tunisia	In cooperation with AAEA	14
23	2016	24-28 October	Understanding the Physics and Technology of PWRs through the use of PC-based Simulators	Ocoyoacac, Mexico	TC Funded	

60 Years

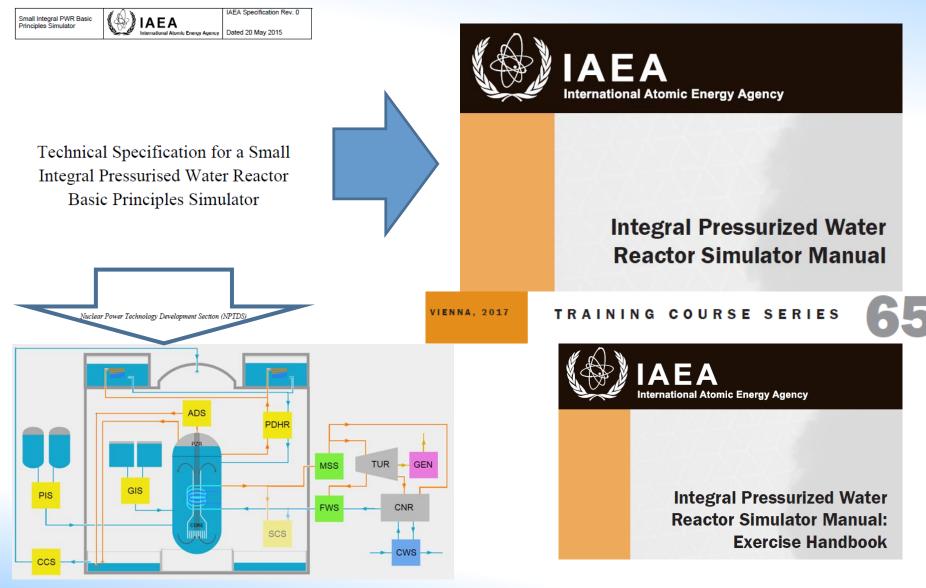
Rationale for the Training Courses and Workshops

- Use of PC Simulation in three steps:
 - Lectures: Overview reinforcing the theoretical concepts
 - Demonstration: Explanation on simulators and demonstration of representative examples (accidents, transients,...)
 - Practice by doing: actual hands on use of simulators performing normal and accident based scenarios
- Evaluation: feedback and discussion regarding outcome and performance at team and individual levels

Feedback from PC – Based Learning with Simulators

- Enhanced understanding of theoretical concepts and longer term retention
- Ability to relate theory with operational factors
- Appreciation for safety and security
- Better understanding of the intricate relationship between reactor physics concepts and thermal hydraulic principles
- Appreciation for system based approach to problem solving
- Appreciation for clear and effective communication
- Greater comprehension and appreciation for related concepts (health physics, fuel cycle, etc.)
- Ultimately, better prepared to hit the ground running upon graduation and employment in the industry.

Mahmoud Ghavi, Ph.D.


Professor and Director of the Southern Polytechnic State University Center for Nuclear Studies

SMR – iPWR type: integration of NSSS

				CRDM	DAMAR I				
Integration of components	ABV-6M	CAREM	NuScale	ACP100	SMART	mPower	W-SMR	IRIS	IMR
Pressurizer		No prz	$\overline{}$	outside	V		$\overline{}$		V
Steam Generators	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	steam drum outside	\checkmark	\checkmark
Pumps	NC	NC	NC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	NC
CRDMs	\checkmark	\checkmark	ext	ext	ext	\checkmark	\checkmark	\checkmark	ext
Power MWth MWe	38 6	100 25	160 45	310 100	330 100	530 180	800 225	1000 335	1000 350

iPWR Development 2015-2017

Integral Pressurized Water Reactor Simulator (SMR)

The iPWR simulator operational specifics are:

- Designed to examine the primary and balance of plant (BOP) behaviour of the iPWR
- Operation under accident conditions: Safety systems are implemented including Gravity Driven Water Injection System, Pressure Injection System, Passive Decay Heat Removal system, and Protection and Control System
- Severe accidents include a station blackout (SBO): the users can initiate the SBO accident by loading SBO malfunction. It will automatically trip both the reactor and the reactor turbine, and subsequently, actuate Passive Decay Heat Removal System (PDHR). The reactor behaviour can be observed during SBO until the reactor becomes stable.

Normal Operation

- Power Reduction/Increase
- Normal Reactor Trip

Malfunction Transient Events

- Loss of Feedwater Flow
- Turbine Runback
- Large Steam Generator Tube Rupture (SGTR)
- Large Main Steam Line Break (MSLB)
- Steam Line Isolation
- Reactor Pressure Vessel Safety Valve Opening
- Reactor Coolant Pumps Trip
- ...many others

https://www.iaea.org/topics/nuclear-power-reactors/nuclear-reactor-simulators-for-education-and-training/integral-pressurized-water-reactor-simulator

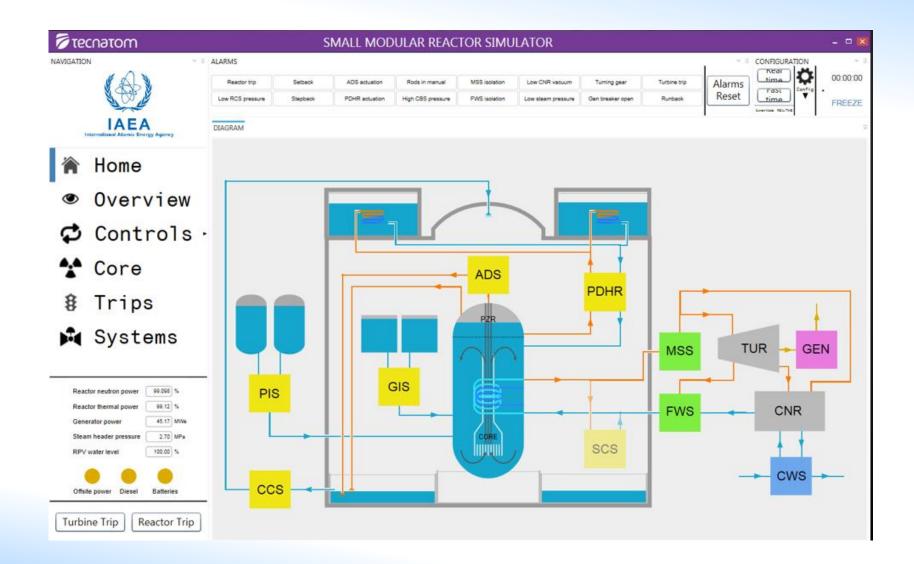
IAEA International Atomic Energy Agency

Integral Pressurized Water Reactor Simulator Manual

Forced OR Natural Circulation

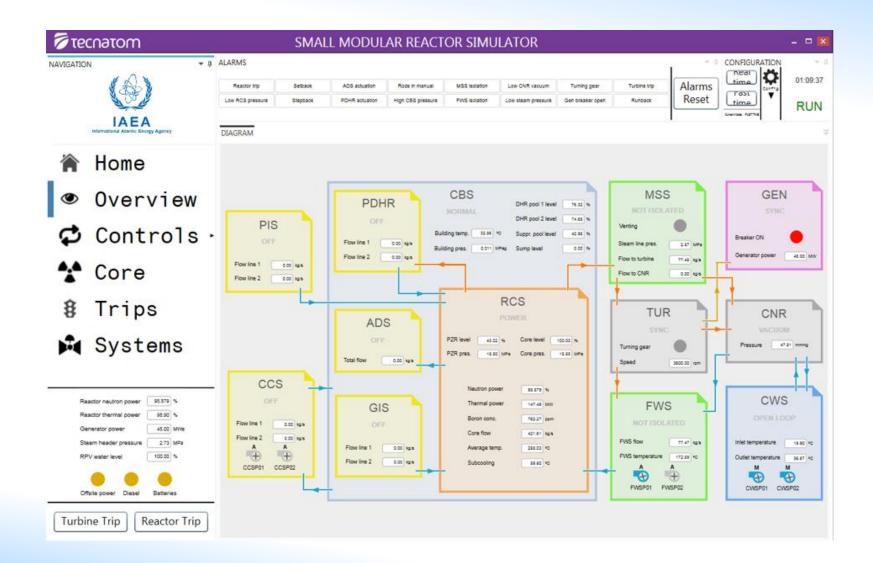
iPWR Systems

The iPWR simulator represents the **primary and balance of plant (BOP) systems** and behaviours. In order to simulate the whole operation, the following systems have been simulated:


- (a) Reactor coolant system and reactor core (RCS);
- (b) Main steam system (MSS);
- (c) Feedwater system (FWS);
- (d) Turbine system (TUR);
- (e) Generator system (GEN);
- (f) Condenser system (CNR);
- (g) Circulating water system (CWS);
- (h) Containment building system (CBS);
- (i) Automatic depressurization system (ADS);
- (j) Containment cooling system (CCS);
- (k) Gravity driven water injection system (GIS);
- (I) Pressure injection system (PIS);
- (m) Passive decay heat removal system (PDHR);
- (n) Protection and control system (PCS).

Reactor Trips (Rod Insertion):

- a) Low pressure upper plenum (P < 11.0MPa)
- b) Low level upper plenum (L < 5.0%)
- c) Low flow downcomer (Q < Q=F(P))
- d) High core outlet temperature (T < 340.0°C)
- e) High reactor neutron flux (Flux < 120%)
- f) High log rate (SUR > 2. dpm)
- g) High pressure upper plenum (P > 16.4 MPa)
- h) FW pumps trip
- i) ADS actuation
- j) Seismic Event
- k) Manual scram


iPWR – Home Screen

iPWR – Overview Screen

iPWR - Available Tutorials

 2.1. LOAD MANEUVERING (10%) IN TURBINE LEADING MODE 2.2. LOAD MANEUVERING (10%) IN REACTOR LEADING MODE 	10
 REACTOR POWER DECREASE FROM 100% TO 0% REACTOR POWER RISE FROM 0% TO 100% 	24
2.5. REACTOR TRIP AND RESTART	33
3. SIMULATOR EXERCISES FOR MALFUNCTION TRANSIENT EVENTS	44
 3.1. SPURIOUS TURBINE TRIP AND RECOVERY. 3.2. LOSS OF FEEDWATER FLOW. 3.3. TURBINE RUNBACK. 3.4. LARGE STEAM GENERATOR TUBE RUPTURE (SGTR). 3.5. LARGE STEAM LINE BREAK (MSLB). 3.6. STATION BLACKOUT (SBO). 3.7. STEAM LINE ISOLATION. 3.8. PRESSURIZER SAFETY VALVE OPENING. 3.9. REACTOR COOLANT PUMP TRIP. 3.10. FOUR REACTOR COOLANT PUMPS TRIP. 	53 58 61

Integral Pressurized Water Reactor Simulator Manual: Exercise Handbook

Path Forward ...

... in the past some simulators were donated, some funded from IAEA-RB (the old ones and iPWR) ...

- MS interest in increasing
- More simulators are desired, in particular SMRs
- Old simulators need updating (OS, newer designs, modern GUI, etc.)
- We have very limited funds!
- → Starting from existing MS capabilities (training simulators) and donate (modified) version

Pressurized Water Reactor (PWR) Simulators

- Gen II Pressurized Water Reactor (PWR)
- □ 2-Loop Large PWR (Korean-OPR 1000)
- □ Russian-type PWR (WWER-1000)
- □ Advanced Passive PWR (AP-600)
- □ Integral Pressurized Water Reactor (SMR)

Boiling Water Reactor (BWRs) Simulators

- □ Advanced Boiling Water Reactor (BWR)
- □ Advanced Passive BWR (ESBWR)

Pressurized Heavy Water Reactor (PHWR)

- Conventional PHWR
- □ Advanced PHWR (Candu-6)

Part-Task Simulator

Micro-Physics Simulator (Lite)

Under Development

- □ Sodium Cooled Fast Reactor (SFR)
- High Temperature Gas Cooled Reactor (HTGR)

Thank you!