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Introduction

The subject of this thesis is the mathematical analysis of linear and quasilinear parabolic
problems with inhomogeneous and nonlinear boundary conditions. We consider static
boundary conditions of Dirichlet, Neumann or Robin type, and further boundary con-
ditions of relaxation type, which include dynamic ones as well as boundary conditions that
arise in the linearization of free boundary problems.

Evolution equations of this type describe a great variety of physical, chemical and biological
phenomena, like reaction-diffusion processes, phase field models, chemotactic behaviour,
population dynamics, phase transitions and the behaviour of two phase fluids, for instance.
In many cases it is necessary to impose nonlinear boundary conditions into a reaction-
diffusion model to capture the dynamics of the phenomenon under investigation. In the
context of free boundary problems nonlinear boundary conditions naturally arise after a
transformation to a fixed domain.

We focus on maximal regularity results in weighted Lp-spaces for linear nonautonomous
parabolic problems with inhomogeneous boundary conditions. Compared to the approach
without weights, we are able to reduce the necessary regularity of the initial values, to
incorporate an inherent smoothing effect into the solutions and to avoid compatibility
conditions at the boundary. These properties serve us as a basis for constructing a local
semiflow for the corresponding quasilinear problems in a scale of phase spaces, and for the
investigation of the long-time behaviour of solutions in terms of global attractors.

Our approach to quasilinear problems thus relies on linearization and a good understanding
of the linear problem. This idea goes back at least to Kato [58], Sobolevskii [77] and
Solonnikov [79]. In a semigroup context it was carried out by Grisvard [46], Da Prato &
Grisvard [22], Amann [3, 4, 5, 6, 7], Da Prato & Lunardi [23], Lunardi [67] and Prüss [70].
Semilinear problems can be treated in the framework of analytic semigroups, see Henry’s
monograph [51].

Maximal regularity means that there is an isomorphism between the data and the solution
of the linear problem in suitable function spaces. Having established such a sharp regularity
result for the linearization, the corresponding quasilinear problem can be treated by quite
simple tools, like the contraction principle and the implicit function theorem. There are
approaches in spaces of continuous functions (see Angenent [12] and Clément & Simonett
[19]), in Hölder spaces (see Lunardi [67]) and in Lp-spaces for p ∈ (1,∞) (see Clément
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& Li [17] and Prüss [70]). For more details and other approaches to quasilinear parabolic
problems we refer to the discussion in [10].

The three mentioned maximal regularity settings have advantages and disadvantages. The
continuous setting is quite simple, but strong restrictions on the underlying spaces are
necessary. In the Hölder setting the nonlinearities are easy to handle and the approach
is also applicable to fully nonlinear problems, but unpleasant compatibility conditions at
the initial time are necessary and a priori estimates in high norms are required to show
global existence of solutions. In the Lp-setting powerful tools from vector-valued harmonic
analysis are available (and needed!), but on the other hand geometric assumptions on the
underlying spaces are required and also here one has to work in high norms. For a further
discussion we refer again to [10]. In this thesis we entirely work in an Lp-framework.

To decide wether a concrete linear problem enjoys maximal Lp-regularity in a suitable
setting is not easy. For linear problems which can be reduced to an abstract equation of
the form

∂tu(t) +Au(t) = f(t), t > 0, u(0) = u0, (1)

on a Banach space E, where A is a closed and densely defined operator on E, the operator
sum method, as developed by Da Prato & Grisvard [21] and extended by Dore & Venni [31]
and Kalton & Weis [57], is appropriate in many cases. Weis [85] characterized the maximal
Lp-regularity properties of an operator in terms of R-sectoriality. If E is a Hilbert space,
then every negative generator of a bounded analytic C0-semigroup enjoys maximal Lp-
regularity. Unfortunately, a Hilbert space setting does often not seem to be suitable for the
applications to quasilinear problems.

To treat second order parabolic differential equations with inhomogeneous or nonlinear
boundary conditions in a maximal Lp-regularity approach one typically chooses E = Lp,
E = W−1

p or E as an interpolation space in between as a basic underlying space. If E is
close toW−1

p then the boundary conditions are a priori only satisfied in a weak sense, but in
this way the problem can be cast in the form (1) and operator sum methods are available,
in principle. If E is close to Lp, then the boundary conditions can be understood in a
pointwise sense, but a formulation in the abstract form (1) does not seem to be possible in
a reasonable way, in general - there is always a ’PDE part’ left to deal with. An advantage
of choosing E close to Lp is that growth conditions on the nonlinearities can be avoided.

Combining operator sum methods with tools from vector-valued harmonic analysis, Denk,
Hieber & Prüss [24, 25] and Denk, Prüss & Zacher [26] showed maximal Lp-regularity with
Lp as an underlying space for a large class of vector-valued parabolic problems of even order
with inhomogeneous boundary conditions. In [25] problems with boundary conditions of
static type are considered, i.e.,

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t > 0,

Bj(t, x,D)u = gj(t, x), x ∈ Γ, t > 0, j = 1, ...,m, (2)

u(0, x) = u0(x), x ∈ Ω.
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This includes the linearization of reaction-diffusion systems and of phase field models with
Dirichlet, Neumann and Robin conditions. In [26] the authors study problems with bound-
ary conditions of relaxation type, i.e.,

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t > 0,

∂tρ+ B0(t, x,D)u+ C0(t, x,DΓ)ρ = g0(t, x), x ∈ Γ, t > 0,

Bj(t, x,D)u+ Cj(t, x,DΓ)ρ = gj(t, x), x ∈ Γ, t > 0, j = 1, ...,m, (3)

u(0, x) = u0(x), x ∈ Ω,

ρ(0, x) = ρ0(x), x ∈ Γ,

which includes dynamic boundary conditions as well as problems arising as linearizations
of free boundary problems that are transformed to a fixed domain. Here Ω ⊂ Rn is a
domain with compact smooth boundary Γ = ∂Ω. The coefficients of the operators are only
assumed to be pointwise multipliers to the underlying spaces, and the top order coefficients
are required to be bounded and uniformly continuous. These regularity assumptions allow
to apply the linear results to quasilinear problems. Earlier investigations on (2) started at
least with Ladyzhenskaya, Solonnikov & Ural’ceva [64] and include also Weidemaier [84].

A principle shortcoming of the maximal Lp-regularity approach to (1), (2) and (3) is that
for fixed p one can solve the equation for initial values only in one single space of relatively
high regularity, and that one does not have the flexibility to work in a scale of spaces.
The Lp-approach to (1) necessarily requires that u0 belongs to the real interpolation space
(E,D(A))1−1/p,p. For large p, which is necessary to choose in the Lp-setting to ensure that
the nonlinearities are well-defined, this space is close to the domain of A. The situation for
(2) and (3) is similar. Thus the long-time behaviour of solutions must be investigated in a
phase space of high regularity.

For second order problems (E,D(A))1−1/p,p is usually close to W 2
p for large p, but often

the structure of the problems under consideration does not provide enough information
for a priori estimates in such high norms. Such estimates are typically obtained in the
energy space H1

2 , in L∞ or in a Hölder space Cα with small exponent. Thus there is a gap
between the regularities inherent to given problems and the regularities which are necessary
to apply the nonlinear theory based on maximal Lp-regularity. Due to the lack of a scale of
phase spaces it is further not clear how to show relative compactness of bounded orbits and
compactness of the solution semiflow without strong a priori bounds. The latter properties
are important in the investigation of the ω-limit set of solutions and in the context of global
attractors.

The situation is even worse for the maximal Hölder regularity approach. Here it is re-
quired that the initial values belong to the domain of the operator under consideration.
On the other hand, for semilinear problems the domains of fractional powers of opera-
tors serve as a natural scale of phase spaces. The approach to quasilinear problems in
interpolation-extrapolation scales developed by Amann also does not have these shortcom-
ings, but requires that the boundary conditions can be absorbed into the domain of an
operator on a negative order base space.
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To close this regularity gap between theory and applications in the maximal Lp-regularity
approach one has introduced temporal weights that vanish at the initial time. In an abstract
setting this was done by Clément & Simonett [19] in the context of continuous maximal
regularity, and by Prüss & Simonett [71] in the Lp-setting. The latter authors proposed to
work in the power weighted spaces

Lp,µ(R+;E) =
{
u : R+ → E :

∫
R+

tp(1−µ)|u(t)|pE dt <∞
}
,

where µ ∈ (1/p, 1]. (Note that the weights tp(1−µ) belong to the class Ap, see Stein [81].)
Functions with worse behaviour at t = 0 belong to Lp,µ if one lowers µ. This approach yields
the solvability of the abstract equation (1) for initial values in (E,D(A))µ−1/p,p, and thus
allows to reduce the initial regularity up to the underlying space E. For fixed p this further
gives a useful scale of spaces for the initial values. Since the weights tp(1−µ) only have an
effect at t = 0 (on finite time intervals), the maximal regularity approach in the Lp,µ-spaces
also provides an inherent smoothing effect into solutions, as they regularize instantaneously
from (E0, E1)µ−1/p,p to (E0, E1)1−1/p,p, which corresponds to the unweighted case µ = 1.
It was further shown in [71] that the property of maximal Lp,µ-regularity for a closed and
densely defined operator is independent of µ ∈ (1/p, 1]. Hence the operator sum methods
known from the unweighted case are also available in the weighted approach. The results
of [71] were recently used by Köhne, Prüss & Wilke [59] to establish a dynamic theory for
abstract quasilinear problems.

It is the main purpose of the present thesis to extend and combine the results of
[25, 26, 59, 71] described above and to develop the maximal Lp,µ-regularity approach for
the problem classes (2) and (3). Here we aim at a systematic and comprehensive treatment
of the solution theory as well as of the various prerequisites such as trace and interpolation
properties of the underlying anisotropic function spaces on space-time. Besides the reduc-
tion of the initial regularity and an inherent smoothing effect of solutions, the approach
allows to avoid compatibility conditions at the boundary in linear problems. We apply
our linear theory to quasilinear reaction-diffusion systems with nonlinear boundary condi-
tions, of Robin and of reactive-diffusive-convective type, respectively. For such problems
we investigate local well-posedness in a scale of phase spaces, global existence and global
attractors, employing the flexibility of maximal Lp,µ-regularity.

We describe the organization of the thesis, the main results and the methods we have
used. In Chapter 1 we investigate the vector-valued Lp,µ-spaces and the corresponding
anisotropic Sobolev-Slobodetskii spaces in a systematic way, and deduce all the properties
required for the applications to parabolic problems. For instance, spaces of type

W κ
p,µ

(
R+;Lp(Γ)

)
∩ Lp,µ

(
R+;W 2κ

p (Γ)
)
,

where κ ∈ (0, 1), naturally arise in the Lp-approach to (2) and (3) as the sharp regularity
class of the boundary inhomogeneities. For such spaces we establish an intrinsic norm, var-
ious embeddings via the Newton polygon, the properties of the temporal and the spatial
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traces and mapping properties of pointwise multipliers. Since the multiplication with the
weight is not an isomorphism to the unweighted Sobolev-Slobodetskii spaces most of the
properties cannot be deduced from known results. We mainly employ interpolation tech-
niques, operator sum methods and the representation of the spaces as domains of operators
with a bounded H∞-calculus or bounded imaginary powers. Our exposition also gives a
comprehensive account of the unweighted case (µ = 1), which has been treated in the liter-
ature so far only in a scattered way. It turns out that the weighted spaces enjoy analogous
properties as the unweighted spaces, except for the intended reduced regularity of traces at
t = 0, of course. This makes the weighted setting applicable to parabolic problems without
disadvantages.
Certain aspects of weighted fractional order spaces were already investigated by Grisvard
[44], Triebel [82] and Prüss & Simonett [71]. Recently Girardi & Weis [42] showed an
operator-valued Fourier multiplier theorem for the Lp,µ-spaces.

Building on the properties of the weighted spaces, in Chapters 2 and 3 we generalize to the
Lp,µ-setting the maximal regularity results by Denk, Hieber & Prüss [25] and Denk, Prüss
& Zacher [26] on vector-valued linear inhomogeneous, nonautonomous initial-boundary
value problems of the form (2) and (3). The unknowns take values in a Banach space of
class HT , which is necessary to apply tools from harmonic analysis, and we impose the
same ellipticity and Lopatinskii-Shapiro conditions on the operators as in the unweighted
case. Again the coefficients of the operators are only required to be pointwise multipliers
on the underlying spaces, with continuous top order coefficients, which allows to apply the
linear theory to quasilinear problems.
The Chapters 2 and 3 are organized analogously. In Sections 2.1 and 3.1 we give a detailed
description of the approach and the involved function spaces, provide examples and for-
mulate the precise assumptions, respectively. The main results are stated in the Theorems
2.1.4 and 3.1.4. Their proofs, which are inspired by the ones in [25, 26], is then carried
out in the rest of the chapters. In the Sections 2.2 and 3.2 the case of full- and half-space
constant coefficient model problems without lower order terms are considered. Here we
employ to a large extent the properties of the weighted spaces derived in Chapter 1. Since
these results enter in all points of the reasoning, we give the long and technical proof in
detail. The rest of the chapters is then devoted to a perturbation and localization proce-
dure to derive the case of a general domain from the model problems. This procedure is
again quite technical, in particular because one has to take care to control the constants in
the various perturbation steps. In Proposition 2.5.1 we also show that boundary operators
related to (2) are surjective on suitable function spaces and have a bounded linear right-
inverse. This result is needed to establish a semiflow for quasilinear problems with Robin
boundary conditions in Chapter 4.

In the Chapters 4 and 5 we then apply our linear theory to quasilinear reaction-diffusion
systems with nonlinear boundary conditions. Intentionally we do not use the full generality
of the linear theory and rather focus from the beginning on some specific problems which
also allow for an investigation of their long-time behaviour. On a bounded domain Ω with
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smooth boundary Γ = ∂Ω and outer unit normal field ν we consider in Chapter 4 systems
with Robin boundary conditions, i.e, problems of the form

∂tu− ∂i(aij(u)∂ju) = f(u) in Ω, t > 0,

aij(u)νi∂ju = g(u) on Γ, t > 0, (4)

u(0, ·) = u0 in Ω.

It is assumed that (aij) is elliptic and of separated divergence form, and that the non-
linearities are smooth. A dynamic theory for (4) in a scale of Slobodetskii spaces was
established by Amann [6] via extrapolation techniques. Local well-posedness and invariant
manifolds near equilibria for (4) based on the unweighted maximal Lp-regularity approach
were obtained by Latushkin, Prüss & Schnaubelt [65, 66].

Our focus lies on the global long-time behaviour in strong norms close toW 2
p , where p <∞

is arbitrarily large. We employ maximal Lp,µ-regularity together with regularity results on
the superposition operators induced by the nonlinearities to construct in Theorem 4.3.6 a
compact local semiflow of solutions for (4) in the scale of nonlinear phase spaces

Ms
p :=

{
u0 ∈W s

p (Ω,RN ) : aij(u0)νi∂ju0 = g(u0) on Γ
}
,

where p ∈ (n+2,∞) and s ∈ (1+n/p, 2−2/p]. This high range of regularity is not covered
by Amann’s theory. In Theorem 4.4.2 we then show that a global attractor of (4) inM2−2/p

p

exists if there is an absorbant set in a Hölder space Cα(Ω,RN ) for some α > 0. The result
requires the full strength of the maximal Lp,µ-regularity approach for the linearization of
(4) and precise estimates for the nonlinear terms, which can be controlled in terms of
lower norms of the solution (see Lemma 4.2.3). In particular we obtain from Sobolev’s
embeddings that the solutions converge to the attractor with respect to the C1+β(Ω,RN )-
norm, where β ∈ (0, 1). In important special cases it suffices to have an absorbant set in
a weaker norm such as the sup-norm. Improving earlier results, we thus have established
that the long-time behaviour of also the spatial gradient of a solution is determined by
the dynamics on the attractor with respect to a sup-norm. The convergence in a higher
norm can be useful to improve error estimates for numerical algorithms when assuming in
a quasi-stationary approximation that parts of a system of partial differential equations
are on a fast time scale.
The above statements about convergence in a norm close to W 2

p are known for semilinear
problems with linear boundary conditions, but do not seem to exist for quasilinear problems
or nonlinear boundary conditions. Related results rely on the variation of constants formula.
The flexibility of the weights builds a bridge from lower to higher regularities, and thus
maximal Lp,µ-regularity can be seen as a substitute in the case of quasilinear problems.
In Section 4.5 we apply our results to show convergence to an attractor in higher norms
for concrete models. We consider semilinear reaction-diffusion systems with nonlinear
boundary conditions, as studied by Carvalho, Oliva, Pereira & Rodriguez-Bernal [15], a
chemotaxis model with volume filling effect, introduced by Hillen & Painter [53], and the
Shigesada-Kawasaki-Teramoto cross-diffusion model for population dynamics, introduced
in [76].
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In Chapter 5 we turn to systems with nonlinear dynamic boundary conditions, i.e., prob-
lems of the form

∂tu = ∂i(a1(u)∂iu) + a2(u)∇u+ f(u), in Ω, t > 0,

∂tu+ b(·, u)∂νu = divΓ(c1(·, u)∇Γu) + c2(·, u)∇Γu+ g(·, u), on Γ, t > 0, (5)

u(0, ·) = u0, in Ω.

Here Ω and the coefficients are as above, and ∇Γ and divΓ denote the surface gradient and
the surface divergence on the boundary Γ, respectively. Although they look more nonlinear
at a first glance, such boundary conditions are in fact less nonlinear than the ones in (4).
In fact, the autonomous version of their linearization may be cast in the abstract form (1)
by considering it as an evolution equation on the product space{

(v, vΓ) ∈ Lp(Ω,RN )×W 1−1/p
p (Γ,RN ) : trΩv = vΓ

}
,

where trΩ denotes the spatial trace on Ω, and one may identify the unknown u with the
pair (u, trΩu). Consequently one can work in linear phase spaces even for initial regularities
close to W 2

p .
The system (5) models the behaviour of the quantities undergoing a reaction-diffusion-
convection process in a domain and on its boundary, coupled by the normal flux term
b(·, u)∂νu. For b ≡ 1, in [43, Section 4] the effect of this coupling is interpreted as sending
concentration waves from Γ into an infinitesimal layer near the boundary. Similar dynami-
cal boundary conditions arise in Cahn-Hilliard or Caginalp phase field models if one takes
into account the short-ranged interaction with walls [73]. They also arise in two phase flows
with soluble surfactant [14]. In the literature these boundary conditions are also called gen-
eralized Wentzell boundary conditions [43]. Semilinear versions of (5) with a single equation
were investigated by many researchers, for instance by Favini, J. A. Goldstein, G. R. Gold-
stein & Romanelli [38, 39, 40], Sprekels & Wu [80] and Vazquez & Vitillaro [83]. Results on
quasilinear versions do not seem to exist. There are further results on quasilinear systems
with dynamic boundary conditions of reactive type, i.e., where tangential derivatives do
not occur. A dynamic theory for such problems was established by Escher [36], based on
Amann’s work. We refer to Constantin & Escher [20] and the references therein for more
recent developments.

We first investigate the linear inhomogeneous, nonautonomous version of (5). Under appro-
priate ellipticity conditions on the coefficients maximal Lp,µ-regularity is shown in Theorem
5.2.1. This extends the linear results of [38, 39, 40, 83] to more general problems and to
the Lp-case. Next we construct in Theorem 5.3.3 a compact local semiflow of solutions for
(5) in the linear phase space

M :=
{

(v, vΓ) ∈W 2−2/p
p (Ω,RN )×W 3−3/p

p (Γ,RN ) : trΩv = vΓ

}
,

using the linear theory and employing the ideas and results of [59] on abstract quasilinear
evolution equations in Lp,µ-spaces. Assuming an a priori Hölder bound, we are able to show
global existence for a solution of (5) in Theorem 5.4.1. Here again maximal regularity,
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localization techniques in space and time and appropriate nonlinear estimates are the
crucial ingredients. In Section 5.5 we specialize to a semilinear version of (5),

∂tu = ∆u+ f(u) in Ω, t > 0,

∂tu+ ∂νu = ∆Γu+ g(u) on Γ, t > 0, (6)

u(0, ·) = u0 in Ω,

and investigate the long-time behaviour of solutions in terms of global attractors. Here ∆Γ

denotes the Laplace-Beltrami operator on the boundary. Under appropriate dissipativity as-
sumptions on the reaction terms f and g we show that the system (6) possesses a Lyapunov
function, and that solutions are bounded in the energy space W 1

2 (Ω,RN ) ×W 1
2 (Γ,RN ).

Employing a Moser-Alikakos iteration procedure, we then deduce global existence. Another
a priori estimate on the equilibria of (6) yields the existence of a connected global attractor,
and that each solution converges to the set of equilibria (see Theorem 5.5.8).
For a single equation it is shown in [80] that each solution of (6) converges to an equilibrium
as time tends to infinity. Our dissipativity conditions differs from the one in [80], and is
rather comparable with the one in [15] for Robin boundary conditions. We may allow for
one component of a reaction term to have an unfavourable sign, provided the corresponding
component of the other reaction term compensates this appropriately in terms of positivity
of a Rayleigh quotient related to (6).

Finally, in the appendix we provide facts from interpolation theory, the theory of sectorial
operators, differential operators on a boundary and about functions spaces that are used
throughout the thesis. We give precise references and also prove some (rather simple)
results for which a reference does not seem to exist.

Notations. We write Rn
+ := {(x1, ..., xn) ∈ Rn : xn > 0} for n ∈ N, and C+ := {z ∈ C :

Re z > 0}. If it holds a ≤ C b for nonnegative quantities a, b with a generic constant C > 0
we write a . b. The Lebesgue, Sobolev and Slobodetskii spaces are denoted by Lp, Hs

p

and W s
p , where p ∈ [1,∞] designates integrability and s ∈ R designates differentiability.

For θ ∈ (0, 1) and p ∈ [1,∞] we denote by (·, ·)θ,p and [·, ·]θ the real and the complex
interpolation functor, respectively. The space of bounded linear operators between two
Banach spaces E,F is denoted by B(E,F ), where B(E) := B(E,E). If F is densely and

continuously embedded into E we write F
d
↪→ E, and if E,F coincide as sets and have

equivalent norms we write E = F . The domain, the spectrum and the resolvent set of a
closed operator A on E are denoted by D(A), σ(A) and ρ(A), respectively. For p ∈ [1,∞]
and s = [s] + s∗ with [s] ∈ N0 and s∗ ∈ [0, 1) we set DA(s, p) := D(As) if s ∈ N0 and
DA(s, p) := {x ∈ D(A[s]) : A[s]x ∈ (E,D(A))s∗,p} for s /∈ N0.
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Chapter 1

The Spaces Lp,µ and Weighted
Anisotropic Spaces

In this chapter we investigate the vector-valued Lp,µ-spaces and the corresponding weighted
anisotropic Sobolev-Slobodetskii spaces in a systematic way, where we restrict to spaces of
classHT from the beginning (cf. Appendix A.3). We first consider the Sobolev-Slobodetskii
spaces over the half-line and a finite interval, and derive basic properties. Of particular
importance is here that the derivative with positive and negative sign admits a bounded
H∞-calculus on the Lp,µ-spaces over the half-line, respectively. Next we briefly review the
results from [71] and [42] on abstract maximal Lp,µ-regularity and operator-valued Fourier-
multipliers in Lp,µ. Then we turn to anisotropic spaces, and investigate the Newton polygon,
temporal and spatial traces and pointwise multipliers.
Throughout we use the facts on interpolation theory, sectorial operators and function spaces
reviewed in the appendix.

1.1 Basic Properties

Let (E, |·|E) be a complex Banach space of classHT and let J = R+ = (0,∞) or J = (0, T )
for some T > 0. Let further

p ∈ (1,∞), µ ∈ (1/p, 1].

For u : J → E we denote by t1−µu the function t 7→ t1−µu(t) on J . We define

Lp,µ(J ;E) :=
{
u : J → E : t1−µu ∈ Lp(J ;E)

}
,

which becomes a Banach space when equipped with the norm

|u|Lp,µ(J ;E) := |t1−µu|Lp(J ;E) =
(∫

J
tp(1−µ)|u(t)|pE dt

)1/p

.

Note that µ = 1 corresponds to the unweighted case, Lp,1 = Lp, and that the weight tp(1−µ)

only has an effect at t = 0 and t =∞. Thus, for T > 0,

Lp(0, T ;E) ↪→ Lp,µ(0, T ;E), Lp,µ(0, T ;E) ↪→ Lp(τ, T ;E), τ ∈ (0, T ),
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but Lp(R+;E) * Lp,µ(R+;E) for µ ∈ (1/p, 1). For k ∈ N0 we define the corresponding
weighted Sobolev space

W k
p,µ(J ;E) = Hk

p,µ(J ;E) :=
{
u ∈W k

1,loc(J ;E) : u(j) ∈ Lp,µ(J ;E), j ∈ {0, ..., k}
}
,

which becomes a Banach space when equipped with the norm

|u|Wk
p,µ(J ;E) = |u|Hk

p,µ(J ;E) :=
( k∑
j=0

|u(j)|pLp,µ(J ;E)

)1/p

.

For s ∈ R+\N with s = [s]+s∗, where [s] ∈ N0, s∗ ∈ (0, 1), we define weighted Slobodetskii
and Bessel potential spaces by real and complex interpolation, respectively, i.e.,

W s
p,µ(J ;E) :=

(
W [s]
p,µ(J ;E),W [s]+1

p,µ (J ;E)
)
s∗,p

,

Hs
p,µ(J ;E) :=

[
W [s]
p,µ(J ;E),W [s]+1

p,µ (J ;E)
]
s∗
.

By Proposition A.4.2 this definition is consistent with the unweighted case, i.e., we have
W s
p = W s

p,1 and Hs
p = Hs

p,1 for all s ≥ 0. The general properties of real and complex
interpolation spaces (Appendix A.2) imply that for fixed p ∈ (1,∞) and µ ∈ (1/p, 1] one
has the scale

W s1
p,µ

d
↪→ Hs2

p,µ
d
↪→W s3

p,µ
d
↪→ Hs4

p,µ, s1 > s2 > s3 > s4 ≥ 0. (1.1.1)

In the sequel we will often use that

B(W k
p,µ(J ;E)) ∩ B(W k+1

p,µ (J ;E)) ↪→ B(W s
p,µ(J ;E)) ∩ B(Hs

p,µ(J ;E)),

where k ∈ N0 and s ∈ (k, k + 1), which means that it suffices to consider the spaces of
integer order to show that on operator is continuous on the W s

p,µ- and Hs
p,µ-scale .

Before continuing with definitions, we derive a first basic property of Lp,µ.

Lemma 1.1.1. Let J = (0, T ) be a finite or infinite interval, p ∈ (1,∞) and µ ∈ (1/p, 1].
Then

Lp,µ(J ;E) ↪→ Lq,loc(J ;E), 1 ≤ q < 1
1− µ+ 1/p

.

Consequently, for k ∈ N it holds W k
p,µ(J ;E) ↪→ W k

1,loc(J ;E), and for u ∈ W k
p,µ(J ;E) the

trace u(j)(0) ∈ E exists for j ∈ {0, ..., k − 1}.

Proof. For a finite interval J ′ = (0, T ′) ⊂ J , a function u ∈ Lp,µ(J ′;E) and 1 ≤ q < p,
Hölder’s inequality yields

∫ T ′

0
|u(t)|qE dt =

∫ T ′

0
t−q(1−µ)(t1−µ|u(t)|E)q dt ≤

(∫ T ′

0
t
− (1−µ)pq

p−q

) p−q
p

|u|qLp,µ(J ′;E),

where the integral on the right-hand side is bounded for (1−µ)pq
p−q < 1, i.e., q < 1

1−µ+1/p .
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In view of Lemma 1.1.1 it makes sense to define

0W
k
p,µ(J ;E) = 0H

k
p,µ(J ;E) :=

{
u ∈W k

p,µ(J ;E) : u(j)(0) = 0, j ∈ {0, ..., k − 1}
}

for k ∈ N, and for convenience we further set

0W
0
p,µ(J ;E) = 0H

0
p,µ(J ;E) := Lp,µ(J ;E).

For a number s = [s] + s∗ ∈ R+\N as above we again define the corresponding fractional
order spaces by interpolation, i.e.,

0W
s
p,µ(J ;E) :=

(
0W

[s]
p,µ(J ;E), 0W

[s]+1
p,µ (J ;E)

)
s∗,p

,

0H
s
p,µ(J ;E) :=

[
0W

[s]
p,µ(J ;E), 0W

[s]+1
p,µ (J ;E)

]
s∗
.

This yields as before a scale of function spaces

0W
s1
p,µ

d
↪→ 0H

s2
p,µ

d
↪→ 0W

s3
p,µ

d
↪→ 0H

s4
p,µ, s1 > s2 > s3 > s4 ≥ 0, (1.1.2)

and we further have that

0W
s
p,µ(J ;E) ↪→W s

p,µ(J ;E), 0H
s
p,µ(J ;E) ↪→ Hs

p,µ(J ;E), s > 0.

The following fundamental Hardy inequalities are available for the spaces based on van-
ishing initial values.

Lemma 1.1.2. Let J = (0, T ) be finite or infinite and p ∈ (1,∞). Then the following
holds true.

a) For α ∈ (1/p,∞) and a nonnegative function u ∈ L1,loc(R+;E) it holds∫ ∞
0

∣∣∣∣t−α ∫ t

0
u(τ) dτ

∣∣∣∣p dt ≤ 1
(α− 1/p)p

∫ ∞
0

(t1−α|u(t)|)p dt.

b) For µ ∈ (1/p, 1] and k ∈ N0 it holds∫
J
tp(1−µ−k)|u(t)|pE dt ≤ Cp,µ,k |u(k)|pLp,µ(J ;E) if u ∈ 0W

k
p,µ(J ;E).

c) For µ ∈ (1/p, 1] and s ≥ 0 it holds∫
J
tp(1−µ−s)|u(t)|pE dt ≤ Cp,µ,s |u|p

0W s
p,µ(J ;E) if u ∈ 0W

s
p,µ(J ;E),

and further∫
J
tp(1−µ−s)|u(t)|pE dt ≤ Cp,µ,s |u|p

0Hs
p,µ(J ;E) if u ∈ 0H

s
p,µ(J ;E).
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Proof. The estimate in a) is shown as in [50, Theorem 330]. For b), in the sequel we
identify u ∈ 0W

k
p,µ(J ;E) and its derivatives with their trivial extensions to R+. Then for

j ∈ {1, ..., k} we have u(j) ∈ L1,loc([0,∞);E), and, since u(j−1)(0) = 0, it holds

|u(j−1)(t)|E ≤
∫ t

0
|u(j)(τ)|E dτ, t ∈ R+.

For α > 1/p it thus follows from a) that∫
J
t−pα|u(j−1)(t)|pE dt ≤

∫ ∞
0

(
t−α

∫ t

0
|u(j)(τ)|E dτ

)p
dt

≤ 1
(α− 1/p)p

∫
J
t−p(α−1)|u(j)(t)|p dt.

Applying this inequality k times, with αj = µ + k − j > 1/p for j ∈ {1, ..., k}, we obtain
the asserted estimate in b). To prove c), we set for s ≥ 0

Lp(J, tp(1−µ−s) dt;E) :=
{
u : J → E : t1−µ−su ∈ Lp(J ;E)

}
.

It then follows from b) that

0W
k
p,µ(J ;E) ↪→ Lp(J, tp(1−µ−k) dt;E), k ∈ N0. (1.1.3)

In [82, Theorem 1.18.5] the identity

(Lp(J, tp(1−µ−k) dt;E), Lp(J, tp(1−µ−(k+1)) dt;E))θ,p = Lp(J, tp(1−µ−θk) dt;E) (1.1.4)

is shown, where k ∈ N0 and θ ∈ (0, 1), and (1.1.4) remains true if one replaces (·, ·)θ,p by
the complex interpolation functor [·, ·]θ. Hence c) follows from (1.1.3) by interpolation.

We use the Hardy inequalities to show that the multiplication with the weight is an iso-
morphism to the unweighted spaces, provided one restricts to vanishing initial values. The
following result is shown in [71, Proposition 2.2] for s = 0 and s = 1.

Lemma 1.1.3. Let J = (0, T ) be finite or infinite, p ∈ (1,∞), µ ∈ (1/p, 1] and s ≥ 0.
Then the map Φµ, given by

(Φµu)(t) := t1−µu(t),

induces an isomorphism between 0W
s
p,µ(J ;E) and 0W

s
p (J ;E), and between 0H

s
p,µ(J ;E)

and 0H
s
p(J ;E). The inverse Φ−1

µ is given by (Φ−1
µ u)(t) = t−(1−µ)u(t).

Proof. By interpolation we only have to consider the case s = k ∈ N0.
(I) Clearly Φµ is an isomorphism in case k = 0. For k ∈ N we take u ∈ 0W

k
p,µ(J ;E) and

estimate for j ∈ {1, ..., k}, using Lemma 1.1.2,

|(t1−µu)(j)|pLp(J ;E) .
j∑
i=0

∫
J
t−p(µ+i−1)|u(j−i)(t)|pE dt . |u|p

W j
p,µ(J ;E)

.
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Thus Φµ maps 0W
k
p,µ(J ;E) continuously intoW k

p (J ;E). Since u ∈ Ck−1(J ;E), it holds for
j ∈ {0, ..., k − 1}

|(t1−µu)(j)(t)|E .
j∑
i=0

t1−µ−i|u(j−i)(t)|E .
j∑
i=0

t−i|u(j−i)(t)| → 0, t↘ 0,

and this shows (Φµu)(j)(0) = 0 for all j ∈ {0, ..., k − 1}.
(II) Now take u ∈ 0W

k
p (J ;E) and j ∈ {1, ..., k}. Then, again by Lemma 1.1.2,

|(t−(1−µ)u)(j)|pLp,µ(J ;E) .
j∑
i=0

∫
J
t−pi|u(j−i)|pE dt . |u(j)|pLp(J ;E),

which yields that Φ−1
µ maps 0W

k
p (J ;E) continuously into W k

p,µ(J ;E). Moreover, for j ∈
{0, ..., k − 1} it holds

|(Φ−1
µ u)(j)(t)|E .

j∑
i=0

tµ−1−i|u(j−i)(t)|E . tµ−1 sup
τ∈(0,t)

|u(j)(τ)|E

≤ tµ−1

∫ t

0
|u(j+1)(τ)|E dτ . tµ−1/p|u(j+1)|Lp(J ;E),

which converges to zero as t↘ 0. Hence (Φ−1
µ u)(j)(0) = 0 for all j ∈ {0, ..., k − 1}.

We next show basic density results for the weighted spaces.

Lemma 1.1.4. For a finite or infinite interval J = (0, T ), p ∈ (1,∞), µ ∈ (1/p, 1] and
s ≥ 0 it holds

C∞c (J\{0};E)
d
↪→ 0W

s
p,µ(J ;E), 0H

s
p,µ(J ;E), C∞c (J ;E)

d
↪→W s

p,µ(J ;E), Hs
p,µ(J ;E).

Proof. By the general density results for interpolation spaces (Appendix A.2), we only
have to consider the case s = k ∈ N0. Throughout, let ε > 0 be given.
(I) For u ∈ 0W

k
p,µ(J ;E) it holds Φµu ∈ 0W

k
p (J ;E) by the preceding lemma. As in [82,

Theorems 2.9.1, 4.7.1] for the scalar-valued case, one sees that C∞c (J\{0};E) is dense in

0W
k
p (J ;E) for k ∈ N0. Thus there is ψ ∈ C∞c (J\{0};E) with |Φµu − ψ|Wk

p (J ;E) < ε.
Therefore

|u− Φ−1
µ ψ|Wk

p,µ(J ;E) . |Φµu− ψ|Wk
p (J ;E) . ε,

which yields C∞c (J\{0};E)
d
↪→ 0W

k
p,µ(J ;E).

(II) To show the second asserted density, take u ∈W k
p,µ(J ;E) and choose ψ1 ∈ C∞c (J ;E)

with ψ(j)
1 (0) = u(j)(0) for j ∈ {0, ..., k− 1}.1 By Step I, due to u−ψ1 ∈ 0W

k
p,µ(J ;E), there

is ψ2 ∈ C∞c (J ;E) which is ε-close to u− ψ1. Hence ψ1 + ψ2 is ε-close to u.

For a finite interval J = (0, T ), a linear map E : L1,loc(J ;E) → L1,loc(R+;E) is called
extension operator from J to R+ if

(Eu)|J = u, u ∈ L1,loc(J ;E),

1For instance, one may take ψ1(t) = ϕ(t)
Pk
j=0

1
j!
u(j)(0)tj , where ϕ ∈ C∞c ([0,∞) with ϕ ≡ 1 on [0, 1]

and ϕ ≡ 0 on [2,∞).
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i.e., if it is a right-inverse to the restriction of functions on R+ to J .
We construct extension operators for the weighted spaces. In the sequel they are frequently
employed to deduce properties of the weighted spaces on a finite interval from the half-
line case. For s ∈ [0, 2] we construct one for 0W

s
p,µ(J ;E) and 0H

s
p,µ(J ;E) whose norm is

independent of the length of J . We do not consider such an extension for s > 2, since this
case is not needed below for our later applications and the construction would be rather
cumbersome.

Lemma 1.1.5. Let J = (0, T ) be a finite interval, p ∈ (1,∞), and µ ∈ (1/p, 1]. Then the
following holds true.

a) Given k ∈ N, there is an extension operator EJ from J to R+ with

EJ ∈ B(W s
p,µ(J ;E),W s

p,µ(R+;E)) ∩ B(Hs
p,µ(J ;E), Hs

p,µ(R+;E)), s ∈ [0, k].

b) There is an extension operator E0
J from J to R+ with

E0
J ∈ B(0W

s
p,µ(J ;E), 0W

s
p,µ(R+;E)) ∩ B(0H

s
p,µ(J ;E), 0H

s
p,µ(R+;E)), s ∈ [0, 2],

whose operator norm is independent of T .

c) For the above operators it holds EJ , E0
J ∈ B(L∞(J ;E), L∞(R+;E)), with operator

norms independent of T .

Proof. (I) For EJ , let k ∈ N be given. By [1, Theorem 5.19] there is an extension operator
E from R+ to R that is continuous from W j

p (R+;E) to W j
p (R;E) for all j ∈ {0, ..., k}, that

satisfies
(Ev)(j) = Ejv(j), j ∈ {0, ..., k}, (1.1.5)

where Ej is an extension operator that is continuous from W i
p(R+;E) to W i

p(R;E) for
all i ∈ {0, ..., k − j}. Further E and Ej have the property that for T̃ > 0 the function
E(j)v|(−eT/(k+1),0)

is constructed using only v|
(0,eT )

. We may thus define

(Ẽu)(t) := E
(
u(− ·+T )

)
(−t+ T ), t ∈

(
0, T + T/2(k + 1)

)
, u ∈ L1,loc(0, T ;E).

Then Ẽ is an extension operator from (0, T ) to
(
0, (1 + 1

2(k+1))T
)
. Due to (1.1.5), and

since the weight only has an effect at t = 0, for all j ∈ {0, ..., k} it is continuous from
W j
p,µ(0, T ;E) to W j

p,µ

(
0, (1 + 1

4(k+1))T ;E
)
. Choosing a cut-off function ϕ ∈ C∞c (R+) that

is equal to 1 on
(
0, (1 + 1

4(k+1))T
)
and vanishes on

(
(1 + 1

3(k+1))T,∞
)
, we define

EJ := ϕẼ . (1.1.6)

Then it holds EJ ∈ B(W j
p,µ(J ;E),W j

p,µ(R+;E)) for j ∈ {0, ..., k}, which carries over to the
fractional order spaces by interpolation. It follows from the representation of E in [1] that
EJ admits an L∞-estimate independent of T .
(II) To show b), for u ∈ 0W

k
p,µ(J ;E) we define

(E0
Ju)(t) :=

{
u(t), t ∈ (0, T ),
3(ψ1−µu)(2T − t)1[T,2T ](t)− 2(ψ1−µu)(3T − 2t)1[T, 3

2
T ](t), t ≥ T,
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where ψ(τ) = 2Tτ−τ2

T 2 . As above, by interpolation we only have to show that E0
J ∈

B(0W
k
p,µ(J ;E), 0W

k
p,µ(R+;E)) for k = 0, 1, 2. For k ∈ {1, 2} we see that the function

E0
Ju is continuous on [0,∞). Further, in these cases it holds

(E0
Ju)′(t) = −3(ψ1−µu)′(2T − t)1[T,2T ](t) + 4(ψ1−µu)′(3T − 2t)1[T, 3

2
T ](t), t ≥ T,

and for τ ∈ J we have

(ψ1−µu)′(τ) = 2(1− µ)
T 2(µ−1)(T − τ)

(2T − τ)µ
τ−µu(τ) + T 2(µ−1)(2T − τ)1−µτ1−µu′(τ). (1.1.7)

For k = 2 we thus obtain that limt↘T (E0
Ju)′(t) = u′(T ), and we infer from u′(0) = 0 and

|u(τ)|E τ−µ . |u(τ)|E τ−1 → |u′(0)|E = 0, τ ↘ 0,

that (E0
Ju)′ is continuous at t = 3

2T and t = 2T . Therefore (E0
Ju)′ is continuous on [0,∞).

Moreover, in this case it holds for τ ∈ J that

(ψ1−µ u)′′(τ) = 4(1− µ)
(
− µT 2(µ−1) (T − τ)2

(2T − τ)1+µ
τ−µ−1 − T 2(µ−1)

(2T − τ)µ
τ−µ

)
u(τ)

+ 4(1− µ)T 2(µ−1) T − τ
(2T − τ)µ

τ−µu′(τ) + T 2(µ−1)(2T − τ)1−µ τ1−µu′′(τ). (1.1.8)

(III) We estimate E0
Ju and its derivatives in the weighted norms. Using for j = 1, 2 the

substitutions τ = (j + 1)T − jt (i.e., t = (j+1)T−τ
j ), we have

|E0
Ju|

p
Lp,µ(R+;E) . |u|pLp,µ(J ;E) +

2∑
j=1

∫ j+1
j
T

T
tp(1−µ)|(ψ1−µu)((j + 1)T − jt)|pE dt

. |u|pLp,µ(J ;E) +
2∑
j=1

∫ T

0

(
((j + 1)T − τ)(2T − τ)

T 2

)p(1−µ)

τp(1−µ)|u(τ)|pE dτ

. |u|pLp,µ(J ;E),

which yields E0
J ∈ B(Lp,µ(J ;E), Lp,µ(R+;E)), with operator norm independent of T . Sim-

ilarly, for u ∈ 0W
1
p,µ(J ;E) we obtain, using (1.1.7) and Hardy’s inequality (Lemma 1.1.2),

|(E0
Ju)′|pLp,µ(R+;E) . |u′|pLp,µ(J ;E) +

2∑
j=1

∫ T

0

(j + 1− τ/T )p(1−µ)

T p(1−µ)

(
(T − τ)p

(2T − τ)pµ
τ−pµ|u(τ)|pE

+ (2T − τ)p(1−µ) τp(1−µ)|u′(τ)|pE

)
dt

. |u′|pLp,µ(J ;E).

Moreover, for u ∈ 0W
2
p,µ(J ;E) we use (1.1.8) and Hardy’s inequality to estimate

|(E0
Ju)′′|pLp,µ(R+;E) . |u′′|pLp,µ(J ;E) +

2∑
j=1

∫ T

0
((j + 1)T − τ)p(1−µ)T 2p(µ−1)

·
[( (T − τ)2p

(2T − τ)p(1+µ)
τ−p(µ+1) +

T p

(2T − τ)pµ
τ−p(µ+1)

)
|u(τ)|pE

+
(T − τ)p

(2T − τ)pµ
τ−pµ|u′(τ)|pE + (2T − τ)p(1−µ) τp(1−µ)|u′′(τ)|p

]
dτ

. |u′′|pLp,µ(J ;E),
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where the constants in these estimates are independent of T . This shows that E0
J ∈

B(0W
k
p,µ(J ;E), 0W

k
p,µ(R+;E)) for k = 1, 2, with operator norm independent of T , respec-

tively. Finally, it follows again from its representation that E0
J admits an L∞-estimate

independent of T .

We now investigate the realization of the derivative ∂t and its fractional powers on the
weighted spaces. The properties of this operator and its variants are fundamental for all
our further considerations. We first show that ∂t generates the family of left translations.

Lemma 1.1.6. For p ∈ (1,∞), µ ∈ (1/p, 1] and s ≥ 0, the family of left translations
{ΛEt }t≥0, given by

(ΛEt u)(τ) := u(τ + t), τ ≥ 0,

is well-defined and forms a strongly continuous semigroup of contractions on the spaces
W s
p,µ(R+;E) and Hs

p,µ(R+;E), respectively. Its generator is the derivative ∂t, with domain
W s+1
p,µ (R+;E) and Hs+1

p,µ (R+;E), respectively.

Proof. (I) We write Λt = ΛEt for simplicity. For each t0 ≥ 0 the operator Λt0 maps
Lp,µ(R+;E) into itself and is contractive, due to

|Λt0u|
p
Lp,µ(R+;E) =

∫ ∞
0

τp(1−µ)|u(τ + t0)|pE dτ

≤
∫ ∞

0
(τ + t0)p(1−µ)|u(τ + t0)|pE dτ ≤ |u|pLp,µ(R+;E).

This estimate also shows that Λt0 maps W k
p,µ(R+;E), k ∈ N, into itself and is contractive.

By interpolation, this carries over to W s
p,µ(R+;E) and Hs

p,µ(R+;E), for all s ≥ 0. It is
further clear that {Λt}t≥0 forms a semigroup of operators on these spaces. Due to Lemma
1.1.4, the set C∞c ([0,∞);E) is dense in all of the spaces above, and the left translations
act strongly continuous on this set. By [35, Proposition I.5.3], this yields that the left
translations are strongly continuous on W s

p,µ(R+;E) and Hs
p,µ(R+;E), respectively.

(II) Now let k ∈ N0. Denoting the generator of {Λt} on W k
p,µ(R+;E) by A, we have to

show that ∂t = A. To see A ⊆ ∂t, we take u ∈ D(A). Then u(k) ∈ L1,loc(R+;E), and for
a, b ∈ R+ with a < b it holds∫ b

a

1
h

(
u(k)(τ + h)− u(k)(τ)

)
dτ =

1
h

∫ b+h

b
u(k)(τ) dτ − 1

h

∫ a+h

a
u(k)(τ) dτ.

As h → 0, the left-hand side converges to u(k)(b) − u(k)(a) for almost all a, b ∈ R+.
The integrand on the right converges to Au(k) in Lp,µ(R+;E), and thus in L1(a, b;E).
Hence, the right-hand side converges to

∫ b
a Au

(k)(τ) dτ . This shows u ∈ W k+1
1,loc(R+;E),

with u(k+1) = Au(k). Thus D(A) ⊂W k+1
p,µ (R+;E) and ∂t|D(A) = A.

The reverse inclusion now follows from abstract arguments. Since A generates a strongly
continuous semigroup of contractions, it follows from the Hille-Yosida theorem, [35, The-
orem II.3.5], that 1 − A is invertible. It is further easy to see that 1 − ∂t is injective on
W k+1
p,µ (R+;E). From [35, IV.1.21(5)] we thus obtain that 1 − ∂t = 1 − A, which yields

∂t = A.
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(III) For s ≥ 0 we concentrate on the W -case, the H-case requires literally the same
arguments. By [35, Proposition II.2.3] we have that the generator of the left translations
on W s

p,µ(R+;E) is the derivative ∂t as well, with domain

D(∂t) = {u ∈W s
p,µ(R+;E) : ∂tu ∈W s

p,µ(R+;E)}.

It follows from interpolation that W s+1
p,µ (R+;E) ⊂ D(∂t). For the converse inclusion, if

u, ∂tu ∈ W s
p,µ(R+;E) then (1 − ∂t)u ∈ W s

p,µ(R+;E). Since 1 is contained in the resolvent
set of ∂t, Step II and interpolation yield u ∈ W s+1

p,µ (R+;E). Therefore ∂t with D(∂t) =
W s+1
p,µ (R+;E) is the generator of the left translations also in the fractional order case.

Using a transference principle, we show that the negative generator of the left translations,
−∂t, admits a bounded H∞-calculus on Lp,µ(R+;E). As shown in [71], the realization of
∂t with domain 0W

1
p,µ(R+;E) also admits a bounded H∞-calculus, although −∂t does not

generate a semigroup on Lp,µ(R+;E). For a definition and properties of the H∞-calculus
of a sectorial operator we refer to Appendix A.3.

Theorem 1.1.7. 2 Let p ∈ (1,∞) and µ ∈ (1/p, 1]. Then on Lp,µ(R+;E) the operators

∂t, with domain 0W
1
p,µ(R+;E),

and
−∂t, with domain W 1

p,µ(R+;E),

admit a bounded H∞-calculus with H∞-angle π/2, respectively. In particular, both oper-
ators are sectorial of angle π/2.

Proof. (I) The assertion on ∂t is proved in [71, Theorem 4.5].
(II) For the operator −∂t we employ the vector-valued transference principle, which is due
to Hieber and Prüss [52]. To this end we introduce vector-valued extensions of operators.
Let (Ω, ν) be a measure space, and let S be a bounded, positive operator on Lp(Ω, ν).3 Let
further ui ∈ Lp(Ω, ν) be stepfunctions and xi ∈ E, i = 1, ..., N , where N ∈ N. For simple
functions u of the form

u =
N∑
i=1

uixi, (1.1.9)

the vector-valued extension of S, denoted by SE , is defined as

SEu(·) :=
N∑
i=1

(Sui)(·)xi.

Due to [62, Lemma 10.14], the operator SE extends uniquely to the vector-valued space
Lp(Ω, ν;E), such that ‖SE‖B(Lp(Ω,ν;E)) = ‖S‖B(Lp(Ω,ν)).
(III) We consider on Lp,µ(R+;E) = Lp(R+, t

p(1−µ) dt;E) the left translation ΛEt , t ≥ 0.
Obviously ΛR

t is a positive operator, and for a simple function u of type (1.1.9) it holds

ΛEt u = (ΛR
t )Eu.

2Here it is for the first time essential that E is of class HT .
3The operator S is called positive if it leaves the positive cone {u ∈ Lp(Ω, ν) : u ≥ 0 ν-a.e.} invariant.
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From the density of the simple functions in Lp(R+, t
p(1−µ) dt;E) it follows that ΛEt is the

vector-valued extension of ΛR
t , i.e.

ΛEt = (ΛR
t )E .

Due to Lemma 1.1.6, the family {ΛR
t }t≥0 forms a strongly continuous semigroup of positive

contractions on Lp(R+, t
p(1−µ) dt), and ∂t is the generator of its vector-valued extension

{ΛEt }t≥0 to Lp(R+, t
p(1−µ);E). Moreover, ∂t is injective on Lp(R+, t

p(1−µ);E). Now [52,
Theorem 6] yields that −∂t admits a bounded H∞-calculus with angle equal to π/2.

The invertibility of 1−∂t and 1+∂t yields a useful characterization of the weighted spaces.

Lemma 1.1.8. For a finite or infinite interval J = (0, T ) and s = [s] + s∗ with [s] ∈ N0,
s∗ ∈ [0, 1), it holds

W s
p,µ(J ;E) = {u ∈W [s]

p,µ(J ;E) : u([s]) ∈W s∗
p,µ(J ;E)}, (1.1.10)

0W
s
p,µ(J ;E) = {u ∈ 0W

[s]
p,µ(J ;E) : u([s]) ∈ 0W

s∗
p,µ(J ;E)}, (1.1.11)

where the spaces on the right-hand side are equipped with their canonical norms.4 The
norm equivalence constants in (1.1.11) does not depend on the length of J . All these
assertions remain true if one replaces the W -spaces by the H-spaces.

Proof. We only consider the case of W -spaces.
(I) It follows from interpolation that

∂
[s]
t ∈ B

(
W s
p,µ(J ;E),W s∗

p,µ(J ;E)
)
∩ B
(

0W
s
p,µ(J ;E), 0W

s∗
p,µ(J ;E)

)
,

which shows the embeddings from the left to the right in (1.1.10) and (1.1.11), with em-
bedding constants independent of the length of J .
(II) For the converse embedding we first consider the case J = R+. Since −∂t is sectorial
we have that 1− ∂t is invertible. Further, interpolation yields that the operator (1− ∂t)[s]

is an isomorphism W s
p,µ(R+;E)→W s∗

p,µ(R+;E). We may therefore estimate

|u|W s
p,µ(R+;E) . |(1− ∂t)[s]u|W s∗

p,µ(R+;E) . |u|
W

[s]
p,µ(R+;E)

+ |u([s])|W s∗
p,µ(R+;E),

and thus obtain (1.1.10). Replacing 1−∂t by 1+∂t, which is invertible since ∂t is sectorial,
we obtain (1.1.11) in the same way.
(III) Now suppose that J is a finite interval. Using the extension operator EJ from Lemma
1.1.5 and (1.1.10) for the half-line, we obtain

|u|W s
p,µ(J ;E) . |EJu|W [s]

p,µ(R+;E)
+ |(EJu)([s])|W s∗

p,µ(R+;E) . |u|
W

[s]
p,µ(J ;E)

+ |u([s])|W s∗
p,µ(J ;E),

which shows (1.1.10). Here, the latter inequality follows from the representation (1.1.6) of
EJ . For (1.1.11), note that the operator 1 + ∂t is also for a finite interval an isomorphism

0W
1
p,µ(J ;E) → Lp,µ(J ;E). In fact, it is obviously injective. Moreover, the solution of

u′ = −u+f with u(0) = 0 is for f ∈ Lp,µ(R+;E) given by u = ũ|J , where ũ ∈ 0W
1
p,µ(R+;E)

4For instance, in (1.1.10) the canonical norm on the right-hand side is
`
|u|pWs

p,µ(J;E)+|u
([s])|p

W
s∗
p,µ(J;E)

´1/p
.
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satisfies ũ′ = −ũ+f̃ , and f̃ denotes the trivial extension of f to R+. This shows surjectivity,
and further that the operator norm of (1 + ∂t)−1 does not depend on the length of J . Now
the same arguments as in Step II show (1.1.11) for finite J .

We next show general interpolation properties of the weighted spaces.

Lemma 1.1.9. Let J = (0, T ) be finite or infinite, p ∈ (1,∞), µ ∈ (1/p, 1], 0 ≤ s1 < s2

and θ ∈ (0, 1). Then for s = (1− θ)s1 + θs2 it holds

[Hs1
p,µ(J ;E), Hs2

p,µ(J ;E)]θ = Hs
p,µ(J ;E),

and if s /∈ N then
(Hs1

p,µ(J ;E), Hs2
p,µ(J ;E))θ,p = W s

p,µ(J ;E). (1.1.12)

Moreover, for s1, s2, s /∈ N0 it holds

[W s1
p,µ(J ;E),W s2

p,µ(J ;E)]θ = W s
p,µ(J ;E),

(W s1
p,µ(J ;E),W s2

p,µ(J ;E))θ,p = W s
p,µ(J ;E).

If F
d
↪→ E is a further Banach space of class HT , then it holds for τ ≥ 0 and θ ∈ (0, 1)

(Hτ
p,µ(R+;E), Hτ

p,µ(R+;F ))θ,p
·= Hτ

p,µ(R+; (E,F )θ,p),

[Hτ
p,µ(R+;E), Hτ

p,µ(R+;F )]θ
·= Hτ

p,µ(R+; [E,F ]θ).

All these assertions remain true if one replaces the W - and H-spaces by 0W - and 0H-
spaces, respectively. Restricting to s2 ≤ 2 in this case, the norm equivalence constants are
independent of the underlying interval J .

Proof. Throughout this proof we set

A := 1− ∂t, X := Lp,µ(R+;E).

(I) We first treat the case J = R+. Considering A as an operator on X, Theorem 1.1.7,
(A.3.1) and (A.3.2) yield that for α ∈ (0, 1) it holds D(Aα) = Hα

p,µ(R+;E). Using this,
together with the fact that D(Ak) = Hk

p,µ(R+;E) for k ∈ N0 and Lemma 1.1.8, for α ≥ 1
we also obtain that

D(Aα) = {u ∈ D(A[α]) : A[α]u ∈ D(Aα−[α])}
= {u ∈ H [α]

p,µ(R+;E) : u[α] ∈ Hα−[α]
p,µ (R+;E)} = Hα

p,µ(R+;E).

It therefore follows from (A.3.1) that

[Hs1
p,µ(R+;E), Hs2

p,µ(R+;E)]θ = [D(As1), D(As2)]θ = D(As) = Hs
p,µ(R+;E),

which shows the first asserted equality.
(II) We next show (1.1.12). The operator As1 induces an isomorphism

(Hs1
p,µ(J ;E), Hs2

p,µ(J ;E))θ,p = (D(As1), D(As2))θ,p → (X,D(Aτ ))θ,p,
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where τ = s2 − s1. It follows from reiteration that

(X,D(Aτ ))θ,p = (D(A[τ ]), D(Aτ ))σ,p,

with σ = τθ−[τ ]
τ−[τ ] ∈ (0, 1). Further, the operator A[τ ] induces an isomorphism

(D(A[τ ]), D(Aτ ))σ,p → (X,D(Aτ−[τ ]))σ,p = (X,D(A))σ(τ−[τ ]),p = W σ(τ−[τ ])
p,µ (R+;E),

where σ(τ − [τ ]) = τθ − [τ ] ∈ (0, 1). Now the operator A−(s1+[τ ]) induces an isomorphism

W τθ−[τ ]
p,µ (R+;E)→W (s2−s1)θ+s1

p,µ (R+;E) = W s
p,µ(R+;E),

provided s /∈ N.
(III) For the third equality we take an integer k > s2, and use the assumption s, s1, s2 /∈ N0,
(1.1.12), A.2 h), the reflexivity of X and D(Ak) and again (1.1.12), to obtain

[W s1
p,µ(R+;E),W s2

p,µ(R+;E)]θ = [(X,D(Ak))s1/k,p, (X,D(Ak))s2/k,p]θ

= (X,D(Ak))s/k,p = W s
p,µ(R+;E).

Similar arguments yield the fourth asserted equality, i.e.,

(W s1
p,µ(R+;E),W s2

p,µ(R+;E))θ,p = ((X,D(Ak))s1/k,p, (X,D(Ak))s2/k,p)θ,p

= (X,D(Ak))s/k,p = W s
p,µ(R+;E).

(IV) Now let F
d
↪→ E be a further Banach space of class HT and τ ≥ 0. Then the operator

Aτ is an isomorphism

(Hτ
p,µ(R+;E), Hτ

p,µ(R+;F ))θ,p → (Lp,µ(R+;E), Lp,µ(R+;F ))θ,p.

Due to [82, Theorem 1.18.4], the latter space equals Lp,µ(R+; (E,F )θ,p), and A−τ maps
this space isomorphically to Hτ

p,µ(R+; (E,F )θ,p). The corresponding assertion on complex
interpolation is shown in the same way.
(V) Replacing the operator A = 1 − ∂t by A0 := 1 + ∂t, the same arguments as above
show the asserted equalities for the 0W - and the 0H-spaces. This finishes the case J = R+.
The case of a finite interval can be deduced from the half-line case, using the extension
operators EJ and E0

J from Lemma 1.1.5. For instance, one decomposes the identity into EJ
and the restriction RJ to J and obtains

|u|[Hs1
p,µ(J ;E),H

s2
p,µ(J ;E)]θ

≤ |EJu|[Hs1
p,µ(R+;E),H

s2
p,µ(R+;E)]θ

. |EJu|Hs
p,µ(R+;E) . |u|Hs

p,µ(J ;E).

The converse embedding is derived in the same way.5 The dependence of the norm equiv-
alence constants on the length of J carries over from the properties of the extension oper-
ators. Note that here it is important that the extension operators act on a whole scale of
W - and H-spaces.

The following result shows that the good properties of 1− ∂t and 1 + ∂t carry over to the
whole W - and H-scale.

5This is nothing but the retraction-coretraction method from [82, Section 1.2.4]
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Proposition 1.1.10. Let p ∈ (1,∞), µ ∈ (1/p, 1], s ≥ 0, α ∈ (0, 2), and ω > 0. Then the
operators

(ω − ∂t)α on Hs
p,µ(R+;E), with domain Hs+α

p,µ (R+;E),

(ω − ∂t)α on W s
p,µ(R+;E), with domain W s+α

p,µ (R+;E), s, s+ α /∈ N0,

(ω + ∂t)α on 0H
s
p,µ(R+;E), with domain 0H

s+α
p,µ (R+;E),

(ω + ∂t)α on 0W
s
p,µ(R+;E), with domain 0W

s+α
p,µ (R+;E), s, s+ α /∈ N0,

are invertible and admit a bounded H∞-calculus with H∞-angle απ/2, respectively.

Proof. (I)We first consider the case s = 0. Theorem 1.1.7 and [24, Proposition 2.11] imply
that the realization of ω− ∂t on Lp,µ(R+;E) with domain W 1

p,µ(R+;E) admits a bounded
H∞-calculus with H∞-angle equal to π/2. Lemma A.3.5 yields that also (ω − ∂t)α admits
a bounded H∞-calculus, with H∞-angle απ/2, provided α ∈ (0, 2). The same arguments
as in Step I of the proof of Lemma 1.1.9 further show that

D((ω − ∂t)α) = Hα
p,µ(R+;E).

(II) Since ω − ∂t is invertible, also (ω − ∂t)s is invertible, for all s ≥ 0. It follows
from the definition of the weighted Sobolev spaces that (ω − ∂t)s is an isomorphism
Hk+s
p,µ (R+;E) → Hk

p,µ(R+;E) for k ∈ N0, and by interpolation this carries over to an
isomorphism Hτ+s

p,µ (R+;E) → Hτ
p,µ(R+;E) for all τ ≥ 0. Since (ω − ∂t)s and (ω − ∂t)α

commute, it follows from [24, Proposition 2.11] that (ω − ∂t)α has a bounded H∞-
calculus on Hs

p,µ(R+;E), still with angle not larger than απ/2, and that its domain equals
Hs+α
p,µ (R+;E).

(III) Now let s, s+ α /∈ N0. It then follows from interpolation of the H-case and Lemma
1.1.9 that (ω−∂t)α has a bounded H∞-calculus onW s

p,µ(R+;E) with H∞-angle απ/2, and
that its domain is W s+α

p,µ (R+;E). The same arguments as above show the assertions on the
operator ω + ∂t.

We consider the temporal trace on the W s
p,µ- spaces, and characterizations of the 0W

s
p,µ-

spaces in terms of its kernel. These results are mainly due to Grisvard [44]. Observe that the
limit number for the existence of a trace is s = 1−µ+1/p. Therefore, if µ runs through the
interval (1/p, 1] this limit number runs through the interval [1/p, 1). Of course, for µ = 1
the limit number s = 1/p for the unweighted case is recovered.

Proposition 1.1.11. Let J = (0, T ) be finite or infinite, p ∈ (1,∞) and µ ∈ (1/p, 1].
Then the following holds true.6

a) For 0 < s < 1− µ+ 1/p it holds C∞c (J\{0};E)
d
↪→W s

p,µ(J ;E), and further

W s
p,µ(J ;E) = 0W

s
p,µ(J ;E).

6We do not treat the limit cases s = k + 1− µ+ 1/p, k ∈ N0, since they are quite complicated and not
important for our purposes. For short discussions we refer to [44, Remarque 4.2] and [82, Remark 3.6.3/2].
We also do not consider the corresponding characterizations of the 0H

s
p,µ-spaces. They should be correct,

but it seems that their proofs require a greater effort.
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b) For k + 1− µ+ 1/p < s < k + 1 + (1− µ+ 1/p) with k ∈ N0 it holds

W s
p,µ(J ;E) ↪→ BUCk(J ;E), (1.1.13)

where here one may replace W s
p,µ by Hs

p,µ, and moreover

0W
s
p,µ(J ;E) ·=

{
u ∈W s

p,µ(J ;E) : u(j)(0) = 0, j ∈ {0, ..., k}
}
, (1.1.14)

where the latter space is considered as a closed subspace of W s
p,µ(J ;E).

The embedding constants for

0W
s
p,µ(J ;E) ↪→ BUCk(J ;E), 0H

s
p,µ(J ;E) ↪→ BUCk(J ;E)

where s ∈ [0, 2] and k ∈ N0 are as in b), are independent of J , respectively.

Proof. The results in [44] for the W s
p,µ(R+;E)-spaces are obtained in the scalar-valued

case, E = C. An inspection of the proofs there shows that, besides basic facts on vector-
valued spaces, they only make use of interpolation theory and the Lemmas 1.1.4 and 1.1.6.
Thus the results of [44] carry over to a general E. Moreover, the case of a finite interval is
obtained from the half-line case by extension and restriction, as in Step IV of the proof of
Lemma 1.1.9. The fact that one may replace W by H as asserted follows from (1.1.1) and
(1.1.2).
Assertion a) is shown in [44, Théorème 2.1, Théorème 4.1]. The embedding in b) is for k = 0
proved in [44, Théorème 5.2], and the general case k ∈ N is an immediate consequence. For
s ≤ 1, (1.1.14) is shown in [44, Théorème 4.1]. For s > 1, note that by definition it holds

0W
s
p,µ(R+;E) ↪→W s

p,µ(R+;E).
For the converse embedding in (1.1.14), take u ∈ W s

p,µ(R+;E) with u(j)(0) = 0 for j ∈
{0, ..., k}. Assume first that [s] = k. Then u ∈ 0W

[s]
p,µ(R+;E). From u([s])(0) = 0, 1 − µ +

1/p < s− [s], (1.1.14) for s− [s] < 1 and with Lemma 1.1.8 we infer

|u|
0W s

p,µ(R+;E) . |u|
0W

[s]
p,µ(R+;E)

+ |u[s]|
0W

s−[s]
p,µ (R+;E)

. |u|
W

[s]
p,µ(R+;E)

+ |u[s]|
W
s−[s]
p,µ (R+;E)

. |u|W s
p,µ(R+;E).

Now assume that [s] = k + 1. Then again u ∈ 0W
[s]
p,µ(R+;E). Since s− [s] < 1− µ + 1/p,

it follows from a) that u([s]) ∈ W s−[s]
p,µ (R+;E) = 0W

s−[s]
p,µ (R+;E), and (1.1.14) follows as

above from Lemma 1.1.8.

We next consider embeddings of Sobolev type into weighted and unweighted spaces.

Proposition 1.1.12. Let J = (0, T ) be a finite interval, p ∈ (1,∞), µ ∈ (1/p, 1], s > τ ≥ 0
and q ∈ (p,∞). Then

W s
p,µ(J ;E) ↪→W τ

q,µ(J ;E) if s− (1− µ+ 1/p) > τ − p(1− µ+ 1/p)
q

, (1.1.15)

and moreover it holds

W s
p,µ(J ;E) ↪→W τ

q (J ;E) if s− (1− µ+ 1/p) > τ − 1/q. (1.1.16)
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These embeddings remain true if one replaces the W -spaces by the H-, the 0W - and the

0H-spaces, respectively. In two latter cases, restricting to s ∈ [0, 2], for given T0 > 0 the
embeddings hold with a uniform constant for all 0 < T ≤ T0.

Proof. Throughout this proof, let T0 > 0 be given. Since the inequality signs in (1.1.15)
and (1.1.16) are strict, we may assume that s /∈ N. Again we only have to consider the
W -case due to (1.1.1) and (1.1.2).
(I) We show (1.1.15) for τ = 0. For s > 1 − µ + 1/p, the condition is satisfied for all
q ∈ (p,∞), and, in fact, Proposition 1.1.11 shows

W s
p,µ(J ;E) ↪→ L∞(J ;E) ↪→ Lq,µ(J ;E), q ∈ (p,∞),

with the asserted behaviour of the embedding constant in the 0W -case. For s ≤ 1−µ+1/p
we take η > 1 − µ + 1/p and use again that W η

p,µ(J ;E) ↪→ Lr,µ(J ;E) for r ∈ (p,∞), A.2
d), Lemma 1.1.9 and [82, Theorem 1.18.5], to obtain

W s
p,µ(J ;E) = (Lp,µ(J ;E),W η

p,µ(J ;E))s/η,p ↪→ (Lp,µ(J ;E), Lr,µ(J ;E))s/η,p = Lq,µ(J ;E),

which is valid for 1
q = 1−s/η

p + s/η
r . Letting r ↗ ∞ and η ↘ 1 − µ − 1/p, we obtain

(1.1.15) for q as asserted. In the 0W -case, the embedding constant is uniform in T ≤ T0

for s ∈ [0, 2].
(II) To prove (1.1.15) for τ > 0, we start with

W s
p,µ(J ;E) = (W κ

p,µ(J ;E),W η
p,µ(J ;E)) s−κ

η−κ ,p
,

which holds by Lemma 1.1.9 for noninteger κ < s < η. Let k ∈ N0. Using (1.1.15) with
τ = 0, we obtain

W κ
p,µ(J ;E) ↪→W k

q,µ(J ;E), κ > k + (1− p/q)(1− µ+ 1/p),

W η
p,µ(J ;E) ↪→W k+1

q,µ (J ;E), η > (k + 1) + (1− p/q)(1− µ+ 1/p).

Hence for those q, κ, η it holds

W s
p,µ(J ;E) ↪→ (W k

q,µ(J ;E),W k+1
q,µ (J ;E)) s−κ

η−κ ,q
= W

k+ s−κ
η−κ

q,µ (J ;E),

using that (·, ·)θ,p ↪→ (·, ·)θ,q for θ ∈ (0, 1) and q ∈ (p,∞). Letting κ↘ k+(1− p
q )(1−µ+1/p)

and η ↘ k + 1 + (1− p
q )(1− µ+ 1/p) we obtain (1.1.15) for τ and q as asserted. For 0W -

spaces, the dependence on T for s ∈ [0, 2] carries over from Lemma 1.1.9 and (1.1.15) with
τ = 0.
(III) To show (1.1.16), we again first treat the case τ = 0. As above, for s > 1− µ+ 1/p
the embedding is deduced from Proposition 1.1.11. For s ≤ 1− µ+ 1/p we use

Hη
p,µ(J ;E) ↪→ L∞(J ;E), η > 1− µ+ 1/p,

and further that
Lp,µ(J ;E) ↪→ Lr(J ;E), 1− µ+ 1/p < 1/r,
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which follows from Lemma 1.1.1. For 0 < σ < η, Lemma 1.1.9 and A.2 d) and n) thus yield

Hσ
p,µ(J ;E) ↪→ [Lr(J ;E), L∞(J ;E)]σ

η
= L r

1−σ/η
(J ;E).

Letting η ↘ 1−µ+ 1/p, r ↗ 1
1−µ+1/p , and employing W s

p,µ(J ;E) ↪→ Hσ
p,µ(J ;E) for s > σ

we obtain (1.1.16). Replacing W by 0W , the embedding constant is uniform in T .
(IV) The case τ > 0 may now be obtained from the case τ = 0 as in Step II. We omit the
details.

We derive an intrinsic norm for the W -spaces, on a finite and an infinite interval.

Proposition 1.1.13. Let J = (0, T ) with T ∈ (0,∞], p ∈ (1,∞), µ ∈ (1/p, 1], and
s ∈ (0, 1). Then we have

|u|W s
p,µ(J ;E) ∼ |u|Lp,µ(J ;E) + [u]W s

p,µ(J ;E),

where

[u]pW s
p,µ(J ;E) :=

∫ T

0

∫ t

0
τp(1−µ) |u(t)− u(τ)|pE

(t− τ)1+sp
dτ dt. (1.1.17)

In case J = R+, the semi-norm [u]W s
p,µ(J ;E) may be replaced by

[[u]]pW s
p,µ(R+;E) :=

∫ ∞
0

∫ ∞
0

τp(1−µ) |u(t+ τ)− u(τ)|pE
t1+sp

dτ dt. (1.1.18)

Proof. (I) For J = R+, it follows immediately from Lemma 1.1.6 and A.2 k) that

|u|W s
p,µ(J ;E) ∼ |u|Lp,µ(J ;E) + [[u]]W s

p,µ(J ;E),

and a simple substitution shows that [[u]]W s
p,µ(J ;E) may be replaced by [u]W s

p,µ(J ;E).
(I) Now let J = (0, T ) be finite. We deduce this case from the half-line case by localization
and extension. We fix a smooth partition of unity {ψ1, ψ2} for [0, T ], such that ψ1(t) = 0
for t ≥ 2

3T and ψ2(t) = 0 for t ≤ T
3 . The multiplication with ψi, i = 1, 2, is continuous

on Lp,µ(J ;E) and W 1
p,µ(J ;E), respectively, hence it is continuous on W s

p,µ(J ;E) by A.2 i).
This implies

|u|W s
p,µ(J ;E) . |ψ1u|W s

p,µ(J ;E) + |ψ2u|W s
p,µ(J ;E).

(II) Since the restriction to J is continuous on the whole W s
p,µ-scale, we may estimate

|ψ1u|W s
p,µ(J ;E) . |ψ1u|W s

p,µ(R+;E) . |ψ1u|Lp,µ(R+;E) + [ψ1u]W s
p,µ(R+;E),

identifying ψ1u with its trivial extension to R+. We split the outer t-integral in
[ψ1u]pW s

p,µ(R+;E) at t = T into two summands. For the first summand we estimate, using
the mean value theorem for ψ1,∫ T

0

∫ t

0
τp(1−µ) |ψ1(t)u(t)− ψ1(τ)u(τ)|p

(t− τ)1+sp
dτ dt

. [u]pW s
p,µ(J ;E) +

∫ T

0

∫ T

τ
τp(1−µ)|u(t)|p(t− τ)p(1−s)−1 dt dτ

. [u]pW s
p,µ(J ;E) + |u|pLp,µ(J ;E).
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For the second summand we have∫ ∞
T

∫ t

0
τp(1−µ) |ψ1(t)u(t)− ψ1(τ)u(τ)|p

(t− τ)1+sp
dτ dt

=
∫ 2

3
T

0
τp(1−µ)|u(τ)|p

(∫ ∞
T

|ψ1(τ)|p

(t− τ)1+sp
dt
)

dτ . |u|pLp,µ(J ;E),

since the integral in brackets is bounded independent of τ ∈ (0, 2
3T ).

(III) It follows from A.2 d) that W s
p (J ;E) ↪→W s

p,µ(J ;E), from which we obtain

|ψ2u|W s
p,µ(J ;E) . |ψ2u|W s

p (J ;E) . |ψ2u|Lp(J ;E) + [ψ2u]W s
p (J ;E),

where [·]W s
p (J ;E) denotes the intrinsic semi-norm in the unweighted case ( cf. (A.4.2)), i.e.,

[ψ2u]pW s
p (J ;E) =

∫ T

0

∫ T

0

|ψ2(t)u(t)− ψ2(τ)u(τ)|pE
|t− τ |1+sp

dτ dt.

We split the inner τ -integral of [ψ2u]pW s
p (J ;E) at τ = t into two summands. For the first

summand we have∫ T

0

∫ t

0

|ψ2(t)u(t)− ψ2(τ)u(τ)|p

(t− τ)1+sp
dτ dt

.
∫ T

T/3

∫ t

T/3
τp(1−µ)|ψ2(τ)|p |u(t)− u(τ)|p

(t− τ)1+sp
dτ dt

+
∫ T

T/3

∫ t

T/3
|u(t)|p |ψ2(t)− ψ2(τ)|p

(t− τ)1+sp
dτ dt . [u]pW s

p,µ(J ;E) + |u|pLp,µ(J ;E).

For the second summand we estimate in a similar fashion∫ T

0

∫ T

t

|ψ2(t)u(t)− ψ2(τ)u(τ)|p

(τ − t)1+sp
dτ dt

.
∫ T

T/3

∫ τ

T/3
tp(1−µ)|ψ2(t)|p |u(τ)− u(t)|p

(τ − t)1+sp
dt dτ

+
∫ T

T/3

∫ τ

T/3
|u(τ)|p |ψ2(t)− ψ2(τ)|p

(τ − t)1+sp
dt dτ . [u]pW s

p,µ(J ;E) + |u|pLp,µ(J ;E).

These estimates show |u|W s
p,µ(J ;E) . |u|Lp,µ(J ;E) + [u]W s

p,µ(J ;E).

(IV) For the converse estimate, note that it trivially holds

[u]pW s
p,µ(J ;E) ≤ [u]pW s

p,µ(J ;E) +
∫ ∞
T

∫ t

0
τp(1−µ) |EJu(t)− EJu(x)|p

(t− τ)1+sp
dτ dt = [EJu]pW s

p,µ(R+;E),

where EJ is the extension operator from Lemma 1.1.5. We thus obtain

|u|Lp,µ(J ;E) + [u]W s
p,µ(J ;E) ≤ |EJu|W s

p,µ(R+;E) . |u|W s
p,µ(J ;E),

which finishes the proof.

We next prove Poincaré’s inequality in the weighted spaces. It will be used in later chapters
to obtain smallness of Lipschitz constants by choosing short time intervals.
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Lemma 1.1.14. Let J = (0, T ) be finite, p ∈ (1,∞), and µ ∈ (1/p, 1]. Then it holds

|u|Lp,µ(J ;E) . T |u′|Lp,µ(J ;E) if u ∈ 0W
1
p,µ(J ;E),

and consequently, for s ∈ [0, 1),

|u|
0W s

p,µ(J ;E) + |u|
0Hs

p,µ(J ;E) . T 1−s |u|W 1
p,µ(J ;E) if u ∈ 0W

1
p,µ(J ;E).

Proof. For t ∈ J we estimate, using Hölder’s inequality,

tp(1−µ)|u(t)|pE ≤ tp(1−µ)

(∫ T

0
s−(1−µ)s1−µ|u′(s)|E ds

)p
. tp(1−µ) T (1−p′(1−µ))p/p′ |u′|pLp,µ(J ;E).

Now the first asserted inequality follows after integration over J . For s ∈ [0, 1) the inter-
polation inequality A.2 j) yields

|u|
0W s

p,µ(J ;E) + |u|
0Hs

p,µ(J ;E) . |u|s
0W 1

p,µ(J ;E)|u|
1−s
Lp,µ(J ;E), u ∈ 0W

1
p,µ(J ;E),

from which the second asserted inequality follows.

Remark 1.1.15. In applications one deals with superposition and multiplication operators
on the spacesW s

p,µ(0, T ;E) and 0W
s
p,µ(0, T ;E), equipped with the interpolation norm from

their definition in the beginning of this section. Of course, one would rather like to work
with the intrinsic norms derived in Proposition 1.1.13, since these much more convenient
to work with. At the same time one often assumes that T is small, for instance to make
lower order terms small, with Poincaré’s inequality (see Lemma 1.3.13). Such a scenario
arises, for instance, in the proofs of our main Theorems 2.1.4 and 3.1.4 on linear problems,
and also in the proof of Proposition 4.3.2 on local existence for nonlinear problems.
In Proposition 1.1.13 we have shown the equivalence of the interpolation norm and the
intrinsic norm for W s

p,µ(0, T ;E) using the extension operator EJ from Lemma 1.1.5. Thus
the equivalence constants for these norms depend on T , and typically become large as T
becomes small. This might have the effect that lower order terms, for instance, are not
small anymore for small T after having used the intrinsic norm. The situation is the same
if one works in 0W

s
p,µ(0, T ;E) equipped with the intrinsic norm.

To overcome this obstacle for short time intervals, in a situation as above one has to work in

0W
s
p,µ(0, T ;E) equipped with the interpolation norm from the beginning. Via the extension

operator E0
J and restriction, this space is T -independently connected to 0W

s
p,µ(R+;E). In

this way one can perform the required estimates with the intrinsic norms (1.1.17) or (1.1.18)
on 0W

s
p,µ(R+;E), without receiving unpleasant T -dependent factors. For examples we refer

to the proofs of the Lemmas 1.3.22, 1.3.23 and 4.2.3, for instance.

1.2 Abstract Properties

1.2.1 Abstract Maximal Lp,µ-Regularity

We briefly review the results of Prüss & Simonett [71] on abstract maximal Lp,µ-regularity,
and add a few remarks on finite intervals.
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Let A be a closed and densely defined operator on a Banach space E with domain D(A).
Endowed with its graph norm, D(A) becomes a Banach space. Let further p ∈ (1,∞) and
µ ∈ (1/p, 1]. For a finite or infinite interval J = (0, T ) we set

E0,µ(J) := Lp,µ(J ;E), Eu,µ(J) := W 1
p,µ(J ;E) ∩ Lp,µ(J ;D(A)).

Due to Lemma 1.1.1, functions in Eu,µ(J) have a well-defined trace in E at t = 0. We say
that A enjoys maximal Lp,µ-regularity on J ,

A ∈MRp,µ(J ;E),

if for each f ∈ E0,µ(J) there is a unique solution u ∈ Eu,µ(J) of

u′ +Au = f(t), a.e. t ∈ J, u(0) = 0. (1.2.1)

In other words, it holds A ∈ MRp,µ(J ;E) if and only if the operator ∂t + A on E0,µ(J),
with domain

0Eu,µ(J) := 0W
1
p,µ(J ;E) ∩ Lp,µ(J ;D(A)),

is invertible. For convenience we further set

MRp(J ;E) :=MRp,1(J ;E)

in the unweighted case. If A ∈MRp,µ(J ;E), then the open mapping theorem implies that
the solution u of (1.2.1) depends continuously on the right-hand side f , i.e., there is a
constant C > 0, which does not depend on f , such that

|u|Eu,µ(J) ≤ C |f |E0,µ(J). (1.2.2)

The following lemma shows that for negative generators of analytic semigroups, maximal
Lp,µ-regularity is only a matter of regularity, since the solution of (1.2.1) is given by the
convolution with the semigroup.

Lemma 1.2.1. Let J = (0, T ) be finite or infinite, p ∈ (1,∞), µ ∈ (1/p, 1], and let −A be
the generator of an analytic semigroup on E. If u ∈ Eu,µ(J) solves (1.2.1) for f ∈ E0,µ(J),
then u is given by

u(t) =
∫ t

0
e−(t−s)Af(s) ds, t ∈ J.

In particular, Eu,µ(J)-solutions of (1.2.1) are unique.

Proof. By Lemma 1.1.1 it holds Lp,µ(J ;E) ↪→ L1,loc(J ;E), and thus the assertion follows
immediately from [30, Theorem 2.1].

The following fundamental result due to [71] shows that the maximal regularity properties
of A on the half-line are independent of the weight.

Theorem 1.2.2. For p ∈ (1,∞) and µ ∈ (1/p, 1] it holds A ∈ MRp,µ(R+;E) if and only
if A ∈ MRp(R+;E). Moreover, if A ∈ MRp(J0;E) for some finite or infinite interval
J0 = (0, T0) then A ∈ MRp,µ(J ;E) for all µ ∈ (1/p, 1] and all finite intervals J = (0, T )
as well, and if A ∈MRp(R+;E) then the constant in (1.2.2) is independent of J .
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Proof. (I) The independence of the classMRp,µ(R+;E) of µ ∈ (1/p, 1] is shown in [71,
Theorem 2.4].
(II) Assume that A ∈ MRp(J0;E). It then follows from [30, Corollary 5.3] that there
is ω > 0 such that A − ω ∈ MRp(R+;E), and thus A − ω ∈ MRp,µ(R+;E) for all
µ ∈ (1/p, 1] by the result of [71]. It can now be shown as in the proof of [30, Theorem 3.3]
that A ∈MRp,µ(J ;E) for each finite interval J = (0, T ).
(III) Finally, suppose that A ∈ MRp(R+;E), and let J be finite. For f ∈ Lp,µ(J ;E) a
solution u ∈ Eu,µ(J) of

u′ +Au = f(t), a.e. t ∈ J, u(0) = 0,

is given by u = ũ|J , where ũ is the solution of the above problem on R+ with trivially
extended right-hand side f . Since −A is the generator of an analytic C0-semigroup on E by
[30, Corollary 4.2], it follows from Lemma 1.2.1 that this is the only solution. This yields
the estimate

|u|Eu,µ(J) ≤ |ũ|Eu,µ(R+) ≤ C |f̃ |E0,µ(R+) = C |f |E0,µ(J),

where C is the maximal regularity constant of A on R+, which is independent of J .

We describe some consequences of Theorem 1.2.2 for maximal Lp,µ-regularity.

If E is of class HT , then well known sufficient conditions for maximal Lp-regularity are
also available for maximal Lp,µ-regularity, such as that A admits a bounded H∞-calculus
or admits bounded imaginary powers, with angles strictly smaller than π/2, respectively.
Moreover, combining Theorem 1.2.2 with a result of Weis [85, Theorem 4.2], it holds
A ∈MRp,µ(R+;E) if and only if A is R-sectorial.
From [30, Theorem 7.1] it follows that maximal Lp,µ-regularity is independent of the
exponent p ∈ (1,∞), and together with [30, Corollary 4.2] we further obtain that if
A ∈ MRp,µ(R+;E), then −A is the generator of an exponentially stable analytic C0-
semigroup on E.

Now let us consider (1.2.1) with nontrivial initial values, i.e.,

u′ +Au = f(t), a.e. t ∈ J, u(0) = u0. (1.2.3)

The following result is proved in [71, Theorem 3.2] for J = R+. The case of finite interval
may be deduced from this as in the proof of Theorem 1.2.2.

Theorem 1.2.3. Let p ∈ (1,∞), µ ∈ (1/p, 1], and let J = (0, T ) be finite or infinite. If
A ∈MRp(R+;E) then (1.2.3) has a unique solution u ∈ Eu,µ(J) if and only if f ∈ E0,µ(J)
and u0 ∈ DA(µ − 1/p, p).7 There is a constant C, which is independent of J , f , and u0,
such that

|u|Eu,µ(J) ≤ C
(
|f |E0,µ(J) + |u0|DA(µ−1/p,p)

)
.

7Recall the notation DA(µ− 1/p, p) = (E,D(A))µ−1/p,p.
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1.2.2 Operator-Valued Fourier Multipliers

We now turn our attention to operator-valued Fourier multipliers on Lp,µ. For Banach
spaces E, F and an operator-valued function m ∈ L1,loc(R;B(E,F )) one obtains an oper-
ator Tm by setting

Tmf := F−1mFf, f ∈ F−1C∞c (R;E),

where F denotes the Fourier transform on R. It is not hard to show that Tm is densely
defined on Lp,µ(R+;E). Now m is called a Fourier-multiplier on Lp,µ, if the operator Tm
admits an estimate

|Tmf |Lp,µ(R+;F ) . |f |Lp,µ(R+;E), f ∈ F−1C∞c (R;E),

i.e., if it extends to a continuous operator from Lp,µ(R+;E) to Lp,µ(R+;F ).
The following result on Lp,µ-multipliers is available. It is due to Girardi and Weis [42], and
is an extension of Weis’ multiplier theorem [85, Theorem 3.4] in the unweighted case.

Theorem 1.2.4. Let p ∈ (1,∞), µ ∈ (1/p, 1], and let E and F be Banach spaces of class
HT . Assume that m ∈ C1

(
R\{0};B(E,F )

)
satisfies

R{m(λ), λm′(λ) : λ 6= 0} ≤ κ.

Then Tm ∈ B
(
Lp,µ(R+;E), Lp,µ(R+;F )

)
, with norm not exceeding C(p, µ,X, Y )κ.

We remark that a corresponding theorem holds true in arbitrary dimensions, and for more
general weights from the class Ap.

Under more restrictive assumptions on m we can give a short proof of Theorem 1.2.4, using
a result of Kreé [60] which is also the basis for the theorem of [42].

Proposition 1.2.5. Under the assumptions of Theorem 1.2.4, let m satisfy in addition
m ∈ C2

(
R\{0};B(E,F )

)
, such that

|m′′(λ)|B(E,F ) . |λ|−2, λ 6= 0.

Then Tm extends to a continuous operator from Lp,µ(R+;E) to Lp,µ(R+;F ).

Proof. It follows from the operator-valued multiplier theorem in the unweighted case that
Tm extends to a bounded operator from Lp(R+;E) to Lp(R+;F ).
Moreover, following the lines of the proof of [81, Lemma VI.4.4.2], the assumptions on
m yield that Tm may be represented as a convolution operator, with a kernel k ∈
C
(
R\{0};B(E,F )

)
, satisfying |k(t)|B(E,F ) . 1

|t| .
It now follows from [60, Théorème 2] that Tm is also bounded from Lp,µ(R+;E) to
Lp,µ(R+;F ), for all µ ∈ (1/p, 1].
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1.3 Weighted Anisotropic Spaces

Let E be a Banach space of class HT , let J = (0, T ) be finite or infinite, and let further
Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω, or Ω ∈ {Rn,Rn

+}. In what follows
we refer to t ∈ J as time variables, and to x ∈ Ω as space variables. For p, q ∈ [1,∞] and
r > 0 we denote by

Hr
p(Ω;E), W r

p (Ω;E), Br
p,q(Ω;E),

the E-valued Bessel potential, Slobodetskii and Besov spaces. Recall that Br
p,p(Ω;E) =

W r
p (Ω;E) for p ∈ [1,∞) and r /∈ N0. The corresponding spaces over the boundary ∂Ω are

defined via local charts. We refer to Appendix A.4 for definitions and properties of these
function spaces.

In this section we investigate weighted anisotropic spaces, i.e., intersections of spaces of
the form

Hs
p,µ

(
J ;Hr

p(Ω;E)
)
, W s

p,µ

(
J ;W r

p (Ω;E)
)
, Hs

p,µ

(
J ;W r

p (Ω;E)
)
, W s

p,µ

(
J ;W r

p (Ω;E)
)
,

(1.3.1)
where s, r ≥ 0. We are further concerned with the corresponding spaces over J × ∂Ω,
and with intersections of spaces where in (1.3.1) Hs

p,µ and W s
p,µ are replaced by 0H

s
p,µ and

0W
s
p,µ, respectively. We consider the Newton polygon, temporal and spatial trace theorems,

and sufficient conditions for pointwise multipliers for these spaces.

We start with two fundamental tools for anisotropic spaces.

The first is a spatial extension operator. Given k ∈ N, there is an extension operator EΩ

to Rn for functions defined on Ω, i.e., (EΩu)|Ω = u, such that for all p, q ∈ (1,∞) and
r ∈ [0, k] it holds

EΩ ∈ B
(
Br
p,q(Ω;E), Br

p,q(Rn;E)
)
∩ B
(
Hr
p(Ω;E), Hr

p(Rn;E)
)
. (1.3.2)

For integer r ∈ [0, k], the proof of [1, Theorems 5.21, 5.22] for the scalar-valued spaces
literally carries over to the vector-valued case. The general case r ∈ [0, k] follows from
interpolation. Applying EΩ pointwise almost everywhere in time, we obtain a spatial ex-
tension operator for the anisotropic spaces, which we denote by EΩ again,

EΩ ∈ B
(
Hs
p,µ(J ;Hr

p(Ω;E)), Hs
p,µ(J ;Hr

p(Rn;E))
)
, s ≥ 0, r ∈ [0, k]. (1.3.3)

Of course, here a H-space may be replaced by a W -space at the first or the second or at
both positions, and this remains true for the 0H

s
p,µ- and the 0W

s
p,µ-spaces with respect to

time.

Second, we consider operators with bounded imaginary powers (cf. Appendix A.3) on the
weighted anisotropic spaces for the case J×Ω = R+×Rn. This class of operators is crucial
for our purposes, in view of the Dore-Venni Theorem A.3.2 and Yagi’s theorem (A.3.1).
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Lemma 1.3.1. Let E be of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], s, r ≥ 0, α ∈ (0, 2) and
β > 0, let ω, ω′ ≥ 0 satisfy ω + ω′ 6= 0 and set

Hs
p,µ(Hr

p) := Hs
p,µ

(
R+;Hr

p(Rn;E)
)
, 0H

s
p,µ(Hr

p) := 0H
s
p,µ

(
R+;Hr

p(Rn;E)
)
,

and analogously for the other types of spaces in (1.3.1). Let ∆n be the Laplacian on Rn.
Then the following holds true.

a) The pointwise realization of (ω −∆n)β/2 on the spaces

Hs
p,µ(Hr

p), with domain Hs
p,µ(Hr+β

p ),

Hs
p,µ(W r

p ), with domain Hs
p,µ(W r+β

p ), r, r + β /∈ N0,

W s
p,µ(Hr

p), with domain W s
p,µ(Hr+β

p ),

W s
p,µ(W r

p ), with domain W s
p,µ(W r+β

p ), r, r + β /∈ N0,

is invertible and admits a bounded H∞-calculus with H∞-angle equal to zero. This
remains true if one replaces the Hs

p,µ,W
s
p,µ-spaces by the 0H

s
p,µ, 0W

s
p,µ-spaces.

b) On Lp,µ(Lp), the operators (ω′ − ∂t)α and (ω′ + ∂t)α commute with (ω −∆n)β/2 in
the resolvent sense, respectively.

c) The operator L := (ω′ − ∂t)α + (ω −∆n)β/2, considered on the spaces

Hs
p,µ(Hr

p), with domain Hs+α
p,µ (Hβ

p ) ∩Hs
p,µ(Hr+β

p ),

Hs
p,µ(W r

p ), with domain Hs+α
p,µ (W β

p ) ∩Hs
p,µ(W r+β

p ), r, r + β /∈ N0,

W s
p,µ(Hr

p), with domain W s+α
p,µ (Hβ

p ) ∩W s
p,µ(Hr+β

p ), s, s+ α /∈ N0,

W s
p,µ(W r

p ), with domain W s+α
p,µ (W β

p ) ∩W s
p,µ(W r+β

p ), s, s+ α, r, r + β /∈ N0,

is invertible and admits bounded imaginary powers, with power angle not larger than
απ/2, respectively. This remains true for the operator L0 := (ω′+∂t)α+(ω−∆n)β/2

if one replaces the Hs
p,µ,W

s
p,µ-spaces by the 0H

s
p,µ, 0W

s
p,µ-spaces.

d) For τ ∈ (0, 1] it holds

D(Lτ ) = D((ω′ − ∂t)ατ ) ∩D((ω′ −∆n)βτ/2),

DL(τ, p) = D(ω′−∂t)α(τ, p) ∩D(ω′−∆n)β/2(τ, p),

and this remains true if one replaces L by L0 and ω′ − ∂t by ω′ + ∂t.

Proof. (I) Since E is of class HT , the operator −∆n admits on Lp(Rn;E) with domain
H2
p (Rn;E) a bounded H∞-calculus with H∞-angle equal to zero, due to [24, Theorem 5.5],

for instance. This remains valid for (ω −∆n)β/2 with domain Hβ
p (Rn;E), due to Lemma

A.3.5 and (A.3.1), and further this operator is invertible.
Using (ω −∆n)r/2 as an isomorphism between Hr

p(Rn;E) and Lp(Rn;E), it follows from
[24, Proposition 2.11] that (ω−∆n)β/2 has the same properties on Hr

p(Rn;E), with domain
Hr+β
p (Rn;E), r ≥ 0. By interpolation, these facts remain true if one considers (ω−∆n)β/2
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on W r
p (Rn;E), with domain W r+β

p (Rn;E), provided r, r + β /∈ N0. Due to Lemma A.3.6,
these properties carry over to its pointwise realizations.
(II) The explicit representation of the resolvents of ω′−∂t and ω′+∂t (see, for instance, [48,
Proposition 8.4.1]) yields that on Lp,µ(Lp) these operators are resolvent commuting with
ω −∆n, respectively. By [7, Lemma III.4.9.2], this property carries over to the fractional
power case.
(III) Since all the spaces under consideration are of class HT , it follows from Proposition
1.1.10 that (ω′ − ∂t)α admits a bounded H∞-calculus with H∞-angle equal to απ/2 on
Hs
p,µ(Hr

p) with domain Hs+α
p,µ (Hr

p), and on the corresponding spaces where H is replaced
byW , with the asserted exceptions. Using this fact, together with a) and b), the assertions
on L are a consequence of the Dore-Venni Theorem A.3.2. The same arguments show the
assertion on L0. Finally, d) is a consequence of the Lemmas A.3.1 and A.3.4.

1.3.1 The Newton Polygon

With the help of the operators from Lemma 1.3.1 we establish fundamental embeddings
for the anisotropic spaces. The corresponding results for exponentially weighted spaces are
obtained in [27, Lemma 4.3].

Proposition 1.3.2. Let E be of class HT , let J = (0, T ) be finite or infinite, p ∈ (1,∞),
µ ∈ (1/p, 1], and let Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω, or Ω ∈
{Rn,Rn

+}. Let further

s, r ≥ 0, α ∈ (0, 2), β > 0, σ ∈ [0, 1],

and set Hs
p,µ(Hr

p) := Hs
p,µ

(
J ;Hr

p(Ω;E)
)
, and analogously for the other anisotropic spaces.

Then it holds

Hs+α
p,µ (Hr

p) ∩Hs
p,µ(Hr+β

p ) ↪→ Hs+σα
p,µ (Hr+(1−σ)β

p ), (1.3.4)

and moreover each of the spaces

Hs+α
p,µ (W r

p ) ∩Hs
p,µ(W r+β

p ), W s+α
p,µ (Hr

p) ∩W s
p,µ(Hr+β

p ), W s+α
p,µ (Hr

p) ∩Hs
p,µ(W r+β

p ),

is continuously embedded in

W s+σα
p,µ (Hr+(1−σ)β

p ) ∩Hs+σα
p,µ (W r+(1−σ)β

p ),

provided all the occurring Wp,µ- and W -spaces have a noninteger order of differentiability.
Finally, assuming all orders of differentiability to be noninteger, it holds

W s+α
p,µ (W r

p ) ∩W s
p,µ(W r+β

p ) ↪→W s+σα
p,µ (W r+(1−σ)β

p ). (1.3.5)

These embeddings remain true if one replaces Ω by its boundary ∂Ω. They also remain
true if one replaces all the Hp,µ-, Wp,µ- spaces by the 0Hp,µ-, 0Wp,µ-spaces. Restricting in
the latter case to s+ α ≤ 2, the embedding constants do not depend on the length of J .
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Proof. (I) Using extensions and restrictions, and employing that the spaces over ∂Ω are
defined via local charts, it suffices to consider the case J×Ω = R+×Rn. The dependence of
the embedding constants on J carries over from the properties of the extension operators.
(II) For (1.3.4) we consider the operators (1 − ∂t)α and (1 −∆n)β/2 on Hs

p,µ(Hr
p), which

were treated in Proposition 1.1.10 and Lemma 1.3.1. Note that to obtain sectoriality of
(1 − ∂t)α we have to restrict to α ∈ (0, 2). Due to the invertibility of these operators, for
σ ∈ (0, 1) it holds that

|(1− ∂t)ασ(1−∆n)β(1−σ)/2 · |Hs
p,µ(Hr

p)

is an equivalent norm on Hs+σα
p,µ (Hr+(1−σ)β

p ). Since the sum of these operators is invertible
by Lemma 1.3.1, it further holds that

|((1− ∂t)α + (1−∆n)β(1−σ)/2) · |Hs
p,µ(Hr

p)

is an equivalent norm on Hs+α
p,µ (Hr

p) ∩ Hs
p,µ(Hr+β

p ). Now (1.3.4) follows from the mixed
derivative theorem, Lemma A.3.3. The same arguments show

Hs+α
p,µ (W r

p ) ∩Hs
p,µ(W r+β

p ) ↪→ Hs+σα
p,µ (W r+(1−σ)β

p ),

W s+α
p,µ (Hr

p) ∩W s
p,µ(Hr+β

p ) ↪→W s+σα
p,µ (Hr+(1−σ)β

p ),

and (1.3.5), with the indicated exceptions. In the following we derive the remaining em-
beddings from (1.3.4) by suitable interpolation arguments, which were indicated in [37,
Remark 5.3] in a more special situation.
(III) For Hs+α

p,µ (W r
p ) ∩ Hs

p,µ(W r+β
p ) we suppose that r, r + β /∈ N0. We apply the real

interpolation functor (·, ·)1/2,p to the embedding

Hs+α
p,µ (Hr±ε

p ) ∩Hs
p,µ(Hr±ε+β

p ) ↪→ Hs+α(σ±ε/β)
p,µ (Hr+(1−σ)β

p ), (1.3.6)

where ε > 0 is sufficiently small. By Lemma 1.1.9 the right-hand sides interpolate to
W s+σα
p,µ (Hr+(1−σ)β

p ). To interpolate the left-hand sides above we consider the operator

L = (1− ∂t)α + (1−∆n)β/2,

which, due to Lemma 1.3.1, is an isomorphism

Hs+α
p,µ (Hr±ε

p ) ∩Hs
p,µ(Hr±ε+β

p )→ Hs
p,µ(Hr±ε

p ).

Hence L is an isomorphism between(
Hs+α
p,µ (Hr−ε

p ) ∩Hs
p,µ(Hr−ε+β

p ), Hs+α
p,µ (Hr+ε

p ) ∩Hs
p,µ(Hr+ε+β

p )
)

1
2
,p

and
(
Hs
p,µ(Hr−ε

p ), Hs
p,µ(Hr+ε

p )
)

1
2
,p
, and the latter space equals Hs

p,µ(W r
p ), due to Lemma

1.1.9 and Proposition A.4.2. By Lemma 1.3.1, the operator L−1 maps Hs
p,µ(W r

p ) isomor-
phically to

Hs+α
p,µ (W r

p ) ∩Hs
p,µ(W r+β

p ).



36 The Spaces Lp,µ and Weighted Anisotropic Spaces

Thus we have shown that the left hand side in (1.3.6) interpolates to Hs+α
p,µ (W r

p ) ∩
Hs
p,µ(W r+β

p ). For W s+α
p,µ (Hr

p)∩W s
p,µ(Hr+β

p ) we have s, s+ α /∈ N0. Here we apply (·, ·)1/2,p

to

Hs±ε+α
p,µ (Hr

p) ∩Hs±ε
p,µ (Hr+β

p ) ↪→ Hs+σα
p,µ (Hr+β(1−σ±ε/α)

p ).

Using the operator L as above yields the asserted embedding in this case.
(IV) For W s+α

p,µ (Hr
p)∩Hs

p,µ(W r+β
p ) we have s+α, r+ β /∈ N. This time we apply (·, ·)1/2,p

to the embeddings

Hs+α(1±ε/β)
p,µ (Hr

p) ∩Hs
p,µ(Hr+β±ε

p ) ↪→ Hs+σα
p,µ (Hr+(1−σ)β±ε

p ),

Hs+α(1±ε/β)
p,µ (Hr

p) ∩Hs
p,µ(Hr+β±ε

p ) ↪→ Hs+α(σ±ε/β)
p,µ (Hr+(1−σ)β

p ).

As above it follows that the right-hand sides interpolate to Hs+σα
p,µ (W r+(1−σ)β

p ) and
W s+σα
p,µ (Hr+(1−σ)β

p ), respectively. To interpolate the left-hand side, we consider onHs
p,µ(Hr

p)
the operator

L = (1− ∂t)α(1+ε/β) + (1−∆)(β+ε)/2,

with domain D(L) = H
s+α(1+ε/β)
p,µ (Hr

p) ∩ Hs
p,µ(Hr+β+ε

p ). Due to the Lemmas 1.1.9, 1.3.1
and Proposition A.4.2 it holds

D(L(β−ε)/(β+ε)) = Hs+α(1−ε/β)
p,µ (Hr

p) ∩Hs
p,µ(Hr+β−ε

p ),

and the reiteration theorem yields

(D(L(β−ε)/(β+ε)), D(L))1/2,p = DL((1 + (β − ε)/(β + ε))/2, p).

Finally, the Lemmas 1.1.9, 1.3.1 and Proposition A.4.2 imply that the latter space equals
W s+α
p,µ (Hr

p) ∩Hs
p,µ(W r+β

p ).
(V) Starting in Step II with (1 + ∂t)α instead of (1− ∂t)α, the same arguments as above
show that the asserted embeddings are also true for the 0Hp,µ- and 0Wp,µ-spaces.

Remark 1.3.3. The proof shows that for the embeddings where only the mixed deriva-
tive theorem was used the orders of integrability in space and time do not have to coin-
cide. In fact, considering the Laplacian on Hr

q (Rn;E) for q ∈ (1,∞), and realizing it on
Hs
p,µ(J ;Hr

q (Rn;E)) for p ∈ (1,∞) and µ ∈ (1/p, 1], the assertions of Lemma 1.3.1 remain
true. Then as in Step II of the above proof we obtain, for instance,

Hs+α
p,µ (Hr

q ) ∩Hs
p,µ(Hr+β

q ) ↪→ Hs+σα
p,µ (Hr+(1−σ)β

q ),

W s+α
p,µ (W r

q ) ∩W s
p,µ(W r+β

q ) ↪→W s+σα
p,µ (W r+(1−σ)β

q ),

with noninteger orders of differentiability in the W -case and uniform embeddings in the

0Hp,µ- and 0Wp,µ-case.
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The above embeddings turn out to be extremely useful in the sequel. They can be visualized
by the Newton polygon. Suppose that an anisotropic space X of the form

X =
m⋂
j=1

H
sj
p

(
J ;Hrj

p (Ω;E)
)
,

where 0 ≤ r1 < ... < rm and sj ≥ 0, is given. Consider each space Hsj
p (J ;Hrj

p (Ω;E)) as a
point (rj , sj) in a space-time-regularity diagram, and draw the convex hull of these points
with respect to the boundary of the positive cone.
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Figure 1.1: The Newton polygon

This hull is called the Newton polygonNP for X, and the lines on the hull connecting points
(rj , sj) (including these points) is called the nontrivial part of NP. Proposition 1.3.2 and
trivial embeddings in space and time yield that X embeds into each space Hs

p(J ;Hr
p(Ω;E))

for which (r, s) lies inside the Newton polygon. Of course, here one may replace the H-
spaces by the W -spaces according to the above result.

A typical application of Proposition 1.3.2 is the following proof of the mapping behaviour
of the spatial derivative on anisotropic H-spaces. See [24, Lemma 3.8] for the unweighted
case.

Lemma 1.3.4. Let E be a Banach space of class HT , let J = (0, T ) be finite or finite, and
let Ω ⊂ Rn be a domain with compact smooth boundary, or Ω ∈ {Rn

+,Rn}. Let further

s ≥ 0, r ∈ [0, 1), α ∈ (0, 2), β ≥ 1.

Then the pointwise realization of ∂xi , i ∈ {1, ..., n}, is a continuous map

Hs+α
p,µ (Hr

p) ∩Hs
p,µ(Hr+β

p )→ Hs+α−α/β
p,µ (Hr

p) ∩Hs
p,µ(Hr+β−1

p ).

Restricting to s + α ≤ 2, and further to 0H
s+α
p,µ - and 0H

s
p,µ-spaces in time, its operator

norm is independent of the length of J .

Proof. By extension and restriction it suffices to consider the case J × Ω = R+ × Rn.
Clearly the operator ∂xi maps continuously

Hs+α
p,µ (Hr

p) ∩Hs
p,µ(Hr+β

p )→ Hs
p,µ(Hr+β−1

p ).

It further follows from Proposition 1.3.2 that the embedding

Hs+α
p,µ (Hr

p) ∩Hs
p,µ(Hr+β

p ) ↪→ Hs+α−α/β
p,µ (Hr+1

p )
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is valid, and thus ∂xi also maps

Hs+α
p,µ (Hr

p) ∩Hs
p,µ(Hr+β

p )→ Hs+α−α/β
p,µ (Hr

p)

in a continuous way.

1.3.2 Temporal Traces

We now consider the temporal trace for anisotropic spaces. Using integration by parts, it
is not hard to see that for a Banach space X and u ∈W 1

1,loc([0,∞);X) the representation

u(0) = (2− µ)
(
σ−(2−µ)

∫ σ

0
τ1−µu(τ) dτ − (2− µ)

∫ σ

0
t−(3−µ)

∫ t

0
τ1−µ(u(t)− u(τ)) dτ dt

)
(1.3.7)

holds true for all σ > 0. By A.2 l), if −A is the generator of an exponentially stable analytic
C0-semigroup then for θ ∈ (0, 1) the norm in DA(θ, p) is equivalent to | · |DA(θ,p),∗, where

|x|pDA(θ,p),∗ =
∫ ∞

0
σp(1−θ)|Ae−σAx|pX

dσ
σ
. (1.3.8)

The representation (1.3.7) is the key to the following abstract trace theorem, whose proof
follows Di Blasio [29].

Lemma 1.3.5. Let X be a Banach space, p ∈ (1,∞), µ ∈ (1/p, 1], and let the operator A
on X with domain D(A) be invertible and admit bounded imaginary powers with power
angle strictly smaller than π/2. Let s ∈ (0, 1 − µ + 1/p) and α > 0 satisfy s + α ∈
(1− µ+ 1/p, 1). Then the temporal trace tr0, i.e., tr0u = u(0), maps continuously

W s+α
p,µ

(
R+;D(As)

)
∩W s

p,µ

(
R+;D(As+α)

)
→ DA

(
2s+ α− (1− µ+ 1/p), p

)
. (1.3.9)

Moreover, tr0 is for α ∈ (1− µ+ 1/p, 1] continuous

Wα
p,µ

(
R+;X

)
∩ Lp,µ

(
R+;DA(α, p)

)
→ DA

(
α− (1− µ+ 1/p), p

)
, (1.3.10)

and for s ∈ (0, 1− µ+ 1/p) it is continuous

W 1
p,µ

(
R+;DA(s, p)

)
∩W s

p,µ

(
R+;D(A)

)
→ DA

(
1 + s− (1− µ+ 1/p), p

)
.8 (1.3.11)

Proof. The proofs of (1.3.10) and (1.3.11) are very similar to the Lemmas 11 and 12 of
[29], starting with (1.3.7) and using the representation (1.1.17) of the weighted Slobodetskii
seminorm and Hardy’s inequality (Lemma 1.1.2). We therefore concentrate on (1.3.9).
By assumption and Proposition 1.1.11 it holds

|u(0)|X . |u|W s+α
p,µ (R+;D(As)), u ∈W s+α

p,µ (R+;D(As)).

8The proofs of (1.3.10) and (1.3.11) only require that −A generates an exponentially stable analytic
C0-semigroup.
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We further use (1.3.7) and (1.3.8) to obtain

|u(0)|pDA(2s+α−(1−µ+1/p),p),∗ =
∫ ∞

0
σp(1−(2s+α−(1−µ+1/p))|Ae−σAu(0)|pXσ

−1 dσ

.
∫ ∞

0
σ−p(2s+α)

(∫ σ

0
τ1−µ|Ae−σAu(τ)| dτ

)p
dσ (1.3.12)

+
∫ ∞

0

(
σ2−µ−(2s+α)

∫ σ

0
t−(3−µ)

∫ t

0
τ1−µ|Ae−σA(u(t)− u(τ))| dτ dt

)p
dσ.

It follows from A.2 i) that for θ ∈ (0, 1) we have

|Ae−σAx|B(X) . σ−1+θ|Aθx|B(X), x ∈ X. (1.3.13)

Using Hölder’s inequality, (1.3.13), (1.1.17), Hardy’s inequality (Lemma 1.1.2) and Propo-
sition 1.1.11, we estimate the first summand in (1.3.12) by∫ ∞

0
σ−p(2s+α)

(∫ σ

0
τ1−µ|Ae−σAu(τ)| dτ

)p
dσ

≤
∫ ∞

0

∫ σ

0
τp(1−µ)|Ae−σAu(τ)|pσp−1σ−p(2s+α) dτ dσ

.
∫ ∞

0

∫ σ

0
τp(1−µ)|As+αu(τ)|pσ−(1+ps) dτ dσ

.
∫ ∞

0

(∫ σ

0
τp(1−µ)|(u(σ)− u(τ))|p

D(As+α)
σ−(1+ps) dτ + σp(1−µ−s)|u(σ)|p

D(As+α)

)
dσ

. |u|p
W s
p,µ(R+;D(As+α))

.

We further use (1.3.13), the Hardy-Young inequality (A.2.1), Hölder’s inequality and
(1.1.17) to estimate the second summand in (1.3.12),∫ ∞

0

(
σ2−µ−(2s+α)

∫ σ

0
t−(3−µ)

∫ t

0
τ1−µ|Ae−σA(u(t)− u(τ))| dτ dt

)p
dσ

.
∫ ∞

0

(
σ−(s+α−(1−µ+1/p))

∫ σ

0
t−1
(
t−(2−µ)

∫ t

0
τ1−µ|u(t)− u(τ)|D(As) dτ

)
dt
)p
σ−1 dσ

.
∫ ∞

0
σ−p(s+α−(1−µ+1/p))σ−p(2−µ)

(∫ σ

0
τ1−µ|u(σ)− u(τ)|D(As) dτ

)p
σ−1 dσ

≤
∫ ∞

0

∫ σ

0
τp(1−µ)|u(σ)− u(τ)|pD(As)σ

−(1+p(s+α)) dτ dσ ≤ [u]p
W s+α
p,µ (R+;D(As))

,

which shows (1.3.9).

From the above lemma we deduce a general trace theorem for the weighted anisotropic
spaces. We refer to [89, Theorem 3.2.1] for the unweighted case, and to [27, Lemma 4.4]
for anisotropic spaces with exponential weights.

Theorem 1.3.6. Let E be a Banach space of class HT , let J = (0, T ) be finite or infinite,
and let Ω ⊂ Rn be a bounded domain with smooth boundary, or Ω ∈ {Rn,Rn

+}. Assume
r ≥ 0, β > 0, and suppose that k ∈ N0, s ≥ 0, and α ∈ (0, 2) satisfy

k − µ+ 1/p < s < k + 1− µ+ 1/p < s+ α.
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Set Hs
p,µ(W r

p ) := Hs
p,µ(J ;W r

p (Ω;E)), and analogously for the other anisotropic spaces.
Throughout, assume that the orders of differentiability of all occurringWp,µ- andW -spaces
are noninteger. Then each of the spaces

Hs+α
p,µ (W r

p ) ∩Hs
p,µ(W r+β

p ), W s+α
p,µ (Hr

p) ∩W s
p,µ(Hr+β

p ), W s+α
p,µ (Hr

p) ∩Hs
p,µ(W r+β

p ),
(1.3.14)

is continuously embedded into

BUCk
(
J,Br+β(1+(s−(k+1−µ+1/p))/α)

p,p (Ω;E)
)
. (1.3.15)

Moreover, for α ≤ 1 it holds

Wα
p,µ(W r

p ) ∩ Lp,µ(W r+β
p ) ↪→ BUC

(
J,Br+β(1−(1−µ+1/p)/α)

p,p (Ω;E)
)
, (1.3.16)

W 1
p,µ(W r

p ) ∩W s
p,µ(W r+β

p ) ↪→ BUC
(
J,Br+β(µ−1/p)/(1−s)

p,p (Ω;E)
)
. (1.3.17)

All these embeddings remain true if one replaces Ω by its boundary ∂Ω. Restricting to
s+α ≤ 2 and 0Hp,µ- resp. 0Wp,µ-spaces in time, the embedding constants are independent
of the length of J .

Proof. (I) Using extensions and restrictions, it again suffices to treat the case J × Ω =
R+ × Rn. We only have to consider the case k = 0, since for k ≥ 1 it holds, due to
s > k − µ+ 1/p, (1.1.1) and Proposition 1.1.11,

Hs
p,µ(Hr+β

p ) ∩Hs
p,µ(W r+β

p ) ∩W s
p,µ(Hr+β

p ) ↪→ BUCk−1(J ;Hr+β
p ),

and the latter space embeds into (1.3.15). We further claim that the proof of the asserted
embedding reduces to show that the temporal trace operator tr0u = u(0) maps each of the
five spaces under consideration continuously into

Y := Br+β(1+(s−(k+1−µ+1/p))/α)
p,p (Rn;E),

where one has to set s = k = 0 for (1.3.16) and k = 0, α = 1− s, for (1.3.17). To see this,
note that for a function u we have

u(t) = tr0Λtu, t ≥ 0,

where Λt denotes the left translation by t. Due to Lemma 1.1.6, the family of left transla-
tions forms on each space W κ

p,µ, Hκ
p,µ, κ ≥ 0, a strongly continuous semigroup of contrac-

tions. We thus have for t > τ ≥ 0, assuming that tr0 is continuous,

|u(t)− u(τ)|Y . |Λt−τu− u|Y,

where Y stands for any of the spaces under consideration. This shows uniform continuity
and boundedness of u with values in Y .
(II) We show the asserted continuity of tr0 on the space spaces in (1.3.14). It follows from
Proposition 1.3.2 that

Hs+α
p,µ (W r

p ) ∩Hs
p,µ(W r+β

p ) ↪→W s+(1−ε)α
p,µ (Hr+εβ

p ) ∩W s+εα
p,µ (Hr+(1−ε)β

p ).
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W s+α
p,µ (Hr

p) ∩Hs
p,µ(W r+β

p ) ↪→W s+(1−ε)α
p,µ (Hr+εβ

p ) ∩W s+εα
p,µ (Hr+(1−ε)β

p ),

where ε > 0 is sufficiently small. Since it is asserted that the spaces on the left- and the
right-hand side above have the same trace spaces, it suffices to consider tr0 on

W s+α
p,µ (Hr

p) ∩W s
p,µ(Hr+β

p ).

Moreover, using again Proposition 1.3.2, the same argument shows that it suffices to con-
sider the case s+ α < 1. We apply (1.3.9) with

X = Hr−sβ/α
p , A = (1−∆n)β/2α, D(A) = Hr+(1−s)β/α

p .

Since the operator 1−∆n admits a bounded H∞-calculus with H∞-angle equal to zero on
the whole H-scale, it follows from (A.3.1), Lemma A.3.5 and Proposition A.4.2 that

D(As) = Hr
p , D(As+α) = Hr+β

p .

Thus Lemma 1.3.5 implies that tr0 maps continuously

W s+α
p,µ (Hr

p) ∩W s
p,µ(Hr+β

p )→ DA

(
2s+ α− (1− µ+ 1/p), p

)
= Br+β(1+(s−(k+1−µ+1/p))/α)

p,p .

(III) It follows from real interpolation that the operator 1 −∆n has the same properties
on the B-scale as on the H-scale. We may therefore use (1.3.10), applied to

X = Br
p,p, A = (1−∆n)β/2α, D(A) = Br+β/α

p,p ,

givingDA(α−(1−µ+1/p), p) = B
r+β(1−(1−µ+1/p)/α)
p,p , to obtain (1.3.16). Similarly, applying

(1.3.11) with

X = Br−sβ/(1−s)
p,p , A = (1−∆n)β/2(1−s), D(A) = W r+β

p ,

giving DA(1 + s− (1− µ+ 1/p), p) = B
r+β(µ−1/p)/(1−s)
p,p , yields (1.3.17).

The above theorem can again be visualized by the Newton polygon, cf. Figure 1.3.2. Con-
sider, for instance, the space X = W s+α

p,µ (Hr
p) ∩W s

p,µ(Hr+β
p ), where s, r, α and β are as

above. Then the temporal trace space of X is obtained by intersecting the horizontal line
(τ, 1−µ+ 1/p), τ ∈ R, with the nontrivial part of the Newton polygon NP corresponding
to X.

Remark 1.3.7. In the situation of Theorem 1.3.6, one can also consider the case

k1 − µ+ 1/p < s < k2 + 1− µ+ 1/p < s+ α, 0 ≤ k1 ≤ k2, k1, k2 ∈ N0.

This case can be reduced to k1 = k2, where the theorem is applicable, using Proposition
1.3.2. Here one has the choice between high temporal and low spatial regularity and vice
versa.

Using arguments as in the proof of [27, Theorem 4.5], one should be able to show that the
temporal trace is surjective, for all of the spaces under consideration in the Theorem 1.3.6.
At this point we only consider a right-inverse in a special case. We also refer to Lemma
3.2.2, where we consider a right-inverse for the boundary spaces from Chapter 3.
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(τ, 1− µ+ 1/p)

spatial regularity of the temporal trace

Figure 1.2: The trace space and the Newton polygon

Lemma 1.3.8. Let E be a Banach space, let p ∈ (1,∞), µ ∈ (1/p, 1], and let −A be the
generator of an exponentially stable analytic C0-semigroup on E, with domain D(A). Let
further α > 1− µ+ 1/p with α− (1− µ+ 1/p) /∈ N. Then it holds

|e−·Ax|Wα
p,µ(R+;E)∩Lp,µ(R+;DA(α,p)) . |x|DA(α−(1−µ+1/p),p).

9

Proof. (I) First let α ∈ N. Using (1.3.8), for x ∈ DA(α− (1− µ+ 1/p), p) we obtain

|e−·Ax|Lp,µ(R+;D(Aα)) = |Ae·AAα−1x|Lp,µ(R+;E)

. |Aα−1x|DA(µ−1/p,p) = |x|DA(α−(1−µ+1/p),p).

Since ∂kt e−·Ax = (−A)ke−·Ax for k ≤ α, we further have

|e−·Ax|Wα
p,µ(R+;E) . |e−·Ax|Lp,µ(R+;D(Aα)),

which shows the assertion for integer α.
(II) We now consider the case 1−µ+ 1/p < α < 1, and show e−·Ax ∈ Lp,µ(R+;DA(α, p)).
Take x ∈ DA

(
α − (1 − µ + 1/p), p

)
. Then it holds |e−·Ax|Lp,µ(R+;E) . |x|E , due to the

exponential stability of the semigroup. Moreover we have

|e−·Ax|pLp,µ(R+;DA(α,p)) =
∫ ∞

0

∫ ∞
0

sp(1−µ)tp(1−α)|Ae−(t+s)Ax|pE ds
dt
t
.

We split the inner integral at s = t and estimate the first summand with some small ε > 0
by

∫ ∞
0

∫ t

0
sp(1−µ)tp(1−α)|Ae−(t+s)Ax|pE ds

dt
t

.
∫ ∞

0
tp(1−α+(1−µ+1/p))|Ae−tAx|pE

(
1
t

∫ t

0
e−εps ds

)
dt
t

. [x]pDA(α−(1−µ+1/p),p).

9Recall that DA(α, p) = D(Aα) for α ∈ N0.
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For the second summand we use the Hardy-Young inequality (A.2.2), to estimate∫ ∞
0

∫ ∞
t

sp(1−µ)tp(1−α)|Ae−(t+s)Ax|pE ds
dt
t

.
∫ ∞

0
tp(1−α)

(∫ ∞
t

sp(1−µ+1)|Ae−sAx|pE
ds
s

)
dt
t

.
∫ ∞

0
sp(1−α+(1−µ+1/p))|Ae−sAx|pE

ds
s

= [x]pDA(α−(1−µ+1/p),p).

We thus obtain for 1− µ+ 1/p < α < 1 that

|e−·Ax|Lp,µ(R+;DA(α,p)) . |x|DA(α−(1−µ+1/p),p). (1.3.18)

Now let α > 1 with α /∈ N. Then we choose β > 0 such that 1 − µ + 1/p < α − β < 1,
which yields Aβx ∈ DA(α−β− (1−µ+ 1/p), p) by the reiteration theorem. It now follows
from (1.3.18) that

|e−·Ax|Lp,µ(R+;DA(α,p)) . |e−·AAβx|Lp,µ(R+;DA(α−β,p))

. |Aβx|Lp,µ(R+;DA(α−β−(1−µ+1/p),p)) . |x|Lp,µ(R+;DA(α−(1−µ+1/p),p)),

and therefore (1.3.18) holds for all α > 1− µ+ 1/p.
(III) For the temporal regularity, observe that

∂kt e
−·Ax = (−A)ke−·Ax, k ∈ {0, ..., [α]},

where x ∈ DA(α− (1− µ+ 1/p), p). In view of the exponential stability of the semigroup,
the representations (1.1.18) for the norm ofW θ

p,µ(R+;E) and A.2 l) for the norm of DA(α−
(1− µ+ 1/p), p) we have

|Ake−·Ax|p
W θ
p,µ(R+;E)

∼ |Ake−·Ax|pE +
∫ ∞

0

∫ ∞
0

sp(1−µ)t−θp|Ake−(t+s)Ax−AkesAx|pE ds
dt
t

∼ |Ake−·Ax|pLp,µ(R+;DA(θ,p))

for k = [α] and θ ∈ (0, 1). This yields that for α > 1 − µ + 1/p with α /∈ N, using (1.1.8)
and the estimates of Step II,

|e−·Ax|Wα
p,µ(R+;E) .

[α]∑
k=0

|∂kt e−·Ax|Lp,µ(R+;E) + |∂[α]
t e−·Ax|

W
α−[α]
p,µ (R+;E)

. |e−·Ax|Lp,µ(R+;DA(α,p)) . |x|DA(α−(1−µ+1/p),p),

which finishes the proof.

An immediate application of the above result yields a continuous right-inverse of the tempo-
ral trace for weighted anisotropic spaces arising in the context of maximal Lp,µ-regularity.



44 The Spaces Lp,µ and Weighted Anisotropic Spaces

Lemma 1.3.9. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], m ∈ N,
and let Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω. Then a right-inverse for
tr0 that is continuous

B2m(µ−1/p)
p,p (Ω;E)→W 1

p,µ(R+;Lp(Ω;E)) ∩ Lp,µ(R+;W 2m
p (Ω;E))

is given by
t 7→ RRne

−t(1−∆n)mEΩu0, u0 ∈ B2m(µ−1/p)
p,p (Ω;E).

Here EΩ is the extension operator to Rn from (1.3.2), and RRn denotes the restriction from
Rn to Ω.

1.3.3 Spatial Traces

We now specialize to weighted anisotropic spaces of the form

Hs,2ms
p,µ (J × Ω;E) := Hs

p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;H2ms
p (Ω;E)), (1.3.19)

where m ∈ N and s ∈ (0, 1], and to the corresponding spaces where H is replaced by W .
Our motivation is to investigate the mapping properties of a boundary differential operator
trΩ∇β with β ∈ Nn

0 and |β| ≤ 2m − 1, where trΩ and ∇ denote the spatial trace, i.e.,
trΩu = u|∂Ω, and the euclidian gradient on Rn, respectively. The iterative application of
Lemma 1.3.4 implies that ∇β maps the maximal regularity space

W 1
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 2m

p (Ω;E))

continuously into

H1−|β|/2m
p,µ (J ;Lp(Ω;E)) ∩ Lp,µ(J ;H2m−|β|

p (Ω;E)),

which is a space as in (1.3.19) with s = 1− |β|/2m. We are therefore led to investigate the
properties of trΩ on a space like (1.3.19). We follow the proof of [25, Lemma 3.5]. For the
spatial trace on unweighted anisotropic spaces we also refer to [11, Chapter 4].

For our further considerations we assume that

2ms ∈ N.

It is known that the trace operator trΩ, which is originally only defined on C∞c (Rn;E),
extends uniquely to a continuous map

H2ms
p (Ω;E)→W 2ms−1/p

p (∂Ω;E). (1.3.20)

This can be seen as in [82, Theorems 2.9.3, 4.7.1] for the scalar-valued case. Applied
pointwise almost everywhere in time, trΩ extends further to a continuous map

Lp,µ(J ;H2ms
p (Ω;E))→ Lp,µ(J ;W 2ms−1/p

p (∂Ω;E)).

Observe that Proposition 1.3.2 yields the embedding

Hs,2ms
p,µ (J × Ω;E) ↪→ Hs−1/2mp

p,µ (J ;H1/p
p (Ω;E)).
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Although trΩ is not continuous from H
1/p
p (Ω;E) to Lp(∂Ω;E), this fact suggests that trΩ

maps Hs,2ms
p,µ (J × Ω;E) into Hs−1/2mp

p,µ (J ;Lp(∂Ω;E)).

To give a rigorous proof, the following simple density result is useful.

Lemma 1.3.10. Let J = (0, T ) be a finite or infinite interval, let E be a Banach space,
and let D be a dense subset of E. Then the set Step(J ;D), consisting step functions of the
form

φ =
l∑

i=1

αi(·)φi, αi ∈ Cc(J), φi ∈ D, l ∈ N,

is dense in Lp,µ(J ;E).

Proof. Since Cc(J ;E) is dense in Lp,µ(J ;E), it suffices to approximate functions from this
set. Let ε > 0 be given and take u ∈ Cc(J ;E), such that suppu ⊂ (a, b) for some a, b ∈ J .
Choose numbers a = t1 < ... < tl−1 < tl = b, l ∈ N, with

|u(t)− u(ti)|E < ε for t ∈ [ti, ti+1], i = 1, ..., l.

By assumption, for each i there is ϕi ∈ D such that |u(ti)− ϕi|E < ε, where we can take
ϕ1 = ϕl = 0. Now define φ ∈ Step(J ;D) by

φ(t) =
l∑

i=1

1[ti,ti+1)(t)
(ti+1 − t)ϕi + (t− ti)ϕi+1

ti+1 − ti
, t ∈ J.

Then |u− φ|L∞(J ;E) < 2ε, and thus

|u− φ|Lp,µ(J ;E) < 2bp(1−µ)(b− a)ε.

Since a and b only depend on u, the assertion follows.

Let us now assume that
J × Ω = R+ × Rn

+.

For this case we describe an alternative representation of trRn+ . In the sequel we write

x = (x′, y) ∈ Rn
+, x′ ∈ Rn−1, y ∈ R+.

Considering a function u = u(t, x′, y) on R+ × Rn
+ as a function of y ∈ R+ with values in

the functions of (t, x′) ∈ R+ × Rn−1, Fubini’s theorem yields the embedding

ι1 : Lp,µ
(
R+;H2ms

p (Rn
+;E)

)
↪→ H2ms

p

(
R+;Lp,µ(R+;Lp(Rn−1;E))

)
.

Thus, since 2ms ≥ 1, the trace tr0 := try=0 acts on Lp,µ(R+;H2mτ
p (Rn

+;E)) via tr0◦ι1, and
maps this space continuously into Lp,µ(R+;Lp(Rn−1;E)). For φ ∈ Step(R+;C∞c (Rn;E))
it trivially holds trRn+φ = (tr0 ◦ ι1)φ. Due to the density of Step(R+;C∞c (Rn;E)), proved
in Lemma 1.3.10, we obtain that

trRn+ = tr0 ◦ ι1 on Lp,µ(R+;H2ms
p (Rn

+;E)). (1.3.21)

This representation allows to prove the temporal regularity for spatial traces of functions
in Hs,2ms

p,µ (R+ × Rn
+;E) as suggested above.
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Lemma 1.3.11. Let E be a Banach space of class HT , and let m ∈ N and s ∈ (0, 1]
satisfy 2ms ∈ N. Then the trace trRn+ maps continuously

Hs,2ms
p,µ (R+ × Rn

+;E)→W s−1/(2mp),2ms−1/p
p,µ (R+ × Rn−1;E).

Proof. Throughout this proof we set X := Lp,µ(R+;Lp(Rn−1;E)).
(I) Considering a function in Lp,µ(R+;H2ms

p (Rn
+;E)) as a function of y ∈ R+ taking values

in the functions of (t, x′) ∈ R+ × Rn−1, we obtain that

Lp,µ(R+;H2ms
p (Rn

+;E)) ↪→ H2ms
p (R+; X).

Moreover, it follows from H2ms
p (Rn

+;E) ↪→ Lp(R+;H2ms
p (Rn−1;E)) and Fubini’s theorem

that
Lp,µ(R+;H2ms

p (Rn
+;E)) ↪→ Lp(R+;Lp,µ(R+;H2ms

p (Rn−1;E))).

Fubini’s theorem and interpolation further yield

Hs
p,µ(R+;Lp(Rn

+;E)) = Lp(R+;Hs
p,µ(R+;Lp(Rn−1;E))).

By Lemma 1.3.1, the realization of the operator L = 1− ∂t + (−∆n−1)m on X is invertible
and admits bounded imaginary powers with power angle not exceeding π/2. Hence, by
Lemma A.3.5, for τ ∈ (0, 1] its power Lτ has bounded imaginary powers with angle not
larger than τπ/2, and it holds

D(Lτ ) = Hτ
p,µ(R+;Lp(Rn−1;E)) ∩ Lp,µ(R+;H2mτ

p (Rn−1;E)). (1.3.22)

Therefore
Hs,2ms
p,µ (R+ × Rn

+;E) ↪→ H2ms
p (R+; X) ∩ Lp(R+;D(Ls)).

Denoting the above embedding by ι̃1, equation (1.3.21) implies trRn+ = tr0 ◦ ι̃1.
(II) We now claim that the space H2ms

p (R; X) ∩ Lp(R;D(Ls)) embeds continuously into
H1
p (R;D(Ls−1/2m)). To see this, we consider the realization of the operators A = 1 +

(−∂2
y)sm and B = Ls on Lp(R; X) with domains

D(A) = H2ms
p (R; X) and D(B) = Lp(R;D(Ls)),

respectively. These operators are invertible, and admit bounded imaginary powers with
power angles equal to zero and sπ/2, respectively. Moreover, A and B are resolvent com-
muting on step functions in Lp(R; X), which carries over to Lp(R; X) by density. Thus the
Dore-Venni Theorem A.3.2 shows that the operator A+B is invertible on Lp(R;X) with
domain

D(A+B) = H2ms
p (R; X) ∩ Lp(R;D(Ls)).

Since it holds that |A1/2msB1−1/2ms · |Lp(R;X) and |(A+ B) · |Lp(R;X) are equivalent norms
on H1

p (R;D(Ls−1/2m)) and D(A+B), respectively, the mixed derivative theorem (Lemma
A.3.3) implies the asserted embedding.
(III) It follows from restriction and extension that also

H2ms
p (R+; X) ∩ Lp(R+;D(Ls)) ↪→ H1

p (R+;D(Ls−1/2m)),
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which implies that the operator Ls−1/2m maps continuously

H2ms
p (R+; X) ∩ Lp(R+;D(Ls))→ H1

p (R+; X) ∩ Lp(R+;D(L1/2m)).

Note that L1/2m is sectorial of angle at most π/4m < π/2, and thus −L1/2m is the generator
of an exponentially stable analytic C0-semigroup on X. Due to [7, Theorem III.4.10.2] we
have

H1
p (R+; X) ∩ Lp(R+;D(L1/2m)) ↪→ BUC([0,∞);DL1/2m(1− 1/p, p)),

and from the reiteration theorem we infer

DL1/2m(1− 1/p, p) = DL((1− 1/p)/2m, p).

(IV) We now write
trRn+ = tr0 L−(s−1/2m) Ls−1/2m ι̃1,

where Ls−1/2m and its inverse are applied pointwise. By the above considerations, the
operator Ls−1/2mι̃1 maps continuously

Hs,2ms
p,µ (R+ × Rn

+;E)→ BUC([0,∞);DL((1− 1/p)/2m, p)).

Clearly, tr0 and L−(s−1/2m) commute on BUC([0,∞);DL((1 − 1/p)/2m, p)), and by reit-
eration and Lemma A.3.1, L−(s−1/2m) maps DL((1− 1/p)/2m, p) continuously into

DL(s− 1/2mp, p) = W s−1/(2mp),2ms−1/p
p,µ (R+ × Rn−1;E).

This shows that the trace trRn+ maps continuously as asserted.

Via localization we extend the above result to general domains and finite intervals.

Proposition 1.3.12. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], let
m ∈ N and s ∈ (0, 1] be such that 2ms ∈ N, let J = (0, T ) be a finite or infinite interval,
and let Ω ⊂ Rn be a domain with compact smooth boundary, or Ω ∈ {Rn,Rn

+}. Then the
spatial trace trΩ maps continuously

Hs,2ms
p,µ (J × Ω;E)→W s−1/2mp,2ms−1/p

p,µ (J × ∂Ω;E).

The operator norm of trΩ on 0H
τ,2mτ
p,µ (J × Ω;E) is independent of the length of J .

Proof. (I) Using the extension operators EJ and E0
J from Lemma 1.1.5, it suffices to

consider the case J = R+. We describe ∂Ω by a finite number of charts (Ui, ϕi) and a
partition of unity {ψi} subordinate to the cover

⋃
i Ui. We further denote by Φi the push-

forward with respect to ϕi, i.e., Φiu = u ◦ ϕ−1
i . For a function φ ∈ Step(R+;C∞c (Rn;E))

it holds
trΩφ =

∑
i
Φ−1
i

(
trRn+Φi(ψiφ)

)
on ∂Ω. (1.3.23)

(II) By restriction to Ω∩Ui, Lemma A.4.1 and trivial extension from Rn
+ ∩ϕi(Ui) to Rn

+,
for each i we obtain that the Φi(ψi·) maps continuously

Hs,2ms
p,µ (R+ × Ω;E)→ Hs,2ms

p,µ (R+ × Rn
+;E).
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Applying Lemma 1.3.11, restricting back to Rn
+ ∩ ϕi(Ui) and using again Lemma A.4.1

yields that Φ−1
i trRn+ maps the latter space continuously into

W s−1/2mp,2ms−1/p
p,µ (R+ × ∂Ω;E).

Thus the operator
∑

i Φ−1
i (trRn+Φi(ψi·)) maps continuously

Hs,2ms
p,µ (R+ × Ω;E)→W s−1/2mp,2ms−1/p

p,µ (R+ × ∂Ω;E).

Since Step(R+;C∞c (Rn;E)) is dense in Lp,µ(R+;H2ms
p (Ω;E)) by Lemma 1.3.10, the re-

presentation (1.3.23) holds for all elements of this space, and in particular for all functions
from Hs,2ms

p,µ (J × Ω;E). This shows that trΩ is continuous as asserted.

Arguing as in [25, Lemma 3.5] one can show that in the situation of the above proposition
the spatial trace is surjective.

We use the results derived so far to estimate differential operators of lower order on spaces
of type (1.3.19).

Lemma 1.3.13. Let E be a Banach space of class HT , p ∈ (1,∞) and µ ∈ (1/p, 1]. Let
J = (0, T ) be a finite interval, and let Ω ⊂ Rn be a domain with compact smooth boundary
∂Ω, or Ω ∈ {Rn,Rn

+}. Let further the numbers m ∈ N and s ∈ [0, 1) be given. Then for
every η > 0 there is T0 > 0 such that for T ≤ T0 the following holds true.

a) For α ∈ Nn
0 with s+ |α|/2m < 1 it holds

|∇αu|
0H

s,2ms
p,µ (J×Ω;E)

≤ η |u|
W 1,2m
p,µ (J×Ω;E)

for u ∈ 0W
1,2m
p,µ (J × Ω;E).

b) For β ∈ Nn
0 with s+ |β|/2m+ 1/2mp < 1 it holds

|trΩ∇βu|
0W

s,2ms
p,µ (J×∂Ω;E)

≤ η |u|
W 1,2m
p,µ (J×∂Ω;E)

for u ∈ 0W
1,2m
p,µ (J × Ω;E).

Proof. (I) It follows from Lemma 1.3.4 that there is constant C0, which is independent
of J , such that

|∇αu|
0H

s,2ms
p,µ (J×Ω;E)

≤ C0 |u|
0H

s+|α|/2m,2ms+|α|
p,µ (J×Ω;E)

.

From the interpolation inequality A.2 j), the assumption s + |α|/2m < 1 and Young’s
inequality we infer

|u|
0H

s+|α|/2m
p,µ (J ;Lp(Ω;E))

≤ |u|s+|α|/2m
0W 1

p,µ(J ;Lp(Ω;E))
|u|1−s−|α|/2mLp,µ(J ;Lp(Ω;E))

≤ η

4C0
|u|

0W 1
p,µ(J ;Lp(Ω;E)) + Cη|u|Lp,µ(J ;Lp(Ω;E)),

where Cη is a constant that depends on η. Here it is important that for complex interpola-
tion the constant in the interpolation inequality is equal to 1 and thus independent of the
underlying spaces. It further follows from Poincaré’s inequality (Lemma 1.1.14) that

|u|Lp,µ(J ;Lp(Ω;E)) ≤
η

4C0Cη
|u|W 1

p,µ(J ;Lp(Ω;E)),
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provided that T ≤ T0 with sufficiently small T0. This shows

|u|
0H

s+|α|/2m
p,µ (J ;Lp(Ω;E))

≤ η

2C0
|u|W 1

p,µ(J ;Lp(Ω;E)).

In a similar way we estimate

|u|
Lp,µ(J ;H

2ms+|α|
p (Ω;E))

≤ η

4C0
|u|Lp,µ(J ;W 2m

p (Ω;E)) + Cη|u|Lp,µ(J ;Lp(Ω;E))

≤ η

2C0

(
|u|Lp,µ(J ;W 2m

p (Ω;E)) + |u|W 1
p,µ(J ;Lp(Ω;E))

)
.

This shows a).
(II) For b) we obtain as above that for given η̃ > 0 it holds

|trΩ∇βu|
0W

s,2ms
p,µ (J×∂Ω;E)

≤ η̃ |trΩ∇βu|
0W

1−|β|/2m−1/2mp,2m−|β|−1/p
p,µ (J×∂Ω;E)

,

provided that T ≤ T0 is sufficiently small. By Proposition 1.3.12 and Lemma 1.3.4 there
is constant C̃0, which does not depend on J , such that

|trΩ∇βu|
0W

1−|β|/2m−1/2mp,2m−|β|−1/p
p,µ (J×∂Ω;E)

≤ C̃0 |u|W 1,2m
p,µ (J×Ω;E)

.

Setting η̃ = η/C̃0, we obtain the asserted estimate.

We end this section with a useful density result for anisotropic spaces.

Lemma 1.3.14. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], and let
s = 1 or s ∈ (0, 1) with 2ms /∈ N and s 6= 1− µ+ 1/p. Then

C∞c (R+;W 2m
p (Rn;E))

d
↪→ 0W

s,2ms
p,µ (R+ × Rn;E).

Proof. Throughout we set Y0 := Lp(Rn, E), and Y1 := W 2m
p (Rn, E).

(I)We first consider the case s = 1, i.e., we show that C∞c (R+;Y1) is dense in 0W
1,2m
p,µ (R+×

Rn;E). To this end we first show that the set of functions in 0W
1,2m
p,µ (R+ × Rn;E) which

are compactly supported in R+ are dense in 0W
1,2m
p,µ (R+ × Rn;E). Let ε > 0 and u ∈

0W
1,2m
p,µ (R+ × Rn;E) be given. Choose Tε > tε > 0 such that the numbers

|1R+\(tε,Tε)u|Lp,µ(R+;Y0), |1R+\(tε,Tε)u
′|Lp,µ(R+;Y0), |1R+\(tε,Tε)u|Lp,µ(R+;Y1),

are smaller than ε, respectively. Choose further a smooth nonnegative cut-off function αε
on R+ with αε ≤ 1 and

αε(t) =


1, t ∈ (tε, Tε),
0, t ∈ (0, tε/2),
0, (Tε + 1,∞),

|α′ε||(tε/2,tε) .
1
tε
, |α′ε||(Tε,Tε+1) . 1.

Then it holds
|u− αεu|Lp,µ(R+;Y0) . ε, |u− αεu|Lp,µ(R+;Y1) . ε,

and further that

|u′ − (αεu)′|Lp,µ(R+;Y0) ≤ |u′ − αεu′|Lp,µ(R+;Y0) + |α′εu|Lp,µ(R+;Y0)

. ε+ |α′εu|Lp,µ(R+;Y0).
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The properties of αε yield

|α′εu|Lp,µ(R+;Y0) . |α′εu|Lp,µ(tε/2,tε;Y0) + |α′εu|Lp,µ(Tε,Tε+1;Y0). (1.3.24)

To estimate the first summand we use that 1/tpε ≤ 1/tp for t ≤ tε, to obtain

|α′εu|
p
Lp,µ(tε/2,tε;Y0) ≤

2p

tpε
|u|pLp,µ(tε/2,tε;Y0) .

∫ tε

tε/2
t−pµ|u(t)|pY0

dt . ε

for tε sufficiently small, since the function t−pµ|u|pY0
belongs to L1(R+) by Hardy’s inequal-

ity (Lemma 1.1.2). The assumption for α′ε on (Tε, Tε+1) implies that the second summand
of (1.3.24) is smaller than a constant multiple of ε. Hence |α′εu|Lp,µ(R+;Y0) . ε, and thus

|u− αεu|W 1
p,µ(R+;Y0) + |u− αεu|Lp,µ(R+;Y1) . ε.

Therefore the functions αεu, which belong to W 1,2m
p,µ (R+ × Rn;E) and are supported in

(tε/2, Tε + 1), approximate u in W 1,2m
p,µ (R+ × Rn;E) as ε↘ 0.

(II) To approximate a function u ∈ 0W
1,2m
p,µ (R+ × Rn, E) with compact support in R+

by functions in C∞c (R+;Y1) we have to approximate u in W 1
p (R+;Y0) and Lp(R+;Y1)

simultaneously. This can be achieved using a standard mollification method, as in the
proofs of [1, Theorem 2.29, Lemma 3.16]. We omit the details. The assertion of this lemma
for s = 1 follows.
(III) Now let s ∈ (0, 1). By A.2 a) the dense embedding

0W
1,2m
p,µ (R+ × Rn;E)

d
↪→ (Lp,µ(R+;Y0), 0W

1,2m
p,µ (R+ × Rn;E))s,p

is valid, and the Lemmas 1.1.9, 1.3.1 and Proposition A.4.2 yield

(Lp,µ(R+;Y0), 0W
1,2m
p,µ (R+ × Rn;E))s,p = 0W

s,2ms
p,µ (R+ × Rn;E),

provided 2ms /∈ N and s 6= 1− µ+ 1/p.

1.3.4 Pointwise Multipliers

If E, J , and Ω are as in Lemma 1.3.4, then the operator ∇α, where α ∈ Nn
0 , |α| ≤ 2m and

m ∈ N, maps continuously

W 1,2m
p,µ (J × Ω;E)→ H1−|α|/2m,2m−|α|

p,µ (J × Ω;E).10

Motivated by linear differential operators with variable coefficients, we are looking for
sufficient conditions on a function a = a(t, x) ∈ B(E) to be a pointwise multiplier to
Lp,µ(J ;Lp(Ω;E)), i.e., such that the multiplication with it is a continuous map

Hτ,2mτ
p,µ (J × Ω;E)→ Lp,µ(J ;Lp(Ω;E)), τ ∈ (0, 1].

We have the following result for coefficients a which belong to an unweighted space.
10Recall for τ > 0 the notation Hτ,2mτ

p,µ (J × Ω;E) = Hτ
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;H2mτ

p (Ω;E)), and
analogously for the W -spaces.
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Lemma 1.3.15. Let E be a Banach space of class HT , let J = (0, T ) be finite, and let
Ω ⊂ Rn be a domain with compact smooth boundary, or let Ω ∈ {Rn,Rn

+}. Let further
p ∈ (1,∞), µ ∈ (1/p, 1], r, s ∈ [p,∞), and τ ∈ (0, 1] satisfy

p(1− µ) + 1
s

+
n

2mr
< τ.

Then there is C > 0 such that

|au|Lp,µ(J ;Lp(Ω;E)) ≤ C |a|Ls(J ;Lr(Ω;B(E))) |u|Hτ,2mτ
p,µ (J×Ω;E)

is valid for all a ∈ Ls(J ;Lr(Ω;B(E))) and u ∈ Hτ,2mτ
p,µ (J × Ω;E). Restricting to u ∈

0H
τ,2mτ
p,µ (J × Ω;E), for given T0 > 0 the constant C may be chosen uniformly for all

T ≤ T0.

Proof. Applying Hölder’s inequality twice yields

|au|pLp,µ(J ;Lp(Ω;E)) =
∫
J
tp(1−µ)|a(t, ·)u(t, ·)|pLp(Ω;E) dt

≤
∫
J
|a(t, ·)|pLr(Ω;B(E))|t

1−µu(t, ·)|pLr′ (Ω;E) dt

≤ |a|pLs(J ;Lr(Ω;B(E)))|u|
p
Ls′,µ(Lr′ (Ω;E)),

where 1
r + 1

r′ = 1
s + 1

s′ = 1
p .

11 Due to Proposition 1.3.2, for σ ∈ (0, 1) the embedding

Hτ,2mτ
p,µ (J × Ω;E) ↪→ Hτ(1−σ)

p,µ (J ;H2mτσ
p (Ω;E)),

is valid, and the embedding constant is independent of J if one restricts to 0Hp,µ-spaces
in time. Sobolev’s embedding yields

H2mτσ
p (Ω;E) ↪→ Lr′(Ω;E) for σ =

n

2mτr
< 1.

It follows from Proposition 1.1.12 that

H
τ− n

2mr
p,µ (J ;Lr′(Ω;E)) ↪→ Ls′(J ;Lr′(Ω;E)) for τ− n

2mr
−
(

1−µ+
1
p

)
> −p(1− µ+ 1/p)

s′
,

with an embedding constant as asserted in the 0Hp,µ-case. Since the latter condition is
equivalent to p(1−µ+1/p)

s + n
2mr < τ , this finishes the proof.

We are also interested in the case where the coefficients belong to a temporally weighted
space. If 2m(µ− 1/p) > 2m− 1 +n/p, then Theorem 1.3.6 and Sobolev’s embedding yield

W 1,2m
p,µ (J × Ω;E) ↪→ C(J ;BUC2m−1(Ω;E)).

Thus ∇α maps for |α| < 2m continuously

W 1,2m
p,µ (J × Ω;E)→ BUC(J × Ω;E),

and the multiplication with a is continuous from BUC(J × Ω;E) to Lp,µ(J ;Lp(Ω;E))
if a ∈ Lp,µ(J ;Lp(Ω;B(E))). These considerations together with Lemma 1.3.15 yield the
following result for differential operators with variable coefficients.

11Note that r′ is not the standard dual exponent of r.
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Proposition 1.3.16. Let E be of class HT , p ∈ (1,∞) and µ ∈ (1/p, 1], let J = (0, T )
be a finite interval, and let Ω ⊂ Rn be a domain with compact smooth boundary, or let
Ω ∈ {Rn,Rn

+}. Assume that for the B(E)-valued coefficient a = a(t, x) of the operator
a∇α, where α ∈ Nn

0 with |α| ≤ 2m, m ∈ N, it holds a ∈ BC(J×Ω;B(E)) in case |α| = 2m,
and that in case |α| < 2m one of the following conditions is valid: either

2m(µ− 1/p) > 2m− 1 + n/p and a ∈ Lp,µ
(
J ;Lp(Ω;B(E))

)
,

or a ∈ Lsα
(
J ; (Lrα + L∞)(Ω;B(E))

)
for some numbers sα, rα ∈ [p,∞) with

p(1− µ) + 1
sα

+
n

2mrα
< 1− |α|

2m
.

Then we have
a∇α ∈ B

(
W 1,2m
p,µ (J × Ω;E), Lp,µ(J ;Lp(Ω;E))

)
.

In the same setting as above, we now consider pointwise multipliers for anisotropic spaces
related to boundary differential operators. Lemma 1.3.4, together with Proposition 1.3.11,
yields that trΩ∇β , where, β ∈ Nn

0 , |α| ≤ 2m− 1, maps continuously

W 1,2m
p,µ (J × Ω;E)→W 1−|β|/2m−1/2mp,2m−|β|−1/p

p,µ (J × ∂Ω;E).

Thus our aim is to provide sufficient conditions on a B(E)-valued function b such that the
multiplication with it is a bounded linear map

W τ,2mτ
p,µ (J × ∂Ω;E)→W κ,2mκ

p,µ (J × ∂Ω;E),

where 0 < κ ≤ τ < 2. Moreover, the estimates should be suitable for the localization
procedures in the next chapters. To obtain rather sharp results we use the paraproduct
techniques presented in [74, Section 4.4].

Choose a function ψ ∈ C∞c (Rn) with the property

ψ(ξ) = 1, |ξ| ≤ 1, ψ(ξ) = 0, |ξ| ≥ 3/2,

and define the family ϕj , j ∈ N0, by

ϕ0(ξ) = ψ(ξ), ϕ1(ξ) = ψ(ξ/2)− ψ(ξ), ϕj(ξ) = ϕ1(2−j+1ξ), j ≥ 2.

Then it holds
∑∞

j=0 ϕj ≡ 1 on Rn, and further

supp ϕj ⊂ {2j−1 ≤ |ξ| ≤ 3 2j−1}, j ∈ N,
k∑
j=0

ϕj(ξ) = ψ(2−kξ), k ∈ N0.

Denoting by F the Fourier transform on Rn, we use this dyadic partition of unity to define
operators Sj and Sk which cut off dyadic frequencies in the Fourier image,

Sj := F−1ϕjF , j ∈ N0, Sk :=
k∑
j=0

Sj , k ∈ N0, S−l = S−l := 0, l ∈ N.
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Observe that for u ∈ S ′(Rn;E) = B
(
S(Rn), E

)
it holds u = limk→∞ S

ku in the sense
of distributions.12 The Besov spaces may be characterized with the help of the operators
Sj . By [75, Definition 4.3], for σ > 0, p ∈ [1,∞) and q ∈ [1,∞] the Littlewood-Paley
representation

Bσ
p,q(Rn;E) =

{
u ∈ S ′(Rn;E) : |u|Bσp,q(Rn;E) = |(2σj |Sju|Lp(Rn;E))j∈N0 |lq <∞

}
is valid. Here lq denote the standard sequence spaces, q ∈ [1,∞]. We observe the following.

Lemma 1.3.17. For q ∈ [1,∞], the operator families (Sj)j∈N0 and (Sk)k∈N0 are uniformly
bounded on Lq(Rn;E).

Proof. Since ϕj(ξ) = ψ(2−jξ) − ψ(2−j+1ξ) for j ≥ 1 and
∑k

j=0 ϕj(ξ) = ψ(2−kξ), we
only have to show that the operator norm of the convolution operator F−1ψ(2−j ·)F =
(F−1ψ(2−j ·))∗ is bounded independent of j ∈ N0. The convolution inequality shows that
for q ∈ [1,∞] we have

|(F−1ψ(2−j ·)) ∗ |B(Lq(Rn;E)) ≤ |(F−1ψ(2−j ·))|L1(Rn;E).

Now it is easy to see that
(
F−1ψ(2−j ·)

)
(x) = 2jn(F−1ψ)(2jx) for x ∈ Rn, and further that

|(F−1ψ)(2j ·)|L1(Rn;E) ≤ 2−jn|F−1ψ|L1(Rn;E),

which yields an estimate independent of j.

For f ∈ S ′(Rn;B(E)) ∩ L1,loc(Rn;B(E)) and g ∈ S ′(Rn;E) ∩ L1,loc(Rn;E) we formally
decompose the product fg into the paraproducts

Π1(f, g) :=
∞∑
k=2

Sk−2fSkg, Π2(f, g) :=
∞∑
k=0

(Sk−1f + Skf + Sk+1f)Skg

Π3(f, g) :=
∞∑
k=2

SkfS
k−2g,

so that it holds

fg = Π1(f, g) + Π2(f, g) + Π3(f, g), (1.3.25)

whenever the paraproducts exist in the sense of distributions. Observe that for k ∈ N0 it
holds

suppF(Sk−2fSkg) ∪ suppF
k+1∑
l=k−1

SlfSkg ∪ suppF(SkfSk−2g) ⊂ {|ξ| ≤ 2k+3}.

The following lemma is the vector-valued version of [74, Proposition 2.3.2/2], and gives a
criterion for the existence of a paraproduct in a Besov space.

12We refer to [75] and [7] for details on vector-valued distributions.
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Lemma 1.3.18. Let E be a Banach space of class HT , σ > 0, p, q ∈ (1,∞), and let
hk ∈ Lp(Rn;E), k ∈ N0, satisfy

supp Fhk ⊂ {|ξ| ≤ 2k+3}, k ≥ 0.

If (2kσ|hk|Lp(Rn;E))k∈N0 ∈ lq then
∑∞

k=0 hk converges to some h ∈ Bσ
p,q(Rn;E) in the sense

of distributions, and it holds

|h|Bσp,q(Rn;E) . |(2kσ|hk|Lp(Rn;E))k∈N0 |lq .

Proof. The support condition implies that Sjhk = 0 for j ≥ k + 4. Thus

Sj

N∑
k=0

hk = Sj

N∑
k=j−3

hk1[0,∞)(k), j,N ∈ N0.

(I)We first show that
(∑N

k=0 hk
)
N∈N is convergent in the sense of distributions asN →∞.

For integer N1 < N2 it holds, using the uniform boundedness of (Sj)j∈N0 ,

|
N2∑

k=N1

hk|Bσ/2p,∞(Rn;E)
= sup

j∈N0

2jσ/2|Sj
N2∑

k=N1

hk|Lp(Rn;E)

. sup
j∈N0

N2∑
k=max{N1,j−3}

2(j/2−k)σ2kσ|hk|Lp(Rn;E)

. sup
j∈N0

N2∑
k=max{N1,j−3}

2(j/2−k)σ,

which is smaller than any given number if N1 < N2 are sufficiently large. Therefore(∑N
k=0 hk

)
N∈N is a Cauchy sequence in B

σ/2
p,∞(Rn;E), and thus converges in the sense

of distributions to a function h.
(II) We show that in fact h ∈ Bσ

p,q(Rn;E). To this end we estimate for N ∈ N

|
N∑
k=0

hk|Bσp,q(Rn;E) = |(2jσ|Sj
N∑

k=j−3

hk1[0,∞)(k)|Lp(Rn;E))j∈N0 |lq

. |(2jσ
N∑

k=j−3

|hk1[0,∞)(k)|Lp(Rn;E))j∈N0 |lq

≤
∞∑

l=−3

|(2jσ|hj+l1[0,∞)(j + l)|Lp(Rn;E))j∈N0 |lq

≤
∞∑

l=−3

2−lσ|(2kσ|hk|Lp(Rn;E))k∈N0 |lq . |(2kσ|hk|Lp(Rn;E))k∈N0 |lq ,

which yields that
(∑N

k=0 hk
)
N∈N is uniformly bounded in Bσ

p,q(Rn;E). Since E is assumed
to be reflexive the sequence has a weakly convergent subsequence in Bσ

p,q(Rn;E), and in
particular, this convergence is in the distributional sense. From the uniqueness of distribu-
tional limits we obtain h ∈ Bσ

p,q(Rn;E).

After these preparations we can estimate the Besov norm of a product in a way that is
suitable for our purposes.
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Lemma 1.3.19. Let E be a Banach space of class HT , and let Ω ⊂ Rn be a domain with
compact smooth boundary, or Ω ∈ {Rn,Rn

+}. Let further σ > 0, p, q ∈ (1,∞), and assume
that r, r′, ρ, ρ′ ∈ [p,∞], r, ρ′ 6=∞, satisfy 1

r + 1
r′ = 1

ρ + 1
ρ′ = 1

p . Then it holds

|fg|Bσp,q(Ω;E) . |f |Lρ(Ω;B(E))|g|Bσ
ρ′,q(Ω;E) + |f |Bσr,q(Ω;B(E))|g|Lr′ (Ω;E).

In this estimate Ω 6= Rn may be replaced by its boundary ∂Ω.

We remark that of particular interest is here the case ρ = r′ =∞.

Proof. (I) We first consider the case Ω = Rn, and estimate the paraproducts for fg given
by (1.3.25). Using Lemma 1.3.18, Hölder’s inequality in Lp(Rn;E) and Lemma 1.3.17 we
estimate for Π1(f, g)

|
∞∑
k=2

Sk−2fSkg|Bσp,q(Rn;E) . |(2kσ|Sk−2fSkg|Lp(Rn;E))k≥2|lq

≤ |(2kσ|Sk−2f |Lρ(Rn;B(E))|Skg|Lρ′ (Rn;E))k≥2|lq
≤ sup

j∈N0

|Sjf |Lρ(Rn;B(E)) |(2kσ|Skg|Lρ′ (Rn;E))k≥2|lq

. |f |Lρ(Rn;B(E))|g|Bσ
ρ′,q(R

n;E).

In a similar way we obtain for Π2(f, g), with l ∈ {−1, 0, 1},

|
∞∑
k=0

Sk+lfSkg|Bσp,q(Rn;E) . |(2kσ|Sk+lf |Lr(Rn;B(E))|Skg|Lr′ (Rn;E))k∈N0 |lq

≤ |(2kσ|Sk+lf |Lr(Rn;B(E)))k∈N0 |lq sup
j∈N0

|Sjg|Lr′ (Rn;E)

. |f |Bσr,q(Rn;B(E))|g|Lr′ (Rn;E),

and for Π3(f, g)

|
∞∑
k=2

SkfS
k−2g|Bσp,q(Rn;E) . |(2kσ|Skf |Lr(Rn;B(E))|Sk−2g|Lr′ (Rn;E))k≥2|lq

. |f |Bσr,q(Rn;B(E))|g|Lr′ (Rn;E).

Thus the paraproducts exist in the sense of distributions, with the given estimates. This
yields the assertion for Ω = Rn.
(II) The estimate for general Ω may be obtained from the full-space case using the ex-
tension operator EΩ from (1.3.2). It is left to show the estimate for Ω 6= Rn replaced by
its boundary. We describe ∂Ω by a finite collection of charts (Ui, ϕi) and a partition of
unity {ψi} subordinate to the cover

⋃
i Ui. For each i we choose an open set Wi ⊂ Rn with
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suppψi ⊂Wi ⊂Wi ⊂ Ui and estimate, using Lemma A.4.1,

|fg|Bσp,q(∂Ω;E) .
∑

i
|f(ϕ−1

i )g(ϕ−1
i )|Bσp,q(ϕi(Wi)∩Rn−1;E)

.
∑

i
|f(ϕ−1

i )|Lr(ϕi(Wi)∩Rn−1;B(E))|g(ϕ−1
i )|Bσ

r′,q(ϕi(Wi)∩Rn−1;E)

+ |f(ϕ−1
i )|Bσr,q(ϕi(Wi)∩Rn−1;B(E))|g(ϕ−1

i )|Lr′ (ϕi(Wi)∩Rn−1;E)

.
∑

i
|f |Lr(∂Ω;B(E))|g(ϕ−1

i )|Bσ
r′,q(ϕi(Wi)∩Rn−1;E)

+ |f(ϕ−1
i )|Bσr,q(ϕi(Wi)∩Rn−1;B(E))|g|Lr′ (∂Ω;E).

Now take a function ψ∗i ∈ C∞c (Ui) with ψ∗i ≡ 1 on Wi, to deduce again from Lemma A.4.1
that

|fg|Bσp,q(∂Ω;E) .
∑

i
|f |Lr(∂Ω;B(E))|ψ∗i (ϕ−1

i )g(ϕ−1
i )|Bσ

r′,q(ϕi(Ui)∩Rn−1;E)

+ |ψ∗i (ϕ−1
i )f(ϕ−1

i )|Bσr,q(ϕi(Ui)∩Rn−1;B(E))|g|Lr′ (∂Ω;E)

. |f |Lr(∂Ω;B(E))|g|Bσ
r′,q(∂Ω;E) + |f |Bσr,q(∂Ω;B(E))|g|Lr′ (∂Ω;E).

We derive a similar result for certain vector-valued Besov spaces on the half-line.

Lemma 1.3.20. Let E be a Banach space of class HT , and let Ω ⊂ Rn be a domain with
compact smooth boundary, or Ω ∈ {Rn,Rn

+}. Let further σ > 0, p, q ∈ (1,∞), and assume
that r, r′, ρ, ρ′, s, s′, σ, σ′ ∈ [p,∞], s, σ′ 6=∞, satisfy 1

r + 1
r′ = 1

ρ + 1
ρ′ = 1

s + 1
s′ = 1

σ + 1
σ′ = 1

p .

Then it holds

|fg|Bσp,q(R+;Lp(Ω;E)) . |f |Lσ(R+;Lρ(Ω;B(E)))|g|Bσ
σ′,q(R+;Lρ′ (Ω;E))

+ |f |Bσs,q(R+;Lr(Ω;B(E)))|g|Ls′ (R+;Lr′ (Ω;E)).

In this estimate Ω 6= Rn may be replaced by its boundary ∂Ω.

Proof. Using extensions and restrictions, we may consider the estimate on R instead of
R+. We proceed as in the previous lemma. For Π1(f, g) we obtain, using Hölder’s inequality
twice,

|
∞∑
k=2

Sk−2fSkg |Bσp,q(R;Lp(Ω;E)) . |(2kσ|Sk−2fSkg|Lp(R;Lp(Ω;E)))k≥2|lq

≤ |(2kσ|Sk−2f |Ls(R;Lr(Ω;B(E)))|Skg|Ls′ (R;Lr′ (Ω;E)))k≥2|lq
≤ sup

j∈N0

|Sjf |Ls(R;Lr(Ω;B(E))) |(2kσ|Skg|Ls′ (R;Lr′ (Ω;E)))k≥2|lq

. |f |Ls(R;Lr(Ω;B(E)))|g|Bσ
s′,q(R;Lr(Ω;E)).

In a similar way one treats the terms Π2(f, g) and Π3(f, g). As in the proof of Lemma 1.3.19
this implies the asserted estimate. Since for the spatial variables only Hölder’s inequality
was used, one may replace Ω 6= Rn by its boundary in the above arguments.

We can now prove the desired sufficient conditions for pointwise multipliers on boundaries.
We start with spatial Besov regularity.
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Lemma 1.3.21. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], let
J = (0, T ) be finite, and let Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω, or
Ω = Rn

+. Let further s, r ∈ [p,∞), m ∈ N, κ ∈ (0, 1), τ ∈ (0, 2) and ϑ > 0 satisfy

τ > κ, ϑ > 2mκ,
p(1− µ+ 1/p)

s
<

(
1− n− 1

ϑr

)
τ.

Then it holds

|bu|Lp,µ(J ;B2mκ
p,p (∂Ω;E)) . |b|Ls(J ;B2mκ

r,p (∂Ω;B(E))|u|W τ
p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;Bϑp,p(∂Ω;E)). (1.3.26)

Moreover, for p(1−µ+1/p)
s + n−1

2mr < κ there is δ ∈ (0, κ) such that

|bu|Lp,µ(J ;B2mκ
p,p (∂Ω;E)) . |b|L∞(J ;L∞(∂Ω;B(E)))|u|Wκ

p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;B2mκ
p,p (∂Ω;E)) (1.3.27)

+ |b|Ls(J ;B2mκ
r,p (∂Ω;B(E))|u|Wκ−δ

p,µ (J ;Lp(∂Ω;E))∩Lp,µ(J ;B
2m(κ−δ)
p,p (∂Ω;E))

.

Restricting to u ∈ 0Wp,µ, for given T0 > 0 these estimates hold with a uniform constant
for all T ≤ T0.

Proof. (I) It holds that

|bu|p
Lp,µ(J ;B2mκ

p,p (∂Ω;E))
=
∫
J
tp(1−µ)|b(t, ·)u(t, ·)|p

B2mκ
p,p (∂Ω;E))

dt,

and for almost every t ∈ J we use Lemma 1.3.19 to estimate

|b(t, ·)u(t, ·)|B2mκ
p,p (∂Ω;E)) . |b(t, ·)|Lρ(∂Ω;B(E))|u(t, ·)|B2mκ

ρ′,p (∂Ω;E)

+ |b(t, ·)|B2mκ
r,p (∂Ω;B(E))|u(t, ·)|Lr′ (∂Ω;E),

where 1
r + 1

r′ = 1
ρ + 1

ρ′ = 1
p . Hölder’s inequality now yields

|bu|Lp,µ(J,B2mκ
p,p (∂Ω;E)) . |b|Lσ(J ;Lρ(∂Ω;B(E)))|u|Lσ′,µ(J ;B2mκ

ρ′,p (∂Ω;E))

+ |b|Ls(J ;B2mκ
r,p (∂Ω;B(E)))|u|Ls′,µ(J ;Lr′ (∂Ω;E)), (1.3.28)

where 1
s + 1

s′ = 1
σ + 1

σ′ = 1
p . To obtain the desired estimates we have to choose these

numbers appropriately.
(II) We start with the first summand in (1.3.28). If τ = κ we take ρ = σ =∞, ρ′ = σ′ = p,

and obtain the first summand on the right-hand side of (1.3.27).
Now suppose that τ > κ. Then we take σ = s and σ′ = s′. The embedding

Ls(J ;B2mκ
r,p (∂Ω;B(E))) ↪→ Ls(J ;Lρ(∂Ω;B(E)))

is valid for
1
ρ
>

1
r
− 2mκ
n− 1

, i.e.,
1
ρ′
<

1
r′

+
2mκ
n− 1

. (1.3.29)

We thus need the embedding

W τ
p,µ(J ;Lp(Γ;E)) ∩ Lp,µ(J ;Bϑ

p,p(Γ;E)) ↪→ Ls′,µ(J ;B2mκ
ρ′,p (∂Ω;E)) (1.3.30)
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for some ρ that satisfies (1.3.29). Due to Proposition 1.3.2, for given θ ∈ (0, 1) it holds

W τ
p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;Bϑ

p,p(∂Ω;E)) ↪→W (1−θ)τ
p,µ (J ;Hϑθ

p (∂Ω;E)),

where here the embedding constant is independent of J if one restricts to 0Wp,µ, and further
the Sobolev embedding

Hϑθ
p (∂Ω;E) ↪→ B2mκ

ρ′,p (∂Ω;E) for θ >
2mκ
ϑ

+
n− 1
ϑρ

(1.3.31)

is valid. Therefore, if we choose θ > n−1
ϑr , then (1.3.31) holds with some ρ that satisfies

(1.3.29). From Proposition 1.1.12 we infer

W (1−θ)τ
p,µ (J ;B2mκ

ρ′,p (∂Ω;E)) ↪→ Ls′,µ(J ;B2mκ
ρ′,p (∂Ω;E))

for (1 − θ)τ − (1 − µ + 1
p) > −p(1−µ+1/p)

s′ , with a uniform embedding constant in the

0Wp,µ-case. Since it is assumed that p(1−µ+1/p)
s <

(
1 − n−1

ϑr

)
τ, the above inequality holds

for all θ > n−1
ϑr which are sufficiently close to n−1

ϑr . This yields (1.3.30) with some ρ that
satisfies (1.3.29), and we obtain an estimate of the first summand in (1.3.28) appropriate
for (1.3.26).
(III) To estimate the second summand in (1.3.28) we have to show that

W τ
p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;Bϑ

p,p(∂Ω;E)) ↪→ Ls′,µ(J ;Lr′(∂Ω;E)),

with τ replaced by κ − δ and ϑ replaced by 2m(κ − δ) for (1.3.27), where δ ∈ (0, κ).
Using Proposition 1.3.2, it can be seen as above that this embedding holds if p(1−µ+1/p)

s <(
1− n−1

ϑr

)
τ , with the respective replacements for (1.3.27) and the dependence on J in the

0Wp,µ-case as asserted. This yields (1.3.26) and (1.3.27), respectively.

We next consider temporally weighted Slobodetskii regularity.

Lemma 1.3.22. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], let
J = (0, T ) be finite, and let Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω, or
Ω = Rn

+. Let further s, r ∈ [p,∞), m ∈ N, κ ∈ (0, 1), κ 6= 1− µ+ 1/p, τ ∈ (0, 2) and ϑ > 0
satisfy

τ > κ, ϑ > 2mκ,
p(1− µ+ 1/p)

s
<

(
1− n− 1

ϑr

)
τ,

and suppose further that

1− 1− µ+ 1/p
τ

>
n− 1
ϑr

if κ > 1− µ+ 1/p. (1.3.32)

Then it holds

|bu|Wκ
p,µ(J ;Lp(∂Ω;E)) . |b|Bκs,p(J ;Lr(∂Ω;B(E)))|u|W τ

p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;Bϑp,p(∂Ω;E)). (1.3.33)

Moreover, if p(1−µ+1/p)
s + n−1

2mr < κ and

κ− (1− µ+ 1/p) /∈
(

0,
n− 1
2mr

)
, (1.3.34)
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then there is δ ∈ (0, κ) such that

|bu|Wκ
p,µ(J ;Lp(∂Ω;E)) . |b|L∞(J ;L∞(∂Ω;B(E)))|u|Wκ

p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;B2mκ
p,p (∂Ω;E)) (1.3.35)

+ |b|Bκs,p(J ;Lr(∂Ω;B(E)))|u|Wκ−δ
p,µ (J ;Lp(∂Ω;E))∩Lp,µ(J ;B

2m(κ−δ)
p,p (∂Ω;E))

.

Restricting to u ∈ 0Wp,µ, and assuming that b is defined on a larger interval J0 = (0, T0),
T0 > 0, these estimates, with J replaced by J0 in the norms for b, hold with a uniform
constant for all T ≤ T0. In this case, and further in the unweighted case µ = 1, one can
ignore (1.3.32) and (1.3.34).

Proof. (I) We intend to use Lemma 1.3.20, and thus have to reduce the estimate to the
unweighted case on R+. If κ > 1− µ+ 1/p then it is assumed that 1− 1−µ+1/p

τ > n−1
ϑr . In

this case it follows from the Propositions 1.3.2 and 1.1.11 that

W τ
p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;Bϑ

p,p(∂Ω;E)) ↪→ BUC(J ;Lr′(∂Ω;E)), (1.3.36)

such that u0 := u(0, ·) ∈ Lr′(∂Ω;E) is well defined. Moreover, if κ < 1 − µ + 1/p and in
the 0Wp,µ-case we set u0 := 0. In both cases we have

|bu|Wκ
p,µ(J ;Lp(∂Ω;E)) ≤ |b(u− u0)|Wκ

p,µ(J ;Lp(∂Ω;E)) + |bu0|Wκ
p,µ(J ;Lp(∂Ω;E)). (1.3.37)

In case κ > 1 − µ + 1/p we use interpolation and (1.3.36) to obtain that for the second
summand in (1.3.37) it holds

|bu0|Wκ
p,µ(J ;Lp(∂Ω;E)) . |b|Bκp,p(J ;Lr(∂Ω;B(E)))|u0|Lr′ (∂Ω;E)

. |b|Bκs,p(J ;Lr(∂Ω;B(E)))|u|W τ
p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;Bϑp,p(∂Ω;E)), (1.3.38)

as desired for (1.3.33). Replacing τ by κ and ϑ by 2mκ, and noting that the condition on κ
is strict, (1.3.38) yields a term as in the second summand of (1.3.35), with some δ ∈ (0, κ).
(II) To estimate the first summand in (1.3.37) we set v := u− u0, such that

v ∈ 0W
κ
p,µ(J ;Lp(∂Ω;E))

in any case, due to the assumption κ 6= 1 − µ + 1/p and Proposition 1.1.11. It further
follows from Proposition 1.1.11, Lemma 1.1.3, with the help of the extension operators EJ
and E0

J from Lemma 1.1.5, and from Lemma 1.3.20, that

|bv|Wκ
p,µ(J ;Lp(∂Ω;E)) . |bv|

0Wκ
p,µ(J ;Lp(∂Ω;E)) . |b(t1−µv)|

0Wκ
p (J ;Lp(∂Ω;E))

≤ |(EJb)(E0
J t

1−µv)|
0Wκ

p (R+;Lp(∂Ω;E)) . |(EJb)(E0
J t

1−µv)|Wκ
p (R+;Lp(∂Ω;E))

. |EJb|Lσ(R+;Lρ(∂Ω;B(E)))|(E0
J t

1−µv)|Bκ
σ′,p(R+;Lρ′ (∂Ω;E))

+ |EJb|Bκs,p(R+;Lr(∂Ω;B(E)))|(E0
J t

1−µv)|Ls′ (R+;Lr′ (∂Ω;E))

. |EJb|Lσ(R+;Lρ(∂Ω,B(E)))|t1−µv|0Bκσ′,p(J ;Lρ′ (∂Ω;E))

+ |EJb|Bκs,p(R+;Lr(∂Ω;B(E)))|v|Ls′,µ(J ;Lr′ (∂Ω;E)), (1.3.39)

where 1
r + 1

r′ = 1
ρ + 1

ρ′ = 1
p and 1

s + 1
s′ = 1

σ + 1
σ′ = 1

p , so that s′, σ′ ≥ p, have to be chosen
appropriately. In the 0Wp,µ-case, assuming that b is defined on J0 = (0, T0) with T ≤ T0,
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in (1.3.39) we can replace J by J0 and EJ by EJ0 , which leads to constants in (1.3.33) and
(1.3.35) as desired.
(III)We consider the first summand in (1.3.39). For τ = κ we take ρ = σ =∞, ρ′ = σ′ = p,
and deduce from Lemma 1.1.3 and (1.3.36) that

|t1−µv|
0Wκ

p (J ;Lp(∂Ω;E)) . |u|Wκ
p,µ(J ;Lp(∂Ω;E)) + |u0|Wκ

p,µ(J ;Lp(∂Ω;E)) . |u|Wκ
p,µ(J ;Lp(∂Ω;E)),

where the constant for this estimate is of course independent of J if u0 = 0. This yields
the first summand in (1.3.35) as desired. Further, for τ > κ we take ρ = r, ρ′ = r′, and
estimate for sufficiently small ε > 0

|t1−µv|
0Bκσ′,p(J ;Lr′ (∂Ω;E)) . |v|Wκ+ε

σ′,µ (J ;Lr′ (∂Ω;E))

≤ |u|Wκ+ε
σ′,µ (J ;Lr′ (∂Ω;E)) + |u0|Wκ+ε

σ′,µ (J ;Lr′ (∂Ω;E))

. |u|Wκ+ε
σ′,µ (J ;Lr′ (∂Ω;E)) + |u|W τ

p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;Bϑp,p(∂Ω;E)),

with a uniform constant in the 0Wp,µ-case. Observe that

Bκ
s,p(R+;Lr(∂Ω;B(E))) ↪→ Lσ(R+;Lr(∂Ω;B(E))) if

1
σ′
<

1
s′

+ κ. (1.3.40)

Since all occurring relations are strict, it thus suffices to show that there exists a σ ≥ p,
satisfying (1.3.40), such that

W τ
p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;B2mτ

p,p (∂Ω;E)) ↪→W κ
σ′,µ(J ;Lr′(∂Ω;E))

holds true. For θ ∈ (0, 1), Proposition 1.3.2 yields

W τ
p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;Bϑ

p,p(∂Ω;E)) ↪→W (1−θ)τ
p,µ (J ;Hϑθ

p (∂Ω;E)),

with a uniform embedding constant in the 0Wp,µ-case. It holds

Hϑθ
p (∂Ω;E) ↪→ Lr′(∂Ω;E) if θ >

n− 1
ϑr

, (1.3.41)

and moreover it follows from Proposition 1.1.12 that

W (1−θ)τ
p,µ (J ;Lr′(∂Ω;E)) ↪→W κ

σ′,µ(J ;Lr′(∂Ω;E))

if
(1− θ)τ − (1− µ+ 1/p) > κ− p(1− µ+ 1/p)

σ′
, (1.3.42)

again with a uniform constant in the 0Wp,µ-case. We can now choose θ and σ ≥ p satisfying
(1.3.40) and (1.3.36) such that (1.3.42) holds, using p(1−µ+1/p)

s <
(
1− n−1

ϑr

)
τ . So we have

shown the asserted estimates for the first summand in (1.3.39).
(IV) For the second summand in (1.3.39) it holds, as above,

|v|Ls′,µ(J ;Lr′ (∂Ω;E)) . |u|Ls′,µ(J ;Lr′ (∂Ω;E)) + |u|W τ
p,µ(J ;Lp(∂Ω;E))∩Lp,µ(J ;Bϑp,p(∂Ω;E)).

Using the Propositions 1.3.2 and 1.1.12, it can be seen as in the previous step that

W τ
p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;Bϑ

p,p(∂Ω;E)) ↪→ Ls′,µ(J ;Lr′(∂Ω;E))
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is valid if p(1−µ+1/p)
s <

(
1− n−1

ϑr

)
τ , with a uniform constant in the 0Wp,µ-case. This shows

(1.3.33). For (1.3.35) the same arguments are valid with τ replaced by κ−δ and ϑ replaced
by 2m(κ− δ) with δ ∈ (0, κ).

It seems that the exceptions (1.3.32) and (1.3.34) are not essential and only due to our
proof. If one had a Littlewood-Paley representation of the spaces W s

p,µ, as for the un-
weighted Slobodetskii spaces, then one could argue as in Lemma 1.3.20 and also cover the
exceptional values.

The above results on pointwise multiplication are rather sharp, and valueable for low values
of p ∈ (1,∞), compared to κ. It turns out that if p is sufficiently large then the spaces
W κ,2mκ
p,µ (J × ∂Ω)13 are closed under pointwise multiplications, and then also b may belong

to a temporally weighted space.

Lemma 1.3.23. Let E be of classHT , let J = (0, T ) be finite or infinite and let p ∈ (1,∞),
µ ∈ (1/p, 1] and κ ∈ (0, 1), ϑ ∈ R+\N. Then it holds

|bu|
Wκ,ϑ
p,µ (J×∂Ω;E)

. |b|L∞(J×∂Ω,B(E))|u|Wκ,ϑ
p,µ (J×∂Ω;E)

+ |b|
Wκ,ϑ
p,µ (J×∂Ω;B(E))

|u|L∞(J×∂Ω,E).

Moreover, if (
1− 1− µ+ 1/p

κ

)
ϑ >

n− 1
p

, (1.3.43)

then there is an estimate

|bu|
Wκ,ϑ
p,µ (J×∂Ω;E)

. |b|
Wκ,ϑ
p,µ (J×∂Ω;B(E))

|u|
Wκ,ϑ
p,µ (J×∂Ω;E)

.

ReplacingW κ,ϑ
p,µ by 0W

κ,ϑ
p,µ , these estimates are independent of the length of J . If b is defined

on a larger interval J0 = (0, T0), T ≤ T0, and one restricts to a 0W
κ,ϑ
p,µ -space for u, then

the estimates are uniform in T .

Proof. Throughout we denote any occurring sup-norm by | · |∞.
(I) By Lemma 1.3.19 we have for almost all t ∈ J that

|b(t, ·)u(t, ·)|Wϑ
p (∂Ω;E) . |b(t, ·)|∞|u(t, ·)|Wϑ

p (∂Ω;E) + |b(t, ·)|Wϑ
p (∂Ω;B(E))|u(t, ·)|∞,

and we obtain the asserted estimate for |bu|Lp,µ(J ;Wϑ
p (∂Ω;E)) by taking the Lp,µ-norm. This

estimate is always independent of the length of J . For W κ
p,µ(J ;Lp(∂Ω;E)) we use the

intrinsic norm given by Proposition 1.1.13 to obtain

|bu|Wκ
p,µ(J ;Lp(∂Ω;E)) . |b|∞|u|Lp,µ(J ;Lp(∂Ω;E)) (1.3.44)

+ |b|∞[u]Wκ
p,µ(J ;Lp(∂Ω;E)) + [b]Wκ

p,µ(J ;Lp(∂Ω;B(E)))|u|∞.

Note that this estimate also holds true for J = R+.
(II) Now let b, u ∈ 0W

κ,ϑ
p,µ . To get an estimate independent of J we cannot use the intrin-

sic norm for 0W
κ
p,µ directly (see the discussion in Remark 1.1.15). We therefore take the

13Recall the notation Wκ,ϑ
p,µ (J × ∂Ω;E) = Wκ

p,µ(J ;Lp(∂Ω;E)) ∩ Lp,µ(J ;Wϑ
p (∂Ω;E)).
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extension operator E0
J from Proposition 1.1.5, whose norm is independent of the length of

J , and estimate, using Proposition 1.1.11 and (1.3.44) on the half-line,

|bu|
0Wκ

p,µ(J ;Lp(∂Ω;E)) ≤ |E0
Jb E0

Ju|Wκ
p,µ(R+;Lp(∂Ω;E))

≤ |E0
Jb|∞|E0

Ju|Wκ
p,µ(R+;Lp(∂Ω;E)) + |E0

Jb|Wκ
p,µ(R+;L(∂Ω;B(E)))|E0

Ju|∞

. |b|∞|u|0Wκ
p,µ(J ;Lp(∂Ω;E)) + |b|

0Wκ
p,µ(J ;Lp(∂Ω;B(E)))|u|∞.

These estimates are independent of the length of J . If b is defined on a larger interval
J0 = (0, T0), then one may replace E0

J by EJ0 in the above arguments to obtain an estimate
uniformly in T in this case.
(III) Finally, if (1.3.43) is valid then the asserted estimate follows from

W κ,ϑ
p,µ (J × ∂Ω;E) ↪→ C(J × ∂Ω;E), (1.3.45)

which is due to Proposition 1.3.2 and Sobolev’s embeddings, and is independent of the
length of J in the 0W

κ,ϑ
p,µ -case and independent of T ≤ T0 if b is defined on J0.

We emphasize that for ϑ = 2mκ the condition (1.3.43) is equivalent to κ > 1−µ+1/p+ n−1
2mp .

We summarize the above pointwise multiplication results for the coefficients of boundary
differential operators as follows.

Proposition 1.3.24. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], let
J = (0, T ) be a finite interval, and let Ω ⊂ Rn be a domain with compact smooth boundary
∂Ω, or Ω = Rn

+. Let further m ∈ N and k ∈ N0, k ≤ 2m− 1, define the number

κ := 1− k

2m
− 1

2mp
and suppose that κ 6= 1− µ+ 1/p.

Assume that for the B(E)-valued coefficient b = b(t, x) of the operator b trΩ∇β , where
β ∈ Nn

0 with |β| ≤ k, one of the following two conditions is valid: either

κ > 1− µ+ 1/p+
n− 1
2mp

and b ∈W κ,2mκ
p,µ (J × ∂Ω;B(E)), (1.3.46)

or it holds
b ∈ Bκ

sβ ,p
(J ;Lrβ (∂Ω;B(E))) ∩ Lsβ (J ;B2mκ

rβ ,p
(∂Ω;B(E))), (1.3.47)

with numbers sβ, rβ ∈ [p,∞) so that

p(1− µ) + 1
sβ

+
n− 1
2mrβ

< κ+
k − |β|

2m
, κ+

k − |β|
2m

− (1− µ+ 1/p) /∈
(

0,
n− 1
2mrβ

)
.

Then in both cases we have

b trΩ∇β ∈ B
(
W 1,2m
p,µ (J × Ω;E),W κ,2mκ

p,µ (J × ∂Ω;E)
)
,

and if |β| = k then

b ∈ BUC(J × ∂Ω;B(E)), |β| = mj , j = 1, ...,m.
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Proof. It follows from Lemma 1.3.4 and Proposition 1.3.12 that trΩ∇β maps

W 1,2m
p,µ (J × Ω;E)→W 1−|β|/2m−1/2mp,2m−|β|−1/p

p,µ (J × ∂Ω;E)

in a continuous way. Observe that the latter space embeds into W κ,2mκ
p,µ (J × ∂Ω;E), since

|β| ≤ k. Assume that (1.3.46) holds. Then Lemma 1.3.23 implies that b trΩ∇β maps con-
tinuously as asserted. The continuity of b follows from (1.3.45).
Next assume (1.3.47). Then we can apply the Lemmas 1.3.21 and 1.3.22 with τ = 1 −
|β|/2m−1/2mp and ϑ = 2mτ to obtain the asserted mapping property of b trΩ∇β . In case
|β| = k it holds

Bκ
sβ ,p

(J ;Lrβ (∂Ω;B(E))) ∩ Lsβ (J ;B2mκ
rβ ,p

(∂Ω;B(E))) ↪→ C(J × ∂Ω;B(E)),

which follows from Proposition 1.3.2, the remark thereafter, Proposition 1.1.11 and
Sobolev’s embeddings, and shows that b is a continuous function.

We finish this section with a technical result on compatible data on the boundary.

Lemma 1.3.25. In the situation of Proposition 1.3.24, for κ > 1− µ+ 1/p the sets

D :=
{

(g, u0) ∈W κ,2mκ
p,µ (J × ∂Ω;E)×B2m(µ−1/p)

p,p (Ω;E) : b(0, ·) trΩ∇βu0 = g(0, ·) on Γ
}
,

D0 :=
{

(g, u0) ∈ D : g ∈ 0W
κ,2mκ
p,µ (J × ∂Ω;E)

}
,

are well-defined and closed subspaces of W κ,2mκ
p,µ (J × ∂Ω;E) × B

2m(µ−1/p)
p,p (Ω;E) and

0W
κ,2mκ
p,µ (J × ∂Ω;E)×B2m(µ−1/p)

p,p (Ω;E), respectively.

Proof. If (1.3.46) is valid, then b(0, ·) always exists. To obtain this in case (1.3.47), note
that κ > 1−µ+ 1/p in particular yields κ > 1/s. Hence D and D0 are well-defined in both
cases.
To show that D is closed in W κ,2mκ

p,µ (J × ∂Ω;E) × B
2m(µ−1/p)
p,p (Ω;E) take a sequence

(gk, uk0)k∈N ∈ D, and assume that (gk, uk0) converges to (g, u0) as k → ∞ with respect
to the norm of W κ,2mκ

p,µ (J ×∂Ω;E)×B2m(µ−1/p)
p,p (Ω;E). It is then a consequence of (1.3.20)

and Theorem 1.3.6 that (gk(0, x), trΩ∇βuk0(x))k∈N converges (up to a subsequence) to
(g(0, x), trΩ∇βu0(x)) as k →∞, for almost every x ∈ ∂Ω. Moreover, for all k the identity

b(0, x)trΩ∇βuk0(x) = gk(0, x)

is valid for almost every x ∈ ∂Ω. Taking the limit, we obtain that b(0, x)trΩ∇βu0(x) =
g(0, x) holds true for all x ∈ ∂Ω which are not contained in a countable union of subsets
of surface measure zero of ∂Ω. This yields (g, u0) ∈ D. The closedness of D0 follows from
the same arguments.





Chapter 2

Maximal Lp,µ-Regularity for Static
Boundary Conditions

In this chapter we develop the maximal Lp,µ-regularity approach for a general class of
parabolic initial-boundary value problems with inhomogeneous static boundary condi-
tions, generalizing the results of Denk, Hieber & Prüss [25]. In Section 2.1 we describe
the approach and the involved function spaces in detail, provide examples, describe the
advantages compared to the unweighted approach, and give an outline of the strategy how
to obtain the main result of the present chapter, Theorem 2.1.4. The proof of the theorem
is carried out in detail in the Sections 2.2, 2.3, and 2.4, and follows [25]. In Section 2.5 we
show that related boundary operators admit a continuous right-inverse.

2.1 The Problem and the Approach in Weighted Spaces

The Problem

For the unknown u = u(t, x) ∈ E we consider the linear inhomogeneous, nonautonomous
parabolic initial-boundary value problem

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t ∈ J,
Bj(t, x,D)u = gj(t, x), x ∈ Γ, t ∈ J, j = 1, ...,m, (2.1.1)

u(0, x) = u0(x), x ∈ Ω.

We assume that Ω ⊂ Rn is a domain with compact smooth boundary Γ = ∂Ω, that
J = (0, T ) is a finite interval, T > 0, and that E is a complex Banach space of class HT .
The differential operator A of order 2m, where m ∈ N, is given by

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, x ∈ Ω, t ∈ J,

where D = −i∇, and ∇ = (∂x1 , ..., ∂xn) denotes the euclidian gradient on Rn. The dynamic
equation in the domain is complemented bym boundary conditions of order at most 2m−1.
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The boundary operators Bj are of the form

Bj(t, x,D) =
∑
|β|≤mj

bjβ(t, x)trΩDβ, x ∈ Γ, t ∈ J, j = 1, ...,m,

where trΩ denotes the trace on Ω, and where the integer mj ∈ {0, ..., 2m−1} is the order of
Bj . Observe how Bj acts on a function u: one first applies the components of the euclidian
gradient and then the spatial trace. We assume that each of the operators Bj is nontrivial,
Bj 6= 0, and write

B := (B1, ...,Bm).

The coefficients of the operators take values in the bounded linear operators on E, i.e.,

aα(t, x) ∈ B(E), x ∈ Ω, t ∈ J, |α| ≤ 2m,

bjβ ∈ B(E), x ∈ Γ, t ∈ J, |β| ≤ mj , j = 1, ...,m.

Finally, the data on the right-hand side is E-valued, and is assumed to be given.

Example 2.1.1. We consider two problems that fit into the above framework. The first
is a linearized reaction-diffusion system, given by

∂tu−∆u = f(t, x), x ∈ Ω, t ∈ J,
∂νu = g(t, x), x ∈ Γ, t ∈ J,

u(0, x) = u0(x), x ∈ Ω,

where ∂ν = ν · trΩ∇ denotes the derivative with respect to the outer unit normal field ν of
Γ. Here, the order of A(D) = −∆ is 2, thus we have m = 1, and the order of the boundary
operator B1(x,D) = ∂ν is m1 = 1.
A further problem that fits into our framework is a linearized Cahn-Hilliard phase field
model, given by

∂tu+ ∆2u−∆u = f(t, x), x ∈ Ω, t ∈ J,
−∂ν∆u+ ∂νu = g1(t, x), x ∈ Γ, t ∈ J,

∂νu = g2(t, x), x ∈ Γ, t ∈ J,
u(0, x) = u0(x), x ∈ Ω.

Here A(D) = ∆2 −∆ is of order 4, which means m = 2, and the dynamic equation in Ω
is complemented by two boundary conditions, with B1(x,D) = −∂ν∆ + ∂ν , m1 = 3, and
B2(x,D) = ∂ν , m2 = 1.

The Approach in the Lp,µ-spaces

We describe the maximal Lp,µ-regularity approach for (2.1.1). Let

p ∈ (1,∞), µ ∈ (1/p, 1].
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The basis of the approach is that the domain inhomogeneity f and the solution u shall
satisfy

f, u, ∂tu, Au ∈ E0,µ := Lp,µ(J ;Lp(Ω;E)).

These assumptions determine the regularity of u and the other data as follows. Since A is
of order 2m, it should hold

u ∈ Eu,µ := W 1
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 2m

p (Ω;E))

for the solution of (2.1.1). For the initial value, Theorem 1.3.6 on temporal traces yields

u0 ∈ Xu,µ := B2m(µ−1/p)
p,p (Ω;E).

For the boundary inhomogeneities, since the operator Bj is of order mj , a successive ap-
plication of Lemma 1.3.4 on spatial derivatives, together with Proposition 1.3.12 on the
spatial trace on anisotropic spaces yields

gj ∈ Fj,µ := W
κj
p,µ(J ;Lp(Γ;E)) ∩ Lp,µ(J ;W 2mκj

p (Γ;E)), j = 1, ...,m,

where the number κj ∈ (0, 1) is given by

κj := 1− mj

2m
− 1

2mp
.

In the sequel we also write

Fµ := F1,µ × ...× Fm,µ, g = (g1, ..., gm) ∈ Fµ,

and we further put

0Eu,µ := 0W
1
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 2m

p (Ω;E)),

0Fj,µ := 0W
κj
p,µ(J ;Lp(Γ;E)) ∩ Lp,µ(J ;W 2mκj

p (Γ;E)), 0Fµ := 0F1,µ × ...× 0Fm,µ.

We also write E0,µ(J) and E0,µ(J × Ω), and similar for the other spaces above, if the
dependence on the underlying interval and domain might not be clear from the context.

As a consequence of the above regularity assumption, (2.1.1) might a priori not be solveable
for all data (f, g, u0). In fact, for κj > 1− µ+ 1/p, which is equivalent to 2m(µ− 1/p) >
mj + 1/p, it holds

Fj,µ ↪→ BUC(J ;B2m(µ−1/p)−mj−1/p
p,p (Γ;E)),

due to Theorem 1.3.6. In this case, if the boundary equation in (2.1.1) holds for t > 0, by
continuity it necessarily also holds for t = 0, and this yields

Bj(0, x,D)u0(x) = gj(0, x), x ∈ Γ, if κj > 1− µ+ 1/p. (2.1.2)

Here Bju0 is well-defined for u0 ∈ Xu,µ and 2m(µ−1/p) > mj+1/p provided the coefficients
of Bj are sufficiently smooth.
Thus if κj > 1−µ+ 1/p for some j, then with the above approach (2.1.1) it is not solvable
in Eu,µ for arbitrary data g ∈ Fµ and u0 ∈ Xu,µ. In this case the compatibility condition
(2.1.2) on g and u0 is necessary. For short, the boundary equation has to hold up to t = 0
if the involved expressions are well defined.
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Example 2.1.2. We reconsider the problems from Example 2.1.1. For the linearized
reaction-diffusion system, the weighted maximal regularity class and the regularity classes
of the data are given by

Eu,µ = W 1
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 2

p (Ω;E)),

Xu,µ = B2(µ−1/p)
pp (Ω;E), F1,µ = W 1/2−1/2p

p,µ (J ;Lp(Γ;E)) ∩ Lp,µ(J ;W 1−1/p
p (Γ;E)),

i.e., κ1 = 1/2− 1/2p. Compatibility conditions are necessary if 2(µ− 1/p) > 1 + 1/p.

For the linearized Cahn-Hilliard model we have

Eu,µ = W 1
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 4

p (Ω;E)), Xu,µ = B4(µ−1/p)
pp (Ω;E),

as well as κ1 = 1/4− 1/4p, so that

F1,µ = W 1/4−1/4p
p,µ (J ;Lp(Γ;E)) ∩ Lp,µ(J ;W 1−1/p

p (Γ;E)),

and further κ2 = 3/4− 1/4p, so that

F2,µ = W 3/4−1/4p
p,µ (J ;Lp(Γ;E)) ∩ Lp,µ(J ;W 3−1/p

p (Γ;E)).

Here compatibility conditions in the first and the second boundary equation are necessary
if 4(µ− 1/p) > 3 + 1/p and 4(µ− 1/p) > 1 + 1/p, respectively.

We intend to solve (2.1.1) in the following sense.

Definition 2.1.3. We say that the problem (2.1.1) enjoys the property of maximal Lp,µ-
regularity on the interval J , if the regularity assumptions on the data, i.e.,

f ∈ E0,µ, g ∈ Fµ, u0 ∈ Xu,µ,

together with the compatibility conditions (2.1.2), are not only necessary for a unique
solution u ∈ Eu,µ of (2.1.1), but also sufficient.

The Assumptions on the Operators

Let P(D) =
∑
|γ|≤k pγD

γ be a differential operator of order k ∈ N0, with coefficients pγ .
By the subscript ] we denote the principal part of P, i.e.,

P](D) =
∑
|γ|=k

pγD
γ .

The symbol of P is given by the polynomial expression P(ξ) =
∑
|γ|≤k pγξ

γ , where ξ ∈ Rn.

We describe the assumptions on the coefficients of the operators. It is required that each
summand occurring in A and Bj is a continuous operator on the respective underlying
spaces, i.e.,

aαD
α ∈ B(Eu,µ,E0,µ), |α| ≤ 2m, (2.1.3)

and further
bjβtrΩDβ ∈ B(Eu,µ,Fj,µ), |β| ≤ mj , j = 1, ...,m. (2.1.4)

Moreover, the top order coefficients are required to be continuous on J ×Ω. The Proposi-
tions 1.3.16 and 1.3.24 show that the following assumptions are sufficient for these purposes.
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(SD) For |α| < 2m one of the following two conditions is valid: either

2m(µ− 1/p) > 2m− 1 + n/p and aα ∈ E0,µ(J × Ω;B(E)),

or there are rα, sα ∈ [p,∞) with p(1−µ)+1
sα

+ n
2mrα

< 1− |α|2m such that

aα ∈ Lsα
(
J ; (Lrα + L∞)(Ω;B(E))

)
.

For |α| = 2m it holds aα ∈ BUC(J×Ω;B(E)), and if Ω is unbounded then in addition
the limits aα(t,∞) := lim|x|→∞ aα(t, x) exist uniformly in t ∈ J .

(SB) For j = 1, ...,m and |β| ≤ mj one of the following two conditions is valid: either

κj > 1− µ+ 1/p+
n− 1
2mp

and bjβ ∈ Fj,µ(J × Γ;B(E)),

or there are rjβ, sjβ ∈ [p,∞) with

p(1− µ) + 1
sjβ

+
n− 1
2mrjβ

< κj+
mj − |β|

2m
, κj+

mj − |β|
2m

−(1−µ+1/p) /∈
(

0,
n− 1
2mrjβ

)
,

such that

bjβ ∈ B
κj
sjβ ,p

(
J ;Lrjβ (Γ;B(E))

)
∩ Lsjβ

(
J ;B2mκj

rjβ ,p (Γ;B(E))
)
.

Assuming (SB), Proposition 1.3.24 show that for the top order coefficients of B it holds

bjβ ∈ BUC(J × Γ;B(E)), |β| = mj , j = 1, ...,m.

Observe that the first conditions in (SD) , where the coefficients belong to the weighted
space Fj,µ, is made for large p, and will be needed in the applications to quasilinear linear
problems. The second condition, where b belongs to an unweighted space, is made for
lower values of p, and can be useful in the context of a priori estimates for the underlying
problem.

We impose two structural assumptions on the operators. The first is normal ellipticity.

(E) For all t ∈ J , x ∈ Ω and |ξ| = 1 it holds σ(A](t, x, ξ)) ⊂ C+ := {Reλ > 0}. If Ω is
unbounded then it holds in addition σ(A](t,∞, ξ)) ⊂ C+ for all t ∈ J and |ξ| = 1.

The second is a condition of Lopatinskii-Shapiro type. For each x ∈ Γ we fix an orthogonal
matrix Oν(x) that rotates the outer unit normal ν(x) of Γ at x to (0, ..., 0,−1) ∈ Rn, and
define the rotated operators (Aν ,Bν) by

Aν(t, x,D) := A(t, x,OTν(x)D), Bν(t, x,D) := B(t, x,OTν(x)D).

We assume the following.
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(LS) For each fixed t ∈ J and x ∈ Γ, for all λ ∈ C+ and ξ′ ∈ Rn−1 with |λ|+ |ξ′| 6= 0 and
all h ∈ Em the ordinary initial value problem

λv(y) +Aν] (t, ξ′, Dy)v(y) = 0, y > 0,

Bνj](t, ξ′, Dy)v|y=0 = hj , j = 1, ...,m,

has a unique solution v ∈ C0([0,∞);E).1

If E is finite dimensional, then it is necessary and sufficient for (LS) that the above initial
value problem has for h = 0 only the trivial solution.

The Main Theorem and the Advantages of the Approach

The main result of this chapter reads as follows.

Theorem 2.1.4. Let E be a Banach space of class HT , p ∈ (1,∞) and µ ∈ (1, p, 1]. Let
J = (0, T ) be a finite interval, and let Ω ⊂ Rn be a domain with compact smooth boundary
Γ = ∂Ω. Assume that (E), (LS), (SD) and (SB) hold true, and that κj 6= 1− µ+ 1/p for
j = 1, ...,m. Then the problem

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t ∈ J,
Bj(t, x,D)u = gj(t, x), x ∈ Γ, t ∈ J, j = 1, ...,m,

u(0, x) = u0(x), x ∈ Ω,

enjoys maximal Lp,µ-regularity, i.e., it has a unique solution u = L(f, g, u0) ∈ Eu,µ if and
only if

(f, g, u0) ∈ D :=
{

(f, g, u0) ∈ E0,µ × Fµ ×Xu,µ : for j = 1, ...,m it holds

Bj(0, ·, D)u0 = gj(0, ·) on Γ if κj > 1− µ− 1/p
}
.

The corresponding solution operator L : D → Eu,µ is continuous. If L is restricted to

D0 :=
{

(f, g, u0) ∈ D : g ∈ 0Fµ
}
,

for given T0 > 0 its operator norm is uniform for all T ≤ T0. Finally, if the coefficients

(−i)|α|aα, |α| ≤ 2m, (−i)|β|bjβ, |β| ≤ mj , j = 1, ...,m, (2.1.5)

and the data are real-valued, then also the solution u is real-valued.

Due to Lemma 1.3.25, the spaces of compatible data D and D0 are well-defined and Banach
spaces when equipped with the norms of E0,µ×Fµ×Xu,µ and E0,µ×0Fµ×Xu,µ, respectively.
It is important to distinguish between the norms of Fµ and 0Fµ. These are equivalent
for κj 6= 1 − µ + 1/p, but the norm equivalent constants depend on the length of the
underlying interval J . Our motivation to introduce the space D0 is to obtain estimates
uniform in time for problems with vanishing initial values, as they typically occur in the

1The space C0([0,∞);E) consists of the continuous E-valued functions on [0,∞) vanishing at ∞.
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context of fixed point arguments (see the discussion in Remark 1.1.15). Observe that for
(f, g, u0) ∈ D0 it necessarily holds Bj(0, ·, D)u0 = 0 on Γ if this expression makes sense,
i.e., if κj > 1− µ+ 1/p.

Compared to the unweighted case, the maximal regularity approach in weighted spaces has
the following advantages.

• Flexible initial regularity: We obtain solutions for initial values in Bs
p,p(Ω;E), where

s ∈ (0, 2m(1− 1/p)].

• Inherent smoothing effect: Away from the initial time, τ ∈ (0, T ), the solutions belong
to the unweighted space

Eu,1(τ, T ) = W 1
p (τ, T ;Lp(Ω;E)) ∩ Lp(τ, T ;W 2m

p (Ω;E)) ↪→ C(J ;B2m(1−1/p)
p,p (Ω;E)).

• Control solutions in a strong norm at a later time by a weaker norm at an earlier
time and the data: For s = 2m(µ− 1/p) ∈ (0, 2m(1− 1/p)] it holds

|u(T )|
B

2m(1−1/p)
pp (Ω;E)

≤ C(T )(|f |E0,µ + |g|Fµ + |u0|Bsp,p(Ω;E)).

• Avoid compatibility conditions: Given p ∈ (1,∞), if µ is sufficiently close to 1/p then
κj < 1− µ+ 1/p for all j, such that there is a unique solution u ∈ Eu,µ for arbitrary
data in E0,µ × Fµ ×Xu,µ.

Outline of the Proof

The proof of Theorem 2.1.4 is inspired by the one of Denk, Hieber & Prüss [24, 25] in
the unweighted case. The strategy for a bounded domain Ω is as follows, for unbounded
domains it has to be slightly modified.

One describes the boundary Γ of Ω by a finite collection of charts (Ui, ϕi), i = 1, ..., NH , and
further takes open sets Ui, i = NH + 1, ..., NF , such that Ui∩Γ = ∅ and Ω ⊂

⋃NF
i=1 Ui. This

yields local problems, with boundary conditions for i = 1, ..., NH and without boundary
conditions for i = NH +1, ..., NF . The problems without boundary conditions are extended
to a full-space problem and the problems with boundary conditions are transformed and
extended to a half-space problem, using the push-forward corresponding to charts φi. This
is done in Section 2.4. If the diameter of the Ui are sufficiently small then by continuity
the top order coefficients of the resulting operators are of small oscillation, such that, by a
perturbation argument which is based on the contraction principle, one can neglect lower
order terms and assume that the coefficients are constant, see Section 2.3. The resulting
full- and half-space problems are solved in Section 2.2. At the end of Section 2.4, these
solutions are put together to a solution of the original problem, using a partition of unity
for Ω subordinate to the cover

⋃NF
i=1 Ui.
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2.2 Top Order Constant Coefficient Operators on Rn and Rn
+

2.2.1 The Full-Space Case without Boundary Conditions

For constant coefficients aα ∈ B(E) we consider the differential operator

A(D) =
∑
|α|=2m

aαD
α.

Observe that there are no lower order terms so that A(D) is homogeneous of degree 2m.
We show that (E) implies parameter-ellipticity, in the sense of [24, Definition 5.1], with
angle of ellipticity strictly smaller than π/2.

Lemma 2.2.1. Assume that A satisfies (E). Then there is φ ∈ (0, π/2) such that

σ(A(ξ)) ⊂ Σφ = {λ ∈ C\{0} : |argλ| < φ}, |ξ| = 1, ξ ∈ Rn.

Proof. For |ξ| = 1 it holds |ξα| ≤ 1 for all |α| = 2m, and therefore

|A(ξ)|B(E) ≤
∑
|α|=2m

|aα|B(E),

which yields that the spectral radius of A(ξ) is uniformly bounded in |ξ| = 1. Thus there
is R > 0, independent of |ξ| = 1, such that λ ∈ ρ(A(ξ)) for all λ with |λ| > R or,
by assumption, λ ∈ C−. Since the resolvent set is open, it follows from continuity and
compactness that for all λ = iθ with θ ∈ [−R,R] there is a neighbourhood Uiθ ⊂ C of iθ
such that Uiθ ⊂ ρ(A(ξ)) for all |ξ| = 1. Again compactness yields a radius r > 0, which
does not depend on θ ∈ [−R,R], such that Br(iθ) ⊂ ρ(A(ξ)) for all |ξ| = 1. We thus obtain
an angle φ ∈ (0, π/2) with ρ(A(ξ)) ⊃ C\Σφ.

We have the following maximal Lp,µ-regularity result for A on the half-line.

Proposition 2.2.2. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], and
assume that A satisfies (E). Then there is a unique solution u = SF (f, u0) ∈ Eu,µ(R+×Rn)
of

u+ ∂tu+A(D)u = f(t, x), x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn, (2.2.1)

if and only if
f ∈ E0,µ(R+ × Rn), u0 ∈ Xu,µ(Rn).

The corresponding solution operator SF : E0,µ(R+×Rn)×Xu,µ(Rn)→ Eu,µ is continuous.

Proof. It follows from Lemma 2.2.1 that A is parameter-elliptic, with angle of ellipticity
strictly smaller than π/2. Thus by [24, Theorem 5.5] and the perturbation result [24, Propo-
sition 2.11], the realization of 1 +A on Lp(Rn;E) with domain D(1 +A) = W 2m

p (Rn;E)
is invertible and admits a bounded H∞-calculus with H∞-angle strictly smaller than π/2.
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It is now a consequence of (A.3.2) and [85, Theorem 4.2] that 1 + A enjoys maximal
Lp-regularity on the half-line, i.e., 1 +A ∈MRp

(
R+;Lp(Rn;E)

)
. Since

Xu,µ(Rn) = B2m(µ−1/p)
p,p (Rn;E) =

(
Lp(Rn;E),W 2m

p (Rn;E)
)
µ−1/p,p

by Proposition A.4.2, the assertion follows from Theorem 1.2.3 by Prüss & Simonett.

2.2.2 The Half-Space Case with Boundary Conditions

For constant coefficients aα, bjβ ∈ B(E) we now consider the operators

A(D) =
∑
|α|=2m

aαD
α, Bj(D) =

∑
|β|=mj

bjβtrRn+D
β, j = 1, ...,m.

Observe that again there are no lower order terms. We identify the boundary of Rn
+ with

Rn−1. Now all spaces must be understood over R+×Rn
+ and R+×Rn−1, respectively, i.e.,

Eu,µ = W 1
p,µ(R+;Lp(Rn

+;E)) ∩ Lp,µ(R+;W 2m
p (Rn

+;E)),

Fj,µ = W
κj
p,µ(R+;Lp(Rn

+;E)) ∩ Lp,µ(R+;W 2mκj
p (Rn

+;E)),

E0,µ = Lp,µ(R+;Lp(Rn
+;E)), Xu,µ = B2m(µ−1/p)

p,p (Rn
+;E).

The Banach space of compatible data is given by

D =
{

(f, g, u0) ∈ E0,µ × Fµ ×Xu,µ : for j = 1, ...,m it holds

Bj(D)u0 = gj(0, ·) on Γ if κj > 1− µ+ 1/p
}
.

The main result of this subsection is the following.

Proposition 2.2.3. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], and
assume that (A,B) satisfies (E) and (LS). Suppose further that κj 6= 1 − µ + 1/p for all
j = 1, ...,m. There is a unique solution u = SH(f, g, u0) ∈ Eu,µ for the problem

u+ ∂tu+A(D)u = f(t, x), x ∈ Rn
+, t > 0,

Bj(D)u = gj(t, x), x ∈ Rn−1, t > 0, j = 1, ...,m, (2.2.2)

u(0, x) = u0(x), x ∈ Rn
+,

if and only if (f, g, u0) ∈ D. The solution operator SH : D → Eu,µ is continuous.

As explained in Section 2.1, the necessary conditions on the data are a consequence of
the mapping behaviour of spatial derivatives, the spatial trace and the temporal trace on
the weighted anisotropic spaces, derived in Lemma 1.3.4, Proposition 1.3.12 and Theorem
1.3.6. If a solution operator exists, then its continuity follows from

1 + ∂t +A(D) ∈ B(Eu,µ,E0,µ), B(D) ∈ B(Eu,µ,Fµ), trt=0 ∈ B(Eu,µ, Xu,µ)

and the open mapping theorem.
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Our task is thus to show that for any given (f, g, u0) ∈ D the problem (2.2.2) has a unique
solution u ∈ Eu,µ. For this we follow the strategy presented in [25, Section 4]. We first
consider (2.2.2) in Lemma 2.2.5 with homogeneous boundary conditions, g = 0, and then
we consider (2.2.2) in Lemma 2.2.6 with f = 0 and u0 = 0. The general case follows from
a combination of these lemmas and will be shown at the end of this subsection.

As for normal ellipticity, we first show that also (LS) holds in fact on a larger sector than
originally assumed.

Lemma 2.2.4. Let (A,B) satisfy (E) and (LS). Then there is φ ∈ (0, π/2) such that for
all λ ∈ Σπ−φ and ξ′ ∈ Rn−1 with |λ|+ |ξ′| 6= 0 and all h = (h1, ..., hm) ∈ Em the ordinary
initial value problem

λv(y) +A(ξ′, Dy)v(y) = 0, y > 0,

Bj(ξ′, Dy)v|y=0 = hj , j = 1, ...,m, (2.2.3)

has a unique solution v ∈ C0([0,∞);E), i.e., the condition (LS) for (A,B) is even valid for
λ ∈ Σπ−φ.

Proof. (I) It follows from Lemma 2.2.1 that A has angle of ellipticity φA ∈ (0, π/2). For
λ ∈ Σπ−φA and ξ′ ∈ Rn−1 we rewrite the ordinary differential equation λv+A(ξ′, Dy)v = 0
of order 2m to a system of 2m first order equations,

∂yv(y) = iA0(λ, ξ′)v(y), y > 0, v = (v, ∂yv, ..., ∂2m−1
y v),

where A0(λ, ξ′) is a B(E)-valued 2m× 2m-matrix. The solutions of the above equation are
of the form v(y) = eyiA0(λ,ξ′)v0, where v0 ∈ E2m.
By [24, Proposition 6.1], the matrix iA0(λ, ξ′) has a spectral gap at the imaginary axis.
We denote the projection onto the stable part of the spectrum by Ps(λ, ξ′) ∈ B(E2m).
Denoting further by π1 : E2m → E the canonical projection onto the first component, we
define the operator pencil T : Σπ−φA × Rn−1 → B

(
Ps(λ, ξ′)E2m, Em

)
by

T (λ, ξ′)v0 :=
(
B(ξ′, Dy)π1e

yiA0(λ,ξ′)v0

)∣∣
y=0

, v0 ∈ Ps(λ, ξ′)E2m.

For λ and ξ′ from a compact set, the spectral gap for iA(λ, ξ′) is uniform, and Ps is
continuous in its arguments. By construction, (2.2.3) is uniquely solveable for λ ∈ Σπ−φA
and ξ′ ∈ Rn−1 if and only if T (λ, ξ′) is invertible.
(II) Let v be the unique solution of (2.2.3) in C0([0,∞);E) for h ∈ Em. Then for r > 0
the function v also satisfies

λv(rỹ) +A(ξ′, Dy)v(rỹ) = 0, ỹ > 0,

Bj(ξ′, Dy)v|y=0 = hj , j = 1, ...,m.

Since (Dyv)(r·) = r−1Dy(v(r·)), it follows from homogeneity that w := v(r·) is the unique
solution of

r2mλw(y) +A(rξ′, Dy)w(y) = 0, y > 0,

Bj(rξ′, Dy)w|y=0 = rmjhj , j = 1, ...,m.
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Therefore T (λ, ξ′) is invertible if and only if T (r2mλ, rξ′) is invertible.
(III) By (LS), continuity and compactness there is an angle φ ∈ (φA, π/2) such that
T (λ, ξ′) is invertible for all

(λ, ξ′) ∈ {se±iθ : s ∈ [0, 1], θ ∈ [π/2, π − φ]} × {|ξ′| = 1},

and further for all

(λ, ξ′) ∈ {e±iθ : θ ∈ [π/2, π − φ]} × {|ξ′| ≤ 1}.

We use this fact and the scaling property from Step II to show that T (λ, ξ′) is invertible
for all λ ∈ Σπ−φ and ξ′ ∈ Rn−1 with |λ|+ |ξ′| 6= 0. We distinguish four cases.
For 1 ≤ |λ| ≤ |ξ′| =: r1 the operator T (λ/r2m

1 , ξ′/r1) is invertible because |λ|/r2m
1 ≤ 1

and |ξ′|/r1 = 1. The scaling property thus shows that T (λ, ξ′) is invertible in this case,
and hence it is invertible whenever |λ| = 1. For 1 ≤ |ξ′| ≤ |λ| =: r2m

2 the operator
T (λ/r2m

2 , ξ′/r2) is invertible due to |λ|/r2m
2 = 1. So T (λ, ξ′) is invertible if |λ|, |ξ′| ≥ 1.

Now for 0 < r2m
3 := |λ| ≤ 1 and arbitrary ξ′ we have that T (λ/r2m

3 , ξ′/r3) is invert-
ible because |λ|/r2m

3 = 1. Finally, for 0 < r4 := |ξ′| ≤ 1 and arbitrary λ the operator
T (λ/r2m

4 , ξ′/r4) is invertible because |ξ′|/r4 = 1.

For homogeneous boundary conditions, weighted maximal regularity follows again from
the unweighted case, since the abstract result of [71] is applicable.

Lemma 2.2.5. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], and assume
that (A,B) satisfies (E) and (LS). Then for all f ∈ E0,µ and u0 ∈ Xu,µ there is a unique
solution u ∈ Eu,µ of

u+ ∂tu+A(D)u = f(t, x), x ∈ Rn
+, t > 0,

Bj(D)u = 0, x ∈ Rn−1, t > 0, j = 1, ...,m, (2.2.4)

u(0, x) = u0(x), x ∈ Rn
+.

Denoting by AB the realization of the operator A on Lp(Rn
+;E), with domain

D(AB) = {u ∈W 2m
p (Rn

+;E) : Bu = 0},

the operator 1+AB generates an exponentially stable analytic C0-semigroup, and 1+AB ∈
MRp,µ(R+;Lp(Rn

+;E)).

Proof. Due to the Lemmas 2.2.1 and 2.2.4, the operator A is parameter elliptic with
angle of ellipticity φA < π/2, and for φ ∈ (φA, π) it holds that (A,B) satisfies (LS) for all
λ ∈ Σπ−φ. Thus, by [24, Theorem 7.4] and the perturbation result [24, Proposition 2.11],
1 + AB is invertible, and admits a bounded H∞-calculus with H∞-angle strictly smaller
than π/2. It follows from (A.3.2), [85, Theorem 4.2] and Theorem 1.2.3 that 1 + AB ∈
MRp,µ(R+;Lp(Rn

+;E)). Since

Xu,µ =
(
Lp(Rn

+;E),W 2m
p (Rn;E)

)
µ−1/p,p



76 Maximal Lp,µ-Regularity for Static Boundary Conditions

by Proposition A.4.2 we obtain the unique solvability of (2.2.4) in Eu,µ, for f ∈ E0,µ and
u0 ∈ Xu,µ. In particular, 1 +AB is the generator of an analytic semigroup.

It seems not possible to absorb inhomogeneous boundary conditions, g 6= 0, into the domain
of a reasonable operator on Lp,µ(R+;E). Hence in this case we cannot reduce maximal
Lp,µ-regularity to the unweighted problem via the abstract result of Theorem 1.2.3.
To treat the inhomogeneous boundary conditions, we first consider an elliptic problem
corresponding to (2.2.2). The following result is a combination of the Lemmas 4.3 and 4.4
in [25].

Lemma 2.2.6. Let E be a Banach space of class HT , p ∈ (1,∞) and assume that (A,B)
satisfies (E) and (LS). Then for λ ∈ C+\{0} and gj ∈ W

2mκj
p (Rn−1;E), j = 1, ...,m, the

problem

λv +A(D)v = 0, x ∈ Rn
+,

Bj(D)v = gj(x), x ∈ Rn−1, j = 1, ...,m, (2.2.5)

has a unique solution v(λ) ∈W 2m
p (Rn

+;E). This solution may be represented in the form

v(λ) =
m∑
j=1

Sj(λ)gj ,

for operators Sj(λ) ∈ B(W 2mκj
p (Rn−1;E),W 2m

p (Rn
+;E)) given by

Sj(λ) = Tj(λ)L1−mj/2m
λ Eλ.

Here Lλ := λ + (−∆n−1)m, and the extension operator Eλ = e−·L
1/2m
λ maps gj ∈

W
2mκj
p (Rn−1;E) to the function (x′, y) 7→ e−yL

1/2m
λ gj(x′), with x′ ∈ Rn−1 and y > 0.

Moreover, for σ ≥ 0 and |α| ≤ 2m it holds DαTj(σ + i·) ∈ C1
(
R\{0};B(Lp(Rn

+;E))
)
, and{

λ1− |α|
2mDαTj(λ), λ2− |α|

2m
∂

∂θ
DαTj(λ) : λ = σ + iθ ∈ C+\{0}, |α| ≤ 2m, j = 1, ...,m

}
is an R-bounded set of operators in B(Lp(Rn

+;E)).

With the above result the time-dependent problem with inhomogeneous boundary con-
ditions can now be solved via Fourier transform with respect to time, using the above
representation of the solutions of the corresponding stationary problems. Recall the nota-
tion

0E1,µ = 0W
1
p,µ(R+;Lp(Rn

+;E)) ∩ Lp,µ(R+;W 2m
p (Rn

+;E)),

0Fj,µ = 0W
κj
p,µ(R+;Lp(Rn−1;E)) ∩ Lp,µ(R+;W 2mκj

p (Rn−1;E)),

0Fµ = 0F1,µ × ...× 0Fm,µ.

Lemma 2.2.7. Let E be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], and assume
that (A,B) satisfies (E), (LS). Then for g ∈ 0Fµ there is a unique solution u ∈ 0Eu,µ of

u+ ∂tu+A(D)u = 0, x ∈ Rn
+, t > 0,

Bj(D)u = gj(t, x), x ∈ Rn−1, t > 0, j = 1, ...,m, (2.2.6)

u(0, x) = 0, x ∈ Rn
+.
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Proof. Throughout we write x = (x′, y) ∈ Rn
+ with x′ ∈ Rn−1 and y > 0.

(I) It follows from Lemma 2.2.5 that solutions u ∈ 0Eu,µ of (2.2.6) are unique. For the
existence of a solution we are going to construct a solution operator

L : C∞c (R+;W 2m
p (Rn−1;E))m → 0Eu,µ,

and show that it admits the estimate

|Lg|Eu,µ . |g|0Fµ , g ∈ C∞c (R+;W 2m
p (Rn−1;E))m. (2.2.7)

By Lemma 1.3.14, the set C∞c (R+;W 2m
p (Rn−1;E))m is dense in 0Fµ (note that 2mκj /∈ N0).

Hence, if (2.2.7) holds, then L extends to a continuous operator 0Fµ → 0Eu,µ. Since

1 + ∂t +A(D) ∈ B(0Eu,µ,E0,µ), B(D) ∈ B(0Eu,µ, 0Fµ),

the function u = Lg is then the unique solution of (2.2.6) for g ∈ 0Fµ.
(II) To construct the solution operator L, let g ∈ C∞c (R+;W 2m

p (Rn−1;E))m. In the sequel
we identify such a function with its trivial temporal extension to R. Applying the Fourier
transform Ft with respect to t ∈ R to (2.2.6), and denoting the covariable by θ ∈ R, we
arrive for each θ at the stationary problem

(1 + iθ)v +A(D)v = 0, x ∈ Rn
+,

Bj(D)v = (Ftgj)(θ, x′), x′ ∈ Rn−1, j = 1, ...,m. (2.2.8)

By Lemma 2.2.6, the unique solution v(θ) ∈W 2m
p (Rn

+;E) of (2.2.8) is given by

v(θ) =
m∑
j=1

Tj(1 + iθ)L1−mj/2m
1+iθ E1+i·Ft(gj)(θ),

where L1+iθ = 1 + iθ+ (−∆n−1)m, and where for θ ∈ R the extension operator E1+i· is for
h ∈ Lp,µ(R+;Lp(Rn−1;E)) defined by

(E1+iθh)(t, x′, y) := e−yL
1/2m
1+iθ h(t, x′), t ∈ R, (x′, y) ∈ Rn

+.

Due to [24, Corollary 1.9], for θ ∈ R and y > 0 we have the representation

L
1−mj/2m
1+iθ e−yL

1/2m
1+iθ =

1
2πi

∫
Ξ
z1−mj/2me−yz

1/2m
(z − L1+iθ)−1 dz,

where Ξ = (∞, δ]ei3π/2 ∪ δei[3π/2,−3π/2] ∪ [δ,∞)e−i3π/2 for some sufficiently small δ > 0.
Thus for each y > 0 the B(Lp(Rn−1;E))-valued function

θ 7→ L
1−mj/2m
1+iθ e−yL

1/2m
1+iθ , θ ∈ R,

is smooth and all of its derivatives are bounded. Since θ 7→ Ft(gj)(θ) is rapidly decreasing
and Tj(1+ i·) is by Lemma 2.2.6 a uniformly bounded family of operators, it holds that the
solution v of (2.2.8) is rapidly decreasing in θ. We may therefore apply the inverse Fourier
transform to v, and obtain that

u = Lg :=
m∑
j=1

F−1
t Tj(1 + i·)L1−mj/2m

1+i· E1+i·Ftgj
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solves the differential equations in (2.2.6). To show u(0) = 0, we first observe that u(0) ∈
D(AB) holds since u is smooth in t with values in W 2m

p (Rn
+;E) and satisfies the equations.

Hence the function
ũ = u− e−·(1+AB)u(0)

satisfies ũ(0) = ũ′(0) = 0, which yields

ũR ∈ C1
(
R;Lp(Rn

+;E)
)
∩ C

(
R;W 2m

p (Rn
+;E)

)
for the trivial extension ũR of ũ to R. Further, as the semigroup generated by 1 + AB is
exponentially stable, the functions ũ and ũ′ are rapidly decreasing on R+. Thus (FtũR)(θ)
solves (2.2.8) for each θ ∈ R. By uniqueness it holds Ftu = Ftũ, and therefore u = ũ,
which yields u(0) = 0.
(III) To show the estimate (2.2.7) we derive another representation for L. We have seen

above that for gj ∈ C∞c (R;W 2m
p (Rn−1;E)) the function θ 7→ L

1−mj/2m
1+iθ e−yL

1/2m
1+iθ Ftgj be-

longs to the Schwartz class. Hence Fourier inversion holds, and we may write

Lg :=
m∑
j=1

(
F−1
t Tj(1 + i·)Ft

)(
F−1
t L

1−mj/2m
1+i· E1+i·Ft

)
gj .

On S(R;W 2m
p (Rn−1;E)) it holds F−1

t L1+iθ = LF−1
t , with

L := 1 + ∂t + (−∆n−1)m.

Moreover, by Lemma 1.3.1 the realization of L on Lp,µ(R+;Lp(Rn−1;E)) with domain

D(L) = 0W
1
p,µ(R+;Lp(Rn−1;E)) ∩ Lp,µ(R+;W 2m

p (Rn−1;E))

is invertible and sectorial of angle not larger than π/2. Using [24, Corollary 1.9] for L1+iθ

and L, we obtain for y > 0 and gj ∈ C∞c (R;W 2m
p (Rn−1;E))

F−1
t L

1−mj/2m
1+i· e−yL

1/2m
1+i· Ftgj =

1
2πi

∫
Ξ
z1−mj/2me−yz

1/2m
(z − L)−1F−1

t Ftgj dz

= L1−mj/2me−yL
1/2m

gj .

Denoting by E the extension operator(
Eh
)
(t, x′, y) := e−yL

1/2m
h(t, x′), t > 0, (x′, y) ∈ Rn

+, h ∈ Lp,µ(R+;Lp(Rn−1;E)),

we arrive at the representation

Lg =
m∑
j=1

(
F−1
t Tj(1 + i·)Ft

)
L1−mj/2mEgj for g ∈ C∞c (R+;W 2m

p (Rn−1;E))m.

(IV) Due to Lemma 1.3.8, the operator E maps continuously

0Fj,µ = DL1/2m(2m−mj − 1/p, p)→ Lp(R+;DL1/2m(2m−mj , p)),
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and L1−mj/2m =
(
L1/2m

)2m−mj is continuous

Lp(R+;DL1/2m(2m−mj , p))→ Lp(R+;Lp,µ(R+;Lp(Rn−1;E))) = E0,µ.

Further, due to Lemma 2.2.6 and Theorem 1.2.4, for each j = 1, ...,m and |α| ≤ 2m the
B(Lp(Rn

+;E))-valued symbol DαTj(1 + i·) is a Fourier multiplier on Lp,µ. Therefore the
operator F−1

t Tj(1 + i·)Ft is continuous2

E0,µ → Lp,µ(R+;W 2m
p (Rn

+;E)).

Finally, it follows from the equation ∂tu = −(1 +A(D))u that the Eu,µ-norm of u can be
controlled by its Lp,µ(R+;W 2m

p (Rn
+;E))-norm, which shows (2.2.7).

The existence of a unique solution of (2.2.2) for given (f, g, u0) ∈ D is now a consequence
of the Lemmas 2.2.5 and 2.2.7, as follows. Denote by u1 ∈ Eu,µ the solution of

w + ∂tw +A(D)w = f(t, x), x ∈ Rn
+, t > 0,

Bj(D)w = 0, x ∈ Rn−1, t > 0, j = 1, ...,m,

w(0, x) = u0(x), x ∈ Rn
+,

which exists by Lemma 2.2.5. Since Bj(D)u0 = gj |t=0 for κj > 1−µ+ 1/p, it follows from
Proposition 1.1.11 and κj 6= 1− µ+ 1/p that3

gj − Bj(D)u1 ∈ 0Fj,µ, j = 1, ...,m.

If we denote by u2 ∈ Eu,µ the solution of

w + ∂tw +A(D)w = 0, x ∈ Rn
+, t > 0,

Bj(D)w = gj(t, x)− Bj(D)u1(t, x), x ∈ Rn−1, t > 0, j = 1, ...,m,

w(0, x) = 0, x ∈ Rn
+,

which exists by Lemma 2.2.7, then u = u1 + u2 solves (2.2.2). The uniqueness of this
solution follows from the uniqueness of solutions of (2.2.4). Finally, the continuity of the
solution operator SH of (2.2.2) is a consequence of the fact that D is a Banach space and
the open mapping theorem. Thus Proposition 2.2.3 is established.

2.3 Top Order Coefficients having Small Oscillation

From now on we restrict our considerations to a finite time interval

J = (0, T ), T > 0.

2Proceeding as in the proof of [25, Lemma 4.4], one can show that for j = 1, ...,m and |α| ≤ 2m it
holds DαTj(1 + i·) ∈ C2(R;B(Lp(Rn+;E))), and that |∂2

θD
αTj(1 + iθ)| . 1

θ2
. Hence also Proposition 1.2.5

applies.
3At this point we have to exclude the value κj = 1− µ+ 1/p.
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We first consider the half-space case, and write

Eu,µ(J) = Eu,µ(J × Rn
+), Fµ(J) = Fµ(J × Rn−1),

and so on. Let the operators A and Bj , j = 1, ...,m, be given by

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, t ∈ J, x ∈ Rn
+,

and
Bj(t, x,D) =

∑
|β|≤mj

bjβ(t, x)trRn+D
β, t ∈ J, x ∈ Rn−1.

Observe that, in contrast to the previous section, the operators may have lower order terms,
and the B(E)-valued coefficients aα and bjβ are allowed to depend on (t, x).
The top order coefficients of the boundary operators are assumed to be of the form

aα(t, x) = a0
α + ãα(t, x), |α| = 2m, (2.3.1)

bjβ(t, x) = b0jβ + b̃jβ(t, x), |β| = mj , j = 1, ...,m, (2.3.2)

where a0
α, b

0
jβ ∈ B(E) do not depend on (t, x). Using them we define auxiliary top order

constant coefficient operators (A0,B0) by

A0(D) :=
∑
|α|=2m

a0
αD

α, B0
j (D) :=

∑
|β|=mj

b0jβtrRn+D
β, j = 1, ...,m. (2.3.3)

Assuming (SD) and (SB) for the coefficients of A−A0 and B−B0, the Propositions 1.3.16
and 1.3.24 ensure that

A ∈ B(Eu,µ(J),E0,µ(J)), B ∈ B(Eu,µ(J),Fµ(J)). (2.3.4)

Moreover, (SD) and (SB) imply

ãα ∈ BUC(J × Rn
+;B(E)), |α| = 2m,

b̃jβ ∈ BUC(J × Rn−1;B(E)), |β| = mj , j = 1, ...,m.

For an interval J ′ = (0, T ′) with T ′ > 0 the set of compatible data is given by

D(J ′) =
{

(f, g, u0) ∈ E0,µ(J ′)×Fµ(J ′)×Xu,µ : for j = 1, ...,m it holds

Bj(0, ·, D)u0 = gj(0, ·) on Rn−1 if κj > 1− µ+ 1/p
}
,

and we also consider

D0(J ′) =
{

(f, g, u0) ∈ D(J ′) : g ∈ 0Fµ(J ′)
}
.

Due to Lemma 1.3.25, these are Banach spaces as closed subspaces of E0,µ(J ′)× Fµ(J ′)×
Xu,µ and E0,µ(J ′) × 0Fµ(J ′) × Xu,µ, respectively. We have the following result for the
half-space.
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Proposition 2.3.1. Let E be a Banach space of class HT , p ∈ (1,∞), and µ ∈ (1/p, 1].
Assume that (A0,B0) satisfies (E) and (LS), and that the coefficients of (A−A0,B −B0)
satisfy (SD) and (SB). Suppose further that κj 6= 1− µ+ 1/p for j = 1, ...,m. Then there
are a time T0 ∈ (0, T ] and a number ε > 0 such that if

sup
(t,x)∈[0,T0]×Rn+

|ãα(t, x)|B(E) < ε, |α| = 2m, (2.3.5)

and
sup

(t,x)∈[0,T0]×Rn−1

|̃bjβ(t, x)|B(E) < ε, |β| = mj , j = 1, ...,m, (2.3.6)

then for each interval J ′ = (0, T ′) with T ′ ∈ (0, T0] there is a unique solution u =
Ssm
H (f, g, u0) ∈ Eu,µ(J ′) of

∂tu+A(t, x,D)u = f(t, x), x ∈ Rn
+, t ∈ J ′,

Bj(t, x,D)u = gj(t, x), x ∈ Rn−1, t ∈ J ′, j = 1, ...,m, (2.3.7)

u(0, x) = u0(x), x ∈ Rn
+,

if and only if (f, g, u0) ∈ D(J ′). The solution operator

Ssm
H : D(J ′)→ Eu,µ(J ′)

is continuous. Restricted to D0(J ′), its operator norm is independent of T ′ ∈ (0, T0].

Proof. Throughout this proof, let 0 < T ′ ≤ T0 ≤ T , and set J0 = (0, T0).
(I) We first consider the necessity part. Let u ∈ Eu,µ(J ′) be a solution of (2.3.7). Then
(2.3.4) yields f ∈ E0,µ(J ′) and g ∈ Fµ(J ′), and Theorem 1.3.6 implies u0 ∈ Xu,µ. Hence
(f, g, u0) ∈ D(J ′) is necessary to obtain a solution u ∈ Eu,µ(J ′).
(II) Now suppose that for each T ′ ∈ (0, T0] it holds that for all (f, g, u0) ∈ D(J ′) there is
a unique solution u ∈ Eu,µ(J ′) of (2.3.7), i.e., there is a solution operator Ssm

H for (2.3.7).
Then Ssm

H is continuous due to (2.3.4) and the open mapping theorem. From this abstract
argument its operator norm depends on T ′ ∈ (0, T0] (our construction below does not
remove this dependence, see (2.3.10)).
For (f, g, u0) ∈ D0(J ′) we may extend f ∈ E0,µ(J ′) and g ∈ 0Fµ(J ′) to E0

J ′f ∈ E0,µ(R+)
and E0

J ′g ∈ 0Fµ(R+), respectively, using the extension operator E0
J ′ from Lemma 1.1.5,

whose norm is independent of T ′. Of course, then it holds (E0
J ′f |J0 , E0

J ′g|J0 , u0) ∈ D(J0),
and it follows from the assumed uniqueness of solutions of (2.3.7) that

Ssm
H (f, g, u0) = Ssm

H (E0
J ′f |J0 , E0

J ′g|J0 , u0)|J ′ .

We therefore obtain

|Ssm
H (f, g, u0)|Eu,µ(J ′) . |E0

J ′f |E0,µ(R+) + |E0
J ′g|0Fµ(R+) + |u0|Xu,µ

. |f |E0,µ(J ′) + |g|
0Fµ(J ′) + |u0|Xu,µ ,

where the constants in this estimate only depend on T0, but not on T ′ ∈ (0, T0].
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(III) It remains to find a unique solution u ∈ Eu,µ(J ′) of (2.3.7) for given (f, g, u0) ∈ D(J ′).
We define

Zu0(J ′) :=
{
v ∈ Eu,µ(J ′) : v(0, ·) = u0

}
,

which is a nonempty closed subspace of Eu,µ(J ′) due to Lemma 1.3.9. For given v ∈ Zu0(J ′)
we consider the problem

w + ∂tw +A0w = f + (A0 −A+ 1)v in J ′ × Rn
+,

B0w = g + (B0 − B)v on J ′ × Rn−1, (2.3.8)

w(0, ·) = u0 in Rn
+,

where the top order constant coefficient operators A0 and B0 are given by (2.3.3). Due to
Lemma 1.2.1, solutions of (2.3.8) are unique in Eu,µ(J ′) for v ∈ Zu0(J ′), since by Lemma
2.2.5 the realization of 1+A0

B0 on Lp(Rn
+;E) is the generator of an analytic C0-semigroup.

To find a solution w = S(v) ∈ Eu,µ(J ′) of (2.3.8) we consider the problem

w̃ + ∂tw̃ +A0w̃ = f̃ on R+ × Rn
+,

B0w̃ = g̃ on R+ × Rn−1, (2.3.9)

w̃(0, ·) = w̃0 on Rn
+.

Since (A0,B0) are assumed to satisfy (E) and (LS), Proposition 2.2.3 yields a continuous
solution operator

SH : DB0(R+)→ Eu,µ(R+)

for (2.3.9), where DB0(R+) denotes the space of compatible data with respect to B0. Since
g and u0 are compatible with respect to B, it follows that

(EJ ′(f + (A0 −A+ 1)v), EJ ′(g + (B0 − B)v), u0) ∈ DB0(R+),

where EJ ′ is the extension operator from J ′ to R+, see Lemma 1.1.5. Therefore

w = S(v) := SH
(
EJ ′(f + (A0 −A+ 1)v), EJ ′(g + (B0 − B)v), u0

)
|J ′ (2.3.10)

is the unique solution of (2.3.8). Observe that a function u ∈ Eu,µ(J ′) solves (2.3.7) if and
only if it is a fixed point of S in Zu0(J ′).
(IV) We show that S has a unique fixed point in Zu0(J ′) via the contraction principle,
provided T0 and thus the length of J ′ are sufficiently small. Clearly S maps Zu0(J ′) into
itself. For v1, v2 ∈ Zu0(J ′), the difference S(v1)− S(v2) solves

w + ∂tw +A0w = (A0 −A+ 1)(v1 − v2) on J ′ × Rn
+,

B0w = (B0 − B)(v1 − v2) on J ′ × Rn−1, (2.3.11)

w(0, ·) = 0 on Rn
+.

From (v1 − v2)(0, ·) = 0 we infer that (B0 − B)(v1 − v2) ∈ 0Fµ(J ′). We thus may extend
the data T ′-independently to R+, using E0

J ′ from Lemma 1.1.5. Since the restriction of the
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solution of the half-line problem

w̃ + ∂tw̃ +A0w̃ = E0
J ′(A0 −A+ 1)(v1 − v2) on R+ × Rn

+,

B0w̃ = E0
J ′(B0 − B)(v1 − v2) on R+ × Rn−1,

w̃(0, ·) = 0 on Rn
+,

to J ′ solves (2.3.11), it follows from the uniqueness of solutions of (2.3.11) that

S(v1)− S(v2) = SH
(
E0
J ′(A0 −A+ 1)(v1 − v2), E0

J ′(B0 − B)(v1 − v2), 0
)
|J ′ .

The continuity of SH and E0
J ′ now yield

|S(v1)− S(v2) |Eu,µ(J ′) ≤ |SH (E0
J ′(A0 −A+ 1)(v1 − v2), E0

J ′(B0 − B)(v1 − v2), 0)|Eu,µ(R+)

. |E0
J ′(A0 −A+ 1)(v1 − v2)|E0,µ(R+) + |E0

J ′(B0 − B)(v1 − v2)|
0Fu,µ(R+)

. |(A0 −A+ 1)(v1 − v2)|E0,µ(J ′) + |(B0 − B)(v1 − v2)|
0Fµ(J ′), (2.3.12)

where the constant in this estimate is independent of T0.
(V) It holds

|(A0 −A+ 1)(v1 − v2)|E0,µ(J ′) ≤
∑
|α|=2m

|ãαDα(v1 − v2)|E0,µ(J ′)

+
∑
|α|<2m

|aαDα(v1 − v2)|E0,µ(J ′) + |v1 − v2|E0,µ(J ′).

For the first summand assumption (2.3.5) yields∑
|α|=2m

|ãαDα(v1 − v2)|E0,µ(J ′) . ε |v1 − v2|Eu,µ(J ′).

For the second summand and |α| < 2m, suppose that the second condition in (SD) holds.
Then we take δ ∈

(
p(1−µ)+1

sα
+ n

2mrα
, 1− |α|2m

)
and apply Lemma 1.3.15 on pointwise mul-

tipliers, to obtain∑
|α|<2m

|aαDα(v1 − v2)|E0,µ(J ′)

.
∑
|α|<2m

|aα|Lsα (J ;Lrα (Rn+;B(E)))|Dα(v1 − v2)|
0Hδ

p,µ(J ′;Lp(Rn+;E))∩Lp,µ(J ′;H2mδ
p (Rn+;E)).

It follows from (v1 − v2)(0, ·) = 0 and Lemma 1.3.13 that for given η > 0 we have

|Dα(v1 − v2)|
0Hδ

p,µ(J ′;Lp(Rn+;E))∩Lp,µ(J ′;H2mδ
p (Rn+;E)) ≤ η |v1 − v2|Eu,µ(J ′),

provided T0 is sufficiently small. If the lower order coefficients satisfy the first condition
in (SD) one obtains this estimate for

∑
|α|<2m |aαDα(v1 − v2)|E0,µ(J ′) in a similar way. For

the third summand we have

|v1 − v2|E0,µ(J ′) ≤ η |v1 − v2|Eu,µ(J ′).
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Combining these inequalities, we arrive at

|(A0 −A+ 1)(v1 − v2)|E0,µ(J ′) . (ε+ η)|v1 − v2|Eu,µ(J ′).

(VI) We now estimate the boundary terms in (2.3.12). For j = 1, ...,m it holds

|(B0
j − Bj)(v1 − v2)|

0Fj,µ(J ′) ≤
∑
|β|=mj

|̃bjβ trRn+D
β(v1 − v2)|

0Fj,µ(J ′) (2.3.13)

+
∑
|β|<mj

|bjβ trRn+D
β(v1 − v2)|

0Fj,µ(J ′).

For |β| = mj we use (SB), the Lemmas 1.3.21, 1.3.22, 1.3.23 and (2.3.6), to estimate with
δ ∈ (0, κj)

|̃bjβ trRn+D
β(v1 − v2)|

0Fj,µ(J ′) . ε |trRn+D
β(v1 − v2)|

0Fj,µ(J ′) (2.3.14)

+ |̃bjβ|Y(J)|trRn+D
β(v1 − v2)|

0W
δ,2mδ
p,µ (J ′×Rn+;E))

.

Here Y(J) = Fj,µ(J ×Rn−1;B(E)) or Y(J) = B
κj
sjβ ,p(Lrjβ )∩Lsjβ(B

2mκj
rjβ ,p ), according to the

two conditions in (SB). If the first condition in (SB) is valid one further has to use the
embedding

0W
δ,2mδ
p,µ (J ′ × Rn

+;E)) ↪→ BUC(J ′ × Rn
+;E)

to deduce (2.3.14) from Lemma 1.3.23, which is valid for some δ ∈ (0, κj) if κj > 1− µ+
1/p+ n−1

2mp . Note also that (2.3.14) is uniform in T ≤ T0 due to (v1 − v2)(0, ·) = 0. For the
first summand, we infer from Proposition 1.3.12, Lemma 1.3.4 and that |̃bjβ|Y(J) are fixed
numbers

|trRn+D
β(v1 − v2)|

0Fj,µ(J ′) . |v1 − v2|Eu,µ(J ′),

where this estimate is again uniform in |J ′| ≤ T0. For the second summand we use Lemma
1.3.13 to obtain for given η

|̃bjβ|Y(J)|trRn+D
β(v1 − v2)|

0W
δ,2mδ
p,µ (J×Rn+;E))

≤ η |v1 − v2|Eu,µ(J ′),

provided T0 is sufficiently small. This yields∑
|β|=mj

|̃bjβ trRn+D
β(v1 − v2)|

0Fj,µ(J ′) . (ε+ η)|v1 − v2|Eu,µ(J ′)

for the first summand in (2.3.13). For the second summand in (2.3.13) and |β| < mj we
use in a similar way (SB) and the Lemmas 1.3.13, 1.3.21, 1.3.23 and 1.3.22, to obtain∑

|β|<mj

|bjβ trRn+D
β(v1 − v2)|

0Fj,µ(J ′) ≤ η |v1 − v2|Eu,µ(J ′)

for sufficiently small T0. It is thus shown that

|(B0
j − Bj)(v1 − v2)|

0Fj,µ(J ′) . (ε+ η) |v1 − v2|Eu,µ(J ′).
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(VII) Comparing with (2.3.12) and choosing ε and η, i.e., T0, sufficiently small, we obtain
that S is a strict contraction, and therefore has a unique fixed point in Zu0(J ′).

We now turn to the full space problem, and write

Eu,µ(J) = Eu,µ(J × Rn), E0,µ(J) = E0,µ(J × Rn), Xu,µ = Xu,µ(Rn).

We consider the operator A on Rn with B(E)-valued variable coefficients aα, given by

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, (t, x) ∈ J × Rn.

We have the following result.

Proposition 2.3.2. Let E be a Banach space of class HT , p ∈ (1,∞), and µ ∈ (1/p, 1].
Assume that A satisfies (E) and (SD). Then there are a time T0 ∈ (0, T ] and number ε > 0
such that if

sup
(t,x)∈[0,T0]×Rn

|aα(t, x)− aα(0, 0)|B(E) < ε, |α| = 2m, (2.3.15)

then for each interval J ′ = (0, T ′) with T ′ ∈ (0, T0] there is a unique solution u =
Ssm
F (f, u0) ∈ Eu,µ(J ′) of

∂tu+A(t, x,D)u = f(t, x), x ∈ Rn, t ∈ J ′, (2.3.16)

u(0, x) = u0(x), x ∈ Rn,

if and only if (f, u0) ∈ E0,µ(J ′)×Xu,µ. The solution operator

Ssm
F : E0,µ(J ′)×Xu,µ → Eu,µ(J ′)

is continuous, and its operator norm is independent of T ′ ∈ (0, T0].

Proof. The proof is completely analogous to the half-space case. We let 0 < T ′ ≤ T0 ≤ T .
As in the proof of Proposition 2.3.1 we obtain the necessary conditions on the data. To
show that for (f, u0) ∈ E0,µ(J ′)×Xu,µ a unique solution of (2.3.16) exists, we consider the
space

Zu0(J ′) =
{
v ∈ Eu,µ(J ′) : v(0, ·) = u0

}
,

and for v ∈ Zu0(J ′) the problem

w + ∂tw +A0w = f + (A0 −A+ 1)v on J ′ × Rn, (2.3.17)

w(0, ·) = u0 on Rn.

Here the operatorA0 is given byA0 :=
∑
|α|=2m aα(0, 0)Dα. The unique solution of (2.3.17)

is given by
w = S(v) := SF

(
E0
J ′(f + (A0 −A+ 1)v), u0

)
|J ′ ,

where SF : E0,µ(R+) × Xu,µ → Eu,µ(R+) is the continuous solution operator for (2.3.17)
on R+ × Rn from Proposition 2.2.2. As in the proof of Proposition 2.3.1 one can show
that S is a strict contraction on Zu0(J ′), provided ε and T0 are sufficiently small. The
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resulting unique fixed point u ∈ Eu,µ(J ′) of S is the unique solution of (2.3.16). Using
that u = SF

(
E0
J ′(f + (A0−A+ 1)u), u0

)
|J ′ and employing the continuity of SF we obtain

that the norm of the solution operator Ssm
F is independent of T ′, since the norm of E0

J ′ is
independent of it.

2.4 The General Case on a Domain

In this section we finally prove Theorem 2.1.4. Let E be a Banach space of class HT , let
J = (0, T ) be a finite interval, and let Ω ⊂ Rn be a domain with compact smooth boundary
Γ = ∂Ω. Now we write

Eu,µ = Eu,µ(J × Ω), Fµ = Fµ(J × Γ),

and so on. We consider the problem

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t ∈ J,
Bj(t, x,D)u = gj(t, x), x ∈ Γ, t ∈ J, j = 1, ...,m, (2.4.1)

u(0, x) = u0(x), x ∈ Ω,

where the differential operators A and Bj , j = 1, ...,m, are given by

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, t ∈ J, x ∈ Ω,

Bj(t, x,D) =
∑
|β|≤mj

bjβ(t, x)trΩDβ, t ∈ J, x ∈ Γ, mj ∈ {0, ..., 2m− 1}.

The B(E)-valued coefficients aα and bjβ are assumed to satisfy (SD) and (SB). In this case
the Propositions 1.3.16 and 1.3.24 ensure that

A ∈ B(Eu,µ,E0,µ), B ∈ B(Eu,µ,Fµ). (2.4.2)

Moreover, it is included in resp. follows from these assumptions that the top order coeffi-
cients satisfy

aα ∈ BUC(J × Ω;B(E)), |α| = 2m,

bjβ ∈ BUC(J × Γ;B(E)), |β| = mj , j = 1, ...,m.

The set of compatible data is given by

D =
{

(f, g, u0) ∈ E0,µ × Fµ×Xu,µ : for j = 1, ...,m it holds

Bj(0, ·, D)u0 = gj(0, ·) on Γ if κj > 1− µ+ 1/p
}
,

and further

D0 =
{

(f, g, u0) ∈ D : g ∈ 0Fµ
}
.

The following localization procedure is very long, elaborate, and looks sophisticated, but
after all it is nothing but a sequence of simple principles, and a lot of notation. For an
outline we refer to the end of Section 2.1.
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Proof of Theorem 2.1.4.

(I) The necessary conditions on the data follow as in Section 2.1 from (2.4.2) and Theorem
1.3.6. If the solution operator L exists, then its continuity and its dependence on the length
of J can be shown as in Step II of the proof of Proposition 2.3.1.
If the coefficients of the operators are as in (2.1.5) and if the data is real-valued, then we
have that if u ∈ Eu,µ solves (2.4.1), then also Reu ∈ Eu,µ solves (2.4.1). Hence u = Reu if
one assumes uniqueness, i.e., the solution is real-valued in this case.
(II) Given (f, g, u0) ∈ D, we have to show that there exists a unique solution u ∈ Eu,µ of
(2.4.1). We first show that it suffices to obtain this under the assumption that T = |J | is
sufficiently small.
Using the extension operator EJ from Lemma 1.1.5 we may assume that the coefficients of
A and B are defined on [0, 2T ]. Suppose that for each T∗ ∈ [0, 2T ) we can find a (small)
time τT∗ ∈ (0, 2T − T∗) such that the problem

∂tu+A(t, x,D)u = f̃(t, x), x ∈ Ω, t ∈ (T∗, T∗ + τT∗),

B(t, x,D)u = g̃(t, x), x ∈ Γ, t ∈ (T∗, T∗ + τT∗), (2.4.3)

u(T∗, x) = ũ0(x), x ∈ Ω,

has a unique solution u ∈ Eu,µ(T∗, T∗ + τT∗) for all

f̃ ∈ E0,µ(T∗, T∗ + τT∗), g̃ ∈ Fµ(T∗, T∗ + τT∗), ũ0 ∈ Xu,µ,

which satisfy the compatibility condition

Bj(T∗, ·, D)ũ0 = g̃j(0, ·), on Γ, if κj > 1− µ+ 1/p, j = 1, ...,m.

In this case we can solve (2.4.1) uniquely for given (f, g, u0) ∈ D(J) as follows. Using EJ
we may assume that also f and g are defined on (0, 2T ). The solution intervals for (2.4.3)
yield an open cover of [τ0, T ], from which we choose a finite subcover

⋃K
k=1(Tk, Tk + τk)

with
T1 < τ0, Tk < Tk−1 + τk−1 for 1 < k ≤ K, T < Tk + τk.

Let u0 ∈ Eu,µ(0, τ0) be the unique solution of (2.4.3) on (0, τ0) with data

f̃ = f |(0,τ0), g̃ = g|(0,τ0), ũ0 = u0.

Since T1 < τ0, u0(T1) ∈ Xu,µ
4 and the compatibility condition holds, there is a unique

solution u1 ∈ Eu,µ(T1, T1 + τ1) of (2.4.3) on (T1, T1 + τ1) with data

f̃ = f |(T1,T1+τ1), g̃ = g|(T1,T1+τ1), ũ0 = u0(T1, ·).

Since we assume that solutions of (2.4.3) are unique for all initial times T∗ ∈ [0, 2T ),
it follows that u0 and u1 coincide on (T1, τ0). Iterating this argument yields functions
uk ∈ Eu,µ(Tk, Tk + τk), k = 1, ...,K, such that uk satisfies (2.4.3) on (Tk, Tk + τk) with data

f̃ = f |(Tk,Tk+τk), g̃ = g|(Tk,Tk+τk), ũ0 = uk−1(Tk, ·),
4In fact, due to the inherent smoothing effect of the weighted spaces it even holds u0(T1) ∈ Xu,1.
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and such that uk and uk+1 coincide on (Tk+1, Tk + τk). Since the weight only has an effect
at the initial times Tk, it holds

uk|(Tk+1,Tk+τk) = uk+1|(Tk+1,Tk+τk) ∈ Eu,1(Tk+1, Tk + τk).

Hence we may put together the functions uk, k = 0, ...,K, to a function u ∈ Eu,µ(0, TK +
τK), that solves (2.4.1) on J = (0, T ). Our assumption also implies that this solution is
unique.
Observe that the restriction of (A,B) to any subinterval of J = (0, T ) is still subject to
(E), (LS), (SD) and (SB). Therefore, due to the above considerations, our objective is to
show the unique solvability of (2.4.1) for all (f, g, u0) ∈ D(J), under the assumption that
T = |J | is sufficiently small.
(III) We intend to use the Propositions 2.3.1 and 2.3.2 to show unique solvability. To this
end we have to localize (2.4.1) also in space. If Ω is unbounded we choose a large number
R > 0 with Γ ⊂ BR(0) and set

x0 :=∞, U0 := Ω\BR(0).

We define on J × Rn extended top order coefficients a0
α = a0

α(t, x), |α| = 2m, by

a0
α(t, x) :=


aα(t, x), x ∈ U0,

aα
(
t, R2 x

|x|2
)
, x ∈ BR(0)\{0},

aα(t, x0), x = 0,

(2.4.4)

and further on J × Rn extended lower order coefficients a0
α = a0

α(t, x), |α| < 2m, by

a0
α(t, x) :=

{
aα(t, x), x ∈ U0,

0, x ∈ BR(0).

Using these coefficients we define the differential operator

A0(t, x,D) :=
∑
|α|≤2m

a0
α(t, x)Dα.

Observe that for |α| = 2m the functions a0
α are continuous extensions of the aα to Rn,

which only use values of aα|U0 . ThereforeA0 satisfies (E), since this is a pointwise condition.
Moreover, by assumption (SD), the limit aα(t,∞) = lim|x|→∞ aα(t, x) exists uniformly in
t ∈ J , |α| = 2m. Thus, given ε > 0, if R is sufficiently large and T is sufficiently small then
by continuity it holds

sup
t∈J, x∈U0

|aα(t, x)− aα(0, x0)|B(E) < ε, |α| = 2m.

By construction, this carries over to the extended top order coefficients,

sup
t∈J, x∈Rn

|a0
α(t, x)− a0

α(0, 0)|B(E) < ε, |α| = 2m.

Hence, due to Proposition 2.3.2, if R is large and T is small then for all J ′ = (0, T ′) with
T ′ ≤ T there is a continuous solution operator

Ssm,0
F : E0,µ(J ′ × Rn)×Xu,µ(Rn)→ Eu,µ(J ′ × Rn),
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for the full-space problem

∂tv +A0(t, x,D)v = f0(t, x), x ∈ Rn t ∈ J ′, (2.4.5)

v(0, x) = u0
0(x), x ∈ Rn.

(IV) Now, if Ω is unbounded, take a point x∗ ∈ Ω\U0 = Ω ∩BR(0), and if Ω is bounded,
take a point x∗ ∈ Ω. In both cases we construct a differential operator Ax∗ on Rn as above.
Choose a radius rx∗ > 0 with

Brx∗ (x∗) ∩ Γ = ∅,

and put
Ux∗ := Brx∗ (x∗).

We define extended top order coefficients ax∗α = ax∗α (t, x), |α| = 2m, by

ax∗α (t, x) :=

{
aα(t, x), x ∈ Ux∗ ,
aα
(
t, x∗ + r2

x∗
x−x∗
|x−x∗|2

)
, x /∈ Ux∗ ,

(2.4.6)

extended lower order coefficients ax∗α = ax∗α (t, x), |α| < 2m, by

ax∗α (t, x) :=

{
aα(t, x), x ∈ Ux∗ ,
0, x /∈ Ux∗ ,

(2.4.7)

and we finally set
Ax∗(t, x,D) :=

∑
|α|≤2m

ax∗α (t, x)Dα.

As above, the operator Ax∗ satisfies (E), and if rx∗ and T are sufficiently small, then
Proposition 2.3.2 yields that for all T ′ ∈≤ T there is a continuous solution operator

Ssm,x∗
F : E0,µ(J ′ × Rn)×Xu,µ(Rn)→ Eu,µ(J ′ × Rn),

where J ′ = (0, T ′), for the full-space problem

∂tv +Ax∗(t, x,D)v = f∗(t, x), x ∈ Rn t ∈ J ′, (2.4.8)

v(0, x) = u∗0(x), x ∈ Rn.

(V) For a point x∗ ∈ Γ = ∂Ω we choose an open neighbourhood Ũx∗ of x∗ in Rn such
that there are smooth diffeomorphisms ϕx∗ : Ũx∗ → Rn and a radius rx∗ > 0 with the
properties

ϕx∗(x∗) = 0, ϕx∗(Ũx∗) = B2rx∗ (0), ϕ′x∗(x∗) = Oν(x∗),

ϕx∗(Ũx∗ ∩ Ω) ⊂ Rn
+, ϕx∗(Ũx∗ ∩ Γ) ⊂ Rn−1. (2.4.9)

Note that we identify Rn−1 with Rn−1×{0} ⊂ Rn. Further Oν(x∗) is the orthogonal matrix
fixed in assumption (LS) that rotates the outer unit normal ν(x∗) to (0, ..., 0,−1) ∈ Rn. By
Lemma A.1.1, a chart (Ũx∗ , ϕx∗) with the above properties always exists. We may assume
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that the sup-norms of any derivative of ϕx∗ and ϕ−1
x∗ are uniformly bounded for rx∗ ≤ 1.

We further set
Ux∗ := ϕ−1

x∗

(
Brx∗ (0)

)
,

and denote by Φx∗ the push-forward operator corresponding to ϕx∗ , i.e., Φx∗v = v ◦ ϕ−1
x∗ .

Now we define the differential operator AΦx∗ for functions v : Rn
+ ∩Brx∗ (0)→ E by

AΦx∗ (t, x,D)v :=
(
Φx∗A(t, ·, D)Φ−1

x∗ v
)
(x), t ∈ J, x ∈ Rn

+ ∩Brx∗ (0),

and the boundary operators BΦx∗
j , j = 1, ...,m, by

BΦx∗
j (t, x,D)v :=

(
Φx∗Bj(t, ·, D)Φ−1

x∗ v
)
(x), t ∈ J, x ∈ Rn−1 ∩Brx∗ (0), j = 1, ...,m.

For v ∈ Eu,µ
(
Rn

+ ∩Brx∗ (0)
)
and 1 ≤ |α| ≤ 2m it holds

Dα(Φ−1
x∗ v)(t, x) =

∑
1≤|γ|≤|α|

qαγ(x)(Dγv) (t, ϕx∗(x)) , t ∈ J, x ∈ Ω ∩ Ux∗ ,

where qαγ are real-valued bounded smooth functions in x, depending on the partial deriva-
tives of the components of ϕx∗ (see [69, Section 1.1.7]). Thus the pushed operators are
again of the form

AΦx∗ (t, x,D) =
∑
|α|≤2m

aΦx∗
α (t, x)Dα,

BΦx∗
j (t, x,D) =

∑
|β|≤mj

b
Φx∗
jβ (t, x)trRn+D

β, j = 1, ...,m,

where trRn+ denotes the spatial trace operator for Rn
+. Lemma A.1.2 implies that the prin-

cipal parts of (AΦi ,BΦi) are given by

AΦi
] (t, x,D) = A](t, x,OTν(x∗)

D), BΦi
] (t, x,D) = B](t, x,OTν(x∗)

D). (2.4.10)

Due to Lemma A.4.1, and since the functions qαγ are smooth and bounded, the coefficients
a

Φx∗
α satisfy (SD), formulated for J ×

(
Rn

+∩Brx∗ (0)
)
, and the coefficients bΦx∗jβ satisfy (SB)

on J ×
(
Rn−1 ∩Brx∗ (0)

)
.

(VI) We now extend the top order coefficients of AΦx∗ from Rn
+ ∩ Brx∗ (0) to Rn

+ by
reflection as in (2.4.6), and the lower order coefficients of AΦx∗ trivially from Rn

+ ∩Brx∗ (0)
to Rn

+ as in (2.4.7). Denoting the extended coefficients by ax∗α , this yields an operator

Ax∗(t, x,D) :=
∑
|α|≤2m

ax∗α (t, x)Dα, t ∈ J, x ∈ Rn
+.

We further define the top order constant coefficient operator Ax∗,0 by

Ax∗,0(D) := Ax∗(0, 0, D) =
∑
|α|=2m

ax∗,0α Dα, ax∗,0α := ax∗α (0, 0) = aα(0, x∗).

It follows from (2.4.10) that for ξ ∈ Rn it holds

Ax∗,0(ξ) = A](0, x∗,OTν(x∗)
ξ).
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Since A satisfies (E) we thus obtain that Ax∗,0 satisfies (E) as well. We write the top order
coefficients of Ax∗ in the form

ax∗α (t, x) = ax∗,0α + ãx∗α (t, x), |α| = 2m,

where ãx∗α (t, x) = ax∗α (t, x)−ax∗,0α , as required for (2.3.1). By construction, the coefficients of
Ax∗−Ax∗,0 satisfy (SD). Given ε > 0, if T , rx∗ and the diameter of Ux∗ are sufficiently small,
then the coefficients aΦx∗

α have oscillation less than ε around aΦx∗
α (0, 0) on J×

(
Rn

+∩Brx∗ (0)
)

for all |α| = 2m. By construction we have

sup
J×Rn+

|ãx∗α |B(E) < ε, |α| = 2m,

for the top order coefficients of Ax∗ as well. To extend the top order coefficients of BΦi
j

from Rn−1 ∩ Brx∗ (0) to Rn−1 to coefficients bx∗jβ we fix a nonnegative cut-off function
χ ∈ C∞c (Rn−1) with

χ(x) = 1, |x| ≤ 1, χ(x) = 0, |x| ≥ 2, χ(x) ∈ [0, 1], x ∈ Rn−1,

and set for |β| = mj and j = 1, ...,m

bx∗jβ(t, x) := b
Φx∗
jβ (0, 0) + χ(x/2rx∗)

(
b
Φx∗
jβ (t, χ(x/rx∗)x)− bΦx∗jβ (0, 0)

)
, t ∈ J, x ∈ Rn−1.

(2.4.11)
The lower order coefficients of BΦi

j are extended on Rn−1 to coefficients bx∗jβ by setting

bx∗jβ := ERn−1∩Brx∗ (0)b
Φx∗
jβ , |β| < mj , j = 1, ...,m, (2.4.12)

where ERn−1∩Brx∗ (0) denotes the spatial extension operator from Rn−1 ∩ Brx∗ (0) to Rn−1,
given by (1.3.3). These extended coefficients yield boundary operators

Bx∗j (t, x,D) :=
∑
|β|≤mj

bx∗jβ(t, x)trRn+D
β, t ∈ J, x ∈ Rn−1, j = 1, ...,m.

We define the top order constant coefficient operator Bx∗,0 = (Bx∗,01 , ...,Bx∗,0m ) by

Bx∗,0j (D) :=
∑
|β|=mj

bx∗,0jβ trRn+D
β, bx∗,0jβ := bx∗jβ(0, 0) = bjβ(0, x∗), j = 1, ...,m.

Due to (2.4.10), for ξ′ ∈ Rn−1 we have that

Ax∗,0(ξ′, Dy) = A]
(
0, x∗,OTν(x∗)

(ξ′, Dy)
)
, Bx∗,0(ξ′, Dy) = B]

(
0, x∗,OTν(x∗)

(ξ′, Dy)
)
.

Now we see that the assumption (LS) for (A,B) on Ω is just made that (Ax∗,0,Bx∗,0)
satisfies (LS) on Rn

+. We write the top order coefficients of Bx∗ in the form

bx∗jβ = bx∗,0jβ + b̃x∗jβ , |β| = mj , j = 1, ...,m,

as required for (2.3.2). By construction we have that the coefficients of Bx∗ −Bx∗,0 satisfy
(SB). As for the top order coefficients of Ax∗ , for given ε, if T , rx∗ and the diameter of Ux∗
are sufficiently small then it follows from continuity that

sup
J×Rn−1

|̃bx∗jβ |B(E) < ε, |β| = mj , j = 1, ...,m.
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Therefore (Ax∗ ,Bx∗) satisfies all the assumptions of Proposition 2.3.1, and if ε and T are
small, then for all J ′ = (0, T ′) with T ′ ≤ T there is a continuous solution operator

Ssm,x∗
H : DBx∗ (J ′)→ Eu,µ(J ′)

for the half-space problem

∂tv +Ax∗(t, x,D)v = f∗(t, x), x ∈ Rn
+, t ∈ J ′,

Bx∗j v = g∗j (t, x), x ∈ Rn−1, t ∈ J ′, j = 1, ...,m, (2.4.13)

v(0, x) = u∗0(x), x ∈ Rn
+.

Here, DBx∗ (J ′) denotes the set of compatible data (f∗, g∗, u∗0) with respect to Bx∗ .
(VII) The sets Ux∗ , together with U0 if Ω is unbounded, yield an open cover of Ω. If
Ω is bounded it follows from compactness that there are finitely many points xi ∈ Ω,
i = 1, ..., NF for some NF ∈ N, and finitely many points xi ∈ Γ, i = NF + 1, ..., NH for
some NH > NF , such that the union of the corresponding sets

Ui := Uxi , i = 1, ..., NH ,

covers Ω. If Ω is unbounded, we obtain in the same way a finite cover for the compact set
Ω\U0. Setting U0 := ∅ if Ω is bounded, we thus obtain in any case a finite cover

Ω ⊂
NF⋃
i=0

Ui ∪
NH⋃

i=NF+1

Ui, (2.4.14)

together with corresponding points xi, operators Ai for i = 0, ..., NF and (Ai,Bi) for
i = NF + 1, ..., NH . If ε and T are small, then there are solution operators

Ssm,i
F , i = 0, ..., NF , and Ssm,i

H , i = NF + 1, ..., NH ,

for the finitely many full- and half-space problems (2.4.8) and (2.4.13) on J = (0, T ),
corresponding to Ai and (Ai,Bi), respectively.
(VIII) If Ω is bounded there exists a partition of unity {ψi}i=1,...,NH for Ω, subordinate
to the cover (2.4.14). In the unbounded case there is such a partition for the compact set
Ω\U0. Thus we set in addition ψ0 := 0 in the bounded case, and

ψ0 := 1−
NH∑
i=1

ψi

in the unbounded case, such that {ψi}i=0,...,NH is in any case a partition of unity for Ω,
subordinate to (2.4.14).
Now take compatible data (f, g, u0) ∈ D(J) for (A,B), and consider the problem (2.4.1),
for which we have to show unique solvability. Suppose that u ∈ Eu,µ(J ×Ω) solves (2.4.1).
Then u solves the localized problems

∂t(ψiu) +A(ψiu) = ψif + [A, ψi]u in Ω ∩ Ui, t ∈ J,
B(ψiu) = ψig + [B, ψi]u on Γ ∩ Ui, t ∈ J, (2.4.15)

(ψiu)(0, ·) = ψiu0 in Ω ∩ Ui,
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for each i = 0, ..., NH . Here [·, ·] denotes the commutator bracket, e.g.,

[A, ψi]u = A(ψiu)− ψiAu.

Observe that [A, ψi] and [Bj , ψi] are differential operators of lower order, i.e., less or equal
than 2m− 1 and mj − 1, respectively. For i = 0, ..., NF it holds Ω∩Ui = Ui, so that there
are no boundary conditions involved in (2.4.15) in this case. By the considerations in Step
IV, the function ψiu is the unique solution of the initial-value problem

∂tv +Ai(t, x,D)v = f i(t, x), x ∈ Rn, t ∈ J,
v(0, x) = ui0(x), x ∈ Rn,

where we have set

f i := ψif + [A, ψi]u, ui0 := ψiu0, i = 0, ..., NF ,

and where we identify functions with compact support with their trivial extension to Rn.
It therefore holds

ψiu = Ssm,i
F (f i, ui0;u)|Ui , i = 0, ..., NF .

Here the notation Ssm,i
F (f i, ui0;u) indicates that f i is defined with respect to u.

For i = NF + 1, ..., NH we have Γ ∩ Ui 6= ∅, so that boundary conditions are involved in
(2.4.15) in this case. We transform (2.4.15) to a flat boundary, using the push forward Φi

corresponding to ϕi. Then v = Φi(ψiu) satisfies

∂tv +Ai(t, x,D)v = f i(t, x), x ∈ Rn
+, t ∈ J,

Bi(t, x,D)v = gi(t, x), x ∈ Rn−1, t ∈ J,
v(0, x) = ui0(x), x ∈ Rn

+,

where this time we have set, for i = NF + 1, ..., NH ,

f i := Φi(ψif + [A, ψi]u), gi(t, x) = Φi(ψig + [B, ψi]u), ui0 := Φi(ψiu0),

identifying functions with their trivial extension to Rn
+ as above. By the considerations in

Step V and uniqueness it holds

ψiu = Φ−1
i

(
Ssm,i
H (f i, gi, ui0;u)|Rn+∩Bri (0)

)
, i = NF + 1, ..., NH ,

where again the notation Ssm,i
H (f i, gi, ui0;u) indicates that f i, gi are defined with respect to

u. Note here that (f i, gi, ui0) is compatible with respect to Bi, since (f, g, u0) is compatible
with respect to the original boundary operator B.
(IX) We choose scalar-valued functions φi ∈ C∞c (Rn), i = 0, ..., NH , such that

φi ≡ 1 on suppψi, suppφi ⊂ Ui.

Then
∑NH

i=0 φiψi ≡ 1 on Ω. For (f, g, u0) ∈ D(J) we consider the Banach space

Zu0(J) :=
{
u ∈ Eu,µ(J × Ω) : u(0, ·) = u0

}
,
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which is nonempty by Lemma 1.3.9, and define on Zu0(J) the map G by

Gf,g,u0(u) :=
NF∑
i=0

φiSsm,i
F (f i, ui0;u)|Ui +

NH∑
i=NF+1

φiΦ−1
i (Ssm,i

H (f i, gi, ui0;u)|Rn+∩Bri (0)),

where f i, gi and ui0 are defined as above with respect to u, respectively. By the considera-
tions in the last step, for a solution u ∈ Eu,µ(J) of (2.4.1) it holds

Gf,g,u0(u) =
NF∑
i=0

φiψiu = u.

Thus a solution of (2.4.1) has to be a fixed point of Gf,g,u0 in Zu0(J).
Using the contraction principle we show that Gf,g,u0 has a unique fixed point in Zu0(J)
for all compatible data (f, g, u0) ∈ D(J), provided T is sufficiently small. By construction,
Gf,g,u0 is a self mapping on Zu0(J). For i = 0, ..., NF and u1, u2 ∈ Zu0(J), the function

v = Ssm,i
F (f i,1, ui0;u1)− Ssm,i

F (f i,2, ui0;u2)

is the unique solution of

∂tv +Ai(t, x,D)v = [A, ψi](u1 − u2) in Rn, t ∈ J,
v(0, ·) = 0 in Rn,

where [A, ψi](u1−u2) is identified with its trivial spatial extension to Rn. It therefore holds

v = Ssm,i
F

(
[A, ψi](u1 − u2), 0

)
.

By Proposition 2.3.2, the operator norm of Ssm,i
F is independent of T . Given η > 0, we use

this fact, that [A, ψi] is of lower order, that the coefficients of A are subject to (SD), and
that (u1 − u2)(0, ·) = 0, to deduce from Lemma 1.3.13 the estimate

|φiSsm,i
F (f i,1, ui0;u1)− φiSsm,i

F (f i,2, ui0;u2)|Eu,µ(J×Ω)

. |Ssm,i
F ([A, ψi](u1 − u2), 0)|Eu,µ(J×Rn)

. |[A, ψi](u1 − u2)|E0,µ(J×Ω)

≤ η |u1 − u2|E1,µ(J×Ω),

provided T is sufficiently small. Similarly, for i = NF + 1, ..., NH the function

v = Ssm,i
H (f i,1, gi,1, ui0;u1)− Ssm,i

H (f i,2, gi,2, ui0;u2)

is the unique solution of

∂tv +Ai(t, x,D)v = Φi([A, ψi](u1 − u2)) in Rn
+, t ∈ J,

Bi(t, x,D)v = Φi([B, ψi](u1 − u2)) on Rn−1, t ∈ J,
v(0, ·) = 0 in Rn

+,



2.4 The General Case on a Domain 95

where we again identify the right-hand sides with their trivial extensions to Rn
+ and Rn−1,

respectively. Note here that the required compatibility condition at t = 0 holds, due to
(u1 − u2)(0, ·) = 0. Therefore

v = Ssm,i
H

(
Φi([A, ψi](u1 − u2)),Φi([B, ψi](u1 − u2)), 0

)
.

By Proposition 2.3.1, the operator norm of Ssm,i
H restricted to vanishing initial values is

uniform in T smaller than a given length. Using the same tools as above, together with
the Lemmas 1.3.21, 1.3.22 and 1.3.23 about pointwise multiplication on the boundary, we
obtain for given η

|φiΦ−1
i

(
Ssm,i
H (f i,1, gi,1,ui0;u1)|Rn+∩Bri (0) − S

sm,i
H (f i,2, gi,2, ui0;u2)|Rn+∩Bri (0)

)
|Eu,µ(J×Ω)

. |Ssm,i
H (Φi([A, ψi](u1 − u2)),Φi([B, ψi](u1 − u2)), 0)|Eu,µ(J×Rn+)

. |[A, ψi](u1 − u2)|E0,µ(J×Ω) + |[B, ψi](u1 − u2)|
0Fµ(J×Γ)

≤ η |u1 − u2|Eu,µ(J×Ω),

provided T is sufficiently small. Hence for small T the map Gf,g,u0 is a strict contraction on
Zu0(J) and has a unique fixed point in there. Since this holds true for all (f, g, u0) ∈ D(J),
this fact already implies that solutions of (2.4.1) are unique. We further obtain a linear
fixed point map

Q : D(J)→ Zu0(J), Q(f, g, u0) = Gf,g,u0(Q(f, g, u0)).

We define the space

D00(J) := {(f, g, 0) ∈ D0(J)},

and use the above estimates and the continuity of the solution operators Ssm,i
F and Ssm,i

H

to obtain

|Q(f, g, 0)|Eu,µ(J) ≤ |Gf,g,0(Q(f, g, 0))− Gf,g,0(0)|Eu,µ(J) + |Gf,g,0(0)|Eu,µ(J)

. η|Q(f, g, 0)|Eu,µ(J) + |(f, g, 0)|D0(J)

for (f, g, 0) ∈ D00(J), where η is small. Hence the operator norm of Q : D00(J)→ Z0(J) is
uniform in T smaller than a given length. Note that, due to the nonempty intersections of
the Ui, the function Q(f, g, u0) does not solve (2.4.1) with right-hand side (f, g, u0) ∈ D(J),
in general.
(X) We construct a solution for (2.4.1) by finding for given (f, g, u0) ∈ D(J) the appropri-
ate (f?, g?, u?0) ∈ D(J) for which Q(f?, g?, u?0) solves (2.4.1). In other words, overlappings
in the sum in the definition of Gf?,g?,u?0 coming from nonempty intersections of the Ui have
to cancel in the right way. As Q maps into Zu0(J) it is clear that we must have u?0 = u0.
So let (f, g, u0) ∈ D(J) be given. For (f?, g?, u0) ∈ D(J) we use that Q(f?, g?, u0) is the
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fixed point of Gf?,g?,u0 , to obtain

(∂t +A)Q(f?, g?, u0) =
NF∑
i=0

(∂t +A)φiSsm,i
F (f?,i, ui0;Q(f?, g?, u0))|Ui

+
NH∑

i=NF+1

(∂t +A)φiΦ−1
i

(
Ssm,i
H (f?,i, g?,i, ui0;Q(f?, g?, u0))|Rn+∩Bri (0))

)
= f? +K1(f?, g?) +

NH∑
i=0

φi[A, ψi]Q(f?, g?, u0),

with the correction term

K1(f?, g?) :=
NF∑
i=0

[A, φi]Ssm,i
F (f?,i, ui0;Q(f?, g?, u0))|Ui

+
NH∑

i=NF+1

[A, φi]Φ−1
i

(
Ssm,i
H (f?,i, g?,i, ui0;Q(f?, g?, u0))|Rn+∩Bri (0)

)
.

Note that, since {ψi} is a partition of unity for Ω and φi ≡ 1 on suppψi, it holds

NH∑
i=0

φi[A, ψi]Q(f?, g?, u0) = [A, 1]Q(f?, g?, u0) = 0.

Similarly, on the boundary we have

BQ(f?, g?, u0) = g? +K2(f?, g?),

with the correction term

K2(f?, g?) :=
NH∑

i=NF+1

[B, φi]Φ−1
i

(
Ssm,i
H (f?,i, g?,i, ui0;Q(f?, g?, u0))|Rn+∩Bri (0)

)
.

Here the terms involving Ssm,i
F do not appear since the functions φi vanish on Γ for i =

0, ..., NF . It follows that the desired (f?, g?) is a solution of the equation

(f?, g?) + (K1,K2)(f?, g?) = (f, g). (2.4.16)

Since Q(f?, g?, u0)|t=0 = u0 for κj > 1− µ+ 1/p it holds

K2(f?, g?)j |t=0 =
NH∑

i=NF+1

[Bj(0, ·, D), φi]ψiu0 =
NH∑

i=NF+1

[Bj(0, ·, D), 1]ψiu0 = 0.

Therefore K2 maps into 0Fµ(J). In order to solve (2.4.16) we thus consider the equation

(f [, g[) + (K1,K2)(f [, g[) = −(K1,K2)(f, g). (2.4.17)

for (f [, g[) ∈ E0,µ(J)× 0Fµ(J). If we can find a solution (f [, g[) of (2.4.17) then

(f?, g?) = (f [ + f, g[ + g)
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solves (2.4.16) and satisfies (f?, g?, u0) ∈ D(J), which finishes the proof.
(XI) We show that (2.4.17) has a unique solution (f [, g[) ∈ E0,µ(J)× 0Fµ(J), using once
more the contraction principle. We have already seen that

(f [, g[) 7→ −(K1,K2)(f, g)− (K1,K2)(f [, g[) (2.4.18)

is a self map on E0,µ(J)× 0Fµ(J). To show that it is a contraction, take (f [1, g
[
1), (f [2, g

[
2) ∈

E0,µ(J)× 0Fµ(J), put

u1 := Q(f [1, g
[
1, u0), u2 := Q(f [2, g

[
2, u0),

and consider

|(K1,K2)(f [1, g
[
1)− (K1,K2)(f [2, g

[
2)|E0,µ(J)×0Fµ(J) (2.4.19)

= |K1(f [1, g
[
1)−K1(f [2, g

[
2)|E0,µ(J) + |K2(f [1, g

[
1)−K2(f [2, g

[
2)|

0Fµ(J).

For the first summand we use that [A, φi] is of lower order, to obtain with Lemma 1.3.13
for given η > 0

|K1(f [1, g
[
1)−K1(f [2, g

[
2)|E0,µ(J×Ω) ≤ η

NF∑
i=0

|Ssm,i
F (f [,i1 , ui0;u1)− Ssm,i

F (f [,i2 , ui0;u2)|Eu,µ(J×Rn)

+ η

NH∑
i=NF+1

|Ssm,i
H (f [,i1 , g[,i1 , u

i
0;u1)− Ssm,i

H (f [,i2 , g[,i2 , u
i
0;u2)|Eu,µ(J×Rn+), (2.4.20)

provided T is sufficiently small. We concentrate on the second sum in (2.4.20). For i =
NF + 1, ..., NH the function v = Ssm,i

H (f [,i1 , g[,i1 , u
i
0;u1)− Ssm,i

H (f [,i2 , g[,i2 , u
i
0;u2) solves

∂tv +Aiv = Φi

(
ψi(f [1 − f [2) + [A, ψi](u1 − u2)

)
in Rn

+, t ∈ J,
Biv = Φi

(
ψi(g[1 − g[2) + [B, ψi](u1 − u2)

)
on Rn−1, t ∈ J,

v(0, ·) = 0 in Rn
+.

We may thus estimate

|Ssm,i
H (f [,i1 ,g[,i1 , u

i
0;u1)− Ssm,i

H (f [,i2 , g[,i2 , u
i
0;u2)|Eu,µ(J×Rn+)

. |f [1 − f [2|E0,µ(J×Ω) + |[A, ψi](u1 − u2)|E0,µ(J×Ω)

+ |g[1 − g[2|0Fµ(J×Γ) + |[B, ψi](u1 − u2)|
0Fµ(J×Γ)

. |f [1 − f [2|E0,µ(J×Ω) + |g[1 − g[2|0Fµ(J×Γ) + |Q(f [1 − f [2, g[1 − g[2, 0)|Eu,µ(J×Rn+)

. |f [1 − f [2|E0,µ(J×Ω) + |g[1 − g[2|0Fµ(J×Γ)

uniformly in T , using that the operator norm of Ssm,i
H on the 0Fµ-spaces, of Q : D00(J)→

Z0(J), of the spatial trace and the spatial derivatives are uniform in T , respectively. Sim-
ilarly one estimates the first sum in (2.4.20) uniformly in T , to obtain for given η

|K1(f [1, g
[
1)−K1(f [2, g

[
2)|E0,µ(J×Ω) ≤ η |(f [1, g[1)− (f [2, g

[
2)|E0,µ(J×Ω)×Fµ(J×Γ),

provided T is sufficiently small. In the same way one shows the corresponding estimate for
the term in (2.4.19) where K2 is involved. Thus the map (2.4.18) is a strict contraction
on E0,µ(J)× 0Fµ(J), and the resulting fixed point is the unique solution of (2.4.17). This
finally proves Theorem 2.1.4.
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2.5 A Right-Inverse for the Boundary Operator

In this section we construct a right-inverse for a class of autonomous boundary operators
related to (2.4.1). Let us explain the setting. We specialize to the finite dimensional case

E = CN , N ∈ N.

Let Ω ⊂ Rn be a domain with compact smooth boundary Γ = ∂Ω, or Ω = Rn
+, and let

p ∈ (n,∞), µ ∈ (1/p, 1].

For m ∈ N we consider the linear boundary operator B = (B1, ...,Bm), given by

Bj(x,D) =
∑
|β|≤mj

bjβ(x)trΩDβ, x ∈ Γ, mj ∈ {0, ..., 2m− 1}, j = 1, ...,m.

As in Section 2.1 we define the corresponding numbers κj ∈ (0, 1) by

κj := 1−mj/2m− 1/2mp, j = 1, ...,m.

Throughout this section it is assumed that

2m
(
κj − (1− µ+ 1/p)

)
> (n− 1)/p, j = 1, ...,m. (2.5.1)

The coefficients bjβ of the boundary operator Bj are supposed to satisfy

bjβ ∈ B
2m(κj−(1−µ+1/p))
p,p (Γ,B(CN )), j = 1, ...,m. (2.5.2)

Due to (2.5.1) and Sobolev’s embedding it holds

B
2m(κj−(1−µ+1/p))
p,p (Γ,B(CN )) ↪→ C(Γ,B(CN )). (2.5.3)

Thus Lemma 1.3.19 and the continuity properties of the spatial trace trΩ (1.3.20) guarantee
that B maps continuously

B2m(µ−1/p)
p,p (Ω,CN )→

m∏
j=1

B
2m(κj−(1−µ+1/p))
p,p (Γ,CN ).

We further assume that there is a linear autonomous differential operator A of the form

A(x,D) =
∑
|α|=2m

aα(x)Dα, x ∈ Ω,

with coefficients
aα ∈ BUC(Ω,B(CN )), (2.5.4)

such that (A,B) satisfies the ellipticity conditions (E) and (LS) from Section 2.1.

Such a situation arises in Chapter 4, where (A,B) is the linearization of a quasilinear
problem at some u0 ∈ B2m(µ−1/p)

p,p (Ω,B(CN )). There terms of the form trΩDβu0, |β| ≤ mj

enter into the linearization, which leads to coefficients as in (2.5.2).



2.5 A Right-Inverse for the Boundary Operator 99

In Proposition 4.3.4 we use maximal Lp,µ-regularity and the implicit function theorem to
show continuous dependence on the initial data for quasilinear problems. Due to a nonlinear
phase space it is there required that for all µ ∈ (1/p, 1] satisfying (2.5.1) an operator B
as above has a bounded linear right-inverse Nµ, i.e., it holds BNµ = id and Nµ maps
continuously

m∏
j=1

B
2m(κj−(1−µ+1/p))
p,p (Γ,CN )→ B2m(µ−1/p)

p,p (Ω,CN ).

For the unweighted case, µ = 1, the existence of a right-inverse is shown in [65, Proposition
5]. The proof there makes use of the corresponding parabolic problem and the fact the Lp-
spaces on the half-line are invariant under right translations. Since this is not the case for
the Lp,µ-spaces, µ ∈ (1/p, 1), the proof from [65] does not carry over to the weighted case.

It is the purpose of this section to construct a right-inverse Nµ also for µ ∈ (1/p, 1). The
difficulty is that for v ∈ W 2m

p (Ω; CN ) it always holds Bjv ∈ W
2mκj
p (Γ,CN ), which is a

smaller space than W
2m(κj−(1−µ+1/p))
p (Γ,CN ). Thus the right-inverse cannot directly be

constructed as the solution of the elliptic problem

A(x,D)v = 0, x ∈ Ω, B(x,D)v = (g1, ..., gm), x ∈ Γ,

if A is realized on Lp(Ω,CN ). The idea is now to shift the functions (g1, ..., gm) to a higher
regularity class with an appropriate isomorphism, to solve the above problem and finally to
shift the solution back. Since a suitable isomorphism only seems to be available on spaces
over Rn−1, we have to localize the problem of finding the right-inverse to Rn−1, analogously
to the proof of Theorem 2.1.4 in the last section.

For clarity reasons, several assertions from the following proof are postponed in a series of
lemmas afterwards. Throughout the rest of this section we set

Xµ(Ω) := B2m(µ−1/p)
p,p (Ω,CN ), Yµ(Γ) :=

m∏
j=1

B
2m(κj−(1−µ+1/p))
p,p (Γ,CN ).

Proposition 2.5.1. Let Ω ⊂ Rn be a domain with compact smooth boundary Γ = ∂Ω, or
Ω = Rn

+, let p ∈ (n,∞) and µ ∈ (1/p, 1] satisfy (2.5.1) and assume that (A,B) are subject
to (E), (LS), (2.5.2) and (2.5.4). Then B has a bounded linear right-inverse

Nµ :
m∏
j=1

B
2m(κj−(1−µ+1/p))
p,p (Γ,CN )→ B2m(µ−1/p)

p,p (Ω,CN ).

Proof. (I) For each x∗ ∈ Γ the constant coefficient operator (A(x∗, D),B](x∗, D))5 is
subject to the pointwise conditions (E) and (LS). We construct a continuous right-inverse
N 0,x∗
µ : Yµ(Rn−1) → Xµ(Rn

+) for B](x∗, D) as follows. Let g = (g1, ..., gm) ∈ Yµ(Rn−1) be
given. Then we have

hj := S−1gj ∈W
2mκj
p (Rn−1,CN ), j = 1, ...,m,

5Recall that Bj](x∗, D) =
P
|β|=mj bjβ(x)trΩDβ denotes the principal part of Bj for j = 1, ...,m, and

that B] := (B1], ...,Bm]).
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where the operator S on Lp(Rn−1,CN ) is given by

S := (1 + (−∆n−1)m)1−µ+1/p.

It follows from Lemma 2.2.6 that for all λ > 0 the unique solution v ∈ W 2m
p (Rn

+,CN ) of
the elliptic problem

λv +A(x∗, D)v = 0 on Rn
+,

Bj](x∗, D)v = hj on Rn−1, j = 1, ...,m,

is of the form v =
∑m

j=1 Sj(λ)hj , with operators

Sj(λ) ∈ B
(
W

2mκj
p (Rn−1,CN ),W 2m

p (Rn
+,CN )

)
, j = 1, ...,m.

We now define the operator N 0,x∗
µ (λ) by

N 0,x∗
µ (λ)g := S

m∑
j=1

Sj(λ)S−1gj . (2.5.5)

Here S acts on the first n − 1 variables as a pointwise realization on Lp(Rn
+,CN ) =

Lp(R+;Lp(Rn−1,CN )). It is shown in Lemma 2.5.4 below that N 0,x∗
µ (λ) maps continu-

ously Yµ(Rn−1)→ Xµ(Rn
+). Further N 0,x∗

µ (λ) is in fact a right-inverse for B](x∗, D), since
the realization of S on Lp(Rn

+,CN ) commutes with B](x∗, D).
(II) For all x∗ ∈ Γ we choose a neighbourhood Ũx∗ ⊂ Rn of x∗, a smooth diffeomorphism
ϕx∗ : Ũx∗ → Rn and a radius rx∗ > 0 with

ϕx∗(x∗) = 0, ϕx∗(Ũx∗) = B2rx∗ (0), ϕx∗(Ũx∗ ∩Ω) ⊂ Rn
+, ϕx∗(Ũx∗ ∩Γ) ⊂ Rn−1.

For given ε > 0, if the diameter of Ũx∗ is sufficiently small, then by continuity the top
order coefficients of Bj satisfy

sup
x∈Γ∩eUx∗ |bjβ(x∗)− bjβ(x)| < ε, |β| = mj , j = 1, ...,m.

Setting
Ux∗ := ϕ−1

x∗

(
Brx∗ (0)

)
, x∗ ∈ Γ,

we obtain an open cover
⋃
x∗∈Γ Ux∗ for Γ, from which we may choose a finite subcover⋃

i Ui corresponding to points xi ∈ Γ and chart maps ϕi. There further exists a smooth
partition of unity {ψi} of Γ, subordinate to

⋃
i Ui.

(III) Now let g = (g1, ..., gm) ∈ Yµ(Γ) be given. If u ∈ Xµ(Ω) solves

Bu = g on Γ, (2.5.6)

then for each i the function v = ψiu solves6

Bv = ψig + [B, ψi]u on Γ ∩ Ui. (2.5.7)
6Recall that [·, ·] denotes the commutator bracket, i.e., [B, ψi]u = B(ψiu)− ψiBu.
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Denoting by Φi the push forward operator corresponding to ϕi, i.e., Φiu = u ◦ ϕ−1
i , we

have that ψiu solves (2.5.7) if and only if w = Φi(ψiu) satisfies

BΦiw = Φi

(
ψig + [B, ψi]u

)
=: hi on Rn−1 ∩Bri(0). (2.5.8)

Here BΦi(x,D) :=
(
ΦiB(·, D)Φ−1

i

)
(x) denotes the transformed boundary operator,

BΦi(x,D)w =
(
B(·, D)(w ◦ ϕi)

)
◦ ϕ−1

i (x), x ∈ Rn−1 ∩Bri(0),

and the transformed data hi = (hi1, ..., h
i
m) is identified with its trivial extension to Rn−1

so that it belongs to Yµ(Rn−1).
As in Step V of the proof of Theorem 2.1.4 we obtain that the coefficients of BΦi , which
are denoted by bΦijβ , satisfy

bΦijβ ∈ B
2m(κj−(1−µ+1/p))
p,p (Rn−1 ∩Bri(0),CN ), |β| ≤ mj , j = 1, ...,m.

We denote by ERn−1∩Bri (0) the continuous extension operator from Rn−1 ∩Bri(0) to Rn−1,
given by (1.3.3), and extend the lower order coefficients of BΦi to Rn−1 by setting

bijβ := ERn−1∩Bri (0)b
Φi
jβ , |β| < mj , j = 1, ...,m.

The top order coefficients are extended to

bijβ(x) := bΦijβ(0)+χ(x/2ri)
(
bΦijβ(χ(x/ri)x)−bΦijβ(0)

)
, x ∈ Rn−1, |β| = mj , j = 1, ...,m,

where χ ∈ C∞c (Rn−1) is an appropriate cut-off function. We denote the operator with
extended coefficients bijβ by Bi. Now, if a function w ∈ Xµ(Rn

+) solves

Biw = hi on Rn−1, (2.5.9)

then w|Rn−1∩Bri (0) solves (2.5.8).
(IV) To solve (2.5.9) we consider the top order constant coefficient operators

Ai,0(D) :=
(
ΦiA](·, D)Φ−1

i

)
|x=0, Bi,0(D) := Bi](0, D) =

∑
|β|=mj

bΦijβ(0)trRn+D
β.

Since (A,B) satisfies (E) and (LS), it follows that (Ai,0,Bi,0) satisfies these conditions as
well. A function w solves (2.5.9) if and only if it satisfies

Bi,0(D)w = hi(x) + Bi,sm(x,D)w, x ∈ Rn−1. (2.5.10)

Here the operator Bi,sm is given by

Bi,sm(x,D) = Bi,0(D)− Bi(x,D), x ∈ Rn−1,

and the coefficients of Bi,sm are denoted by bi,smjβ . By construction it holds

bi,smjβ ∈ B2m(κj−(1−µ+1/p))
p,p (Rn−1,CN ), |β| ≤ mj , j = 1, ...,m,
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and we further have that for given ε

sup
x∈Rn−1

|bi,smjβ (x)| < ε, |β| = mj , j = 1, ...,m,

provided the diameter of the neighbourhoods Ui is chosen sufficiently small from the be-
ginning. Due to the considerations in Step I, a continuous right-inverse N 0,i

µ (λ) for Bi,0

may be constructed as in (2.5.5), for all λ > 0. Hence for a function w ∈ Xµ(Rn
+) to solve

(2.5.10) it suffices that w satisfies(
id−N 0,i

µ (λ)Bi,sm
)
w = N 0,i

µ (λ)hi in Rn
+.

Lemma 2.5.5 shows that if ε is sufficiently small and λ is sufficiently large then this equation
is solvable by means of a Neumann series, i.e.,

N i
µ(λ)hi :=

∞∑
k=0

N 0,i
µ (λ)

(
Bi,smN 0,i

µ (λ)
)k
hi. (2.5.11)

This yields for each i a continuous solution operator

N i
µ(λ) : Yµ(Rn−1)→ Xµ(Rn

+)

for (2.5.9). Therefore ψiu solves (2.5.7) if ψiu satisfies

ψiu = Φ−1
i

(
N i
µ(λ)Φi(ψig + [B, ψi]u)

)
|Rn+∩Bri (0). (2.5.12)

(V) For each i we choose a function φi ∈ C∞c (Ui) with

φi ≡ 1 on suppψi.

Using them, we define the operator K1(λ) : Yµ(Γ)→ Xµ(Ω) by

K1(λ)g :=
∑

i
φiΦ−1

i (N i
µ(λ)Φiψig)|Rn+∩Bri (0), g ∈ Yµ(Γ),

and we further define the operator K2 : Xµ(Ω)→ Xµ(Ω) by

K2(λ)u :=
∑

i
φiΦ−1

i (N i
µ(λ)Φi[B, ψi]u)|Rn+∩Bri (0), u ∈ Xµ(Ω).

Due to the considerations in the last step, a solution u of (2.5.6) is a solution of the equation(
id−K2(λ)

)
u = K1(λ)g?, (2.5.13)

where g? ∈ Yµ(Γ) must be appropriately chosen such that error terms from nonempty
intersections of the Ui cancel when summing up in K1 and K2. Lemma 2.5.6 shows that
there is a bounded linear solution operator Q(λ) for (2.5.13) if λ is sufficiently large, which
is again constructed by means of a Neumann series.
To find the appropriate g? for which Q(λ)g? solves (2.5.6), note that due to (2.5.13),
(2.5.12) and (2.5.7) it holds

BQ(λ)g? = B
(
K1(λ)g? +K2(λ)Q(λ)g?

)
=
∑

i
φi
(
ψig

? + [B, ψi]Q(λ)g?
)
−K3(λ)g?

=
(
id−K3(λ)

)
g?,
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where the correction operator K3(λ) : Yµ(Γ)→ Yµ(Γ) comes from commuting B with φi in
(2.5.12), i.e.,

K3(λ)h :=
∑

i
[φi,B]Φ−1

i

(
N i
µ(λ)Φi[ψih+ [B, ψi]Q(λ)h]

)
|Rn+∩Bri (0), h ∈ Yµ(Γ).

Lemma 2.5.7 shows that for sufficiently large λ there is a continuous solution operator
R(λ) : Yµ(Γ)→ Xµ(Γ) for the equation(

id−K3(λ)
)
g? = g, g ∈ Yµ(Γ), (2.5.14)

It then follows that the continuous operator Nµ : Yµ(Γ)→ Xµ(Ω), defined by

Nµg := Q(λ)R(λ)g, g ∈ Yµ(Γ),

for some sufficiently large λ, is a right-inverse for B.

We still have to prove several assertions claimed in the proof above.

Lemma 2.5.2. Let p ∈ (1,∞), and assume that α ∈ [0, 1] and s ≥ 0 satisfy s− 2mα ≥ 0.
Then the pointwise realization of (1 + (−∆n−1)m)α on Lp(Rn

+,CN ) maps continuously

Hs
p(Rn

+,CN )→ Hs−2mα
p (Rn

+,CN ). (2.5.15)

Restricting to p ∈ [2,∞), for σ ∈ [0, 2m(µ− 1/p)] the pointwise realization of the operator
S = (1 + (−∆n−1)m)1−µ+1/p on Lp(Rn

+,CN ) maps continuously

W 2m−σ
p (Rn

+,CN )→ B2m(µ−1/p)−σ
p,p (Rn

+,CN ).

Proof. Using extensions and restrictions, it suffices to show the assertion for Rn instead
of Rn

+. For k ∈ N0 it follows from Fubini’s theorem that

Hk
p (Rn,CN ) ↪→ Hk

p (R;Lp(Rn−1,CN )) ∩ Lp(R;Hk
p (Rn−1,CN )). (2.5.16)

The operators (1−∂2
y)k/2 and (1 + (−∆n−1)m)k/2m on Lp(R;Lp(Rn−1,CN )) with domains

Hk
p (R;Lp(Rn−1,CN )) and Lp(R;Hk

p (Rn−1,CN )),

commute in the resolvent sense and admit bounded imaginary powers with power an-
gle equal to zero, respectively, Therefore, interpolating the embedding (2.5.16) with
Lp(R+;Lp(Rn−1,CN )) by the complex method, using Lemma A.3.4 and A.2 m) we ob-
tain

Hs
p(Rn,CN ) ↪→ Hs

p(R;Lp(Rn−1,CN )) ∩ Lp(R;Hs
p(Rn−1,CN )), s > 0.

Using the mixed derivative theorem (Lemma A.3.3) with the operators from above we thus
have for s ≥ 0 that

Hs
p(Rn,CN ) ↪→ Hs(1−θ)

p (R;Hsθ
p (Rn−1,CN )), θ ∈ [0, 1].
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Hence for s ≥ 2mα the operator (1 + (−∆n−1)m))α maps Hs
p(Rn,CN ) continuously into

Hs(1−θ)
p (R;Hsθ−2mα

p (Rn−1,CN )), θ ∈ [2mα/s, 1].

Now suppose that s− 2mα ∈ N0. In this case, if θ is such that sθ− 2mα = k ∈ N0 then it
also holds s(1− θ) = s− 2mα− k ∈ N0. Thus, by Fubini’s theorem,⋂

θ∈[2mα/s,1],sθ−2mα∈N0

Hs(1−θ)
p (R;Hsθ−2mα

p (Rn−1,CN )) = Hs−2mα
p (Rn,CN ),

which yields that (2.5.15) holds for s−2mα ∈ N0. The general case follows from the integer
case by complex interpolation.
The asserted mapping property for S follows from (2.5.15) by real interpolation in case
2m− σ /∈ N. For 2m− σ ∈ N it follows from complex interpolation and the embedding

Hs
p(Rn

+,CN ) ↪→ Bs
p,p(Rn

+,CN ), s ≥ 0, (2.5.17)

which is valid for p ≥ 2 due to [82, Theorem 2.3.2].

We next consider the mapping properties of an extension operator to Rn
+.

Lemma 2.5.3. Let p ∈ (1,∞). Consider for Reλ ≥ 1 the operator L1/2m
λ = (λ +

(−∆n−1)m)1/2m, and the corresponding extension operator Eλ = e−·L
1/2m
λ from Rn−1 to

Rn
+. There is a constant C > 0, which does not depend on λ, such that

|EλS−1h|
Lp(R+;W

2m−mj
p (Rn−1,CN ))

≤ C |h|
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

, (2.5.18)

where S is defined in Lemma 2.5.2, and further

|Eλh|Lp(Rn+,CN ) ≤ C λ−1/2mp |h|Lp(Rn−1,CN ).

Proof. (I) First observe that the function

z 7→ ϑ+
√
z

ϑ+ (λ+ zm)1/2m
, z ∈ Σπ/4m =

{
w ∈ C\{0} : | argw| < π/4m

}
,

is bounded independent of Reλ ≥ 1 and, say, ϑ ∈ Σ2π/3. Using that −∆n−1 admits on
Lp(Rn−1,CN ) a bounded H∞-calculus with H∞-angle equal to zero, this yields that the
operator family(

ϑ+ (−∆n−1)1/2
)(
ϑ+ (λ+ (−∆n−1)m)1/2m

)−1
, Reλ ≥ 1, ϑ ∈ Σ2π/3,

is uniformly bounded on Lp(Rn−1,CN ). Since further the operator (−∆n−1)1/2 is sectorial
with angle of sectoriality equal to zero, it follows that the resolvent estimate

|(ϑ+ L
1/2m
λ )−1|B(Lp(Rn−1,CN )) ≤ C |ϑ|−1, ϑ ∈ Σ2π/3,

is valid with a constant C independent of λ and ϑ. This fact implies

|e−yL
1/2m
λ |B(Lp(Rn−1,CN )) ≤ C, |Lλe−yL

1/2m
λ |B(Lp(Rn−1,CN )) ≤ C y−1, (2.5.19)
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for y > 0, with a constant C independent of Reλ ≥ 1, since for a generator of an analytic
semigroup the constants in these estimates only depend on the sector contained in the re-
solvent set and on the resolvent estimate for the generator (see the proof of [67, Proposition
2.1.1 (iii)], for instance).
Using (1 − ∆n−1)s/2 as an isomorphism between Hs

p(Rn−1,CN ) and Lp(Rn−1,CN )) that
commutes with L

1/2m
λ , we obtain from interpolation that (2.5.19) remains valid if one

replaces B(Lp(Rn−1,CN )) by B(W s
p (Rn−1,CN )) for s ≥ 0.

(II) In this step we follow the proof of [68, Proposition 6.2]. Take v ∈ W 2mκj
p (Rn−1,CN )

and let v = a+ b with a ∈W 2m−mj−1
p (Rn−1,CN ) and b ∈W 2m−mj

p (Rn−1,CN ). Using that
the operator (1 − ∆n−1)1/2L

−1/2m
λ is uniformly bounded in Reλ ≥ 1, and using further

(2.5.19), we obtain for y > 0 that

|e−yLλv|
W

2m−mj
p (Rn−1,CN )

≤ C |Lλe−yLλa|
W

2m−mj−1
p (Rn−1,CN )

+ |e−yLλb|
W

2m−mj
p (Rn−1,CN )

≤ C y−1|a|
W

2m−mj−1
p (Rn−1,CN )

+ C |b|
W

2m−mj
p (Rn−1,CN )

.

Taking the infimum over a and b on the right-hand side leads to

|e−yLλv|
W

2m−mj
p (Rn−1,CN )

≤ C y−1K
(
y, v,W

2m−mj−1
p (Rn−1,CN ),W 2m−mj

p (Rn−1,CN )
)

for y > 0, where K denotes the K-functional from real interpolation theory (see [68]). It
now follows from the definition of the real interpolation functor (·, ·)1−1/p,p that

|e−·Lλv|
Lp(R+,W

2m−mj
p (Rn−1,CN ))

≤ C |v|
B

2mκj
p,p (Rn−1,CN )

,

with a constant C independent of λ. The estimate (2.5.18) is now a consequence of the
fact that S = (1 + (−∆n−1)m)1−µ+1/p is an isomorphism between B2mκj

p,p (Rn−1,CN ) and
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN ).

(III) The function z 7→ exp
(
y(λ1/2m − (λ + zm)1/2m)

)
is holomorphic and bounded on

Σπ/4m, independent of y > 0 and Reλ ≥ 1. Using again the bounded H∞-calculus of
−∆n−1 we obtain that there is a constant C > 0, independent of y and λ, such that

|e−yL
1/2m
λ h|Lp(Rn−1,CN ) ≤ C e−yλ

1/2m |h|Lp(Rn−1,CN ), h ∈ Lp(Rn−1,CN ).

Taking the Lp(R+) norm with respect to y shows the second asserted estimate.

In dependence on λ we consider the continuity properties of the right-inverses N 0,x∗
µ (λ) on

the half-space, defined in (2.5.5).

Lemma 2.5.4. In the setting of the proof of Proposition 2.5.1, consider for x∗ ∈ Γ the
operator

N 0,x∗
µ (λ)g := S

m∑
j=1

Sj(λ)S−1gj , g = (g1, ..., gm) ∈ Yµ(Rn−1).

Then for σ1 ∈ [0, µ− 1/p] we have

|N 0,x∗
µ (λ)g|

B
2m(µ−1/p−σ1)
p,p (Rn+,CN )

. λ−σ1 max
j=1,...,m

(
|gj |

B
2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

(2.5.20)

+ λ−(1−µ+1/p)−1/2mpλ1−
mj
2m |gj |Lp(Rn−1,CN )

)
,
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and, for σ2 ∈ [0, 2m− 1/p),

|N 0,x∗
µ (λ)g|

B
1/p+σ2
p,1 (Rn+,CN )

.λ−(1−σ2/2m) max
j=1,...,m

(
λ1−

mj
2m |gj |Lp(Rn−1,CN ) (2.5.21)

+ λ1−µ+1/p+1/2mp|gj |
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

)
Moreover, for σ3 ∈ [0, κj − (1− µ+ 1/p)) and β ∈ Nn

0 with |β| ≤ mj it holds

|trRn+D
βN 0,x∗

µ (λ)g|
B

2m(κj−(1−µ+1/p)−σ3)
p,p (Rn−1,CN )

. λ−σ3λ−
mj−|β|

2m max
l=1,...,m

(2.5.22)(
|gl|B2m(κl−(1−µ+1/p))

p,p (Rn−1,CN )
+ λ−(1−µ+1/p)−1/2mpλ1−ml

2m |gl|Lp(Rn−1,CN )

)
,

and further

|trRn+D
βN 0,x∗

µ (λ)g|Lp(Rn−1,CN ) . λ−
(

1− |β|
2m

)
max

l=1,...,m

(
λ1−ml

2m |gl|Lp(Rn−1,CN ) (2.5.23)

+λ1−µ+1/pλ1/2mp|gl|B2m(κl−(1−µ+1/p))
p,p (Rn−1,CN )

)
.

Proof. (I) Due to Lemma 2.2.6, for j = 1, ...,m the operator Sj(λ) is of the form

Sj(λ) = Tj(λ)L1−mj/2m
λ Eλ,

where Tj(λ) ∈ B
(
Lp(Rn

+,CN ),W 2m
p (Rn

+,CN )
)
, Lλ = λ + (−∆n−1)m and Eλ = e−·L

1/2m
λ .

Using that the function z 7→ (λ+zm)1−mj/2m

λ1−mj/2m+z(2m−mj)/2 is uniformly bounded for, say, z ∈ Σπ/4m,
and the properties of Tj(λ) stated in Lemma 2.2.6 we may rewrite Sj(λ) to

Sj(λ) = T̃j(λ)
(

(−∆n−1)
2m−mj

2 + λ1−
mj
2m

)
Eλ,

where T̃j(λ) has for λ > 0 and j = 1, ...,m the property

|T̃j(λ)v|B2m−s
p,q (Rn+,CN ) . λ−s/2m|v|Lp(Rn+,CN ), s ∈ [0, 2m], q ∈ [1,∞]. (2.5.24)

The proof of [25, Lemma 4.3] shows that Tj(λ) is a convolution operator with respect to
x ∈ Rn−1. Therefore −∆n−1 commutes with Tj(λ), and thus also with T̃j(λ). Now it follows
from [7, Lemma III.4.9.2] that S commutes with T̃j(λ). Together with (2.5.24) we obtain

|ST̃j(λ)v|
W

2m(µ−1/p−σ1)
p (Rn+,CN )

. λ−σ1λ−(1−µ+1/p)|Sv|Lp(Rn+,CN ). (2.5.25)

(II) To show (2.5.20), first observe that

|N 0,x∗
µ (λ)g|

B
2m(µ−1/p−σ1)
p,p (Rn+,CN )

. max
j=1,...m

|ST̃j(λ)(−∆n−1)
2m−mj

2 EλS−1gj |B2m(µ−1/p−σ1)
p,p (Rn+,CN )

+ max
j=1,...,m

|ST̃j(λ)λ1−
mj
2m EλS−1gj |B2m(µ−1/p−σ1)

p,p (Rn+,CN )
.

Hence for each j we have to estimate these two summands. For the first summand we use
(2.5.24) and the Lemmas 2.5.2 and 2.5.3 to obtain

|ST̃j(λ)(−∆n−1)
2m−mj

2 EλS−1gj |B2m(µ−1/p−σ1)
p,p (Rn+,CN )

. λ−σ1 |gj |
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

.
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Using in addition (2.5.25), we have for the second summand

|ST̃j(λ)λ1−
mj
2m EλS−1gj |B2m(µ−1/p−σ1)

p,p (Rn+,CN )

. λ−σ1λ−(1−µ+1/p)−1/2mpλ1−
mj
2m |gj |Lp(Rn−1,CN ).

(III) For (2.5.21) we first estimate, as in the last step,

|N 0,x∗
µ (λ)g|

B
1/p+σ2
p,1 (Rn+,CN )

. max
j=1,...,m

|ST̃j(λ)(−∆n−1)
2m−mj

2 EλS−1gj |B1/p+σ2
p,1 (Rn+,CN )

+ max
j=1,...,m

|ST̃j(λ)λ1−
mj
2m EλS−1gj |B1/p+σ2

p,1 (Rn+,CN )
.

Using (2.5.24), we obtain for the first summand

|ST̃j(λ)(−∆n−1)
2m−mj

2 EλS−1gj |B1/p+σ2
p,1 (Rn+,CN )

. λ−(1−σ2/2m)λ1−µ+1/p+1/2mp|gj |
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

,

and for the second summand

|ST̃j(λ)λ1−
mj
2m EλS−1gj |B1/p+σ2

p,1 (Rn+,CN )
. λ−(1−σ2/2m)λ1−

mj
2m |gj |Lp(Rn−1,CN ).

(IV) For (2.5.22) we estimate

|trRn+D
βN 0,x∗

µ (λ)g|
B

2m(κj−(1−µ+1/p)−σ3)
p,p (Rn−1,CN )

. |N 0,x∗
µ (λ)g|

B
2m(µ−1/p−σ3−

mj−|β|
2m )

p,p (Rn+,CN )

,

and thus (2.5.22) follows from (2.5.20). In (2.5.23), the trace operator meets the Lp-norm.
For this we use that trRn+ is continuous

B
1/p
p,1 (Rn

+,CN )→ Lp(Rn−1,CN ),

see [82, Theorem 2.9.3]. Then

|trRn+D
βN 0,x∗

µ (λ)g|Lp(Rn−1,CN ) . |N 0,x∗
µ (λ)g|

B
1/p+|β|
p,1 (Rn+,CN )

,

and (2.5.23) follows from (2.5.21).

We next prove the convergence of the Neumann series in (2.5.11).

Lemma 2.5.5. In the setting of the proof of Proposition 2.5.1, for each i the series

N i
µ(λ) =

∞∑
k=0

N 0,i
µ (λ)

(
Bi,smN 0,i

µ (λ)
)k

exists in B
(
Yµ(Rn−1), B2m(µ−1/p−σ1)

p,p (Rn
+,CN )

)
, provided ε is sufficiently small and λ is

sufficiently large. For σ1 ∈ [0, µ− 1/p] it holds

|N i
µ(λ)g|

B
2m(µ−1/p−σ1)
p,p (Rn+,CN )

. λ−σ1
(
|g|Yµ(Rn−1) (2.5.26)

+ λ−(1−µ+1/p)−1/2mp
m∑
j=1

λ1−
mj
2m |gj |Lp(Rn−1,CN )

)
.
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Moreover, for σ2 ∈ [0, 2m− 1/p) we have

|N i
µ(λ)g|

B
1/p+σ2
p,1 (Rn+,CN )

≤ C λ−(1−σ2/2m)
(
λ1−µ+1/p+1/2mp|g|Yµ(Rn−1) (2.5.27)

+
m∑
j=1

λ1−
mj
2m |gj |Lp(Rn−1,CN )

)
.

Proof. (I) It follows from (2.5.20) that for k ∈ N0 it holds

|N 0,i
µ (λ)(Bi,smN 0,i

µ (λ))kg|
B

2m(µ−1/p−σ1)
p,p (Rn+,CN )

(2.5.28)

. λ−σ1 max
j=1,...,m

(
|((Bi,smN 0,i

µ (λ))kg)j |
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

+ λ−(1−µ+1/p)−1/2mpλ1−
mj
2m |((Bi,smN 0,i

µ (λ))kg)j |Lp(Rn−1,CN )

)
,

and further, due to (2.5.21),

|N 0,i
µ (λ)(Bi,smN 0,i

µ (λ))kg|
B

1/p+σ2
p,1 (Rn+,CN )

(2.5.29)

. λ−(1−σ2/2m) max
j=1,...,m

(
λ1−µ+1/p+1/2mp|((Bi,smN 0,i

µ (λ))kg)j |
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

+ λ1−
mj
2m |((Bi,smN 0,i

µ (λ))kg)j |Lp(Rn−1,CN )

)
.

(II) For each j we consider the summands in (2.5.28). For the first summand we have

|((Bi,smN 0,i
µ (λ)g)j |

B
2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

(2.5.30)

. max
|β|≤mj

|bi,smjβ trRn+D
βN 0,i

µ (λ)g|
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

.

Applying Lemma 1.3.19 and using (2.5.3) for each β we obtain for small δ > 0 that

|bi,smjβ trRn+D
βN 0,i

µ (λ)g|
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

≤ C |bi,smjβ |L∞(Rn−1,CN )|trRn+D
βN 0,i

µ (λ)g|
B

2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

+ Cε|trRn+D
βN 0,i

µ (λ)g|
B

2m(κj−(1−µ+1/p)−δ)
p,p (Rn−1,CN )

=: I1 + I2.

The estimate (2.5.22) yields

I1 ≤ (Cε+ Cελ
−1/2m) max

l=1,...,m

(
|gl|B2m(κl−(1−µ+1/p))

p,p (Rn−1,CN )

+ λ−(1−µ+1/p)−1/2mpλ1−ml
2m |gl|Lp(Rn−1,CN )

)
,

where C is independent of ε and Cε is independent of λ. In the same way we obtain

I2 ≤ Cε λ−δ max
l=1,...,m

(
|gl|

B
2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

+ λ−(1−µ+1/p)−1/2mpλ1−ml
2m |gl|Lp(Rn−1,CN )

)
.
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Combining these estimates with (2.5.30) leads to

|(Bi,smN 0,i
µ (λ)g)j |

B
2m(κj−(1−µ+1/p))
p,p (Rn−1,CN )

≤ (Cεi + Cεiλ
−δ) max

l=1,...,m

(
|gl|W 2m(κl−(1−µ+1/p))

p (Rn−1,CN )

+ λ−(1−µ+1/p)λ−1/2mpλ1−ml
2m |gl|Lp(Rn−1,CN )

)
.

Note that for g = (Bi,smN 0,i
µ (λ))k−1g̃ the right-hand side above is of the same type as the

right-hand side in (2.5.28) with k− 1 instead of k and the additional factor (Cε+Cελ
−δ).

For the second summand in (2.5.28) we have, using (2.5.23),

|(Bi,smN 0,i
µ (λ)g)j |Lp(Rn−1,CN ) ≤ C |b

i,sm
jβ |L∞(Rn−1,CN ) λ

−
(

1− |β|
2m

)
max

l=1,...,m

(
λ1−µ+1/p+1/2mp|gl|B2m(κl−(1−µ+1/p))

p,p (Rn−1,CN )
+ λ1−ml

2m |gl|Lp(Rn−1,CN )

)
,

which yields

λ−(1−µ+1/p)λ−1/2mpλ1−
mj
2m |((Bi,smN 0,i

µ (λ))kg)j |Lp(Rn−1,CN )

≤ (Cε+ Cελ
−1/2m) max

l=1,...,m

(
|((Bi,smN 0,i

µ (λ))k−1g)l|B2m(κl−(1−µ+1/p))
p,p (Rn−1,CN )

+ λ−(1−µ+1/p)−1/2mpλ1−ml
2m |((Bi,smN 0,i

µ (λ)g)k−1)l|Lp(Rn−1,CN )

)
.

Again, the right-hand side is of the same type as the right-hand side in (2.5.28), with k

replaced by k − 1 and the additional factor Cε+ Cελ
−1/2m.

(III) Iterating the above estimates yields for k ∈ N0 that

|N 0,i
µ (λ)(Bi,smN 0,i

µ (λ))kg|
B

2m(µ−1/p−σ1)
p,p (Rn+,CN )

. (Cε+ Cελ
−τ )k

λ−σ1

(
|g|Yµ(Rn−1) + λ−(1−µ+1/p)−1/2mp

m∑
j=1

λ1−
mj
2m |gj |Lp(Rn−1,CN )

)
,

with some τ > 0. This implies that N i
µ(λ) exists in B(Yµ(Rn−1), B2m(µ−1/p−σ1)

p,p (Rn
+,CN ))

and admits the asserted estimate (2.5.26), provided we first choose ε sufficiently small and
then λ sufficiently large.
(IV) Starting in Step II with (2.5.29) instead of (2.5.28) one obtains (2.5.27) in a similar
fashion, using the estimates from Lemma 2.5.4.

The next lemma shows the unique solvability equation (2.5.13).

Lemma 2.5.6. In the setting of Proposition 2.5.1, consider the operators

K1(λ)g =
∑

i
φiΦ−1

i (N i
µ(λ)Φiψig)|Rn+∩Bri (0), g ∈ Yµ(Γ),

K2(λ)u =
∑

i
φiΦ−1

i (N i
µ(λ)Φi[B, ψi]u)|Rn+∩Bri (0), u ∈ Xµ(Ω).

For each g ∈ Yµ(Γ) the equation
(
id − K2(λ)

)
u = K1(λ)g has a unique solution u :=

Q(λ)g ∈ Xµ(Ω), provided λ is sufficiently large. For σ1 ∈ [0, µ− 1/p] the solution operator
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satisfies

|Q(λ)g|
B

2m(µ−1/p−σ1)
p,p (Ω,CN )

(2.5.31)

.λ−σ1
(
|g|Yµ(Γ) + λ−(1−µ+1/p)−1/2mp

m∑
j=1

λ1−
mj
2m |gj |Lp(Γ,CN )

)
,

and for σ2 ∈ [0, 2m− 1/p) we further have

|Q(λ)g|
B

1/p+σ2
p,1 (Ω,CN )

(2.5.32)

.λ−(1−σ2/2m)
(
λ1−µ+1/p+1/2mp|g|Yµ(Γ) +

m∑
j=1

λ1−
mj
2m |gj |Lp(Γ,CN )

)
.

Proof. (I) We concentrate on (2.5.31), similar arguments lead to (2.5.32). We intend to
show the absolute convergence of the Neumann series

Q(λ) :=
∞∑
k=0

K2(λ)k K1(λ)

in B
(
Yµ(Γ), B2m(µ−1/p−σ1)

p,p (Ω,CN )
)
. It follows from (2.5.26) that

|K2(λ)u|
B

2m(µ−1/p−σ1)
p,p (Ω,CN )

≤ max
i
|NiΦi[B, ψi]u|B2m(µ−1/p−σ1)

p,p (Rn+,CN )

. λ−σ1 max
i

(
|Φi[B, ψi]u|Yµ(Rn−1)

+ λ−(1−µ−1/p)−1/2mp
m∑
j=1

λ1−
mj
2m |Φi[Bj , ψi]u|Lp(Rn−1,CN )

)
.

If mj = 0 for some j then [Bj , ψi] = 0, thus we assume that mj ≥ 1 for each j = 1, ...,m
in the sequel. As [Bj , ψi] is of order at most mj − 1 we have for each i that

|Φi[B, ψi]u|Yµ(Rn−1) . |[B, ψi]u|Yµ(Γ∩Ui) . |u|
B

2m(µ−1/p)−1
p,p (Ω,CN )

,

and further, for each j = 1, ...,m,

|Φi[Bj , ψi]u|Lp(Rn−1,CN ) . |u|
B

1/p+mj−1

p,1 (Ω,CN )
.

This yields

|K2(λ)u|
B

2m(µ−1/p−σ1)
p,p (Ω,CN )

.λ−σ1
(
|u|

B
2m(µ−1/p)−1
p,p (Ω,CN )

(2.5.33)

+ λ−(1−µ−1/p)−1/2mp
m∑
j=1

λ1−
mj
2m |u|

B
1/p+mj−1

p,1 (Ω,CN )

)
.

Moreover, (2.5.27) implies

|K2(λ)u|
B

1/p+mj−1

p,1 (Ω,CN )
. λ−1/2mλ−(1−

mj
2m

)
(
λ1−µ+1/p+1/2mp|u|

B
2m(µ−1/p)−1
p,p (Ω,CN )

+
m∑
l=1

λ1−ml
2m |u|

B
1/p+ml−1
p,1 (Ω,CN )

)
.



2.5 A Right-Inverse for the Boundary Operator 111

Iterating the above estimates we obtain for k ∈ N

|K2(λ)ku|
B

2m(µ−1/p−σ1)
p,p (Ω,CN )

. (Cλ)−
k−1
2m λ−σ1

(
|u|

B
2m(µ−1/p)−1
p,p (Ω,CN )

(2.5.34)

+ λ−(1−µ−1/p)−1/2mp
m∑
j=1

λ1−
mj
2m |u|

B
1/p+mj−1

p,1 (Ω,CN )

)
,

where the constant C is independent of λ.
(II) We now estimate K1(λ). From (2.5.26) we infer

|K1(λ)g|
B

2m(µ−1/p)−1
p,p (Ω,CN )

. max
i
|NiΦiψig|B2m(µ−1/p)−1

p,p (Rn+,CN )

.λ−1/2m
(
|g|Yµ(Γ) + λ−(1−µ+1/p)−1/2mp

m∑
j=1

λ1−
mj
2m |gj |Lp(Γ,CN )

)
,

and further, from (2.5.27),

|K1(λ)g|
B

1/p+mj−1

p,1 (Ω,CN )
. λ−1/2mλ−

(
1−

mj
2m

) (
λ1−µ+1/p+1/2mp|g|Yµ(Γ)

+
m∑
l=1

λ1−ml
2m |gl|Lp(Γ,CN )

)
for j = 1, ...,m. Using these estimates for u = K1(λ)g in (2.5.34) we obtain for k ∈ N0 that

|K2(λ)kK1(λ)g|
B

2m(µ−1/p−σ1)
p,p (Ω,CN )

≤ (Cλ)−k/2mλ−σ1
(
|g|Yµ(Γ)

+ λ−(1−µ+1/p)−1/2mp
m∑
j=1

λ1−
mj
2m |gj |Lp(Γ,CN )

)
.

This yields the absolute convergence of the Neumann series and the estimate for Q(λ) as
asserted, provided λ is sufficiently large.

Last but not least we consider the equation (2.5.14).

Lemma 2.5.7. In the setting of Proposition 2.5.1, consider the operator

K3(λ)h =
∑

i
[φi,B]Φ−1

i

(
N i
µ(λ)Φi[ψih+ [B, ψi]Q(λ)h]

)
|Rn+∩Bri (0), h ∈ Yµ(Γ).

If λ is sufficiently large then for each g ∈ Yµ(Γ) there is a unique solution h = R(λ)g ∈
Yµ(Γ) of (id−K3)h = g. The solution operator R(λ) is continuous on Yµ(Γ).

Proof.We show the absolute convergence of the Neumann series
∑∞

k=0K3(λ)k in B(Yµ(Γ)).
We assume that mj ≥ 1 for j = 1, ...,m in the sequel, otherwise the corresponding com-
mutators vanish. Using (2.5.26) and that the commutators [φi,Bj ] are of lower order we
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obtain

|K3(λ)g|Yµ(Γ) . max
i
|N i

µ(λ)Φi[ψig + [B, ψi]Q(λ)g]|
B

2m(µ−1/p)−1
p,p (Rn+,CN )

. λ−1/2m max
i

(
|Φi[ψig + [B, ψi]Q(λ)g]|Yµ(Rn−1)

+ λ−(1−µ+1/p)−1/2mp
m∑
j=1

λ1−
mj
2m |Φi[ψigj + [Bj , ψi]Q(λ)g]|Lp(Rn−1,CN )

)
. λ−1/2m max

i

(
|g|Yµ(Γ) + |[B, ψi]Q(λ)g|Yµ(Γ)

+ λ−(1−µ+1/p)−1/2mp
m∑
j=1

λ1−
mj
2m (|gj |Lp(Γ,CN ) + |[Bj , ψi]Q(λ)g|Lp(Γ,CN ))

)
.

We further infer from (2.5.31) that

|[B, ψi]Qg|Yµ(Γ) . λ−1/2m
(
|g|Yµ(Γ) + λ−(1−µ+1/p)−1/2mp

m∑
j=1

λ1−
mj
2m |gj |Lp(Γ,CN )

)
,

and from (2.5.32) that

|[Bj , ψi]Q(λ)g|Lp(Γ,CN ) . |Q(λ)g|
B

1/p+mj−1

p,1 (Ω,CN )

. λ−1/2mλ−(1−
mj
2m

)
(
λ1−µ+1/p+1/2mp|g|Yµ(Γ) +

m∑
l=1

λ1−ml
2m |gl|Lp(Γ,CN )

)
,

which yields

|K3(λ)g|Yµ(Γ) . λ−1/2m
(
|g|Yµ(Γ) + λ−(1−µ+1/p)−1/2mp

m∑
l=1

λ1−ml
2m |gl|Lp(Γ,CN )

)
.

Using (2.5.27), we also obtain for l = 1, ...,m that

|(K3(λ)g)l|Lp(Γ,CN )

. λ−1/2mλ−
(

1−ml
2m

)(
λ1−µ+1/p+1/2mp

(
|g|Yµ(Γ) + |[B, ψi]Q(λ)g|Yµ(Γ)

)
+

m∑
j=1

λ1−
mj
2m
(
|gj |Lp(Γ,CN ) + |[Bj , ψi]Q(λ)g|Lp(Γ,CN )

))
.

Hence we have for k ∈ N0, with a constant C that is independent of λ,

|K3(λ)kg|Yµ(Γ) ≤ (Cλ)−k/2m
(
|g|Yµ(Γ) + λ−(1−µ+1/p)−1/2mp

m∑
l=1

λ1−ml
2m |gl|Lp(Γ,CN )

)
.

This yields the convergence of
∑∞

k=0K3(λ)k in B(Yµ(Γ)) and the continuity of the solution
operator R(λ), provided λ is sufficiently large.



Chapter 3

Maximal Lp,µ-Regularity for
Boundary Conditions of Relaxation
Type

In this chapter we show maximal Lp,µ-regularity for vector-valued parabolic initial-
boundary value problems of relaxation type, generalizing the results of by Denk, Prüss, &
Zacher [26]. The approach is analogous to that in Chapter 2 for the case of static bound-
ary conditions. Thus sometimes we are brief, but also repeat some arguments from the
last chapter for transparency. We first describe the approach and the involved anisotropic
function spaces in detail, and then prove the main result, Theorem 3.1.4, by solving the
half-space problem and performing a perturbation and localization procedure. For the ge-
ometry of the boundary of a domain and differential operators defined on them we refer to
the Appendecies A.1 and A.5.

3.1 The Problem and the Approach in Weighted Spaces

The Problem

For the unknown vector-valued functions

u = u(t, x) ∈ E, ρ = ρ(t, x) ∈ F,

we consider linear inhomogeneous, non-autonomous, parabolic initial-boundary value prob-
lems of relaxation type, i.e.,

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t ∈ J,
∂tρ+ B0(t, x,D)u+ C0(t, x,DΓ)ρ = g0(t, x), x ∈ Γ, t ∈ J,

Bj(t, x,D)u+ Cj(t, x,DΓ)ρ = gj(t, x), x ∈ Γ, t ∈ J, j = 1, ...,m, (3.1.1)

u(0, x) = u0(x), x ∈ Ω,

ρ(0, x) = ρ0(x), x ∈ Γ.
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Here Ω ⊂ Rn is assumed to be a domain with compact smooth boundary Γ = ∂Ω, J =
(0, T ) is a finite interval, T > 0, and E,F are Banach spaces of class HT . The unknown u
lives on J ×Ω, while the unknown ρ lives on J ×Γ, i.e., it is only present on the boundary
Γ. It is assumed that the dynamic equation for u and the static boundary equations take
place in E, and that the dynamic equation for ρ takes place in F . Consequently, the right-
hand sides f , g1, ..., gm, and the initial value u0 take values in E, while g0 and ρ0 take
values in F .

Formally one obtains the problem (2.1.1) with static boundary conditions by setting ρ ≡ 0
and dropping the second dynamic equation.

The differential operator A is given by

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, x ∈ Ω, t ∈ J,

where m ∈ N and D = −i∇, with the euclidian gradient ∇ = (∂x1 , ..., ∂xn) on Rn, and
coefficients aα(t, x) ∈ B(E). Hence the order of A is 2m. The boundary operators Bj are
of the form

Bj(t, x,D) =
∑
|β|≤mj

bjβ(t, x)trΩDβ, x ∈ Γ, t ∈ J, j = 0, ...,m,

where mj ∈ {0, ..., 2m− 1} is the order of Bj , and the coefficients satisfy

b0β(t, x) ∈ B(E,F ), bjβ(t, x) ∈ B(E), j = 1, ...,m.

Observe that B = (B0, ...,Bm) only acts on u, in a way that first the euclidian derivatives,
and then the spatial trace trΩ is applied.

The operators C = (C0, ..., Cm) only act on ρ, in the following way. For (almost every) t ∈ J
it is assumed that Cj(t, ·, DΓ) is a linear map

C∞(Γ;F )→ L1(Γ;F ),

such that for all j = 0, ...,m, all local coordinates g for Γ and all ρ ∈ C∞(Γ;F ) it holds(
Cj(t, ·, DΓ)ρ

)
◦ g(x) =

∑
|γ|≤kj

cgjγ(t, x)Dγ
n−1(ρ ◦ g)(x), x ∈ g−1(Γ ∩ U), t ∈ J,

where U ⊂ Rn is the domain of the chart corresponding to g. Here we haveDn−1 = −i∇n−1,
with the euclidian gradient ∇n−1 = (∂x1 , ..., ∂xn−1) on Rn−1, and kj ∈ N0 is the order of
Cj . The local coefficients cgjγ , that may depend on the coordinates g, are assumed to satisfy

cg0γ(t, x) ∈ B(F ), cgjγ(t, x) ∈ B(F,E), j = 1, ...,m.

We do not assume that an operator Cj has global coefficients, in the sense that there are
functions cjγ on Γ satisfying cgjγ = cjγ ◦ g in all coordinates g. In contrast to that, the
coefficients of B are globally defined on Γ. We write Cj(DΓ) with DΓ = −i∇Γ, since for Cj
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we think of an operator in terms of the surface gradient ∇Γ. We refer to Appendix A.5 for
more informations on the surface gradient and general differential operators on a boundary
acting on vector-valued functions.
Finally, it is assumed that each of the operators Bj and at least one operator Cj are
nontrivial. If an operator Cj is trivial, i.e., Cj ≡ 0, then we set kj := −∞ for its order.

We consider three problems that fit into the above framework. Further examples are listed
in [26, Section 3].

Example 3.1.1. A linearized reaction-diffusion system with surface diffusion,

∂tu−∆u = f(t, x), x ∈ Ω, t > 0,

∂tu+ ∂νu−∆Γu = g(t, x), x ∈ Γ, t > 0, (3.1.2)

u(0, x) = u0(x), x ∈ Ω,

where ∂ν = ν(x) · trΩ∇Ω denotes the outer normal derivative and −∆Γ is the Laplace-
Beltrami operator on Γ. The latter is in local coordinates g given by

(
∆Γρ

)
◦ g =

1√
|G|

n−1∑
k, l=1

∂xk
(√
|G|gkl∂xl(ρ ◦ g)

)
,

where G is the first fundamental form corresponding to g and gkl are the components of
G−1, cf. Appendix A.1. The problem (3.1.2) can be cast in the form (3.1.1) as follows,

∂tu−∆u = f(t, x), x ∈ Ω, t > 0,

∂tρ+ ∂νu−∆Γρ = g(t, x), x ∈ Γ, t > 0,

trΩu− ρ = 0, x ∈ Γ, t > 0,

u(0, x) = u0(x), x ∈ Ω,

ρ(0, x) = trΩu0(x), x ∈ Γ.

Hence the unknown ρ is simply the trace of u on Γ. The operator A(D) = −∆ is of order
2, thus m = 1. We further have B0(x,D) = ∂ν , C0(x,DΓ) = −∆Γ, B1 = trΩ, C1 = −id,
such that m0 = 1, k0 = 2, and m1 = k1 = 0.

Neglecting the Laplace-Beltrami operator, we obtain

∂tu−∆u = f(t, x), x ∈ Ω, t > 0,

∂tu+ ∂νu = g(t, x), x ∈ Γ, t > 0, (3.1.3)

u(0, x) = u0(x), x ∈ Ω.

As above, this problem can be cast in the form (3.1.1) by taking trΩu = ρ as static boundary
condition. The only difference to (3.1.2) is that C0 ≡ 0, hence k0 = −∞.
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Transforming the Stefan problem with surface tension to a fixed domain, the linearization
of the resulting problem is of the form

∂tu−∆u = f(t, x), x ∈ Ω, t > 0,

∂tρ+ ∂νu = g0(t, x), x ∈ Γ, t > 0,

u+ ∆Γρ = g1(t, x), x ∈ Γ, t > 0, (3.1.4)

u(0, x) = u0(x), x ∈ Ω,

ρ(0, x) = ρ0(x), x ∈ Γ.

Here the graph of ρ(t, ·) over Γ describes the free boundary at time t. The maximal Lp-
regularity for (3.1.4) is the basic tool in [37] to show analyticity of the free boundary.
This problem structurally differs from (3.1.2) and (3.1.3), since ρ is not simply the trace
of u, and the static coupling of these unknowns is nontrivial. It holds B1 = trΩ, m1 = 0,
C1(x,DΓ) = ∆Γ, k1 = 2, and further m0 = 1 and k0 = −∞.

The Approach in the Lp,µ-Spaces

The maximal Lp,µ-regularity approach for (3.1.1) is as follows. Let

p ∈ (1,∞), µ ∈ (1/p, 1].

We look for solutions (u, ρ) so that the first component u satisfies

u ∈ Eu,µ := W 1
p,µ(J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 2m

p (Ω;E)).

As in the static case, the results of Section 1.3 show that this regularity assumption on u
necessarily implies

f ∈ E0,µ := Lp,µ(J ;Lp(Ω;E)), u0 ∈ Xu,µ := B2m(µ−1/p)
p,p (Ω;E),

and further that

g0 ∈ F0,µ := W κ0
p,µ(J ;Lp(Γ;F )) ∩ Lp,µ(J ;W 2mκ0

p (Γ;F )),

and
gj ∈ Fj,µ := W

κj
p,µ(J ;Lp(Γ;E)) ∩ Lp,µ(J ;W 2mκj

p (Γ;E)), j = 1, ...,m,

where we set
κj := 1− mj

2m
− 1

2mp
, j = 0, ...,m.

For convenience we write

Fµ := F0,µ × ...× Fm,µ, g = (g0, ..., gm) ∈ Fµ.

Therefore, in (3.1.1) the dynamic equation for u takes place in E0,µ, the dynamic equation
for ρ in F0,µ, and the static boundary conditions in Fj,µ, j = 1, ...,m, respectively.
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Looking for optimal regularity, the space Eρ,µ for ρ should now be such that, assuming
smoothness of the coefficients, all the summands in the terms in (3.1.1) where ρ is involved
belong to the space where the respective equation takes place. It can be seen as in [26,
Section 2] that

Eρ,µ =W 1+κ0
p,µ

(
J ;Lp(Γ;F )

)
∩ Lp,µ

(
J ;W l+2mκ0

p (Γ;F )
)

∩W 1
p,µ

(
J ;W 2mκ0

p (Γ;F )
)
∩
⋂
j∈ eJ

W
κj
p,µ

(
J ;W kj

p (Γ;F )
)

satisfies these requirements. Here we have used the abbreviations

J̃ :=
{
j ∈ {0, ...,m} : kj 6= −∞

}
, lj := kj −mj +m0, l := max

j=0,...m
lj .

Observe that J̃ just collects the indices j for which an operator Cj is nontrivial, and that
with the above notations it holds

kj + 2mκj = lj + 2mκ0 ≤ l + 2mκ0.

Proposition 1.3.2 shows that there is redundancy in the above definition of Eρ,µ, depending
on the relation of l and 2m. There are three possible qualitative shapes of the Newton
polygon associated to Eρ,µ (see Section 1.3.1). The points (0, 1 + κ0) and (l + 2mκ0, 0)
are always vertices of the Newton polygon. The line through the points (0, 1 + κ0) and
(2mκ0, 1) intersects (2m + 2mκ0, 0), so that W 1

p,µ(J ;W 2mκ0
p (Γ;F )) is redundant for l ≥

2m, and the points (kj , κj) determine the remaining vertices of the nontrivial part of the
polygon. Moreover, the lines through the points (kj , κj) and (kj + 2mκj , 0) are parallel for
j = 0, ...,m. Thus for l ≤ 2m the spaces corresponding to the points (kj , κj) are redundant,
and (2mκ0, 1) is a vertex if l < 2m. Below we give the precise nonredundant description
of Eρ,µ.

In each case, Theorem 1.3.6 yields the temporal trace space of ρ at t = 0, which is denoted
by

Xρ,µ := trt=0Eρ,µ,

and, if it exists, of ∂tρ at t = 0, which is denoted by

X∂tρ,µ := trt=0∂tEρ,µ, κ0 > 1− µ+ 1/p.

In the Newton polygon, these spaces can be obtained by intersecting the horizontal lines
(a, 1− µ+ 1/p) and

(
a, 1 + (1− µ+ 1/p)

)
, a ∈ R, with its nontrivial part. More precisely,

Theorem 1.3.6 is applied to the intersection of the spaces that determine the edges these
horizontal lines intersect, respectively (cf. Figure 1.3.2).

The description of the spaces below follows the presentation in [26].

The nonredundant description of the spaces Eρ,µ, Xρ,µ and X∂tρ,µ.

Case 1: l = 2m. One has

Eρ,µ = W 1+κ0
p,µ (J ;Lp(Γ;F )) ∩ Lp,µ(J ;W 2m(1+κ0)

p (Γ;F )),
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and therefore

Xρ,µ = B2m(κ0+µ−1/p)
p,p (Γ;F ), X∂tρ,µ = B2m(κ0−(1−µ+1/p))

p,p (Γ;F ) if κ0 > 1− µ+ 1/p.

Case 2: l < 2m. One has

Eρ,µ = W 1+κ0
p,µ (J ;Lp(Γ;F )) ∩ Lp,µ(J ;W l+2mκ0

p (Γ;F )) ∩W 1
p,µ(J ;W 2mκ0

p (Γ;F )),

and this yields similar trace spaces as in Case 1,

Xρ,µ = B2mκ0+l(µ−1/p)
p,p (Γ;F ), X∂tρ,µ = B2m(κ0−(1−µ+1/p))

p,p (Γ;F ) if κ0 > 1− µ+ 1/p.

Case 3: l > 2m. This is the most complicated case. One has

Eρ,µ = W 1+κ0
p,µ (J ;Lp(Γ;F )) ∩ Lp,µ(J ;W l+2mκ0

p (Γ;F )) ∩
⋂
j∈J

W
κj
p,µ(J ;W kj

p (Γ;F )),

where J = {j1, ..., jqmax} ⊂ J̃ , qmax ∈ N, contains those indices j ∈ J̃ so that (kj , κj)
belongs to the nontrivial part of the Newton polygon, i.e., the points

P0 = (0, 1 + κ0), P1 = (kj1 , κj1), ..., Pqmax = (kjqmax , κjqmax ),

are the vertices of its nontrivial part. Note that it necessarily holds ljq > 2m for jq ∈ J .
It is assumed that J is arranged in a way such that

kjq1 < kjq2 and κjq1 > κjq2 for q1 < q2.

For later considerations we define

k−1 := 0, κ−1 := 1 + κ0, m−1 := m0 − 2m, l−1 := 2m.

We further denote the edge in the Newton polygon connecting the points Pq and Pq+1 by
NPq, q = 0, ..., qmax, and define

J2q :=
{
j ∈ J ∪ {−1} : (kj , κj) = Pq

}
, q = 0, ..., qmax,

J2q+1 :=
{
j ∈ J ∪ {−1} : (kj , κj) ∈ NPq

}
, q = 0, ..., qmax.

The temporal trace space of ∂tρ is obtained by Theorem 1.3.6 from the spaces corresponding
to P0 = (0, 1 + κ0) and P1 = (kj1 , κj1), i.e.,

X∂tρ,µ = B
kj1 (κ0−(1−µ+1/p))/(1+κ0−κj1 )
p,p (Γ;F ) if κ0 > 1− µ+ 1/p.

Note that Theorem 1.3.6 does not directly apply if κj1 < 1−µ+ 1/p. In this case one first
has to use Proposition 1.3.2 and then apply Theorem 1.3.6 to the spaces corresponding to
the points (0, 1 + κ0) and (kj1κ0/(1 + κ0 − κj1), 1), cf. Remark 1.3.7.
For Xρ,µ one has to distinguish three more cases.

Case 3(i): If κj > 1− µ+ 1/p for all j ∈ J , then

Xρ,µ = Bl+2m(κ0−(1−µ+1/p))
p,p (Γ;F ).
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Case 3(ii): Denote by jq1 ∈ J be the smallest index with κjq1 > 1 − µ + 1/p, and by
jq2 ∈ J the largest index with κjq2 < 1− µ+ 1/p. Then

Xρ,µ = B
kjq1

+(κjq1
−(1−µ+1/p))

kjq2
−kjq1

κjq2
−κjq1

p,p (Γ;F ).

Case 3(iii): If κj < 1− µ+ 1/p for all j ∈ J , then

Xρ,µ = B
kj1 (κ0+µ−1/p)/(1+κ0−κj1 )
p,p (Γ;F ).

It can be seen from the Newton polygon that in each of the Cases 1, 2 and 3 it holds

Xρ,µ ↪→ X∂tρ,µ. (3.1.5)

We now consider compatibility conditions at the boundary at t = 0, which are necessary
for the solvability of (3.1.1). For the dynamic equation on the boundary, if κ0 > 1−µ+1/p
then by Theorem 1.3.6 it holds

F0,µ ↪→ C
(
J ;B2m(κ0−(1−µ+1/p))

p,p (Γ;F )
)
,

so that this equation has to hold up to t = 0 by continuity, provided the coefficients of B0

and C0 are sufficiently smooth. In this case it is therefore necessary that

g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, DΓ)ρ0 ∈ X∂tρ,µ if κ0 > 1− µ+ 1/p, (3.1.6)

since otherwise it is for all ρ ∈ Eρ,µ impossible to satisfy the dynamic equation for the data
g0, u0, ρ0. Moreover, if κj > 1− µ+ 1/p for some j = 1, ...,m, then it holds as above

Fj,µ ↪→ C
(
J ;B2m(κj−(1−µ+1/p))

p,p (Γ;E)
)
,

and also the corresponding static boundary equations must be valid up to t = 0 by conti-
nuity. Hence the data necessarily satisfies

Bj(0, ·, D)u0 + Cj(0, ·, DΓ)ρ0 = gj(0, ·) on Γ if κj > 1− µ+ 1/p, j = 1, ...,m, (3.1.7)

if (3.1.1) has a solution (u, ρ) ∈ Eu,µ×Eρ,µ, provided the coefficients are sufficiently smooth.

We illustrate the spaces Eρ,µ,Xρ,µ,X∂tρ,µ and the compatibility conditions by reconsidering
the problems from Example 3.1.1.

Example 3.1.2. Problem (3.1.2) belongs to Case 1, since l = l0 = 2. We have

Eρ,µ = W 3/2−1/2p
p,µ (J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 3−1/p

p (Ω;E)),

and for the trace spaces

Xρ,µ = B2(µ−1/p)+1−1/p
p,p (Γ;F ), X∂tρ,µ = B2(µ−1/p)−1−1/p

p,p (Γ;F ),
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where the trace of the derivative only exists if 2(µ−1/p) > 1+1/p. Concerning the compat-
ibility condition (3.1.6), note that the trace space of F0,µ equals X∂tρ,µ for κ0 > 1−µ+1/p.
Further, the operators ∂ν and −∆Γ map Xu,µ and Xρ,µ into X∂tρ,µ, respectively. Hence
(3.1.6) is always satisfied. The condition (3.1.7) requires trΩu0 = ρ0 if these expressions
exist, which is natural for dynamic boundary conditions.

The problem (3.1.3) belongs to Case 2, since here l = l1 = 1 < 2. Therefore

Eρ,µ = W 3/2−1/2p
p,µ (J ;Lp(Ω;E)) ∩ Lp,µ(J ;W 2−1/p

p (Ω;E)) ∩W 1
p,µ(J ;W 1−1/p

p (Γ;F )),

and further

Xρ,µ = B(µ−1/p)+1−1/p
p,p (Γ;F ), X∂tρ,µ = B2(µ−1/p)−1−1/p

p,p (Γ;F ),

where the latter trace only exists if 2(µ− 1/p) > 1 + 1/p. As above (3.1.6) and (3.1.7) are
naturally satisfied.

Finally, the problem (3.1.4) belongs to Case 3, due to l = l1 = 3 > 2. Since k0 = −∞ it
holds

Eρ,µ = W 3/2−1/2p
p,µ (J ;Lp(Γ;F )) ∩ Lp,µ(J ;W 4−1/p

p (Γ;F )) ∩W 1−1/p
p,µ (J ;W 2

p (Γ;F )).

The trace space of ∂tρ, which exists for 2(µ− 1/p) > 1 + 1/p, is given by

X∂tρ,µ = B4(µ−1/p)−2−2/p
p,p (Γ;F ).

For the trace space of ρ, if µ > 3/2p then we are in Case 3(i) and obtain

Xρ,µ = B2(µ−1/p)+2−1/p
p,p (Γ;F ),

and if µ < 3/2p then we are in Case 3(iii) with

Xρ,µ = B4(µ−1/p)+2−2/p
p,p (Γ;F ).

This shows that the initial regularity for ρ can change drastically if µ varies. The Case
3(ii) cannot occur in this example, since there is only one nontrivial vertex in the Newton
polygon. For µ > 1/2 + 3/2p, i.e., 2(µ− 1/p) > 1 + 1/p, the condition (3.1.6) is not always
satisfied, since for g0 ∈ F0,µ it holds, in general, g0(0, ·) ∈ B2(µ−1/p)−1−1/p

p,p (Γ;F ), and the
latter space has always a lower regularity than X∂tρ,µ. Finally, for (3.1.7) the data must
satisfy u0(·) + ∆Γρ0(·) = g1(0, ·) if µ > 3/2p.

We intend to solve (3.1.1) in the following sense.

Definition 3.1.3. We say that (3.1.1) enjoys the property of maximal Lp,µ-regularity on
the interval J = (0, T ) if the regularity assumptions on the data, i.e.,

f ∈ E0,µ, g ∈ Fµ, u0 ∈ Xu,µ, ρ0 ∈ Xρ,µ,

together with the compatibility conditions (3.1.6) and (3.1.7), are not only necessary for a
unique solution (u, ρ) ∈ Eu,µ × Eρ,µ of (3.1.1), but also sufficient.
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The Assumptions on the Operators

In the sequel, the subscript ] denotes the principle part of a differential operator, with an
important exception for the Cj , for which we set

Cj] := 0 if j /∈ J .

Hence only the principle parts of the operators Cj corresponding to a point on the nontrivial
part of the Newton polygon for Eρ,µ are considered.
First, the coefficients of the operators are required to be such that each summand occurring
in A,B and C is a continuous operator on the respective underlying spaces. Moreover, for
localization purposes it is required that the top order coefficients of the operators are
bounded and uniformly continuous. As in the static case, the Propositions 1.3.15 and
1.3.24 show that for the coefficients of A and B the following is sufficient for our purposes,
respectively.

(SD) For |α| < 2m one of the following two conditions is valid: either

2m(µ− 1/p) > 2m− 1 + n/p and aα ∈ E0,µ(J × Ω;B(E)),

or there are rα, sα ∈ [p,∞) with p(1−µ)+1
sα

+ n
2mrα

< 1− |α|2m such that

aα ∈ Lsα
(
J ; (Lrα + L∞)(Ω;B(E))

)
.

For |α| = 2m it holds aα ∈ BUC(J×Ω;B(E)), and if Ω is unbounded then in addition
the limits aα(t,∞) := lim|x|→∞ aα(t, x) exist uniformly in t ∈ J .

(SB) Let E0 = B(E,F ), and Ej = B(E) for j = 1, ...,m. For j = 0, ...,m and |β| ≤ mj one
of the following two conditions is valid: either

κj > 1− µ+ 1/p+
n− 1
2mp

and bjβ ∈ Fj,µ,

or there are rbjβ, s
b
jβ ∈ [p,∞) with

p(1− µ) + 1
sbjβ

+
n− 1
2mrbjβ

< κj+
mj − |β|

2m
, κj+

mj − |β|
2m

−(1−µ+1/p) /∈
(

0,
n− 1
2mrbjβ

)
,

such that

bjβ ∈ B
κj
sbjβ ,p

(
J ;Lrbjβ (Γ; Ej)

)
∩ Lsbjβ

(
J ;B2mκj

rbjβ ,p
(Γ; Ej)

)
.

For the local coefficients of C, the following conditions are sufficient, as Lemma 3.2.4 shows.1

1As the proof of Lemma 3.2.4 shows, the regularity assumptions in (SC) are not as sharp as the
corresponding ones in (SB). Depending on the relation between the spaces Eρ,µ and Fµ, the coefficients
could be less regular in the Cases 2 and 3. For the sake of a unified presentation we do not distinguish
between the three cases.
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(SC) Let F0 = B(F ) and Fj = B(F,E) for j = 1, ...,m, and let g : V → Γ be any
coordinates for Γ. For j = 0, ...,m and |γ| ≤ kj one of following two conditions is
valid: either

κj > 1− µ+ 1/p+
n− 1
2mp

and cgjγ ∈ Fj,µ(J × V ;Fj),

or there are rcjγ , s
c
jγ ∈ [p,∞) that satisfy

p(1− µ) + 1
scjγ

<

(
1− n− 1

(2mκj + kj − |γ|)rcjγ

)(
κj +

kj − |γ|
kj

(1 + κ0 − κj)
)

and, in case κj > 1− µ+ 1/p,

1− 1− µ+ 1/p

κj + kj−|γ|
kj

(1 + κ0 − κj)
>

n− 1
(2mκj + kj − |γ|)rcjγ

,

such that
cgjγ ∈ B

κj
scjγ ,p

(J ;Lrcjγ (V ;Fj)) ∩ Lscjγ (J ;B2mκj
rcjγ ,p

(V ;Fj)).

Note that the second condition on the top order coefficients is equivalent to p(1−µ)+1
scjγ

+
n−1

2mrcjγ
< κj , which is the same as in (SB). Proposition 1.3.24 and Lemma 3.2.4 show that

(SB) and (SC) imply the continuity of the (local) top order coefficients, i.e.,

bjβ ∈ BUC(J ×Γ; Ej), |β| = mj , cgjγ ∈ BUC(J ×V ;Fj), |γ| = kj , j = 0, ...,m.

We next describe the structural assumptions on (A,B, C). As in the static case, for A we
assume normal ellipticity.

(E) For all t ∈ J , x ∈ Ω and |ξ| = 1 it holds σ(A](t, x, ξ)) ⊂ C+. If Ω is unbounded then
it holds in addition σ(A](t,∞, ξ)) ⊂ C+ for all t ∈ J and |ξ| = 1.

Also conditions of Lopatinskii-Shapiro type are required. We call local coordinates g asso-
ciated to x ∈ Γ if the corresponding chart (U,ϕ) satisfies

ϕ(x) = 0, ϕ′(x) = Oν(x), ϕ(U ∩ Ω) ⊂ Rn
+, ϕ(U ∩ Γ) ⊂ Rn−1 × {0},

where Oν(x) is a fixed orthogonal matrix that rotates ν(x) to (0, ..., 0,−1) ∈ Rn. Such a
chart (U,ϕ) exists by Lemma A.1.1. For such coordinates we define the rotated operators
Aν and Bν by

Aν(t, x,D) := A(t, x,OTν(x)D), Bν(t, x,D) := B(t, x,OTν(x)D).

Moreover, we define the local operator Cg with respect to g by

Cg
j (t, x,Dn−1) :=

∑
|γ|≤kj

cgjγ(t, g−1(x))Dγ
n−1, j = 0, ...,m,

where cgjγ are the local coefficients of Cj . With these notations, in each of the Cases 1, 2
and 3 we assume the following.2 Recall that Cg

j] := 0 for j /∈ J .
2The reader should not be terrified of the Lopatinskii-Shapiro conditions. It is not too hard to verify

them in applications, cf. [26, Section 3] and Section 5.2.
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(LS) For each fixed x ∈ Γ, choose coordinates g associated to x. Then for all t ∈ J , all
λ ∈ C+ and ξ′ ∈ Rn−1 with |λ|+ |ξ′| 6= 0, all h0 ∈ F and all hj ∈ E, j = 1, ...,m, the
ordinary initial value problem(

λ+Aν] (t, x, ξ′, Dy)
)
v(y) = 0, y > 0,

Bν0](t, x, ξ′, Dy)v|y=0 +
(
λ+ Cg

0](t, x, ξ
′)
)
σ = h0,

Bνj](t, x, ξ′, Dy)v|y=0 + Cg
j](t, x, ξ

′)σ = hj , j = 1, ...,m,

has a unique solution (v, σ) ∈ C0([0,∞);E)× F.

For problems from Case 2 and 3, in addition the following asymptotic Lopatinskii-Shapiro
conditions (LS−∞) and (LS+

∞) are required, respectively.

(LS−∞) Let l < 2m. For each fixed x ∈ Γ, choose coordinates g associated to x. Then for
all t ∈ J , all h0 ∈ F , all hj ∈ E, j = 1, ...,m, and all λ ∈ C+, ξ′ ∈ Rn−1 with
|λ|+ |ξ′| 6= 0, the ordinary initial value problem(

λ+Aν] (t, x, ξ′, Dy)
)
v(y) = 0, y > 0,

Bνj](t, x, ξ′, Dy)v|y=0 = hj , j = 1, ...,m,

and for all λ ∈ C+ and |ξ′| = 1 the problem

Aν] (t, x, ξ′, Dy)v(y) = 0, y > 0,

Bν0](t, x, ξ′, Dy)v|y=0 +
(
λ+ Cg

0](t, x, ξ
′)
)
σ = h0,

Bνj](t, x, ξ′, Dy)v|y=0 + Cg
j](t, x, ξ

′)σ = hj , j = 1, ...,m,

has a unique solution (v, σ) ∈ C0([0,∞);E)× F , respectively.

(LS+
∞) Let l > 2m. For each fixed x ∈ Γ, choose coordinates g associated to x. Then for all

t ∈ J , all h0 ∈ F , all hj ∈ E, j = 1, ...,m, and all λ ∈ C+ and ξ ∈ Rn−1\{0}, the
ordinary initial value problem(

λ+Aν] (t, x, ξ′, Dy)
)
v(y) = 0, y > 0,

Bνj](t, x, ξ′, Dy)v|y=0 + δj,J2qmax+1C
g
j](t, x, ξ

′)σ = hj , j = 0, ...,m,

and further for all λ ∈ C+\{0}, |ξ′| = 1 and q = 1, ..., 2qmax, the problem(
λ+Aν] (t, x, 0, Dy)

)
v(y) = 0, y > 0,

Bν0](t, x, 0, Dy)v|y=0 + δ−1,Jqλσ + δ0,JqC
g
0](t, x, ξ

′)σ = h0,

Bνj](t, x, 0, Dy)v|y=0 + δj,JqC
g
j](t, x, ξ

′)σ = hj , j = 1, ...,m,

has a unique solution (v, σ) ∈ C0([0,∞);E)×F , respectively. Here δj,Jq = 1 if j ∈ Jq
and δj,Jq = 0 otherwise.

If E and F are finite dimensional, it suffices to show that the above problems with hj = 0,
j = 0, ...,m, admit only the trivial solutions, respectively. In [26] it is shown that these
conditions are necessary for uniform maximal Lp-regularity of (3.1.1) on finite intervals. The
Lopatinskii-Shapiro conditions are verified in [26, Section 3] for the problems of Example
3.1.1. We also refer to Section 5.2, where we verify (LS) for a more general version of
(3.1.2).
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The Main Theorem

We state the main result of this chapter.

Theorem 3.1.4. Let E and F be Banach spaces of class HT , p ∈ (1,∞) and µ ∈ (1/p, 1].
Let J = (0, T ) be a finite interval, T > 0, and let Ω ⊂ Rn be a domain with compact
smooth boundary Γ = ∂Ω. Assume that (A,B, C) satisfies (E), (LS), (SD), (SB) and (SC),
and, in addition, for l < 2m condition (LS−∞), and for l > 2m condition (LS+

∞). Assume
further that κj 6= 1− µ+ 1/p for j = 0, ...,m. Then the problem

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t ∈ J,
∂tρ+ B0(t, x,D)u+ C0(t, x,DΓ)ρ = g0(t, x), x ∈ Γ, t ∈ J,

Bj(t, x,D)u+ Cj(t, x,DΓ)ρ = gj(t, x), x ∈ Γ, t ∈ J, j = 1, ...,m, (3.1.8)

u(0, x) = u0(x), x ∈ Ω,

ρ(0, x) = ρ0(x), x ∈ Γ,

enjoys maximal Lp,µ-regularity, i.e., (3.1.8) has a unique solution (u, ρ) ∈ Eu,µ × Eρ,µ if
and only if (f, g, u0, ρ0) ∈ D, where

D :=
{

(f, g,u0, ρ0) ∈ E0,µ × Fµ ×Xu,µ ×Xρ,µ : for j = 1, ...,m it holds

Bj(0, ·, D)u0 + Cj(0, ·, DΓ)ρ0 = gj(0, ·) on Γ if κj > 1− µ+ 1/p;

g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, DΓ)ρ0 ∈ X∂tρ,µ if κ0 > 1− µ+ 1/p
}
.

The corresponding solution operator L : D → Eu,µ × Eρ,µ is continuous. Restricting L to

D0 :=
{

(f, g, u0, ρ0) ∈ D : g ∈ 0Fµ
}
,

for given T0 > 0 its operator norm is uniform in T ≤ T0. Finally, if the coefficients

(−i)|α|aα, |α| ≤ 2m, (−i)|β|bjβ, |β| ≤ mj , (−i)|γ|cgjγ , |γ| ≤ kj , j = 0, ...,m,

and the data are real-valued, then also the solution is real-valued.

Here the sets of compatible data D and D0 are endowed with the norms

|(f, g, u0, ρ0)|D := |f |E0,µ + |g|Fµ + |u0|Xu,µ + |ρ0|Xρ,µ
+ |g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, DΓ)ρ0|X∂tρ,µ ,

and

|(f, g, u0, ρ0)|D0 := |f |E0,µ + |g|0Fµ + |u0|Xu,µ + |ρ0|Xρ,µ
+ |g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, DΓ)ρ0|X∂tρ,µ ,

respectively. The continuity of L must be understood with respect to these norms. Again it
is important to distinguish between the norms of Fµ and 0Fµ (see Remark 1.1.15). Arguing
as in the proof of Lemma 1.3.25, one can show that (D, | · |D) and (D0, | · |D0) are Banach
spaces.
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We have seen in Example 3.1.2 that it is possible that the condition

g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, DΓ)ρ0 ∈ X∂tρ,µ

is always satisfied. In this case we may consider D and D0 as closed subspaces of E0,µ ×
Fµ ×Xu,µ ×Xρ,µ and E0,µ × 0Fµ ×Xu,µ ×Xρ,µ, respectively.

The proof of Theorem 3.1.4 follows [26] and is based on a localization and perturbation
procedure, analogously to the proof of Theorem 2.1.4. For a general outline we refer to the
end of Section 2.1. The main difficulty is the half-space case on the half-line, with vanishing
initial value and vanishing domain inhomogeneity. Since there are no boundary conditions
involved in the full space problem, this case is already covered by the Propositions 2.2.2
and 2.3.2.

3.2 Half-Space Problems with Boundary Conditions

3.2.1 Constant Coefficients

On the half-space Ω = Rn
+ with boundary Γ = Rn−1 we consider the homogeneous differ-

ential operator

A(D) =
∑
|α|=2m

aαD
α,

together with the homogeneous boundary operators

Bj(D) =
∑
|β|=mj

bjβtrRn+D
β, Cj(Dn−1) =

∑
|γ|=kj

cjγD
γ
n−1 j = 0, ...,m.

The coefficients of the operators are assumed to be constant, respectively,

aα, bjβ ∈ B(E), cjγ ∈ B(F,E), j = 1, ...,m, b0β ∈ B(E,F ), c0γ ∈ B(F ).

In this section, if nothing else is indicated, all spaces have to be understood over R+×Rn
+,

or over R+ × Rn−1. We set

0Fj,µ := 0W
κj
p,µ(R+;Lp(Rn−1;E)) ∩ Lp,µ(R+;W 2mκj

p (Rn−1;E)), j = 1, ...,m,

and analogously for the spaces 0F0,µ, 0Fµ, 0Eu,µ, and 0Eρ,µ.3

We first consider inhomogeneous boundary conditions. The proof follows [26, Section 4.3].

Lemma 3.2.1. Let E and F be Banach spaces of class HT , p ∈ (1,∞), µ ∈ (1/p, 1],
and assume that (A,B, C) satisfies (E) and (LS), and, in addition, for l < 2m condition

3More precisely, each W s
p,µ-space in the nonredundant description of 0Eρ,µ must be equipped with a

left subscript 0.
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(LS−∞), and for l > 2m condition (LS+
∞). Then for g ∈ 0Fµ there is a unique solution

(u, ρ) ∈ 0Eu,µ × 0Eρ,µ of

u+ ∂tu+A(D)u = 0, x ∈ Rn
+, t > 0,

ρ+ ∂tρ+ B0(D)u+ C0(Dn−1)ρ = g0(t, x), x ∈ Rn−1, t > 0,

Bj(D)u+ Cj(Dn−1)ρ = gj(t, x), x ∈ Rn−1, t > 0, j = 1, ...,m, (3.2.1)

u(0, x) = 0, x ∈ Rn
+,

ρ(0, x) = 0, x ∈ Rn−1.

Proof. (I) We first show uniqueness for (3.2.1). On the space Lp(Rn
+;E)×W s

p (Rn−1;F ),
where s = 2mκ0 in the Cases 1 and 2, and s = kj1κ0

1+κ0−κj1
in Case 3,4 we consider the

operator A, defined by

A(u, ρ) :=
(
(1 +A)u,B0u+ (1 + C0)ρ

)
, (u, ρ) ∈ D(A),

with domain

D(A) :=
{

(u, ρ) ∈W 2m
p (Rn

+;E)×W l+2mκ0
p (Rn−1;F ) :

Bju+ (1 + Cj)ρ = 0, j = 1, ...,m; B0u+ C0ρ ∈W s
p (Rn−1;F )

}
.

By (the proof of) [26, Theorem 2.2], A generates an analytic C0-semigroup, and it thus
follows from Lemma 1.2.1 that solutions of (3.2.1) are unique in the maximal Lp,µ-regularity
space for A, i.e., in

Eu,µ(R+)×
(
W 1
p,µ(R+;W s

p (Rn−1;F )) ∩ Lp,µ(R+;W l+2mκ0
p (Rn−1;F ))

)
.

Since 0Eu,µ × 0Eρ,µ embeds into this space, it follows that solutions of (3.2.1) are unique
in 0Eu,µ × 0Eρ,µ.
(II) The rest of this proof is concerned with the existence of solutions of (3.2.1). We first
suppose that

g = (g0, ..., gm) ∈ C∞c
(
R+;W 2m

p (Rn−1;F × Em)
)
.

We apply the Fourier transform Ft in time to (3.2.1), with covariable θ ∈ R, to arrive at
the stationary problem

(1 + iθ)v +A(D)v = 0, x ∈ Rn
+,

(1 + iθ)σ + B0(D)v + C0(Dn−1)σ =
(
Ftg0

)
(θ), x ∈ Rn−1, (3.2.2)

Bj(D)v + Cj(Dn−1)σ =
(
Ftgj

)
(θ), x ∈ Rn−1, j = 1, ...,m.

In [26, Section 4.3] it is shown that (3.2.2) has for each θ ∈ R a unique solution(
v(θ), σ(θ)

)
∈W 2m

p (Rn
+;E)×W l+2mκ0

p (Rn−1;F ),

4The number s is determined by the intersection of the nontrivial part of the Newton polygon of Eρ,µ
with the vertical line (a, 1), a ∈ R. The number j1 ∈ J was defined in Section 3.1.
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which may be represented as follows. We write x = (x′, y) ∈ Rn
+ with x′ ∈ Rn−1 and

y > 0, and denote by Fx′ the partial Fourier transform with respect to x′, with covariable
ξ′ ∈ Rn−1. We further define the symbols

ϑ := (1 + iθ + |ξ′|2m)1/2m, b :=
|ξ′|
ϑ
, ζ :=

ξ′

|ξ′|
, a :=

1 + iθ
ϑ2m

,

and the so-called boundary symbol s(θ, ξ′) by

s(θ, ξ′) := 1 + iθ + |ξ′|l in the Cases 1 and 2,

s(θ, ξ′) := 1 + iθ +
∑
j∈J
|ξ′|kjϑm0−mj in Case 3.

Setting h(θ, ξ′) :=
(
ϑ−m0(Fx′Ftg0)(θ, ξ′), ..., ϑ−mm(Fx′Ftgm)(θ, ξ′)

)
∈ F × Em, it holds

v(θ, x′, y) = first component of F−1
x′ e

ϑiA0(bζ,a)yPs(bζ, a)M0
u(b, ζ, ϑ)h(θ, ·)

σ(θ, x′, y) = F−1
x′ s(·, θ)

−1ϑm0M0
ρ (b, ζ, ϑ)h(θ, ·).

Here we have

A0 : Cn−1 × C→ B(E2m), Ps : Cn−1 × C→ B(E2m),

M0
u : Db ×Dζ × Σ→ B(F × Em, E2m), M0

ρ : Db ×Dζ × Σ→ B(F × Em, F ),

with open sets

(B1/2(1/2))1/2m ⊂ Db ⊂ C, {ζ ∈ Rn−1 : |ζ| = 1} ⊂ Dζ ⊂ Cn−1,

and a sector Σ =
{
z ∈ C\{0} : |argz| < φ

}
, where φ ∈ (π/4m,π). The maps A0, Ps,

M0
u and M0

ρ are holomorphic in their complex arguments. The spectrum of iA0(bζ, a) has
a gap at the imaginary axis, and Ps(bζ, a) is the spectral projection corresponding to the
stable part of the spectrum. The functions M0

u and M0
ρ have the property that{

|ξ′||α′|Dα′
ξ′M

0
u (̃b, ζ, ϑ̃) : α′ ∈ {0, 1}n−1, ξ′ 6= 0, θ ∈ R, b̃ ∈ Db, ϑ̃ ∈ Σ

}
(3.2.3)

is an R-bounded set of operators in B(F × Em, E2m), and that{
|ξ′||α′|Dα′

ξ′M
0
ρ (̃b, ζ, ϑ̃) : α′ ∈ {0, 1}n−1, ξ′ 6= 0, θ ∈ R, b̃ ∈ Db, ϑ̃ ∈ Σ

}
(3.2.4)

is an R-bounded set of operators in B(F × Em, F ).
The representation of the solution is obtained in [26] by applying Fx′ to (3.2.2), which
yields an ordinary initial value problem. By (LS), this problem has a unique decaying
solution, from which the solution of (3.2.2) is obtained by applying F−1

x′ . The asymptotic
Lopatinskii-Shapiro conditions (LS−∞) and (LS+

∞) are required to show the R-boundedness
of these sets, due to the unboundedness of ϑ. For l = 2m, the symbols M0

u and M0
ρ do not

depend on ϑ, so that in this case asymptotic conditions are not needed. We refer to [26,
Section 4.3] for details.
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(III) We derive another representation of the solution operator for (3.2.2). For a function
h̃ ∈ S(Rn−1;Em) we calculate for x′ ∈ Rn−1 and y > 0, neglecting the arguments of A0

and Ps,(
F−1
x′ e

iϑA0yPsh̃
)
(x′) =

(
F−1
x′ e

iϑA0(y+ey)Pse
−eyϑh̃)(x′)|ey=0 (3.2.5)

= −
∫ ∞

0
∂ey(F−1

x′ e
iϑA0(y+ey)Pse

−eyϑh̃)(x′) dỹ
=
∫ ∞

0

(
F−1
x′ e

iϑA0(y+ey)Ps
1− iA0

ϑ2m−1
ϑ2me−eyϑh̃)(x′) dỹ

=
∫ ∞

0

(
F−1
x′ e

iϑA0(y+ey)Ps
1− iA0

ϑ2m−1

)
∗
(
(LθEθF−1

x′ h̃)(·, ỹ)
)
(x′) dỹ.

Here the operator Lθ, which corresponds to the symbol ϑ2m, is defined by

Lθ := 1 + iθ + (−∆n−1)m,

and the extension operator Eθ, which corresponds to y 7→ e−yϑ, is for f ∈ Lp(Rn−1;E)
given by

(Eθf)(x′, y) := e−yL
1/2m
θ f(x′), x′ ∈ Rn−1, y > 0.

In the last line of (3.2.5) we have used that

F−1
x′ ϑ

2me−·ϑh̃ = Lθ Eθ F−1
x′ h̃, h̃ ∈ S(Rn−1;Em),

which is a consequence of the uniqueness of the H∞-calculus for −∆n−1 on Lp(Rn−1;E)
(see [62, Example 10.2]). For θ ∈ R and f ∈ Lp(Rn

+;E2m) we thus define the operator T̃ (θ)
by

(T̃ (θ)f)(x′, y) := first component of
∫ ∞

0

(
F−1
x′ e

iϑA0(y+ey)Ps
1− iA0

ϑ2m−1

)
∗ f(·, ỹ

)
(x′) dỹ.

The proofs of the Lemmas 4.3 and 4.4 in [25] show

T̃ ∈ C1
(
R;B(Lp(Rn

+;E2m),W 2m
p (Rn

+;E))
)
,

and that {
DαT̃ (θ), θ

∂

∂θ
DαT̃ (θ) : θ ∈ R, |α| ≤ 2m

}
(3.2.6)

is an R-bounded set of operators in B
(
Lp(Rn

+;E2m), Lp(Rn
+;E)

)
. Using further that

ϑ−mjFx′ = Fx′L
−mj/2m
θ for j = 0, ...,m, which can be seen as above, for the component

v(θ) of the solution of (3.2.2) we therefore arrive at the representation

v(θ) = T̃ (θ)LθEθ
(
F−1
x′ Mu(b, ζ, ϑ)Fx′

) (
L
−mj/2m
θ Ftgj(θ)

)
j=0,...,m

.

Similarly, the second component σ(θ) may be represented by

σ(θ) = S−1
θ L

m0/2m
θ

(
F−1
x′ M

0
ρ (b, ζ, ϑ)Fx′

) (
L
−mj/2m
θ Ftgj(θ)

)
j=0,...,m

,

where the operator Sθ, that corresponds to the boundary symbol s(θ, ξ′), is given by

Sθ := 1 + iθ + (−∆n−1)l/2 in the Cases 1 and 2,
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Sθ := 1 + iθ +
∑
j∈J

(−∆n−1)kj/2L(m0−mj)/2m
θ in Case 3.

(IV) It follows from the boundedness of (3.2.6) that the map θ 7→ T̃ (θ) is bounded. It was
further shown in Step II of the proof of Lemma 2.2.7 that θ 7→ LθEθ is bounded. Moreover,
the R-boundedness of (3.2.3) and (3.2.4), the operator-valued Fourier multiplier theorem
in n−1 dimensions ([24, Theorem 3.25], see also [62, Theorem 4.13]) and real interpolation
yield that also the maps

θ 7→ F−1
x′ M

0
u(b, ζ, ϑ)Fx′ ∈ B

(
W s
p (Rn−1;F × Em),W s

p (Rn−1;E2m)
)
,

θ 7→ F−1
x′ M

0
ρ (b, ζ, ϑ)Fx′ ∈ B

(
W s
p (Rn−1;F × Em),W s

p (Rn−1;F )
)
,

are bounded for θ ∈ R. Hence for g ∈ C∞c
(
R+;W 2m

p (Rn−1;F × Em)
)
we may apply the

inverse Fourier transform to
(
v(θ), σ(θ)

)
and obtain that the solution (u, ρ) of (3.2.1) is

given by

u = Lug := F−1
t T̃ (θ)Lθ Eθ

(
F−1
x′ M

0
u(b, ζ, ϑ)Fx′

) (
L
−mj/2m
θ Ftgj

)
j=0,...,m

,

ρ = Lρg := F−1
t S−1

θ L
m0/2m
θ

(
F−1
x′ M

0
ρ (b, ζ, ϑ)Fx′

)(
L
−mj/2m
θ Ftgj

)
j=0,...,m

.

Now as in Step III of the proof of Lemma 2.2.7 we may rewrite these solution operators to

Lug =
(
F−1
t T̃ (θ)Ft

)
L E

(
F−1
t F

−1
x′ M

0
u(b, ζ, ϑ)Fx′Ft

) (
L−mj/2mgj

)
j=0,...,m

,

Lρg = S−1Lm0/2m
(
F−1
t F

−1
x′ M

0
ρ (b, ζ, ϑ)Fx′Ft

)(
L−mj/2mgj

)
j=0,...,m

,

with the operators

L := 1 + ∂t + (−∆n−1)m, E := e−·L
1/2m

,

S := 1 + ∂t + (−∆n−1)l/2 in the Cases 1 and 2,

S := 1 + ∂t +
∑
j∈J

(−∆n−1)kj/2L(m0−mj)/2m in Case 3,

that correspond to Lθ, Eθ and Sθ, respectively. Since C∞c (R+;W 2m
p (Rn−1;F × Em)) is a

dense subset of 0Fµ by Lemma 1.3.14, the task is now to show that there is an estimate

|Lug|Eu,µ + |Lρg|Eρ,µ . |g|0Fµ , g ∈ C∞c (R+;W 2m
p (Rn−1;F × Em)), (3.2.7)

since then the solution operator
L := (Lu,Lρ)

extends continuously to 0Fµ, and this yields the solution of (3.2.1).
(V) By Lemma 1.3.1, the realization of L on the space Lp,µ(R+;Lp(Rn−1;E)) is invertible,
sectorial of angle not larger than π/2, and for s ∈ (0, 1] we have

DL(s, p) = 0W
s
p,µ(R+;Lp(Rn−1;E)) ∩ Lp,µ(R+;W 2ms

p (Rn−1;E)).
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Therefore L−mj/2m maps for j = 1, ...,m the space 0Fj,µ = DL(κj , p) continuously into

0YE := DL(1− 1/2mp, p) = 0W
1−1/2mp
p,µ (R+;Lp(Rn−1;E))

∩ Lp,µ(R+;W 2m−1/p
p (Rn−1;E)).

The same arguments show that L−m0/2m maps 0F0,µ continuously into 0YF , which is
defined as 0YE with E replaced by F .
(VI) We next show that the operator

M0 := F−1
t F

−1
x′ M

0(b, ζ, ϑ)Fx′Ft,

with symbol M0 : Db ×Dζ × Σ→ B(F × Em, E2m × F ) given by

M0(b, ζ, ϑ) :=
(
M0
u(b, ζ, ϑ),M0

ρ (b, ζ, ϑ)
)
,

extends continuously to an element of B
(

0YF × 0Ym
E , 0Y2m

E × 0YF

)
. To this end we consider

the approximating operators

M0,ε := F−1
t F

−1
x′ M

0(b, ζ, ϑ)(1 + ϑ)−εFx′Ft, ε ∈ (0, 1).

Cauchy’s formula yields the representation

M0,ε = − 1
4π2

∫
Ξϑ

∫
Ξb

F−1
t F

−1
x′ M

0(̃b, ζ, ϑ̃)(1 + ϑ̃)−ε(̃b− b)−1(ϑ̃− ϑ)−1Fx′Ft db̃ dϑ̃,

with Ξϑ = (−∞, 0]e−iφ∗ ∪ [0,∞)eiφ∗ for some φ∗ ∈ (π/4m,φ), and where Ξb is a closed
curve in Db surrounding (B1/2(1/2))1/2m. Since ζ = ξ′/|ξ′| is independent of θ, we may
rewrite this to

M0,ε = − 1
4π2

∫
Ξϑ

∫
Ξb

F−1
x′ M

0(̃b, ζ, ϑ̃)Fx′(1 + ϑ̃)−ε(̃b−B)−1(ϑ̃− L1/2m)−1 db̃ dϑ̃,

where B := (−∆n−1)1/2L−1/2m corresponds to the symbol b = |ξ′|
ϑ . The realization of

B on Lp,µ(R+;Lp(Rn−1;E)) is a bounded operator, and its spectrum is contained in
(B1/2(1/2))1/2m. This can be seen using the joint functional calculus for ∂t and (−∆n−1)m

[57, Theorem 4.5].
As above it follows from theR-boundedness of the sets (3.2.3) and (3.2.4), and the operator-
valued Fourier-multiplier theorem in Rn−1 that the operators

M1(̃b, ϑ̃) := F−1
x′ M

0(̃b, ·, ϑ̃)Fx′ , b̃ ∈ Db, ϑ̃ ∈ Σ,

extend continuously to elements of B
(
W s
p (Rn−1;F×Em),W s

p (Rn−1;E2m×F )
)
, s ≥ 0, with

uniformly bounded operators norms. Since M0 is holomorphic, also M1 is holomorphic in
its arguments. By canonical pointwise extension we thus obtain that

M1 : Db × Σ→ B
(

0YF × 0Ym
E , 0Y2m

E × 0YF

)
is bounded and holomorphic. Hence we may rewriteM0,ε into

M0,ε = − 1
4π2

∫
Ξϑ

∫
Ξb

M1(̃b, ϑ̃)(1 + ϑ̃)−ε(̃b−B)−1(ϑ̃− L1/2m)−1 db̃ dϑ̃,



3.2 Half-Space Problems with Boundary Conditions 131

where the curve integrals are now in B
(

0YF × 0Ym
E , 0Y2m

E × 0YF

)
. Using L1−1/2mp as

an isomorphism 0YE → Lp,µ(R+;Lp(Rn−1;E)) that commutes with B, we see that the
spectrum of the realization of B on 0YF × 0Ym

E is also contained in (B1/2(1/2))1/2m. Now
the Dunford calculus for B yields

M0,ε =
1

2πi

∫
Ξϑ

M2(ϑ̃)(1 + ϑ̃)−ε(ϑ̃− L1/2m)−1 dϑ̃,

with a bounded holomorphic map

M2 : Σ→ B
(

0YF × 0Ym
E , 0Y2m

E × 0YF

)
.

Since the realization of L1/2m on Lp,µ(R+;Lp(Rn−1;E)) is sectorial with angle not larger
than π/4m, it follows from [18, Corollary 1] that L1/2m admits an operator-valued bounded
H∞-calculus with H∞-angle not larger than π/4m on the real interpolation spaces 0Ym

E

and 0Ym
F . From this fact and the boundedness of M2 on Σ we infer

|M0,ε|B(0YF×0YmE ,0Y2m
E ×0YF ) . supeϑ∈Σ

|M2(ϑ̃)(1 + ϑ̃)−ε|B(0YF×0YmE ,0Y2m
E ×0YF ) ≤ C, (3.2.8)

where C does not depend on ε ∈ (0, 1). Due to [24, Proposition 2.2], for h ∈ D(L2) the map
ε 7→ (1 + L1/2m)εh is continuous with values in DL(1 − 1/2mp, p). Together with (3.2.8),
this fact yields

|M0h|
0Y2m

E ×0YF . lim sup
ε→0

|M0,ε|B(0YF×0YmE ,0Y2m
E ×0YF ) |(1 + L1/2m)εh|0YF×0YmE

. |h|0YF×0YmE .

Since D(L2) is dense in DL(1 − 1/2mp, p), we obtain that M0 extends to an element of
B
(

0YF × 0Ym
E , 0Y2m

E × 0YF

)
, as asserted.

(VII) Now we can show the required estimate for Lu, i.e.,

|Lug|Eu,µ . |g|0Fµ , g ∈ C∞c (R+;W 2m
p (Rn−1;F × Em)). (3.2.9)

By Lemma 1.3.8, the extension operator E = e−·L
1/2m maps continuously

DL(1− 1/2mp, p) = D
1/2m
L (2m− 1/p, p)→ Lp(R+;D(L)),

and L maps the space Lp(R+;D(L)) continuously into

Lp
(
R+;Lp,µ(R+;Lp(Rn−1;E))

)
= Lp,µ(R+;Lp(Rn

+;E)).

Of course, here E may be replaced by F . Thus L E maps continuously

0Y2m
E × 0YF → Lp,µ(R+;Lp(Rn

+;E2m × F )).

The R-boundedness of (3.2.6) and the operator-valued Fourier multiplier theorem in Lp,µ
(Theorem 1.2.4) show that F−1

t T̃ Ft extends to a continuous operator

Lp,µ(R+;Lp(Rn
+;E2m))→ Lp,µ(R+;W 2m

p (Rn
+;E)).5

5As in the static case, following the methods of the proof of [25, Lemma 4.4], one can show that for
|α| ≤ 2m it holds Dα eT ∈ C2(R;B(Lp(Rn+;E2m × F )), and that ∂2

θ |DαTj(θ)| . 1
θ2
. Hence also Proposition

1.2.5 yields that Dα eT is a Fourier multiplier on Lp,µ.



132 Maximal Lp,µ-Regularity for Boundary Conditions of Relaxation Type

Now the equation for u shows that the Eu,µ norm of u can be controlled by its
Lp,µ(R+;W 2m

p (Rn
+;E))-norm, and this yields (3.2.9).

(VIII) We finally consider the estimate for Lρ,

|Lρg|Eu,µ . |g|0Fµ , g ∈ C∞c (R+;W 2m
p (Rn−1;F × Em)).

As above we obtain that the operator Lm0/2m maps continuously

0YF = DL(1− 1/p, p)→ DL(κ0, p) = 0F0,µ.

It is thus left to show that S is an isomorphism 0Eρ,µ → 0F0,µ. Using that ∂t admits
a bounded H∞-calculus on Lp,µ(R+;Lp(Rn−1;F )) with domain 0W

1
p,µ(R+;Lp(Rn−1;F ))

(Theorem 1.1.7), this can be done literally in the same way as in [26, Section 4.2].

Before we turn to the general half-space case we consider a right-inverse for the temporal
trace on Eρ,µ.

Lemma 3.2.2. Let F be a Banach space of class HT , p ∈ (1,∞), µ ∈ (1/p, 1], and let
Ω ⊂ Rn be a domain with compact smooth boundary Γ = ∂Ω, or Ω = Rn

+. Assume that
κ0 6= 1−µ+ 1/p, and let ρ0 ∈ Xρ,µ(Γ) and further ρ1 ∈ X∂tρ,µ(Γ) in case κ0 > 1−µ+ 1/p
be given. Then there is ρ ∈ Eρ,µ(R+ × Γ) with

ρ|t=0 = ρ0, and ∂tρ|t=0 = ρ1 if κ0 > 1− µ+ 1/p.

Proof. (I) We set
ρ1 := 0 for κ0 < 1− µ+ 1/p.

First suppose that Γ = Rn−1. Let B0 and B1 be negative generators of exponentially stable
analytic C0-semigroups on Lp(Rn−1;F ). Then we define ρ by

ρ(t) =
(
2e−tB0 − e−2tB0

)
ρ0 +

(
e−tB1 − e−2tB1

)
B−1

1 ρ1, t > 0,

so that we have
ρ|t=0 = ρ0, ∂tρ|t=0 = ρ1.

We choose Bi = (1 − ∆n−1)si/2, with exponents si > 0 as in [26, Section 4.1] according
to the Cases 1, 2 and 3. Using Lemma 1.3.8 and arguing as in [26] one can show that
ρ ∈ Eρ,µ(R+ × Rn−1) as desired.
(II) In the general case, we describe Γ by a finite collection of charts (Ui, ϕi) and a
corresponding partition of unity ψi for Γ, and denote by Φi the push-forward with respect
to ϕi, i.e., Φiρ0 = ρ0 ◦ ϕ−1

i . We further take cut-off functions φi ∈ C∞c (Rn−1) with

φi ≡ 1 on suppΦiψi, suppφi ⊂ ϕi(Ui).

It follows from Lemma A.4.1 that Φi(ψiρ0) ∈ Xρ,µ(Rn−1), and also Φi(ψiρ1) ∈
X∂tρ,µ(Rn−1) in case κ0 > 1− µ+ 1/p. We define

ρ(t) =
∑

i
Φ−1
i φi

((
2e−tB0 − e−2tB0

)
Φi(ψiρ0) +

(
e−tB1 − e−2tB1

)
B−1

1 Φi(ψiρ1)
)
, t > 0,
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where B0 and B1 are chosen as above according to the Cases 1, 2 and 3. Then ρ|t=0 = ρ0

and ∂tρ|t=0 = ρ1, and further ρ ∈ Eρ,µ(R+ × Γ) by Lemma A.4.1.

We now consider the general half-space case with constant coefficients. The Banach space
of compatible data is here given by

D =
{

(f,g, u0, ρ0) ∈ E0,µ × Fµ ×Xu,µ ×Xρ,µ : for j = 1, ...,m it holds

Bj(D)u0(·) + Cj(Dn−1)ρ0(·) = gj(0, ·) on Rn−1 if κj > 1− µ+ 1/p;

g0(0, ·)− B0(D)u0 − C0(Dn−1)ρ0 ∈ X∂tρ,µ if κ0 > 1− µ+ 1/p
}
,

and it is equipped with the norm

|(f, g, u0, ρ0)|D = |f |E0,µ + |g|Fµ + |u0|Xu,µ + |ρ0|Xρ,µ
+ |g0(0, ·)− B0(D)u0 − C0(Dn−1)ρ0|X∂tρ,µ .

Proposition 3.2.3. Let E and F be Banach spaces of class HT , p ∈ (1,∞), µ ∈ (1/p, 1],
and assume that (A,B, C) satisfies (E) and (LS), and, in addition, for l < 2m condition
(LS−∞), and for l > 2m condition (LS+

∞). Let further κj 6= 1 − µ + 1/p for j = 0, ...,m.
Then there is a unique solution (u, ρ) ∈ Eu,µ × Eρ,µ of

u+ ∂tu+A(D)u = f(t, x), x ∈ Rn
+, t > 0,

ρ+ ∂tρ+ B0(D)u+ C0(Dn−1)ρ = g0(t, x), x ∈ Rn−1, t > 0,

Bj(D)u+ Cj(Dn−1)ρ = gj(t, x), x ∈ Rn−1, t > 0, j = 1, ...,m, (3.2.10)

u(0, x) = u0(x), x ∈ Rn
+,

ρ(0, x) = ρ0(x), x ∈ Rn−1,

if and only if the data satisfies (f, g, u0, ρ0) ∈ D. The corresponding solution operator
SH : D → Eu,µ × Eρ,µ is continuous.

Proof. The necessary conditions on the data were derived in Section 3.1. If a solution
operator exists, then it is continuous due to the open mapping theorem.
Uniqueness of solutions of (3.2.10) follows from Lemma 3.2.1. We are going to reduce
the existence of a solution of the full problem (3.2.10) to the problem (3.2.1). Let the
data (f, g, u0, ρ0) ∈ D be given. We extend f and u0 to ERn+f ∈ E0,µ(R+ × Rn) and
ERn+u0 ∈ Xu,µ(Rn), using the extension operator ERn+ from (1.3.3). Proposition 2.2.2 yields
a solution v ∈ Eu,µ(R+ × Rn) of the full-space problem

v + ∂tv +A(D)v = (ERn+f)(t, x), x ∈ Rn, t > 0,

v(0, x) = (ERn+u0)(x), x ∈ Rn,

which we use to define ũ := v|Rn+ ∈ Eu,µ. Moreover, the compatibility condition for j = 0
and (3.1.5) imply

g0|t=0 − (ρ0 + B0(D)u0 + C0(Dn−1)ρ0) ∈ X∂tρ,µ if κ0 > 1− µ+ 1/p.



134 Maximal Lp,µ-Regularity for Boundary Conditions of Relaxation Type

It thus follows from Lemma 3.2.2 that there is ρ̃ ∈ Eρ,µ with ρ̃|t=0 = ρ0 and

∂tρ̃|t=0 = g0|t=0 − (ρ0 + B0(D)u0 + C0(Dn−1)ρ0) if κ0 > 1− µ+ 1/p.

Using the function ρ̃, we define

g?0 := g0 − (ρ̃+ ∂tρ̃+ B0(D)ũ+ C0(Dn−1)ρ̃) ∈ 0F0,µ,

and further

g?j := gj − (Bj(D)ũ+ Cj(Dn−1)ρ̃) ∈ 0Fj,µ, j = 1, ...,m.

Note that the equality g?j |t=0 = 0 in case κj > 1− µ+ 1/p follows from the compatibility
condition for j = 1, ...,m.6 Now Lemma 3.2.1 yields a pair (u?, ρ?) ∈ 0Eu,µ×0Eρ,µ satisfying

u? + ∂tu
? +A(D)u? = 0, x ∈ Rn

+, t > 0,

ρ? + ∂tρ
? + B0(D)u? + C0(Dn−1)ρ? = g?0(t, x), x ∈ Rn−1, t > 0,

Bj(D)u? + Cj(Dn−1)ρ? = g?j (t, x), x ∈ Rn−1, t > 0, j = 1, ...,m,

u?(0, x) = 0, x ∈ Rn
+,

ρ?(0, x) = 0, x ∈ Rn−1.

Thus (u, ρ) = (u? + ũ, ρ? + ρ̃) ∈ Eu,µ × Eρ,µ solves (3.2.10) by construction.

3.2.2 Top Order Coefficients having Small Oscillation

We investigate the case of operators on a half-space with top order coefficients having small
oscillation, and restrict our considerations to a finite interval

J = (0, T ), T > 0.

Now the anisotropic spaces are understood over J × Rn
+ or J × Rn−1. We consider the

differential operator

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, x ∈ Rn
+, t ∈ J,

and the boundary operators

Bj(t, x,D) =
∑
|β|≤mj

bjβ(t, x)trRn+D
β, x ∈ Rn−1, t ∈ J, j = 0, ...,m,

Cj(t, x,Dn−1) =
∑
|γ|≤kj

cjγ(t, x)Dγ
n−1 x ∈ Rn−1, t ∈ J, j = 0, ...,m.

The top order coefficients of the operators are assumed to be of the form

aα(t, x) = a0
α + ãα(t, x), |α| = 2m,

6Here it is necessary to exclude the values κj = 1 − µ + 1/p, j = 0, ...,m, since otherwise it is not
guaranteed that g?j ∈ 0F0,µ.
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bjβ(t, x) = b0jβ + b̃jβ(t, x), |β| = mj , j = 0, ...,m, (3.2.11)

cjγ(t, x) = c0
jγ + c̃jγ(t, x), |γ| = mj , j = 0, ...,m,

where a0
α, b0jβ and c0

jγ do not depend on t and x. Using these constant coefficients, we
define auxiliary operators (A0,B0, C0) by

A0(D) :=
∑
|α|=2m

a0
αD

α, (3.2.12)

B0
j (D) :=

∑
|β|=mj

b0j,βtrRn+D
β, C0

j (Dn−1) :=
∑
|γ|=kj

c0
jγD

γ
n−1, j = 0, ...,m.

Assuming (SD) and (SB) for the coefficients of A−A0 and B−B0, the Propositions 1.3.16
and 1.3.24 yield

A ∈ B(Eu,µ(J),E0,µ(J)), B ∈ B(Eu,µ(J),Fµ(J))

We now show that the assumption (SC) is sufficient for the required continuity properties
of C.

Lemma 3.2.4. Let F be of class HT , let Ω ⊂ Rn be a domain with compact smooth
boundary Γ = ∂Ω, or Ω = Rn

+, and let for almost every t ∈ J the differential operator

C(t, ·, DΓ) = (C0(t, ·, DΓ), ..., Cm(t, ·, DΓ)) : C∞(Γ;F )→ L1(Γ;F × Em)

be given. Assume that for j ∈ {0, ...,m} and |γ| ≤ kj the local coefficients cgjγ of Cj with
respect to coordinates g : V → Γ satisfy cgjγ ∈ Yjγ(J), where either

κj > 1− µ+ 1/p+
n− 1
2mp

and Yjγ(J) = Fj,µ(J × V ;Fj),

or it holds
Yjγ(J) = B

κj
sjγ ,p(J ;Lrjγ (V ;Fj)) ∩ Lsjγ (J ;B2mκj

rjγ ,p (V ;Fj))

with numbers rjγ , sjγ ∈ [p,∞) as in (SC).7 Then for |γ| < kj there is a small number δ > 0
with

|cgjγD
γ
n−1ρ|Fj,µ(J×V ) . |cgjγ |Yjγ(J)|ρ|W 1+κ0−δ

p,µ (J ;Lp(V ;F ))∩Lp,µ(J ;W
l+2mκ0−δ
p (V ;F ))

.

Moreover, for the top order coefficients, |γ| = kj , it holds c
g
jγ ∈ BUC(J ×V ;Fj) and there

is a small δ > 0 with

|cgjγD
γ
n−1ρ|Fj,µ(J×V ) . |cgjγ |BUC(J×V ;Fj)|ρ|Eρ,µ(J×V )

+ |cgjγ |Yjγ(J)|ρ|W 1+κ0−δ
p,µ (J ;Lp(V ;F ))∩Lp,µ(J ;W

l+2mκ0−δ
p (V ;F ))

.

In particular, under the assumptions of (SC) the operator C extends to

C ∈ B
(
Eρ,µ(J × Γ),Fµ(J × Γ)

)
.

Restricting to ρ ∈ 0Eρ,µ, and assuming that the coefficients are defined on a larger time
interval J0 = (0, T0) for T0 > 0, the above estimates, with J replaced by J0 in the norms
for the coefficients, hold with a uniform constant for T ≤ T0.

7Recall that F0 = B(F ), and Fj = B(F,E) for j = 1, ...,m.
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Proof. For both cases the boundedness and the continuity of the top order coefficients
follows from Proposition 1.3.24. Let j ∈ {0, ...,m} and a multiindex γ be given. We have
that

Eρ,µ(J × V ) ↪→W 1+κ0
p,µ (J ;Lp(V ;F )) ∩W κj

p,µ(J ;Hkj
p (V ;F )) ∩ Lp,µ(J ;W l+2mκ0

p (V ;F )),

and Proposition 1.3.2 and the fact that l + 2mκ0 ≥ kj + 2mκj yield for all j that8

Eρ,µ(J × V ) ↪→W
κj+

kj−|γ|
kj

(1+κ0−κj)
p,µ (J ;H |γ|p (V ;F )) ∩ Lp,µ(J ;W 2mκj+kj−|γ|

p (V ;F )).

Hence Dγ
n−1 maps continuously

Eρ,µ(J × V )→W
κj+

kj−|γ|
kj

(1+κ0−κj)
p,µ (J ;Lp(V ;F )) ∩ Lp,µ(J ;W 2mκj+kj−|γ|

p (V ;F )),

with uniform norm in the 0Eρ,µ-case, and the latter space embeds into Fj,µ(J ×V ). In case
κj > 1− µ + 1/p + n−1

2mp and Yjγ(J) = Fj,µ(J × V ;Fj) the asserted estimates follow from
Lemma 1.3.23. In the other case we can apply the Lemmas 1.3.21 and 1.3.22, with

τ = κj +
kj − |γ|
kj

(1 + κ0 − κj), ϑ = 2mκj + kj − |γ|.

For an interval J ′ = (0, T ′) with T ′ > 0 the Banach space of compatible data is given by

D(J ′) =
{

(f, g,u0, ρ0) ∈ E0,µ(J ′)× Fµ(J ′)×Xu,µ ×Xρ,µ : for j = 1, ...,m it holds

Bj(0, ·, D)u0 + Cj(0, ·, Dn−1)ρ0 = gj(0, ·) on Rn−1 if κj > 1− µ+ 1/p;

g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, Dn−1)ρ0 ∈ X∂tρ,µ if κ0 > 1− µ+ 1/p
}
,

and we also consider the space

D0(J ′) =
{

(f, g, u0, ρ0) ∈ D(J ′) : g ∈ 0Fµ(J ′)
}
.

We have the following result.

Proposition 3.2.5. Let E and F be Banach spaces of class HT , p ∈ (1,∞), µ ∈ (1/p, 1],
and assume that (A0,B0, C0) satisfy (E), (LS), and, in addition, for l < 2m condition
(LS−∞) and for l > 2m condition (LS+

∞). Suppose further that the coefficients of (A −
A0,B − B0, C − C0) satisfy (SD), (SB), (SC), and that κj 6= 1− µ+ 1/p for j = 0, ...,m.
Then there are a time T0 ∈ (0, T ] and number ε > 0 such that if

sup
(t,x)∈[0,T0]×Rn+

|ãα(t, x)|B(E) < ε, |α| = 2m, (3.2.13)

sup
(t,x)∈[0,T0]×Rn−1

|̃bjβ(t, x)|Ej + |c̃jγ(t, x)|Fj < ε, |β| = mj , |γ| = kj , j = 0, ...,m, 9

8Using the detailed shape of the Newton polygon according to the Cases 1, 2 and 3, here one could
obtain a sharper result.

9Recall that E0 = B(E,F ), F0 = B(F ), and further Ej = B(E) and Fj = B(F,E) for j = 1, ...,m.
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then for all intervals J = (0, T ′) with T ′ ≤ T0 there is a unique solution (u, ρ) =
Ssm
H (f, g, u0, ρ0) ∈ Eu,µ(J ′)× Eρ,µ(J ′) of

∂tu+A(t, x,D)u = f(t, x), x ∈ Rn
+, t ∈ J ′,

∂tρ+ B0(t, x,D)u+ C0(t, x,Dn−1)ρ = g0(t, x), x ∈ Rn−1, t ∈ J ′, (3.2.14)

Bj(t, x,D)u+ Cj(t, x,Dn−1)ρ = gj(t, x), x ∈ Rn−1, t ∈ J ′, j = 1, ...,m,

u(0, x) = u0(x), x ∈ Rn
+,

ρ(0, x) = ρ0(x), x ∈ Rn−1,

if and only if (f, g, u0, ρ0) ∈ D(J ′). The corresponding solution operator

Ssm
H : D(J ′)→ Eu,µ(J ′)× Eρ,µ(J ′)

is continuous. The operator norm of Ssm
H restricted to D0(J ′) is uniform in T ′ ≤ T0.

Proof. The proof is completely analogous to the static case, Proposition 2.3.1. Throughout,
let 0 < T ′ ≤ T0 ≤ T . The necessity part and the dependence of the solution operator Ssm

H

on J ′ can be obtained in the same way as in the proof of Proposition 2.3.1. Thus we only
have to show unique solvability of (3.2.14) for sufficiently small T0 and ε.
For (f, g, u0, ρ) ∈ D(J ′) we set

Zu0,ρ0(J ′) :=
{

(u, ρ) ∈ Eu,µ(J ′)× Eρ,µ(J ′) : u(0, ·) = u0, ρ(0, ·) = ρ0

}
,

which is a nonempty set due to the Lemmas 1.3.9 and 3.2.2, and is further a closed subspace
of Eu,µ(J ′) × Eρ,µ(J ′) by Theorem 1.3.6. For given (u, ρ) ∈ Zu0,ρ0(J ′) we consider the
problem

v + ∂tv +A0v = f + (A0 −A+ 1)u in Rn
+, t ∈ J ′,

σ + ∂tσ + B0
0v + C0

0σ = g0 + (B0
0 − B0)u+ (C0

0 − C0 + 1)ρ on Rn−1, t ∈ J ′, (3.2.15)

B0
j v + C0

j σ = gj + (B0
j − Bj)u+ (C0

j − Cj)ρ on Rn−1, t ∈ J ′, j = 1, ...,m,

v(0, ·) = u0 in Rn
+,

σ(0, ·) = ρ0, on Rn−1,

where (A0,B0, C0) is defined in (3.2.12). Since (u, ρ) ∈ Zu0,ρ0(J ′), the right-hand sides of
the boundary equations in (3.2.15) belong to DB0, C0(J ′), the space of compatible data for
(A0,B0, C0). It can be seen as in Step I of the proof of Lemma 3.2.1 that for each (u, ρ)
solutions of (3.2.15) are unique in Eu,µ(J ′) × Eρ,µ(J ′). The solution (v, σ) = S(u, ρ) ∈
Eu,µ(J ′)× Eρ,µ(J ′) of (3.2.15) is given by

S(u, ρ) := SH
(
EJ ′(f+(A0−A+1)u), EJ ′(g+(B0−B)u+(C0−C+1)ρ), u0, ρ0

)
|J ′ . (3.2.16)

Here SH : DB0, C0(R+)→ Eu,µ(R+)× Eρ,µ(R+) is the solution operator for (3.2.15) on the
half-line, which is given by Proposition 3.2.3 and defined on DB0, C0(R+). Further, EJ ′ is
the extension operator from J ′ to R+, given by Lemma 1.1.5.
Using the Lemmas 1.3.21, 1.3.22 and 1.3.23, one can show as in the proof of Proposition
2.3.1 that S has a unique fixed point (u, ρ) ∈ Zu0,ρ0(J ′), provided T0 and ε are sufficiently
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small. Note that to show the contraction property of S the continuity of SH is only employed
for vanishing initial values and boundary data from 0Fµ. By construction, this fixed point
is the unique solution of (3.2.14) in Eu,µ(J ′)× Eρ,µ(J ′).

3.3 The General Case on a Domain

We can now prove the main result of this chapter, Theorem 3.1.4, employing a localization
procedure analogously to the proof of Theorem 2.1.4. For an outline of the proof we refer
to the end of Section 2.1.
To set the scene, let E and F be Banach spaces of class HT , let J = (0, T ) be a finite
interval, and let Ω ⊂ Rn be a domain with compact smooth boundary Γ = ∂Ω. We consider
the problem

∂tu+A(t, x,D)u = f(t, x), x ∈ Ω, t ∈ J,
∂tρ+ B0(t, x,D)u+ C0(t, x,DΓ)ρ = g0(t, x), x ∈ Γ, t ∈ J,

Bj(t, x,D)u+ Cj(t, x,DΓ)ρ = gj(t, x), x ∈ Γ, t ∈ J, j = 1, ...,m, (3.3.1)

u(0, x) = u0(x), x ∈ Ω,

ρ(0, x) = ρ0(x), x ∈ Γ,

where the differential operators A and B = (B0, ...,Bm) are given by

A(t, x,D) =
∑
|α|≤2m

aα(t, x)Dα, t ∈ J, x ∈ Ω,

Bj(t, x,D) =
∑
|β|≤mj

bjβ(t, x)trΩDβ, t ∈ J, x ∈ Γ, mj ∈ {0, ..., 2m− 1},

and where the operators C = (C0, ..., Cm) are in local coordinates g given by

Cg
j (t, x,DΓ) =

∑
|γ|≤kj

cgjγ(t, x)Dγ
n−1, t ∈ J, kj ∈ N0, j = 0, ...,m.

Assuming that the coefficients aα, bjβ , and c
g
jγ satisfy (SD), (SB) and (SC), it follows from

the Propositions 1.3.16, 1.3.24 and Lemma 3.2.4 that

A ∈ B(Eu,µ,E0,µ), B ∈ B(Eu,µ,Fµ), C ∈ B(Eρ,µ,Fµ).

For the top order coefficients, it is assumed in resp. follows from (SD), (SB) and (SC) that

aα ∈ BUC(J × Ω;B(E)), |α| = 2m, (3.3.2)

bjβ ∈ BUC(J × Γ; Ej), |β| = mj , cgjγ ∈ BUC(J × Γ;Fj), |γ| = kj , j = 0, ...,m,

where Ej and Fj are defined in (SC). The Banach space of compatible data is given by

D =
{

(f,g, u0, ρ0) ∈ E0,µ × Fµ ×Xu,µ ×Xρ,µ : for j = 1, ...,m it holds

Bj(0, ·, D)u0 + Cj(0, ·, DΓ)ρ0 = gj(0, ·) on Γ if κj > 1− µ+ 1/p;

g0(0, ·)− B0(0, ·, D)u0 − C0(0, ·, DΓ)ρ0 ∈ X∂tρ,µ if κ0 > 1− µ+ 1/p
}
,

and we also consider the space

D0 =
{

(f, g, u0, ρ0) ∈ D : g ∈ 0Fµ
}
.
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Proof of Theorem 3.1.4.

The arguments of the Steps I and II of the proof of Theorem 2.1.4 concerning the necessary
conditions, continuity of the solution operator, real solutions and causality carry over to
the present situation. We thus only have to show that for (f, g, u0, ρ0) ∈ D there exists a
unique solution (u, ρ) ∈ Eu,µ × Eρ,µ of (3.3.1), where we may assume that T is sufficiently
small.
(I) We localize in space, and use Proposition 2.3.2 to treat the local problems without
boundary conditions, and Proposition 3.2.5 for the local problems with boundary condi-
tions. As in the proof of Theorem 2.1.4 we take a finite number of points

xi ∈ Ω, i = 1, ..., NH ,

together with x0 :=∞ if Ω is unbounded, and corresponding open neighbourhoods Ui ⊂ Rn

of these points (where U0 = ∅ if Ω is bounded) satisfying

Ω ⊂
NH⋃
i=0

Ui, Ui ∩ Γ = ∅, i = 0, ..., NF , Ui ∩ Γ 6= ∅, i = NF + 1, ..., NH .

Further, the boundary Γ ⊂
⋃NH
i=NF+1 Ui is described by charts (Ũi, ϕi), i = NF + 1, ..., NH ,

having properties as in (2.4.9), i.e.,

ϕi(xi) = 0, ϕi(Ũi) = B2ri(0), ϕ′i(xi) = Oν(xi),

ϕi(Ũi ∩ Ω) ⊂ Rn
+, ϕ(Ũi ∩ Γ) ⊂ Rn−1, Ui = ϕ−1

i

(
Bri(0)

)
.

Here we have ri > 0, and Oν(xi) is the orthogonal matrix rotating ν(xi) to (0, ..., 0,−1) ∈
RN , which we have fixed for the formulation of the Lopatinskii-Shapiro conditions.
(II) For i = 0, ..., NF we define extended coefficients aiα on J × Rn, |α| ≤ 2m, such that

aiα|J×Ui = aα,

as in (2.4.4), (2.4.6) and (2.4.7), respectively. This yields operators

Ai(t, x,D) :=
∑
|α|≤2m

aiα(t, x)Dα

which satisfy (E), and whose coefficients satisfy (SD), respectively. If the diameters of the
Ui are sufficiently small, by Proposition 2.3.2 there is for all sufficiently small T = |J | a
continuous solution operator

Ssm,i
F : E0,µ(J × Rn)×Xu,µ(Rn)→ Eu,µ(J × Rn)

for the full-space problem

∂tv +Ai(t, x,D)v = f i(t, x), x ∈ Rn, t ∈ J, (3.3.3)

v(0, x) = ui0(x), x ∈ Rn.
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(III) For i = NF + 1, ..., NH we denote by Φi the push-forward operator with respect to
ϕi, i.e., Φiu = u ◦ ϕ−1

i , and define the transformed operators AΦi and BΦi by

AΦi(t, x,D) :=
(
ΦiA(t, ·, D)Φ−1

i

)
(x), t ∈ J, x ∈ Rn

+ ∩Bri(0),

BΦi(t, x,D) :=
(
ΦiB(t, ·, D)Φ−1

i

)
(x), t ∈ J, x ∈ Rn−1 ∩Bri(0).

Denoting by gi the local parametrization of Γ corresponding to (Ui, ϕi), we further define
the localized operator Cgi = (Cgi

0 , ..., C
gi
m) by

Cgi
j (t, x,Dn−1) :=

∑
|γ|≤kj

c
gi
jγ(t, x)Dγ

n−1, t ∈ J, x ∈ Rn−1 ∩Bri(0), j = 0, ...,m.

Here cgijγ denote the coefficients from the local representation of Cj with respect to gi.
The coefficients of AΦi are extended to coefficients aiα on J ×Rn

+ as in (2.4.6) and (2.4.7).
Moreover, the coefficients of BΦi and Cgi are extended to coefficients bijβ and cijγ on J×Rn−1

as in (2.4.11) and (2.4.12).
These extended coefficients yield operators (Ai,Bi, Ci) on the half-space. We define top
order constant coefficient operators (Ai,0,Bi,0, Ci,0) by

Ai,0(D) :=
∑
|α|=2m

ai,0α D
α, ai,0α := aiα(0, xi),

Bi,0j (D) :=
∑
|β|=mj

bi,0jβ trRn+D
β, bi,0jβ := bijβ(0, xi), j = 0, ...,m,

Ci,0j (Dn−1) :=
∑
|β|=kj

ci,0jγD
γ
n−1, ci,0jγ := c

gi
jγ(0, xi), j = 0, ...,m.

It follows from Lemma A.1.2 that for ξ′ ∈ Rn−1 it holds

Ai,0] (ξ′, Dy) = A](0, xi,OTν(xi)
(ξ′, Dy)), Bi,0] (ξ′, Dy) = B](0, xi,OTν(xi)

(ξ′, Dy)).

Hence, by assumption, we have that Ai,0 satisfies (E), and (Ai,0,Bi,0, Ci,0) satisfies the
Lopatinskii-Shapiro conditions on Rn

+. The coefficients of (Ai − Ai,0,Bi − Bi,0, Ci − Ci,0)
satisfy (SD), (SB) and (SC) by construction. Given ε > 0, if T , ri and the diameter of Ui
are sufficiently small, then the top order coefficients of (Ai−Ai,0,Bi−Bi,0, Ci−Ci,0) have
ε oscillation.
Therefore (Ai,Bi, Ci) satisfies for all i = NF + 1, ..., NH the assumptions of Proposition
3.2.5, and there are continuous solution operators

Ssm,i
H : DBi, Ci(J)→ Eu,µ(J × Rn

+)× Eρ,µ(J × Rn
+)

for the problems

∂tv +Ai(t, x,D)v = f i(t, x), x ∈ Rn
+, t ∈ J,

∂tσ + Bi0(t, x,D)v + Ci0(t, x,Dn−1)σ = gi0(t, x), x ∈ Rn−1, t ∈ J, (3.3.4)

Bij(t, x,D)v + Cij(t, x,Dn−1)σ = gij(t, x), x ∈ Rn−1, t ∈ J, j = 1, ...,m,

v(0, x) = ui0(x), x ∈ Rn
+,

σ(0, x) = ρi0(x), x ∈ Rn−1,
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provided T , ri and the diameter of Ui are sufficiently small, respectively. Here DBi, Ci(J)
denotes the space of compatible data for (Ai,Bi, Ci).
(IV) Denoting by {ψi}i=0,...,NH the partition of unity for Ω subordinate to the cover⋃NH
i=0 Ui, as constructed in Step VIII of the proof of Theorem 2.1.4, we take φi ∈ C∞c (Rn),

i = 0, ..., NH , with
φi ≡ 1 on suppψi, suppφi ⊂ Ui.

As in the proof of Theorem 2.1.4 it then holds that if (u, ρ) ∈ Eu,µ × Eρ,µ solves (3.3.1)
with data (f, g, u0, ρ0) ∈ D, then (u, ρ) is a fixed point of the map Gf,g,u0,ρ0 , defined by

Gf,g,u0,ρ0(u, ρ) :=
NF∑
i=0

(
φiSsm,i

F (f i, ui0;u)|Ui , 0
)

+
NH∑

i=NF+1

φiΦ−1
i (Ssm,i

H (f i, gi, ui0, ρ
i
0;u, ρ)|Rn+∩Bri (0)),

on the Banach space

Zu0,ρ0(J) := {(u, ρ) ∈ Eu,µ × Eρ,µ : u(0, ·) = u0, ρ(0, ·) = ρ0},

which is nontrivial due to the Lemmas 1.3.9 and 3.2.2. Here for i = 0, ..., NF we have set

f i := ψif + [A, ψi]u, ui0 := ψiu0,

and further, for i = NF + 1, ..., NH ,

f i := Φi(ψif + [A, ψi]u), gi = Φi(ψig + [B, ψi]u+ [C, ψi]ρ),

ui0 := Φi(ψiu0), ρi0 := Φi(ψiρ0),

and the notations Ssm,i
F (f i, ui0;u) and Ssm,i

H (f i, gi, ui0, ρ
i
0;u, ρ) indicate that f i, gi, ui0 and

ρi0 are defined with respect to the functions u and ρ, respectively. Moreover, [·, ·] denotes
the commutator bracket.
Using that the commutators are of lower order, as in Step IX of the proof of Theorem 2.1.4
one can show that for all (f, g, u0, ρ0) ∈ D(J) the map Gf,g,u0,ρ0 has a unique fixed point
in Zu0,ρ0(J), provided T is sufficiently small. Note here that the required compatibility
conditions for Ssm,i

H at the boundary are trivially satisfied, since gi|t=0, if it exists, is
independent of (u, ρ) ∈ Zu0,ρ0(J). This yields a fixed point map

Q : D(J)→ Zu0,ρ0(J), Q(f, g, u0, ρ0) = Gf,g,u0,ρ0(Q(f, g, u0, ρ0)),

with the property that

Q : {(f, g, 0, 0) ∈ D0(J)} → Z0,0(J)

is continuous with operator norm uniform in T smaller than a given length.
(V) As in the Steps X and XI of the proof of Theorem 2.1.4, for given (f, g, u0, ρ0) ∈
D(J) one can now find the appropriate data (f?, g?, u0, ρ0) ∈ D(J) such that (u, ρ) =
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Q(f?, g?, u0, ρ0) solves (3.3.1) with data (f, g, u0, ρ0) by solving one more fixed point equa-
tion. Writing Q = Q(f?, g?, u0, ρ0), here one obtains for the dynamic equation on the
boundary

(B0, ∂t + C0) · Q =
NH∑

i=NF+1

φiΦ−1
i

(
Φi(B0, ∂t + C0)Φ−1

i

)
· Ssm,i

H

(
f?,i, g?,i, ui0;Q

)
|Rn+∩Bri (0)

+
NH∑

i=NF+1

[(B0, C0), φi] · Φ−1
i S

sm,i
H

(
f?,i, g?,i, ui0;Q

)
|Rn+∩Bri (0)

= g?0 +
NH∑

i=NF+1

φi[(B, C), ψi]Q+K0
2(f?, g?),

where the correction term K0
2(f?, g?) is given by

K0
2(f?, g?) :=

NH∑
i=NF+1

[(B0, C0), φi] · Φ−1
i S

sm,i
H

(
f?,i, g?,i, ui0;Q

)
|Rn+∩Bri (0).

Here all the terms containing Ssm,i
F vanish, since the functions φi vanish on Γ for i =

0, ..., NF . Moreover, as {ψi} is a partition of unity for Γ and φi ≡ 1 on suppψi it holds
that

NH∑
i=NF+1

φi[(B, C), ψi]Q = [(B, C), 1]Q = 0.

Similarly, in case κ0 > 1− µ+ 1/p, due to Q(f?, g?, u0, ρ0)|t=0 = (u0, ρ0) we have

K0
2(f?, g?)|t=0 =

NH∑
i=NF+1

[(B0(0, ·, D), C0(0, ·, DΓ)), φi] · ψi(u0, ρ0) = 0,

which yields that K0
2 maps into 0F0,µ(J). Defining the correction terms K1 for the dynamic

equation in Ω and (K1
2, ...,Km2 ) for the static boundary equations as in Step X of the proof

of Theorem 2.1.4, respectively, and setting K̃2 = (K0
2, ...,Km2 ), the appropriate (f?, g?) is

the solution of
(f?, g?) + (K1, K̃2)(f?, g?) = (f, g).

This equation can be rewritten to a fixed point problem on E0,µ(J)× 0Fµ(J), and can be
solved via the contraction principle as in Step XI of the proof of Theorem 2.1.4.



Chapter 4

Attractors in Stronger Norms for
Robin Boundary Conditions

4.1 Introduction

In this chapter we are concerned with the long-time behaviour of semilinear and quasilinear
reaction-diffusion systems in separated divergence form with Robin boundary conditions.
For the unknown u = u(t, x) ∈ RN , where N ∈ N, we consider the problem1

∂tu− ∂i(aij(u)∂ju) = f(u) in Ω, t > 0,

aij(u)νi∂ju = g(u) on Γ, t > 0, (4.1.1)

u(0, ·) = u0 in Ω.

Here Ω ⊂ Rn is a bounded domain with smooth boundary Γ = ∂Ω, n ≥ 2, and the outer
normal unit field on Γ is denoted by ν = (ν1, ...νn). It is assumed that (4.1.1) is of separated
divergence form, i.e.,

aij(u) = a(u)αij ∈ B(RN ), i, j ∈ {1, ..., n},

where a : RN → B(RN ) and where the αij ∈ R are constants, i, j ∈ {1, ..., n}. We impose
the following structural conditions on these coefficients.

(αij)i,j=1,...,n is symmetric and uniformly positive definite,
σ(a(ζ)) ⊂ C+ = {Re z > 0}, ζ ∈ RN .

}
(4.1.2)

We further assume throughout that a and the reaction terms f, g : RN → RN are smooth.
Note that the above assumptions allow to rewrite the boundary condition into the equiv-
alent form

αijνi∂ju = a−1(u)g(u) on Γ, t > 0.

Thus for g = 0 and αij = δij , the Kronecker symbol, one obtains homogeneous Neumann
boundary conditions.

1We use sum convention, i.e., it is understood that one sums over double indices. For instance,
∂i(aij(u)∂ju) must be read as

Pn
i,j=1 ∂i(aij(u)∂ju).
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Parabolic systems of type (4.1.1) model many different phenomena in physics, chemistry
and biology. For a ≡ id and αij = δij one obtains a reaction diffusion system with nonlin-
ear boundary conditions. Also the Keller-Segel model for chemotaxis and the Shigesada-
Kawasaki-Teramoto cross-diffusion model for population dynamics can be cast in the form
(4.1.1), cf. Section 4.5.

Local well-posedness in a scale of Slobodetskii spaces for problems of type (4.1.1) is well
known and was established by Amann [4, 5, 6]. Being precise, Theorem 14.4 and Corollary
14.7 of [6] yield the following.

Theorem 4.1.1. Let p ∈ (n,∞) and s ∈ (n/p, 1 + 1/p). Assume that (4.1.2) holds, and
further that g(u) = g̃(u)u with a smooth function g̃ : RN → B(RN ). Then for u0 ∈
W s
p (Ω,RN ) there is a unique maximal solution

u(·, u0) ∈ C
(
[0, t+(u0));W s

p (Ω,RN )
)
∩ C∞

(
(0, t+(u0))× Ω,RN

)
of (4.1.1), where t+(u0) > 0 denotes the maximal existence time. The solution map u0 7→
u(·, u0) defines a compact local semiflow on W s

p (Ω,RN ).

We refer to the beginning of Section 4.3 for the notion of a compact local semiflow. For a
general boundary reaction term g the system (4.1.1) is still locally well-posed in the above
scale, but then smoothness of the solutions is a more delicate issue, in general, cf. [6].

Criteria for global existence of solutions, t+(u0) = +∞, were also established by Amann
[4]. Roughly speaking, an a priori Hölder bound is sufficient for a solution to exist globally,
as Theorem 15.3 of [6] shows. In many special cases, like triangular systems, it suffices to
find an L∞-bound [6, Theorem 15.4], or even weaker bounds.

Once global existence is established, one is interested in the long-time behaviour of solu-
tions, especially in the convergence to equilibria or the existence of a global attractor. Let
p ∈ (1,∞), s ≥ 0 andMs

p be a subset of W s
p (Ω,RN ). A nonempty compact set A ⊂ Ms

p

is called a global attractor of (4.1.1) if (4.1.1) generates a semiflow of global solutions in
Ms

p, if A is invariant under the semiflow (u(t,A) ⊂ A for all t ≥ 0) and if it attracts every
bounded subset M ofMs

p, i.e., it holds

dH(u(t,M),A) := sup
u0∈u(t,M)

inf
v0∈A

|u0 − v0|W s
p (Ω,RN ) → 0 as t→ +∞,

with respect to the Hausdorff distance dH . In this sense the flow on the attractor, if it exists,
determines the long-time behaviour of solutions. It is further known that an attractor is
unique, and that inMs

p it holds

A = the union of the ω-limit sets of all bounded sets

= the union of all bounded complete orbits

= the maximal bounded invariant set

= the minimal bounded set that attracts all bounded sets.



4.1 Introduction 145

We refer to [16, 49, 63] for more informations. Note that A contains in particular all equi-
libria, all periodic solutions and all heteroclinic orbits of (4.1.1). If A has finite Hausdorff
dimension, then the global dynamics of (4.1.1) reduce to a finite dimensional process, which
is of essentially less complexity than the original, infinite dimensional one. It is therefore
desireable to have an attractor in a norm as strong as possible, since although the solutions
contained in A might be smooth, the solutions approach the attractor only with respect
to the norm inMs

p where A was established.

Assume that an attractor A exists in W s∗
p for some s∗ ∈ (0, 2) in the semilinear case, i.e.,

if a does not depend on u, and for linear boundary conditions. It is then a consequence of
the variation of constants formula that the solutions approach A in the W s

p -norm for all
s ∈ (s∗, 2) and that A is independent of s, cf. [16, Section 4.3]. Thus one automatically has
convergence to A in stronger norms.

It is the purpose of this chapter to show that a corresponding result for attractors in
stronger norms is valid also in the quasilinear case with nonlinear boundary conditions, i.e.,
for the full problem (4.1.1). The key to the semiflow in higher norms and the substitute for
the variation of constants formula is the maximal Lp,µ-regularity result given by Theorem
2.1.4.

Let us consider the results in detail. We first show in Section 4.3 that (4.1.1) generates a
compact local semiflow in the scale of nonlinear phase spaces

Ms
p :=

{
u0 ∈W s

p (Ω,RN ) : aij(u0)νi∂ju0 = g(u0) on Γ
}
,

where p ∈ (n + 2,∞) and s ∈ (1 + n/p, 2 − 2/p]. This range of regularity is not covered
by Amann’s theory. For each t ∈ (0, t+(u0)) the solutions belong to the weighted maximal
regularity class

Eu,µ(0, τ) := W 1
p,µ(0, τ ;Lp(Ω,RN )) ∩ Lp,µ(0, τ ;W 2

p (Ω,RN ))

where the weight µ ∈ (1/p, 1] is such that s = 2(µ − 1/p). Our result is based on the
regularity properties of the nonlinear superposition operators corresponding to f and g,
which are investigated in Section 4.2, and on maximal Lp,µ-regularity for the linearized
problem, Theorem 2.1.4. Our arguments can also be used to establish a local semiflow in
a scale of nonlinear phase spaces as above for much more general systems than (4.1.1), as
treated in [65] for s = 2− 2/p without weights.
In Section 4.4 we then use maximal Lp,µ-regularity and the inherent smoothing effect of the
weighted spaces to show that if (4.1.1) has an absorbant set in a Hölder space Cα(Ω,RN ),
α > 0, i.e., there is C > 0 such that each solution satisfies

lim sup
t→t+(u0)

|u(t, u0)|Cα(Ω,RN ) ≤ C, (4.1.3)

then (4.1.1) has a global attractor in the phase space Ms
p. Since s > 1 + n/p, this in

particular yields the convergence to the attractor in the C1-norm, and as a result A also
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determines the long-time behaviour of the spatial gradient of solutions with respect to the
sup-norm.
We also consider special cases where the above result remains true if one replaces the
Cα-norm in (4.1.3) by a weaker norm, like semilinear problems, cross-diffusion models and
single equations.
In Section 4.5 we illustrate these results in obtaining an attractor in stronger norms for
semilinear reaction-diffusion systems with nonlinear boundary conditions, for a chemotaxis
model with volume filling effect, and for a population model with cross-diffusion.

Besides the maximal regularity class

Eu,µ(J) = W 1
p,µ(J ;Lp(Ω,RN )) ∩ Lp,µ(J ;W 2

p (Ω,RN )),

throughout this chapter we work with the weighted space

E0,µ(J) := Lp,µ(J ;Lp(Ω,RN )),

where J = (0, T ) is a finite interval, p ∈ (1,∞) and µ ∈ (1/p, 1]. Since the boundary
operator in (4.1.1) is of order 1, the space for the boundary equation is

Fµ(J) := W 1/2−1/2p
p,µ (J ;Lp(Γ,RN )) ∩ Lp,µ(J ;W 1−1/p

p (Γ,RN )).

It follows from Theorem 1.3.6 that

Eu,µ(J) ↪→ C(J ;B2(µ−1/p)
p,p (Ω,RN )),

and therefore Sobolev’s embeddings yield

Eu,µ(J) ↪→ C(J ;C1(Ω,RN )) if 2(µ− 1/p) > 1 + n/p. (4.1.4)

Similarly, it holds

Fµ(J) ↪→ C(J ;B2(µ−1/p)−1−1/p
p,p (Γ,RN )) if 2(µ− 1/p) > 1 + 1/p,

so that we have

Fµ(J) ↪→ C(J ;C(Γ,RN )) if 2(µ− 1/p) > 1 + n/p. (4.1.5)

Restricting to 0Eu,µ- and 0Fµ-spaces, the constants for the above embeddings are indepen-
dent of the underlying interval J .

4.2 Superposition Operators

For our purposes it is convenient to rewrite (4.1.1) into the abstract form

∂tu+A(u) = 0 in Ω, t > 0,

B(u) = 0 on Γ, t > 0,

u(0, ·) = u0 in Ω,
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where the nonlinear differential operators A and B are for u ∈ Eu,µ(J) given by

A(u) := −
(
∂i(aij(u)∂ju) + f(u)

)
, B(u) := αijνitrΩ∂ju− a−1(trΩu)g(trΩu).

The purpose of this section is to investigate the regularity properties of A and B. We start
with some uniform estimates for nonlinear functions.

Lemma 4.2.1. Let ψ : Rm → RM be smooth for m,M ∈ N, and let BR(0) ⊂ Rm be a
fixed closed ball around the origin with radius R. In the sequel we denote by ε a continuous
function ε : [0,∞)→ [0,∞) with ε(0) = 0.

a) There is a function ε as above with

|ψ(ξ + η)− ψ(ξ)− ψ′(ξ)η| ≤ ε(|η|)|η| for all ξ, η ∈ BR(0).

b) Define φ : Rm × Rm → RM by φ(ξ, η) := ψ(ξ + η) − ψ(ξ) − ψ′(ξ)η. Then there is ε
as above with

|φ(ξ2, η2)− φ(ξ1, η1)| ≤ ε(|η1|+ |η2|)
(
|η2 − η1|+ |η1||ξ2 − ξ1|

)
for all ξ1, ξ2, η1, η2 ∈ BR(0).

c) Define ϕ : Rm×Rm → RM by ϕ(ξ, η) := ψ(ξ + η)−ψ(ξ). Then there are ε as above
and a constant C > 0 with

|ϕ(ξ2, η2)− ϕ(ξ1, η1)| ≤ ε(|η2|)|ξ2 − ξ1|+ C |η2 − η1|

for all ξ1, ξ2, η1, η2 ∈ BR(0).

Proof. (I) Since ψ is smooth, for ξ0 ∈ BR(0) there is a function εξ0 as above such that

|ψ(ξ0 + η)− ψ(ξ0)− ψ′(ξ0)η| < εξ0(|η|)|η|, η ∈ BR(0). (4.2.1)

By continuity and compactness, (4.2.1) holds true with ξ0 replaced by ξ for all ξ in a small
neighbourhood of ξ0. By compactness we find finitely many ξi such that these neighbour-
hoods cover BR(0), with corresponding functions εi. Now ε := maxi εi satisfies the asserted
inequality in a) for all ξ, η ∈ BR(0).
(II) To show b), we estimate with the mean value theorem

|φ(ξ2, η2)− φ(ξ1, η1)| ≤ sup
s∈[0,1]

|∂ξφ(sξ2 + (1− s)ξ1, η1)| |ξ2 − ξ1|

+ sup
s∈[0,1]

|∂ηφ(ξ2, sη2 + (1− s)η1)| |η2 − η1|. (4.2.2)

For ξ, η ∈ BR(0), η 6= 0, the terms

|∂ξφ(ξ, η)|/|η| = |ψ′(ξ + η)− ψ′(ξ)− ψ′(ξ)η|/|η|

and
|∂ηφ(ξ, η)| = |ψ′(ξ + η)− ψ′(ξ)|
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tend to zero as |η| → 0 uniformly in ξ, by a) and the uniform continuity of ψ′ on BR(0).
Applying this to (4.2.2) shows b). Assertion c) is shown in a similar way.

We now consider the properties of the map

A(u) = −
(
∂i(aij(u)∂ju) + f(u)

)
, u ∈ Eu,µ(J).

Lemma 4.2.2. Let J = (0, T ) be finite, and let p ∈ (n + 2,∞) and µ ∈ (1/p, 1] be such
that 2(µ− 1/p) > 1 + n/p. Then A ∈ C1(Eu,µ(J),E0,µ(J)), and for u ∈ Eu,µ(J) we have

A′(u)h = −
(
∂i(aij(u)∂jh+ a′ij(u)∂juh) + f ′(u)h

)
, h ∈ Eu,µ(J).

Moreover, let T0, R > 0 be given. Then there is a continuous function ε : [0,∞) → [0,∞)
with ε(0) = 0 such that for T ≤ T0 it holds

|A(u+ h)−A(u)−A′(u)h|E0,µ(J) ≤ ε(|h|Eu,µ(J))|h|Eu,µ(J) (4.2.3)

for all u, h ∈ Eu,µ(J) with

h(0, ·) = 0, |u|C(J ;C1(Ω,RN )), |u|Eu,µ(J), |h|Eu,µ(J) ≤ R. (4.2.4)

Proof. Throughout we set

| · |0,∞ := | · |C(J ;C(Ω,RN )), | · |1,∞ := | · |C(J ;C1(Ω,RN )).

(I) It is easy to see that the estimate

|vw|W 1
p (Ω,RN ) ≤ |v|C(Ω,RN×N )|w|W 1

p (Ω,RN ) + |v|W 1
p (Ω,RN×N )|w|C(Ω,RN ) (4.2.5)

is valid for all v ∈ W 1
p (Ω,RN×N ) and w ∈ W 1

p (Ω,RN ), provided p > n. We use this fact
and the embedding (4.1.4) to estimate for u, h ∈ Eu,µ(J) 2

|A(u+ h)−A(u)−A′(u)h|E0,µ(J)

. |f(u+ h)− f(u)− f ′(u)h|E0,µ(J) + |a′(u)∂jhh|Lp,µ(J ;W 1
p (Ω,RN ))

+ |
(
aij(u+ h)− aij(u)− a′ij(u)h

)
∂j(u+ h)|Lp,µ(J ;W 1

p (Ω,RN ))

. |f(u+ h)− f(u)− f ′(u)h|0,∞ + |a′ij(u)|1,∞|h|2Eu,µ(J) (4.2.6)

+ |aij(u+ h)− aij(u)− a′ij(u)h|1,∞(|u|Eu,µ(J) + |h|Eu,µ(J)).

Note that for h(0) = 0 these estimates are uniform in T ≤ T0. For the first summand in
(4.2.6) we have, using Lemma 4.2.1 and again (4.1.4),

|f(u+ h)− f(u)− f ′(u)h|0,∞ ≤ ε(|h|0,∞)|h|0,∞ ≤ ε(|h|Eu,µ(J))|h|Eu,µ(J). (4.2.7)

In case (4.2.4), the images of u and h are contained in a compact subset of RN , which
yields that ε is uniform in T ≤ T0 and R. Further, the second summand in (4.2.6) may
be estimated by ε(|h|Eu,µ(J))|h|Eu,µ(J), where ε is again uniform for (4.2.4). For the third

2It is understood that one takes the maximum over single indices.
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summand we have that the second factor there is bounded, and it is uniformly bounded in
case (4.2.4). For the first factor there, we denote by ∇ the gradient on Rn and write the
| · |1,∞ norm as | · |0,∞ + |∇ · |0,∞. The | · |0,∞ part may be estimated as in (4.2.7). For the
|∇ · |0,∞ part we have, estimating again as in (4.2.7) and using (4.1.4),

|∇(aij(u+ h) − aij(u)− a′ij(u)h)|0,∞
≤ |a′′ij(u)∇hh|0,∞ + |a′ij(u+ h)− a′ij(u)− a′′ij(u)h|0,∞(|u|1,∞ + |h|1,∞)

. |a′′ij(u)|0,∞|h|2Eu,µ(J) + ε(|h|0,∞)|h|0,∞

≤ ε(|h|Eu,µ(J))|h|Eu,µ(J),

with the asserted dependence on T in case (4.2.4). This shows the uniform estimate (4.2.3),
and further that A is differentiable in each u ∈ Eu,µ(J) with derivative A′(u).
(II) It remains to show that A′ : Eu,µ(J)→ B(Eu,µ(J),E0,µ(J)) is continuous. For this we
take u, v, h ∈ Eu,µ(J) with |h|Eu,µ(J) ≤ 1. Then it follows from (4.2.5) and (4.1.4) that

|(A′(u)−A′(v))h|E0,µ(J)

≤ |(f ′(u)− f ′(v))h|E0,µ(J) + |(aij(u)− aij(v))∂jh|Lp,µ(J ;W 1
p (Ω,RN ))

+ |(a′ij(u)∂ju− a′ij(v)∂jv)h|Lp,µ(J ;W 1
p (Ω,RN ))

. |f ′(u)− f ′(v)|0,∞ + |aij(u)− aij(v)|1,∞ + |a′ij(u)∂ju− a′ij(v)∂jv|0,∞
+ |a′ij(u)(∂ju− ∂jv)|Lp,µ(J ;W 1

p (Ω,RN×N )) + |(a′ij(u)− a′ij(v))∂jv)|Lp,µ(J ;W 1
p (Ω,RN×N ))

. |f ′(u)− f ′(v)|0,∞ + |aij(u)− aij(v)|1,∞ + |a′ij(u)∂ju− a′ij(v)∂jv|0,∞
+ |a′ij(u)(∂ju− ∂jv)|1,∞ + |(a′ij(u)− a′ij(v))∂jv)|1,∞,

and this converges to zero as u→ v in Eu,µ(J) due to (4.1.4).

We next investigate the regularity of superposition operators on the boundary. The estimate
in a) is useful for low values of q and µ.

Lemma 4.2.3. For a finite interval J = (0, T ) and a smooth function g : RN → RN the
following holds true.

a) Let q ∈ (1,∞), µ ∈ (1/q, 1], and κ, τ ∈ (0, 1). Then

|g(u)|Wκ,τ
q,µ (J×Γ,RN ) . sup

ζ∈Bu
|g′(ζ)| |u|Wκ,τ

q,µ (J×Γ,RN ) + |g(u)|C(J×Γ,RN )

for all u ∈W κ,τ
q,µ (J ×Γ,RN )∩C(J ×Γ,RN ), where Bu is a ball with u(J ×Γ) ⊂ Bu.

b) Let now p ∈ (n + 2,∞) and µ ∈ (1/p, 1] satisfy 2(µ− 1/p) > 1 + n/p. Then for the
superposition operator G, given by G(u) := g(trΩu), we have

G ∈ C1(Eu,µ(J),Fµ(J)), G′(u) = g′(trΩu)trΩ.

c) In the situation of b), let T0, R > 0 be given. Then there is a continuous function
ε : [0,∞)→ [0,∞) with ε(0) = 0 such that for T ≤ T0 it holds

|g(u+ h)− g(u)− g′(u)h|
0Fµ(J) ≤ ε(|h|Eu,µ(J))|h|Eu,µ(J)
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for all u, h ∈ Eu,µ(J) satisfying

h(0, ·) = 0, |u|C(J ;C1(Γ,RN )), |u|Eu,µ(J), |u(0, ·)|
W

2(µ−1/p)
p (Ω,RN )

, |h|Eu,µ(J) ≤ R.
(4.2.8)

Proof. (I) To show a), take u ∈W κ,τ
q,µ (J × Γ,RN ) ∩ C(J × Γ,RN ). Then it holds

|g(u)|Lq,µ(J ;Lq(Γ,RN )) . |g(u)|C(J×Γ,RN ).

For the intrinsic seminorm of the weighted Slobodetskii spaces, given by Proposition 1.1.13,
we estimate with the mean value theorem

[g(u)]q
Wκ
q,µ(J ;Lq(Γ,RN ))

=
∫ T

0

∫ s

0

∫
Γ

tq(1−µ)

(s− t)1+κq
|g(u(s, x))− g(u(t, x))|q dσ(x) dt ds

≤ sup
ζ∈Bu

|g′(ζ)|q [u]q
Wκ
q,µ(J ;Lq(Γ,RN ))

.

(II) To estimate |g(u)|Lq,µ(J ;W τ
q (Γ,RN )) we describe Γ by a finite collection of charts (Ui, ϕi),

choose a partition of unity {ψi} for Γ subordinate to
⋃
i Ui and set Wi := suppψi ⊂ Ui.

Then for almost every t ∈ J we have

|g(u(t, ·))|W τ
q (Γ,RN ) .

∑
i
|ψi(ϕ−1

i ) g(u(t, ϕ−1
i ))|W τ

q (ϕi(Wi),RN ).

For each i it holds, as above

|ψi(ϕ−1
i ) g(u(t, ϕ−1

i ))|Lq(ϕi(Wi),RN ) . |g(u)|C(J×Γ,RN ).

For the seminorm corresponding to W τ
q (ϕi(Wi),RN ), cf. (A.4.2), we estimate

[ψi(ϕ−1
i ) g(u(t, ϕ−1

i ))]q
W τ
q (ϕi(Wi),RN )

=
∫ ∫

ϕi(Wi)2

|ψi(ϕ−1
i (x)) g(u(t, ϕ−1

i (x)))− ψi(ϕ−1
i (y)) g(u(t, ϕ−1

i (y)))|q

|x− y|n−1+τq
dx dy

. sup
ζ∈Bu

|g′(ζ)|q
∫ ∫

ϕi(Wi)2

|u(t, ϕ−1
i (x))− u(t, ϕ−1

i (y))|q

|x− y|n−1+τq
dx dy + |g(u)|q

C(J×Γ,RN )

. sup
ζ∈Bu

|g′(ζ)|q[u(t, ·)]q
W τ
q (Γ,RN )

+ |g(u)|q
C(J×Γ,RN )

,

where we have used Lemma A.4.1 in the last line. Summing over i, using the above estimates
and taking the Lq,µ-norm leads to

|g(u)|Lq,µ(J ;W τ
q (Γ,RN )) . sup

ξ∈Bu
|g′(ξ)||u|Lq,µ(J ;W τ

q (Γ,RN )) + |g(u)|C(J×Γ,RN ),

which implies a).
(III) We next show differentiability of G. For u ∈ Eu,µ(J) it follows from 2(µ − 1/p) >
1 + n/p, p > n and Theorem 1.3.6 that

trΩu ∈W 1−1/2p,2−1/p
p,µ (J × Γ,RN ) ↪→ C(J × Γ,RN ) ∩ Lp,µ(J ;C1(Γ,RN )).

Hence a) implies g′(trΩu) ∈ Fµ(J)∩C(J ×Γ,RN ), and Lemma 1.3.23 yields g′(trΩu)trΩ ∈
B(Eu,µ(J),Fµ(J)). To show the differentiability of G at u ∈ Eu,µ(J), take h ∈ Eu,µ(J).
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Arguing as in Step I of the proof of Lemma 4.2.2 we obtain that there is ε : [0,∞)→ [0,∞)
with ε(0) = 0, which is uniform in R for (4.2.8), such that3

|g(u(t, ·) + h(t, ·))− g(u(t, ·))− g′(u(t, ·))h(t, ·)|C1(Γ,RN )

≤ ε(|h(t, ·)|C1(Γ,RN ))|h(t, ·)|C1(Γ,RN )

is valid for almost all t ∈ J . Taking the Lp,µ-norm and using C1(Γ,RN ) ↪→W
1−1/p
p (Γ,RN )

and (4.1.4) we obtain

|g(u+ h)− g(u)− g′(u)h|
Lp,µ(J ;W

1−1/p
p (Γ,RN ))

≤ ε(|h|C(J ;C1(Γ,RN )))|h|C(J ;C1(Γ,RN ))

. ε(|h|Eu,µ(J))|h|Eu,µ(J).

Observe that these estimates are always uniform in T ≤ T0 and R if (4.2.8) holds.
(IV) For the intrinsic seminorm ofW 1/2−1/2p

p,µ (J, Lp(Γ,RN )), which is given by Proposition
1.1.13, we set

Ξ(t, x) := g(u(t, x) + h(t, x))− g(u(t, x))− g′(u(t, x))h(t, x)

and estimate, using Lemma 4.2.1,

[g(u+ h)− g(u)− g′(u)h]p
W

1/2−1/2p
p,µ (J ;Lp(Γ,RN ))

=
∫ T

0

∫ s

0

∫
Γ

tp(1−µ)

(s− t)1+(1/2−1/2p)p
|Ξ(s, x)− Ξ(t, x)|p dσ(x) dt ds

≤ ε(|h|C(J×Γ,RN ))
(
[h]p

Wκ
p,µ(J ;Lp(Γ,RN ))

+ |h|p
C(J×Γ,RN )

[u]p
Wκ
p,µ(J ;Lp(Γ,RN ))

)
. ε(|h|Eu,µ(J))|h|Eu,µ(J). (4.2.9)

Note that these estimates are also valid on R+. Together with the estimates of Step
III, we obtain that G is differentiable at each u ∈ Eu,µ(J). But since we have used
the intrinsic norm over J , (4.2.9) does not yield an estimate uniformly in T in the

0W
1/2−1/2p
p,µ (J ;Lp(Γ,RN ))-case for (4.2.8) (see also the discussion in Remark 1.1.15).

To overcome this obstacle, let u, h ∈ Eu,µ(J) be as in (4.2.8). Due to Lemma 1.3.9 there is
u∗ ∈ Eu,µ(R+) with

u∗(0, ·) = u(0, ·), |u∗|Eu,µ(R+) . |u(0, ·)|
W

2(µ−1/p)
p (Ω,RN )

.

Using this function we define

ũ := E0
J(u− u∗) + u∗ ∈ Eu,µ(R+), h̃ := E0

Jh ∈ 0Eu,µ(R+),

where E0
J is the extension operator from Lemma 1.1.5 whose norm is independent of T .

Observe that

|ũ|BC([0,∞)×Ω,RN ) . |ũ|Eu,µ(R+) . R+ |u(0, ·)|
W

2(µ−1/p)
p (Ω,RN )

,

3In the sequel we neglect the spatial trace trΩ for better readability.
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and, due to h(0) = 0,

|h̃|BC([0,∞)×Ω) . |h̃|Eu,µ(R+) . |h|Eu,µ(J) ≤ R,

where these estimates are independent of T . Therefore, if we apply Lemma 4.2.1 to g with
arguments from the images ũ(R+ × Ω) and h̃(R+ × Ω), then the resulting functions ε
will depend on a multiple of R + |u(0, ·)|

W
2(µ−1/p)
p (Ω,RN )

, but not on T ≤ T0. Thus, using
Proposition 1.1.11 and (4.2.9) on the half-line, we may estimate

|g(u+ h)− g(u)− g′(u)h|
0W

1/2−1/2p
p,µ (J ;Lp(Γ,RN ))

≤ |g(ũ+ h̃)− g(ũ)− g′(ũ)h̃|
0W

1/2−1/2p
p,µ (R+;Lp(Γ,RN ))

. |g(ũ+ h̃)− g(ũ)− g′(ũ)h̃|
W

1/2−1/2p
p,µ (R+;Lp(Γ,RN ))

≤ ε(|h̃|BC([0,∞)×Γ,RN ))
(
[h̃]

W
1/2−1/2p
p,µ (R+;Lp(Γ,RN ))

+ |h̃|BC([0,∞)×Γ,RN )[ũ]
W

1/2−1/2p
p,µ (R+;Lp(Γ,RN ))

)
. ε(|h|Eu,µ(J))|h|Eu,µ(J)

(
R+ |u(0)|

W
2(µ−1/p)
p (Ω,RN )

)
,

where the function ε is uniform in T ≤ T0 and R. This shows c).
(V) For b) it is left to show that G′ : Eu,µ(J)→ B(Eu,µ(J),Fµ(J)) is continuous. To this
end take u, v, h ∈ Eu,µ(J) with |h|Eu,µ(J) ≤ 1. Then we estimate, using Lemma 1.3.23,

|(g′(u)− g′(v))h|Fµ(J) . |g′(u)− g′(v)|C(J×Γ,RN×N ) + |g′(u)− g′(v)|
W

1/2−1/2p
p,µ (J ;Lp(Γ,RN×N ))

+ |g′(u)− g′(v)|
Lp,µ(J ;W

1−1/p
p (Γ,RN×N ))

.

As u → v in Eu,µ(J), the first summand converges to zero. For the second summand we
use Lemma 4.2.1 and estimate

[g′(u)− g′(v)]
W

1/2−1/2p
p,µ (J ;Lp(Γ,RN×N ))

. ε(|u− v|C(J×Γ,RN ))[v]
W

1/2−1/2p
p,µ (J ;Lp(Γ,RN ))

+ |u− v|
W

1/2−1/2p
p,µ (J ;Lp(Γ,RN ))

.

Here the right-hand side converges to zero as u→ v. Using C1(Γ,RN ) ↪→W
1−1/p
p (Γ,RN ),

we obtain the same for the third summand. Thus b) is finally proved.

For the nonlinear boundary operator

B(u) = αijνitrΩ∂ju− a−1(trΩu)g(trΩu)

the above lemma yields the following.

Lemma 4.2.4. Let J = (0, T ) be finite, and let p ∈ (n + 2,∞) and µ ∈ (1/p, 1] be such
that 2(µ− 1/p) > 1 + n/p. Then B ∈ C1(Eu,µ(J),Fµ(J)), with derivative

B′(u) = αijνitrΩ∂j −
(
a−1g

)′(trΩu)trΩ, u ∈ Eu,µ(J).

Further, let T0, R > 0 be given. Then there is a continuous function ε : [0,∞) → [0,∞)
with ε(0) = 0, such that for T ≤ T0 it holds

|B(u+ h)−B(u)−B′(u)h|
0Fµ(J) ≤ ε(|h|Eu,µ(J))|h|Eu,µ(J)

for all u, h ∈ Eu,µ(J) as in (4.2.8).
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4.3 The Local Semiflow

For p ∈ (1,∞) and s ∈ (1 + n/p, 2− 2/p] recall the nonlinear phase space

Ms
p =

{
u0 ∈W s

p (Ω,RN ) : B(u0) = 0
}
,

which is equipped with the metric from W s
p (Ω,RN ). We say that (4.1.1) generates a com-

pact local semiflow of Eu,µ-solutions onMs
p if the following three conditions are satisfied.

1. For all u0 ∈ Ms
p there is t+(u0) > 0 such that (4.1.1) has a unique maximal

solution u(·, u0) ∈ C
(
[0, t+(u0));W s

p (Ω,RN )
)
which belongs to Eu,µ(0, τ) for all

τ ∈ (0, t+(u0)).

2. For all u0 ∈ Ms
p and τ ∈ (0, t+(u0)) there is r > 0 such that t+(v0) > τ for all

v0 ∈ Br(u0) ∩Ms
p, and the map u(τ, ·) : Br(u0) ∩Ms

p →Ms
p is continuous.

3. If for a bounded set M ⊂ Ms
p there is τ > 0 such that t+(v0) > τ for all v0 ∈ M ,

then u(τ,M) is relatively compact inMs
p.

To verify the first condition for (4.1.1) we consider the linear initial-boundary value problem
associated to (A′(u), B′(u)), and show that it enjoys maximal Lp,µ-regularity for each
u ∈ Eu,µ(J).

Lemma 4.3.1. Let J = (0, T ) be a finite interval, and let p ∈ (n+ 2,∞) and µ ∈ (1/p, 1]
be such that

s := 2(µ− 1/p) > 1 + n/p.

Assume further that (4.1.2) is valid, and let the function u ∈ Eu,µ(J) be given. Denote by

Du(J) :=
{

(f̃ , g̃, ṽ0) ∈ E0,µ(J)× Fµ(J)×W s
p (Ω,RN ) : B′(u(0, ·))ṽ0 = g̃0 on Γ

}
the space of compatible data with respect to (A′(u), B′(u)). Then there exists a bounded
linear solution operator L : Du(J)→ Eu,µ(J) for

∂tv +A′(u(t, x))v = f̃(t, x), x ∈ Ω, t ∈ J,
B′(u(t, x))v = g̃(t, x), x ∈ Γ, t ∈ J,

v(0, x) = ṽ0(x), x ∈ Ω.

Given T0 > 0, the operator norm of L restricted to

D0
u(J) :=

{
(f̃ , g̃, ṽ0) ∈ Du(J) : g̃ ∈ 0Fµ(J)

}
is uniform in T ≤ T0.

Proof. We check that (A′(u), B′(u)) satisfies the assumptions of Theorem 2.1.4. Since
u ∈ C(J ;C1(Ω,RN )) by (4.1.4), the top order coefficients of A′(u) belong to BUC(J ×
Ω,RN×N ). The lower order coefficients belong to E0,µ(J ; RN×N ). Moreover, Lemma 4.2.3
implies that the coefficients of B′(u) belong to Fµ(J ; RN×N ). Since the condition 1/2 −
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1/2p > 1 − µ + 1/p + n−1
2p is equivalent to 2(µ − 1/p) > 1 + n/p, we obtain that the

coefficients satisfy the first conditions in (SD) and (SB), respectively.
It remains to check the ellipticity conditions. To this end consider the pair (A(u),B), given
by

A(u)v := ∂i
(
aij(u)∂jv), Bv := αijνitrΩ∂jv, v ∈ Eu,µ(J).

It is shown in [5, Theorem 4.4] that (4.1.2) implies (E) and (LS) for (A(ζ),B), ζ ∈ RN .
Since these conditions are independent of the lower order terms it follows that (A′(u), B′(u))
satisfies (E) and (LS) as well. Thus all the assumptions of Theorem 2.1.4 are satisfied, and
the assertion follows.

Now we can prove local existence and uniqueness for solutions of (4.1.1). Our proof is based
on maximal Lp,µ-regularity for the linearized problem and the contraction principle, and
follows [90] (see also [59, 65]).

Proposition 4.3.2. Let p ∈ (n + 2,∞) and µ ∈ (1/p, 1] be such that s = 2(µ − 1/p) >
1 +n/p, and assume that (4.1.2) is valid. Then for each initial value u0 ∈W s

p (Ω,RN ) with

aij(u0)νi∂ju0 = g(u0) on Γ (4.3.1)

the system (4.1.1) has a unique maximal solution

u(·, u0) ∈ C
(
[0, t+(u0));W s

p (Ω,RN )
)
,

which belongs to Eu,µ(0, τ) for all τ ∈ (0, t+(u0)).

Proof. We rewrite (4.1.1) into the equivalent form

∂tu+A(u) = 0 in Ω, t > 0,

B(u) = 0 on Γ, t > 0, (4.3.2)

u(0, ·) = u0 in Ω,

where A and B were defined in the beginning of the previous section. Note that the
condition (4.3.1) on u0 is equivalent to B(u0) = 0. Throughout the proof we fix u∗ ∈
Eu,µ(R+) with u∗(0, ·) = u0, which exists by Lemma 1.3.9.
(I) We consider the linear problem

∂tw +A′(u∗)w = A′(u∗)u∗ −A(u∗) in Ω, t > 0,

B′(u∗)w = B′(u∗)u∗ −B(u∗) on Γ, t > 0, (4.3.3)

w(0, ·) = u0 in Ω.

Due to the Lemmas 4.2.2 and 4.2.4 it holds

A′(u∗)u∗ −A(u∗) ∈ E0,µ(0, 1), B′(u∗)u∗ −B(u∗) ∈ Fµ(0, 1),

and since B(u0) = 0 the compatibility condition

B′(u0)u0 = B′(u0)u0 −B(u0) on Γ
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is trivially satisfied. Thus Lemma 4.3.1 yields a unique solution w∗ ∈ Eu,µ(0, 1) of (4.3.3).
Using w∗, we define for σ, τ ∈ (0, 1]

Σ(σ, τ) :=
{
u ∈ Eu,µ(0, τ) : |u− w∗|Eu,µ ≤ σ, u(0, ·) = u0

}
.

The set Σ(σ, τ) is closed in Eu,µ(0, τ). Moreover, (4.1.4) implies

|u|C([0,τ ];C1(Ω,RN )), |u(0, ·)|
W

2(µ−1/p)
p (Ω,RN )

, |u|Eu,µ(0,τ) . 1 + |w∗|Eu,µ(0,1), (4.3.4)

uniformly in u ∈ Σ(σ, τ) and σ, τ ∈ (0, 1]. For u ∈ Σ(σ, τ) we next consider

∂tw +A′(u∗)w = A′(u∗)u−A(u) in Ω× (0, τ),

B′(u∗)w = B′(u∗)u−B(u) on Γ× (0, τ), (4.3.5)

w(0, ·) = u0 in Ω.

As above, for all τ ∈ (0, 1] there is a unique solution w = S(u) ∈ Eu,µ(0, τ) of (4.3.5) due
to Lemma 4.3.1. This defines a map

S : Σ(σ, τ)→ Eu,µ(0, τ).

Observe that u ∈ Σ(σ, τ) solves (4.3.2) on (0, τ) if and only if it is a fixed point of S
in Σ(σ, τ). Since for given σ each solution of (4.3.2) in Eu,µ(0, τ) belongs to Σ(σ, τ) for
sufficiently small τ , our task is thus to show that the map S has a unique fixed point
in Σ(σ, τ), provided that σ and τ are sufficiently small. To this end we use the con-
traction principle. The existence of a maximal existence time and a maximal solution
in C([0, t+(u0));W s

p (Ω,RN )) then follows from standard arguments.
(II) First we show that S is a self map on Σ(σ, τ) for small σ and τ . For u ∈ Σ(σ, τ) the
difference z = S(u)− w∗ solves

∂tz +A′(u∗)z = A(u∗)−A(u)−A′(u∗)(u∗ − u) in Ω× (0, τ),

B′(u∗)z = B(u∗)−B(u)−B′(u∗)(u∗ − u) on Γ× (0, τ),

z(0, ·) = 0 in Ω.

Note that the right-hand side of the boundary equation belongs to 0Fµ(0, τ). Thus by
Lemma 4.3.1 there is a constant C0, independent of τ , such that

|S(u)− w∗|Eu,µ(0,τ) ≤ C0

(
|A(u∗)−A(u)−A′(u∗)(u∗ − u)|E0,µ(0,τ)

+ |B(u∗)−B(u)−B′(u∗)(u∗ − u)|
0Fµ(0,τ)

)
. (4.3.6)

As above it holds
|u∗ − u|Eu,µ(0,τ) . σ + |w∗ − u∗|Eu,µ(0,1), (4.3.7)

uniformly in u ∈ Σ(σ, τ) and τ ∈ (0, 1]. Using this fact together with Lemma 4.2.2 we
obtain that the first summand in (4.3.6) may be estimated by

|A(u∗)−A(u)−A′(u∗)(u∗ − u)|E0,µ(0,τ) ≤ ε(|u∗ − u|Eu,µ(0,τ))|u∗ − u|Eu,µ(0,τ)

≤ ε(|u∗ − w∗|Eu,µ(0,τ) + σ)(|u∗ − w∗|Eu,µ(0,τ) + σ),
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where ε : [0,∞)→ [0,∞) is a continuous function with ε(0) = 0, which is independent of
σ, τ ∈ (0, 1]. We first choose σ with ε(2σ) ≤ 1/4C0 and then τ such that the fixed functions
u∗ and w∗ satisfy |u∗ − w∗|Eu,µ(0,τ) ≤ σ. Then we obtain

|A(u∗)−A(u)−A′(u∗)(u∗ − u)|E0,µ(0,τ) ≤ σ/2C0.

Similarly, using (4.3.7) and Lemma 4.2.4 we obtain for the second summand in (4.3.6) that

|B(u∗)−B(u)−B′(u∗)(u∗ − u)|
0Fµ(0,τ) ≤ σ/2C0

as well, provided σ and τ are sufficiently small. This shows that S is a self mapping on
Σ(σ, τ) if σ and τ are appropriately chosen.
(III) We show that S is a strict contraction on Σ(σ, τ). For u, v ∈ Σ(σ, τ) we have as above

|S(u)− S(v)|Eu,µ(0,τ) ≤ C0

(
|A′(u∗)u−A(u)−A′(u∗)v +A(v)|E0,µ(0,τ) (4.3.8)

+ |B′(u∗)u−B(u)−B′(u∗)v +B(v)|
0Fµ(0,τ)

)
.

Using (4.3.4), (4.3.7) and Lemma 4.2.2, we estimate the first summand in (4.3.8) by

|A′(u∗)u −A(u)−A′(u∗)v +A(v)|E0,µ(0,τ)

≤ |A(v)−A(u)−A′(u)(v − u)|E0,µ(0,τ) + |
(
A′(u∗)−A′(u)

)
(u− v)|E0,µ(0,τ)

≤
(
ε(|v − u|Eu,µ(0,τ)) + |A′(u∗)−A′(u)|B(Eu,µ(0,τ),E0,µ(0,τ))

)
|v − u|Eu,µ(0,τ)

≤
(
ε(2σ) + ε(σ + |w∗ − u∗|Eu,µ(0,τ))

)
|v − u|Eu,µ(0,τ),

where ε is a function as above, independent of σ, τ ∈ (0, 1]. Thus if σ and τ are sufficiently
small we obtain

|A′(u∗)u−A(u)−A′(u∗)v +A(v)|E0,µ(0,τ) ≤ 1/4C0|v − u|Eu,µ(0,τ).

Using Lemma 4.2.4, in the same way we obtain for the second summand in (4.3.8) that

|B′(u∗)u−B(u)−B′(u∗)v +B(v)|
0Fµ(0,τ) ≤ 1/4C0|v − u|Eu,µ(0,τ).

This shows that S is a strict contraction on Σ(σ, τ) if σ and τ are sufficiently small.

Before we treat the continuous dependence on the initial values we need another prepara-
tory result on the boundary operator B.

Lemma 4.3.3. Let p ∈ (n+ 2,∞) and µ ∈ (1/p, 1] satisfy 2(µ− 1/p) > 1 +n/p. Then we
have

B ∈ C1
(
W 2(µ−1/p)
p (Ω,RN ),W 2(µ−1/p)−1−1/p

p (Γ,RN )
)
,

with derivative

B′(u0) = αijνitrΩ∂j −
(
a−1g

)′(trΩu0)trΩ for u0 ∈W 2(µ−1/p)
p (Ω,RN ).

Further, if (4.1.2) is valid, then for each u0 the map B′(u0) is surjective with bounded
linear right-inverse.



4.3 The Local Semiflow 157

Proof. By Lemma 1.3.9, for all u0 ∈ W
2(µ−1/p)
p (Ω,RN ) there is u∗ ∈ Eu,µ(0, 1) with

u∗(0, ·) = u0, which depends smoothly on u0. It thus follows from B(u0) = tr0B(u∗),
Lemma 4.2.4 and Theorem 1.3.6 that B is C1, with derivative as asserted.
For the right-inverse of B′(u0) we intend to use Proposition 2.5.1. Consider the operators

A := αij∂i∂j , B := αijνitrΩ∂j .

Then (4.1.2) and [5, Theorem 4.4] yield that (A,B) satisfies (E) and (LS), and thus also
(A, B′(u0)) satisfies (E) and (LS). For the regularity of the coefficients of B′(u0), one can
show as in Step II of the proof of Lemma 4.2.3 that(

a−1g
)′(trΩu0) ∈W 2(µ−1/p)−1/p

p (Γ,RN×N ) ↪→W 2(κ−(1−µ+1/p))
p (Γ,RN×N ),

where κ = 1/2− 1/2p. Thus B′(u0) satisfies the assumptions of Proposition 2.5.1, and the
existence of a continuous right-inverse follows. It is clear that for real-valued u0, a and g
this right-inverse maps into a space of real-valued functions.

The following result on the continuous dependence of solutions on the initial data is based
on a combination of maximal Lp,µ-regularity and the implicit function theorem. We follow
the proof of [65, Theorem 14].

Proposition 4.3.4. In the setting of Proposition 4.3.2, let u = u(·, u0) be the maximal
solution of (4.1.1) with initial value u0 ∈ Ms

p. Then for all τ ∈ (0, t+(u0)) there is a ball
Br(u0) in W s

p (Ω,RN ), r > 0, and a continuous map

Φ : Br(u0) ∩Ms
p → Eu,µ(0, τ), Φ(u0) = u,

such that Φ(v0) is the solution of (4.1.1) on (0, τ) with initial value v0 ∈ Br(u0) ∩Ms
p.

Proof. (I) Take p ∈ (n + 2,∞) and µ ∈ (1/p, 1] with s = 2(µ − 1/p), such that u ∈
Eu,µ(0, τ). We consider the linear problem

∂tz +A′(u(t, x))z = f̃(t, x), x ∈ Ω, t ∈ (0, τ),

B′(u(t, x))z = g̃(t, x), x ∈ Γ, t ∈ (0, τ), (4.3.9)

z(0, x) = w̃0(x), x ∈ Ω,

and denote by
S : Du(0, τ)→ Eu,µ(0, τ)

the bounded linear solution operator corresponding to (4.3.9) from Lemma 4.3.1. We have
that v ∈ Eu,µ(0, τ) solves (4.1.1) (and the rewritten problem (4.3.2)) with initial value
v0 ∈Ms

p if and only if

v = u+ S
(
F (v − u), G(v − u), v0 − u0

)
, (4.3.10)

where the nonlinear functions F and G are given by

F (w) := −
(
A(u+ w)−A(u)−A′(u)w

)
, G(w) := −

(
B(u+ w)−B(u)−B′(u)w

)
.
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Due to the Lemmas 4.2.2 and 4.2.4 it holds

F ∈ C1
(
Eu,µ(0, τ),E0,µ(0, τ)

)
, G ∈ C1

(
Eu,µ(0, τ),Fµ(0, τ)

)
.

(II) We define the tangential space ofMs
p at u0 by

Tu0Ms
p :=

{
z0 ∈W s

p (Ω,RN ) : B′(u0)z0 = 0
}
.

This is the kernel of the bounded linear operator B′(u0) in W s
p (Ω,RN ), and thus a Banach

space. We further consider the nonlinear map

F : Tu0Ms
p × Eu,µ(0, τ)→ Eu,µ(0, τ),

defined by
F(z0, w) := w − S

(
F (w), G(w), z0 +Nstr0G(w)

)
.

HereNs ∈ B
(
W

s−1−1/p
p (Γ,RN ),W s

p (Ω,RN )
)
denotes the continuous right-inverse of B′(u0)

from Lemma 4.3.3, and tr0 is the temporal trace at t = 0, i.e., tr0w = w(0, ·). The map F
is well defined, since due to

B′(u0)
(
z0 +Nstr0G(w)

))
= tr0G(w)

only compatible data are inserted into S. It further holds F(0, 0) = 0 and that F is
continuously differentiable. The derivative of F with respect to the second argument at
(z0, w) = (0, 0) is given by

∂2F(0, 0)

= S
(
A′(u+ w)−A′(u), B′(u+ w)−B′(u),Nstr0(B′(u+ w)−B′(u))

)
|w=0 = id,

and is therefore invertible. Thus we can solve the nonlinear equation F(z0, w) = 0 locally
around (0, 0) uniquely by w = Φ∗(z0) with a C1-function Φ∗ : Br(0) → Eu,µ(0, τ), where
Br(0) ⊂ Tu0Ms

p and r > 0 is small.
(III) Now let v0 ∈Ms

p be given, and define

z0 :=
(
id−NsB′(u0)

)
(v0 − u0) ∈ Tu0Ms

p.

By continuity of id−NsB′(u0), if v0 is close to u0 inMs
p then the norm of z0 inW s

p (Ω,RN )
is small, such that w = Φ∗(z0) ∈ Eu,µ(J) is well-defined and satisfies

w = S
(
F (w), G(w), v0 − u0 −Ns(B′(u0)(v0 − u0)− tr0G(w))

)
.

Due to tr0G(w) = −B(u0 +w(0, ·)) +B′(u0)(w(0, ·)), the continuity of Ns, B(v0) = 0 and
Lemma 4.3.3 yield

|w(0,·)− (v0 − u0)|W s
p (Ω,RN )

= |Ns
(
B(u0 + w(0, ·))−B′(u0)(w(0, ·)− (v0 − u0))

)
|W s

p (Ω,RN )

. |B(u0 + w(0, ·))−B(v0)−B′(v0)(w(0, ·)− (v0 − u0))|
W
s−1−1/p
p (Ω,RN )

+ |
(
B′(v0)−B′(u0)

)
(w(0, ·)− (v0 − u0))|

W
s−1−1/p
p (Ω,RN )

≤ ε
(
|w(0, ·)− (v0 − u0)|W s

p (Ω,RN ) + |v0 − u0|W s
p (Ω,RN )

)
|w(0, ·)− (v0 − u0)|W s

p (Ω,RN ),
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with ε(0) = 0. Since Φ∗ is continuous and satisfies Φ∗(0) = 0, if v0 tends to u0 then
|w(0, ·)|W s

p (Ω,RN ) tends to zero. Thus for v0 sufficiently close to u0 the above inequality is
only possible if w(0, ·) = v0 − u0. This implies that the function v = u + w ∈ Eu,µ(0, τ)
solves (4.3.10), and therefore (4.1.1) with initial value v0. Now

Φ(v0) := u+ Φ∗
(
(id−NsB′(u0))(v0 − u0)

)
is the asserted continuous solution map for (4.1.1) on Br(u0) ∩Ms

p.

The above result in particular shows that (4.1.1) satisfies also the second condition for a
compact local semiflow. We now prove the required compactness property of the solution
map, employing the inherent smoothing effect of the Lp,µ-spaces. Our arguments are similar
to those in Section 3 of the recent paper [59].

Proposition 4.3.5. In the setting of Proposition 4.3.2, let the bounded set M ⊂Ms
p and

τ > 0 satisfy t+(v0) > τ for all v0 ∈M . Then u(τ,M) is relatively compact inMs
p.

Proof. (I) It follows from the compactness of the embeddingW 1
p (Ω,RN ) ↪→ Lp(Ω,RN ), cf.

[1, Theorem 6.3], and the interpolation result in [7, Section I.2.7] that for s∗ ∈ (1 +n/p, s)
the embedding

W s
p (Ω,RN ) ↪→W s∗

p (Ω,RN )

is compact. Therefore M is relatively compact in W s∗
p (Ω,RN ). Take µ∗ ∈ (1/p, 1] with

s∗ = 2(µ∗ − 1/p). Due to Proposition 4.3.4, for each v0 ∈ M there is a ball Br(v0) in
W s∗
p (Ω,RN ) and a continuous map

Φ : Br(v0) ∩Ms∗
p → Eu,µ∗(0, τ)

such that w = Φ(w0) ∈ Eu,µ∗(0, τ) solves (4.1.1) with initial value w0 ∈ Br(v0) ∩Ms∗
p .

This yields an open cover ofM inW s∗
p (Ω,RN ), and thus, by compactness, there are finitely

many balls Bk and maps Φk with the above property such that
⋃
k Bk covers M .

(II) Each Φk maps the relatively compact set Bk ∩M continuously into Eu,µ∗(0, τ), with

Φk(w0) = u(·, w0)|(0,τ), w0 ∈ Bk ∩M.

Since the temporal trace

trτ : Eu,µ∗(0, τ)→W 2−2/p
p (Ω,RN ), trτw = w(τ, ·),

is continuous, we obtain that

u(τ,M) =
⋃
k

trτ ◦ Φk(Bk ∩M)

is relatively compact in W s
p (Ω,RN ), as a continuous image of a relatively compact set.

We summarize the above considerations to the main result of this section.
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Theorem 4.3.6. Let p ∈ (n + 2,∞), s ∈ (1 + n/p, 2 − 2/p] and µ ∈ (1/p, 1] satisfy
s = 2(µ− 1/p), and assume that (4.1.2) holds true. Then the system

∂tu− ∂i(aij(u)∂ju) = f(u) in Ω, t > 0,

aij(u)νi∂ju = g(u) on Γ, t > 0,

u(0, ·) = u0 in Ω,

generates a compact local semiflow of Eu,µ-solutions on the phase spaceMs
p.

Remark 4.3.7. The methods in this section are independent of the concrete form of the
nonlinear operators A and B, as long as they are C1 and Theorem 2.1.4 is applicable to
the corresponding linearized problem. Thus a compact local semiflow in a scale of nonlin-
ear phase spaces can be obtain for much more general parabolic systems with nonlinear
boundary conditions, as treated in [65], for instance.

4.4 Global Attractors in Stronger Norms

We now fix p ∈ (n+2,∞) and investigate the long-time behaviour of solutions of (4.1.1) for
initial values fromM2−2/p

p . Using the full strength of maximal Lp,µ-regularity we estimate
solutions of (4.1.1) at a later time in a strong norm by the solution at an earlier time in
a weaker norm. This builds the bridge from lower to higher regularity, and is the key to
global attractors in stronger norms.

Lemma 4.4.1. Let u0 ∈ M2−2/p
p , and denote by u(·, u0) the maximal solution of (4.1.1).

Let q ∈ (1, p], µ ∈ (1/q, 1], set

σ := 2(µ− 1/q) ∈ (0, 2− 2/q],

and assume that σ /∈ {1, 1+1/q}. Let further τ > 0, 0 < T1 < T2 < t+(u0) and τ = T2−T1.
Then for α > 0 there is a constant C = C

(
τ, α, |u(·, u0)|C([T1,T2],Cα(Ω,RN ))

)
with

|u(T2, u0)|
W

2−2/q
q (Ω,RN )

≤ C
(
1 + |u(T1, u0)|Wσ

q (Ω,RN )

)
. (4.4.1)

In the semilinear case, i.e., if (aij) does not depend on u, one may take α = 0.

Proof. Throughout we set J := (0, τ). The spaces E0,µ, Eu,µ and Fµ must now be under-
stood with respect to q, e.g., E0,µ(J) = Lq,µ(J ;Lq(Ω,RN )).
(I) Define the function v ∈W 1

p (J ;Lp(Ω,RN )) ∩ Lp(J ;W 2
p (Ω; RN )) by

v(t) := u(t+ T1, u0), t ∈ J.

Since the weight only has an effect at t = 0, we have

|u(T2, u0)|
W

2−2/q
q (Ω,RN )

= |v(τ)|
W

2−2/q
q (Ω,RN )

. |v|Eu,µ(J), (4.4.2)
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in dependence on τ . Moreover, the function v solves the nonautonomous, inhomogeneous
linear problem

∂tw − aij(v)∂i∂jw = a′ij(v)∂iv∂jv + f(v) in Ω, t ∈ J,
αijνi∂jw = a−1(v)g(v) on Γ, t ∈ J,
w(0, ·) = u(T1, u0) in Ω.

It follows from Theorem 2.1.4, localization arguments similar to those in the proof of
Proposition 2.3.1 and compactness that there is a constant C, which is uniform in
|u|C([T1,T2]×Ω,RN ) and τ , such that

|v|Eu,µ(J) ≤ C
(
|a′ij(v)∂iv∂jv|E0,µ(J)+|f(v)|E0,µ(J)+|a−1(v)g(v)|Fµ(J)+|u(T1, u0)|Wσ

q (Ω,RN )

)
.

(4.4.3)
(II) Using Hölder’s inequality we estimate for the first summand in (4.4.3)

|a′ij(v)∂iv∂jv|qE0,µ(J) .|u|
C([T1,T2]×Ω,RN )

|∂iv∂jv|qE0,µ(J)

≤ ||∂iv|L2q(Ω,RN )|∂jv|L2q(Ω,RN )|
q
Lq,µ(J) ≤

∫
J
tq(1−µ)|v(t)|2q

W 1
2q(Ω,RN )

dt.

By the Gagliardo-Nirenberg inequality (Proposition A.6.2) we have for all t ∈ J that

|v(t)|2q
W 1

2q(Ω,RN )
. |v(t)|q

Wϑ
q (Ω,RN )

|v(t)|q
W τ
r (Ω,RN )

for r ∈ (1,∞) and ϑ, τ > 0, provided 1− n
2q <

1
2

(
τ − n

r

)
+ 1

2

(
ϑ− n

q

)
. For given α it holds

Cα(Ω,RN ) ↪→ W τ
r (Ω,RN ) for τ ∈ (0, α) and r ∈ (1,∞). Thus if ϑ < 2 is sufficiently close

to 2 and r is large we obtain from the interpolation inequality and Young’s inequality

|v(t)|2q
W 1

2q(Ω,RN )
. |v(t)|q

Wϑ
q (Ω,RN )

|v(t)|q
Cα(Ω,RN )

.|u|
C([T1,T2];Cα(Ω,RN ))

ε|v(t)|q
W 2
q (Ω,RN )

+ Cε|u|C([T1,T2]×Ω,RN ),

where ε > 0 may be chosen arbitrary small. We therefore have

|a′ij(v)∂iv∂jv|E0,µ(J) .|u|
C([T1,T2];Cα(Ω,RN ))

ε|v|Eu,µ(J) + Cε.

Observe that this term does not occur in the semilinear case.
(III) For the second summand in (4.4.3) it is easily seen that

|f(v)|E0,µ(J) . |f(u)|C([T1,T2]×Ω,RN ).

For the third summand, Lemma 4.2.3, the interpolation inequality and Young’s inequality
yield

|g(v)|Fµ(J) .|u|
C([T1,T2];C(Ω,RN ))

1 + |v|Fµ(J) ≤ ε|v|Eu,µ(J) + Cε,

where ε is arbitrary. If we combine the above estimates with (4.4.3) and choose ε sufficiently
small, then we may subtract ε|v|Eu,µ(J) on both sides of the inequality, to obtain

|v|Eu,µ(J) .|u|
C([T1,T2];Cα(Ω,RN ))

1 + |u(T1, u0)|Wσ
q (Ω,RN ).
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Together with (4.4.2) this yields the asserted estimate. In the semilinear case the constant
does not depend on the Hölder norm of the solution, since then only the terms |f(v)|E0,µ(J)

and |g(v)|Fµ(J) in (4.4.3) are estimated.

We use the above estimate to give a sufficient condition for the existence of a global
attractor of (4.1.1) in the phase spaceM2−2/p

p in terms of lower norms. This is the main
result of this chapter.

Theorem 4.4.2. Suppose that there are α,C > 0 such that for each solution u(·, u0) of
(4.1.1) with initial value u0 ∈M2−2/p

p it holds

lim sup
t→t+(u0)

|u(t, u0)|Cα(Ω,RN ) ≤ C.

Then (4.1.1) has a global attractor inM2−2/p
p .

Proof. We first show that t+(u0) = +∞ for all u0 ∈ M2−2/p
p . Assume the contrary,

i.e., t+(u0) < +∞. Then Lemma 4.4.1 and the embedding Cα(Ω,RN ) ↪→ W σ
p (Ω,RN ) for

σ ∈ (0, α) yield

sup
t∈[0,t+(u0))

|u(t, u0)|
W

2−2/p
p (Ω,RN )

. 1 + sup
t∈[0,t+(u0)/2)

|u(t, u0)|Cα(Ω,RN ),

which means that the orbit {u(t, u0)}t∈[0,t+(u0)) is bounded in W
2−2/p
p (Ω,RN ). It thus

has a convergent subsequence in W s
p (Ω,RN ) for s ∈ (1 + n/p, 2 − 2/p), which leads to a

contradiction to the maximal existence time, and therefore t+(u0) = +∞. Now another
application of Lemma 4.4.1 yields that there is C0 > 0 with

lim sup
t→∞

|u(t, u0)|
W

2−2/p
p (Ω,RN )

≤ C0

for all u0 ∈ M2−2/p
p . Therefore the global semiflow generated by (4.1.1) has an absorbant

ball in M2−2/p
p . Since the semiflow is also compact by Theorem 4.3.6, the existence of a

global attractor follows from [16, Corollary 1.1.6].

We consider special cases of (4.1.1), where an absorbing set in a weaker norm is sufficient for
an attractor inMs

p. We start with the semilinear case with nonlinear boundary conditions.

Corollary 4.4.3. Assume that (aij) does not depend on u, and suppose that there are
q ∈ (1,∞), σ ∈ (0, 2 − 2/q] and a constant C > 0 such that for each solution u(·, u0) of
(4.1.1) with u0 ∈M2−2/p

p it holds

lim sup
t→t+(u0)

|u(t, u0)|Wσ
q (Ω,RN )∩L∞(Ω,RN ) ≤ C.

Then (4.1.1) has a global attractor inM2−2/p
p .

Proof. Lemma 4.4.1 yields a constant C0 such that

lim sup
t→t+(u0)

|u(t, u0)|
W

2−2/q
q (Ω,RN )

≤ C0 (4.4.4)
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for all u0 ∈ M2−2/p
p . We employ a bootstrapping procedure to show that (4.4.4) remains

true if one replaces W 2−2/q
q (Ω,RN ) by Cα(Ω,RN ) with some α > 0, and C0 by a possibly

larger constant. It then follows from Theorem 4.4.2 that (4.1.1) has a global attractor in
M2−2/p

p as asserted. Sobolev’s embedding yields

W 2−2/q
q (Ω,RN ) ↪→ Cα(Ω,RN )

for some α > 0 if q > n/2 + 1, and we are done in this case. Otherwise, in case q ∈
(1, n/2 + 1), we employ

W 2−2/q
q (Ω,RN ) ↪→W τ

q1(Ω,RN ),

which is valid for some small τ > 0 if q1 ∈
(
q, nq

n+2−2q

)
. Note here that nq

n+2−2q > q

for all n and q ∈ (1, n/2 + 1). Another application of Lemma 4.4.1 yields (4.4.4) with
W

2−2/q
q (Ω,RN ) replaced by W

2−2/q1
q1 (Ω,RN ). Iteratively, this yields a strictly increasing

sequence of numbers qk as long as qk < n/2 + 1. But since qk ≥
( n(1−δ)
n+2−2q

)k
q for small δ > 0

as long as qk < n/2 + 1 and n
n+2−2q > 1, the sequence qk becomes larger than n/2 + 1

after finitely many steps. Thus (4.4.4) holds true with a Hölder norm, and this finishes the
proof.

For N = 2 we next consider for the unknown u = (u1, u2) quasilinear cross-diffusion
systems of the form

∂tu1 = div
(
P (u)∇u1 +R(u)∇u2

)
+ f1(u) in Ω, t > 0,

∂tu2 = div
(
Q(u2)∇u2

)
+ f2(u) in Ω, t > 0,

∂νu = 0 on Γ, t > 0, (4.4.5)

u(0, ·) = u0 in Ω.

This problem fits into our setting with a(u) =

(
P (u) R(u)

0 Q(u2)

)
, αij = δij and g = 0.

We can use the results of Kuiper & Dung [61] to weaken the norm for the absorbing ball
considerably. We assume the following on the coefficients of (4.4.5). There are nonnegative
continuous functions Φ1, Φ2 and constants C, d > 0 such that for all ζ = (ζ1, ζ2) ∈ R2 it
holds

P (ζ) ≥ d(1 + ζ1), ζ1 ≥ 0, |R(ζ)| ≤ Φ1(ζ2)ζ1, Q(ζ2) ≥ d;
the partial derivatives of P , R are majorized by some powers of ζ1, ζ2;

|f(ζ)| ≤ Φ2(ζ2)(1 + ζ1), g(ζ)ζr1 ≤ Φ2(ζ2)(1 + ζr+1
1 ), for all ζ1, ζ2 ≥ 0, r > 0.

Corollary 4.4.4. Under the above assumptions, let the solutions of (4.4.5) be nonnegative
for nonnegative initial data. Suppose that there are r > n/2 and C > 0 such that for all
u0 ∈M2−2/p

p it holds

lim sup
t→∞

|u1(t, u0)|Lr(Ω,R2) + |u2(t, u0)|L∞(Ω,R2) ≤ C.

Then (4.4.5) has a global attractor in M2−2/p
p . If Q does not depend on u2 one can take

r = 1.
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Proof. It is shown in the Theorems 7 and 8 of [61] that (4.4.5) has a global attractor in
W 1
p (Ω,R2) for all p ∈ (n + 2,∞), from which the existence of an absorbant set in a Cα-

norm follows from Sobolev’s embedding. The assertion is thus a consequence of Theorem
4.4.2.

In case of a single equation, N = 1, the norm for the absorbant set can be weakend up to
L1, using estimates of De Giorgi - Nash - Moser type.

Corollary 4.4.5. Consider for u(t, x) ∈ R the problem

∂tu = div(a(u)∇u) + f(u) in Ω, t > 0,

∂νu = g(u) on Γ, t > 0, (4.4.6)

u(0, ·) = u0 in Ω,

where a, f and g are assumed to be bounded and that there exists δ > 0 with a(ζ) ≥ δ for
all ζ ∈ R. If there is a constant C > 0 such that for each u0 ∈M2−2/p

p the solution u(·, u0)
of (4.4.6) satisfies

lim sup
t→t+(u0)

|u(t, u0)|L1(Ω) ≤ C,

then (4.4.6) has a global attractor inM2−2/p
p .

Proof. It is shown in [33, Theorem 1] that the existence of an absorbant ball in L1(Ω)
implies the existence of an absorbant ball in L∞(Ω). This in turn yields an absorbant ball
in a Hölder norm, see [28, Theorem III.1.3] or [34, Corollary 4.2], and the assertion follows
from Theorem 4.4.2.

4.5 Applications

We apply the results of the last section to show convergence to attractors in stronger norms
for concrete models.

4.5.1 Reaction-Diffusion Systems with Nonlinear Boundary Conditions

In a series of papers, Carvalho et. al. [15] considered global attractors for semilinear
reaction-diffusion systems with nonlinear boundary conditions of the form

∂tu−∆u = f(u) in Ω, t > 0,

∂νu = g(u) on Γ, t > 0, (4.5.1)

u(0, ·) = u0 in Ω.

Here the smooth nonlinearities f, g : RN → RN are dissipative in the sense that there are
real numbers ci and di with

lim sup
|ξi|→∞

fi(ξ)
ξi

< ci, lim sup
|ξi|→∞

gi(ξ)
ξi

< di,
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such that the first eigenvalue λ0 of the linear elliptic problem

−∆v − cv = λv in Ω,

∂νv − dv = 0 on Γ,

is positive, where c = (c1, ..., cN ) and d = (d1, ..., dN ). The discussion in [15, Section 6]
shows that the first eigenvalue of the above problem can be positive although ci or di has the
‘wrong‘ sign, i.e., is positive. In this sense f can compensate a possible nondissipativeness
of g, and vice versa.
In [15, Theorem 4.1] it is shown that under the above assumptions (4.5.1) has a global
attractor in the phase space W 1

2 (Ω,RN ) ∩ C(Ω,RN ). Corollary 4.4.3 improves this result
as follows.

Theorem 4.5.1. Under the above assumptions, for p ∈ (n+ 2,∞) the semiflow generated
by (4.5.1) has a global attractor in the nonlinear phase space{

u0 ∈W 2−2/p
p (Ω,RN ) : ∂νu0 = g(u0) on Γ

}
.

4.5.2 A Chemotaxis Model with Volume-Filling Effect

For u(t, x), v(t, x) ∈ R the following chemotaxis model with volume-filling effect was intro-
duced by Hillen & Painter [53],

∂tu = d1∆u− div
(
uq(u)χ(v)∇v

)
+ uf(u) in Ω, t > 0,

∂tv = d2∆v + g1(u)− vg2(v) in Ω, t > 0,

∂νu = ∂νv = 0 on Γ, t > 0,

u(0, ·) = u0, v(0, ·) = v0 in Ω, (4.5.2)

This model may be cast in the form (4.4.5) and is thus of separated divergence form. It is
assumed that q is given by

q(u) = 1− u/UM , UM > 0,

and further that d1, d2 > 0 for the diffusion coefficients and

f |(UM ,∞) ≤ 0, g1, g2 ≥ 0, g1(0) = 0, lim
v→∞

vg2(v)→ +∞,

for the smooth reaction terms f , g1 and g2. Besides smoothness there is no structural
assumption the sensitivity function χ. It may even change its sign. Wrozsek [87, 88] showed
that under these assumptions (4.5.2) possesses a global attractor in the phase spaces{

(u0, v0) ∈W 1
p (Ω,R2) : 0 ≤ u0 ≤ UM , 0 ≤ v0

}
, p ∈ (n,∞),

and further that the ω-limit set of each solution orbit consists entirely of equilibria which
satisfy a certain nonlocal problem. Jiang & Zhang [56] showed that in fact every solution of
(4.5.2) converges to an equilibrium. It is well known that for UM =∞ blow-up of solutions
may occur if the initial mass of u0 is too large, cf. the survey article [54]. For UM <∞ the



166 Attractors in Stronger Norms for Robin Boundary Conditions

chemotactic term in the first equation becomes becomes small if u is close to UM , which
prevents solutions from blow-up.
Using Lemma 4.4.1, the same arguments as in the proof of Theorem 4.4.2 yield the following
improvement of the result of [87].

Theorem 4.5.2. Under the above assumptions, for p ∈ (n+ 2,∞) the chemotaxis model
(4.5.2) has a global attractor in the phase space{

(u0, v0) ∈W 2−2/p
p (Ω,R2) : 0 ≤ u0 ≤ UM , 0 ≤ v0

}
.

4.5.3 A Population Model with Cross-Diffusion

Our last example is the Shigesada-Kawasaki-Teramoto cross-diffusion model for population
dynamics, introduced in [76], which is for u(t, x), v(t, x) ∈ R given by

∂tu = ∆
(
d1 + α11u+ α12v)u

)
+ u(a1 − b1u− c1v) in Ω, t > 0,

∂tv = ∆
(
d2 + α21u+ α22v)v

)
+ v(a2 − b2u− c2v) in Ω, t > 0,

∂νu = ∂νv = 0 on Γ, t > 0,

u(0, ·) = u0, v(0, ·) = v0 in Ω. (4.5.3)

Again this model may be cast in the form (4.4.5). Here the constants ai, bi, ci, di, i = 1, 2,
are positive, and the constants αij , i = 1, 2, are nonnegative. In [61, Theorem 2] it is shown
that (4.5.3) has a global attractor as a dynamical system in W 1

p (Ω,R2) for p ∈ (n,∞),
provided α22 = 0. For n = 2 this remains true also for α22 > 0. Theorem 4.4.2 improves
this as follows.

Theorem 4.5.3. Under the above assumptions, for p ∈ (n+ 2,∞) the population model
(4.5.3) has a global attractor in the phase space W 2−2/p

p (Ω,R2).



Chapter 5

Boundary Conditions of
Reactive-Diffusive-Convective Type

5.1 Introduction

In this chapter we investigate linear and quasilinear parabolic systems with dynamical
boundary conditions of reactive-diffusive-convective type. For the unknown u = u(t, x) ∈
RN , where N ∈ N, we consider the problem1

∂tu = ∂i(a1(u)∂iu) + a2(u)∇u+ f(u) in Ω, t > 0,

∂tu+ b(·, u)∂νu = divΓ(c1(·, u)∇Γu) + c2(·, u)∇Γu+ g(·, u) on Γ, t > 0,

u(0, ·) = u0 in Ω. (5.1.1)

It is assumed that Ω ⊂ Rn is a bounded domain with smooth boundary Γ = ∂Ω, where
n ≥ 2. The outer normal unit field and the normal derivative on Γ are denoted by ν and
∂ν = νtrΩ∇, respectively. The spatial trace on Ω is designated by trΩ. Further, ∇Γ and
divΓ are the surface gradient and the surface divergence on Γ, respectively. We assume
that the coefficients are smooth, and that for all x ∈ Γ and ζ ∈ RN it holds

a1(ζ), b(x, ζ) ∈ B(RN ), c1(x, ζ) ∈ RN ,

a2(ζ), c2(x, ζ) ∈ B(RN×n,RN ), f(ζ), g(x, ζ) ∈ RN .

The term divΓ(c1(·, u)∇Γu) is meant in way that its k-th component is given by

divΓ(c1(·, u)∇Γu)k := divΓ(ck1(·, u)∇Γuk), k = 1, ..., N.

The system (5.1.1) consists of two dynamic equation, coupled in a possibly nonlinear way
by the flux term b(·, u)∂νu. The term divΓ(c1(·, u)∇Γu) takes into account surface diffusion
effects on the boundary, where the tangential flux vector JkΓ = −ck1(·, u)∇Γuk of uk may
depend nonlinearly on the surface gradient of uk. For c1 ≡ 1 one obtains the Laplace-
Beltrami operator ∆Γ = divΓ∇Γ on Γ. Further, the term c2(·, u)∇Γu describes nonlinear
surface convection on the boundary.

1We use again sum convention.
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We explain the differential operators on the boundary. Via the directional derivative at
x ∈ Γ a function v ∈ C∞(Γ) induces an element of the dual space of TxΓ. The surface
gradient ∇Γv(x) ∈ RN of v at x is then the unique corresponding element of TxΓ given
by the Riesz isomorphism, if one considers TxΓ as a Hilbert space with the scalar product
induced from Rn. In local coordinates g for Γ, with fundamental form G = (gij) and
inverse G−1 = (gij), the components of the surface gradient with respect to the basis
{∂1g, ..., ∂n−1g} of the tangential space are given by the components of G−1∇n−1(v ◦ g)T ,
i.e.,

∇Γv ◦ g =
n−1∑
i,j=1

gij∂j(v ◦ g)∂ig.

For a tangential vector field w ∈ C∞(Γ,Rn), i.e., w(x) ∈ TxΓ for x ∈ Γ, the function
divΓw ∈ C∞(Γ) is in coordinates g given by

divΓw ◦ g =
1√
|G|

n−1∑
i=1

∂i
(√
|G|wi ◦ g

)
,

where wi are the components of w with respect to the basis {∂1g, ..., ∂n−1g}. For the
components of the surface diffusion term in (5.1.1) we thus have

divΓ(c1(·, u)∇Γu)k ◦ g =
1√
|G|

n−1∑
i, j=1

∂i
(
ck1(·, u) ◦ g

√
|G|gij∂j(uk ◦ g)

)
, k = 1, ..., N.

These are well defined differential operators on Γ (cf. Appendix A.5), with principal parts
equal to ck1∆Γ, respectively.

We impose the following structural conditions on a1, b and c1, where δ > 0 is independent
of x ∈ Γ and ζ ∈ RN . By Akk we denote the k-th diagonal entry of a matrix A.

a1(ζ), b(x, ζ) are upper triangular matrices, ck1(x, ζ) ≥ δ, k = 1, ..., N ;
akk1 (ζ) ≥ δ, and either bkk(x, ζ) ≥ δ or bkk(x, ζ) ≤ −δ, k = 1, ..., N .

}
(5.1.2)

We emphasize that the sign of the diagonal entries of b may change from line to line.

Let us describe the results and the organization of this chapter. For p ∈ (1,∞) we let

X0 = Lp(Ω,RN )×W 1−1/p
p (Γ,RN ),

X1 =
{

(v, vΓ) ∈W 2
p (Ω,RN )×W 3−1/p

p (Γ,RN ) : trΩv = vΓ

}
,

and look for solutions u in the maximal regularity class

Eu(J) = W 1
p (J ;X0) ∩ Lp(J ;X1),

where J = (0, T ) is a finite time interval, T > 0. Identifying a function u with the pair
(u, trΩu), here we write u ∈ Eu(J), with a slight abuse of notation. In Section 5.2 we first
consider the linear inhomogeneous, nonautonomous version of (5.1.1) and show that it
enjoys the property of maximal Lp,µ-regularity on finite intervals, verifying the conditions
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of Theorem 3.1.4. We then turn in Section 5.3 to the quasilinear case and show that for
each initial value u0

∼= (u0, trΩu0) from the linear phase space

M =
{

(v, vΓ) ∈W 2−2/p
p (Ω,RN )×W 3−3/p

p (Γ,RN ) : trΩv = vΓ

}
there is a unique maximal solution u(·, u0) ∈ C

(
0, t+(u0);M

)
of (5.1.1), provided p ∈

(n+2,∞). Here t+(u0) > 0 denotes the maximal existence time. We obtain strong solutions,
in the sense that

u(·, u0) ∈ Eu(0, τ) for all τ ∈ (0, t+(u0)).

Moreover, the map u0 7→ u(·, u0) defines a compact local semiflow on M, which has the
property that bounded orbits are relatively compact. These results are based on maximal
Lp-regularity for the linearization of (5.1.1), the regularity properties of the superposition
operators occurring in (5.1.1) and the recent results of [59] on abstract quasilinear problems
in Lp,µ-spaces. Besides the structural conditions (5.1.2) we do not have to impose any
restrictions on the nonlinearities to obtain the local semiflow. In particular, we do not have
to impose any growth conditions.
We then turn to global issues and show in Section 5.4 that an a priori Hölder bound for a
solution of (5.1.1) implies that it exists globally in time. We obtain this result by localizing
(5.1.1) in space and time, employing again that the linearization of (5.1.1) has maximal
Lp-regularity, and by performing appropriate estimates of the resulting nonlinear error
terms. In Section 5.5 we specialize to a semilinear version of (5.1.1),

∂tu = ∆u+ f(u) in Ω, t > 0,

∂tu+ ∂νu = ∆Γu+ g(u) on Γ, t > 0, (5.1.3)

u(0, ·) = u0 in Ω.

Under appropriate dissipativity conditions on the reaction terms f and g we obtain a
Lyapunov function for (5.1.3), that already appeared in [80], and a priori estimates in the
energy spacesW 1

2 (Ω,RN ) andW 1
2 (Γ,RN ). By a Moser-Alikakos iteration procedure we can

show that this implies an a priori L∞-bound, which in turn leads to global existence for
the solutions of (5.1.3). The Lyapunov function, together with another a priori estimate
for the equilibria of (5.1.3), yields the existence of a global attractor inM, and that each
solution converges to the set of equilibria as t→∞.

Problems related to (5.1.1) and (5.1.3) were considered, for instance, in [38, 39, 40, 80, 83].
We refer to the introduction of this thesis for more informations.

5.2 Maximal Lp,µ-Regularity for the Linearized Problem

In this section we show that the linearized version of (5.1.1) enjoys maximal Lp,µ-regularity
by verifying the normal ellipticity condition (E) and the Lopatinskii-Shapiro condition (LS)
and using Theorem 3.1.4. Besides the interest in its own, this linear result is the basis for
our investigation of the quasilinear problems.
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For the unknown u = u(t, x) ∈ RN we consider linear inhomogeneous, nonautonomous
parabolic systems of the form

∂tu = A1∆u+A2∇u+A3u+ f̃ in Ω, t ∈ J,
∂tu+B∂νu = C1∆Γu+ C2∇Γu+ C3u+ g̃ on Γ, t ∈ J, (5.2.1)

u(0, ·) = u0 in Ω,

trΩu(0, ·) = u0,Γ on Γ.

A simplified version of (5.2.1) was considered in Example 3.1.1. Here the coefficients may
depend on t and x, and are of the form

A1(t, x), A3(t, x), B(t, x), C1(t, x), C3(t, x) ∈ B(RN ), A2(t, x), C2(t, x) ∈ B(RN×n,RN ).

We further impose the following structural conditions on the coefficients, which are similar
to (5.1.2). The number δ > 0 is independent of t and x.

A1(t, x), B(t, x), C1(t, x) are upper triangular matrices; for k = 1, ..., N :
Akk1 (t, x), Ckk1 (t, x) ≥ δ, and either Bkk(x, ζ) ≥ δ or Bkk(x, ζ) ≤ −δ.

}
(5.2.2)

We may cast (5.2.1) in the form (3.1.1) by setting

A(t, x,D) = −
(
A1(t, x)∆ +A2(t, x)∇+A3(t, x)

)
, B0(t, x,D) = B(t, x)ν(x)trΩ∇,

C0(t, x,DΓ) = −
(
C1(t, x)∆Γ + C2(t, x)∇Γ + C3(t, x)

)
, B1 = trΩ, C1 = −1.

For p ∈ (1,∞) the nontrivial part of the Newton polygon associated to (5.2.1), cf. Section
3.1, is the line through to the points (0, 3/2−1/2p) and (3−1/p, 0). The point (2, 1/2−1/2p)
corresponding to the operator C0 lies on this line, the point (0, 1− 1/2p) corresponding to
C1 does not.

To verify (E), note that the principal symbol of A is given by

A](t, x, ξ) = A1(t, x)|ξ|2, ξ ∈ Rn, (t, x) ∈ J × Ω.

Since A1(t, x) is assumed to be positive definite, the spectrum of A1(t, x) ∈ B(RN ) is
contained in the right-half plane. Hence (E) is valid.

Problem (5.2.1) belongs to Case 1, hence we do not have to consider asymptotic Lopatinskii-
Shapiro conditions. Since further the unknown u takes values in a finite dimensional space,
we only have to consider (LS) with trivial right-hand sides.

Let (t, x) ∈ J×Γ, and take coordinates g associated to x, cf. Lemma A.1.1. Then the chart
(U,ϕ) corresponding to g satisfies ϕ′(x) = Oν(x), where Oν(x) is an orthogonal matrix that
rotates ν(x) to (0, ..., 0,−1) ∈ Rn. For ξ′ ∈ Rn−1 and Dy = −i∂y we thus have

Aν]
(
t, x,OTν(x)(ξ

′, Dy)
)

= A1(t, x)(|ξ′|2 − ∂2
y), B0]

(
t, x,OTν(x)(ξ

′, ∂y)
)

= −B(t, x)∂y.
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Since (ϕ−1)′(x) = OTν(x) it holds G(x) = idn−1 for the fundamental form G corresponding to
g, i.e., the coordinates g are orthonormal at x, and the Laplace-Beltrami operator reduces
to ∆Γu(x) = ∆n−1(u ◦ g) ◦ g−1(x). This yields

Cg
0](t, x, ξ

′) = C1(t, x)|ξ′|2, ξ′ ∈ Rn−1.

By convention we further have C1] = 0, since the point (0, 1 − 1/2p) corresponding to C1

does not lie on the nontrivial part of the Newton polygon.
We thus have to show that for all λ ∈ C+\{0} and ξ′ ∈ Rn−1 with λ + |ξ′| 6= 0 the only
solution (v, σ) of the ordinary initial value problem(

λ+A1(t, x)(|ξ′|2 − ∂2
y)
)
v(y) = 0, y > 0,

−B(t, x)∂yv(0) +
(
λ+ C1(t, x)|ξ′|2

)
σ = 0, (5.2.3)

v(0) = 0,

where v is decaying as y → ∞ is the trivial one, i.e., (v, σ) = (0, 0). So let (v, σ) solve
(5.2.3) and let v be decaying. We write v = (v1, ..., vN ) and σ = (σ1, ..., σN ). We now make
use of the triangular structure of A1, B and C1. Denoting by ANN1 (t, x) > 0 the diagonal
entry of A1(t, x) in the N -th row, we obtain that vN solves(

λ/ANN1 (t, x) + |ξ′|2 − ∂2
y

)
vN = 0, y > 0, vN (0) = 0,

which implies vN ≡ 0. Consequently −BNN (t, x)∂yvN (0) = 0, which shows that the sign
of BNN (t, x) has no influence on the validity of (LS). We thus obtain that σN satisfies(
λ + CNN1 (t, x)|ξ′|2

)
σN = 0. Since we assume CNN1 (t, x) > 0 and that λ and ξ′ do not

vanish simultaneously, it follows that σN = 0. Iterating these arguments and using the
diagonal structure we obtain that each component of v and σ vanishes. Here again the sign
of the diagonal entries of B has no influence. This verifies (LS) for (5.2.3).

For the solvability of (5.2.1) the compatibility condition

g̃(0, ·) +B(0, ·)∂νu0,−C1(0, ·)∆Γu0,Γ

− C2(0, ·)∇Γu0,Γ − C3(0, ·)u0,Γ ∈ B2(µ−1/p)−1−1/p
p,p (Γ,RN )

must be satisfied if 2(µ − 1/p) > 1 + 1/p. Since the trace space of Fµ equals
B

2(µ−1/p)−1−1/p
p,p (Γ,RN ) it suffices, for instance, if

B(0, ·), C1(0, ·), C2(0, ·), C3(0, ·) are pointwise multipliers on B2(µ−1/p)−1−1/p
p,p (Γ,RN ).

(5.2.4)
Note that if in case 2(µ−1/p) > 1+n/p, which is relevant for the treatment of quasilinear
problems, the coefficients satisfy the first condition in (SB) and (SC), i.e.,

B,C1, C2, C3 ∈ Fµ(J,F),

where F stands for B(RN ) or B(RN×n,RN ), then (5.2.4) is valid by Lemma 1.3.19 and
Sobolev’s embeddings.
The above considerations, Theorem 3.1.4 and [26, Theorem 2.2] yield the following result.
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Theorem 5.2.1. Let J = (0, T ) be a finite interval, p ∈ (1,∞) and µ ∈ (1/p, 1]. Assume
that the coefficients of (5.2.1) satisfy (5.2.2), (SD), (SB) and (SC), and further (5.2.4) if
2(µ− 1/p) > 1 + 1/p. Then (5.2.1) has a unique solution u satisfying

u ∈W 1
p,µ(J ;Lp(Ω,RN )) ∩ Lp,µ(J ;W 2

p (Ω,RN ))

trΩu ∈W 3/2−1/2p
p,µ (J ;Lp(Γ,RN )) ∩ Lp,µ(J ;W 3−1/p

p (Γ,RN )),

if and only if the data is subject to

f ∈ Lp,µ(J ;Lp(Ω,RN )), u0 ∈ B2(µ−1/p)
p,p (Ω,RN ), u0,Γ ∈ B2(µ−1/p)+1−1/p

p,p (Γ,RN ),

g ∈W 1/2−1/2p
p,µ (J ;Lp(Γ,RN )) ∩ Lp,µ(J ;W 1−1/p

p (Γ,RN )),

and it holds trΩu0 = u0,Γ if 2(µ−1/p) > 1/p. In the autonomous case, i.e., if the coefficients
do not depend on t, the realization of the operator

A =

(
A1∆ +A2∇+A3 0

−B∂ν C1∆Γ + C2∇Γ + C3

)

on Lp(Ω,RN )×W 1−1/p
p (Γ,RN ) with domain

D(A) =
{

(v, vΓ) ∈W 2
p (Ω,RN )×W 3−1/p

p (Γ,RN ) : trΩv = vΓ

}
is the generator of an analytic C0-semigroup.

Remark 5.2.2. a) The theorem is the basis for our investigations of quasilinear problems.
b) It should be possible to verify (LS) for (5.2.1) under more general structural assumptions
on the coefficients.
c) Having verified (E) and (LS), in the autonomous case the maximal Lp,µ-regularity
result also follows from the result in the unweighted case [26, Theorem 2.1] combined with
Theorem 1.2.2 on the independence of maximal Lp,µ-regularity of µ ∈ (1/p, 1].
d) If µ is sufficiently small such that the spatial trace of u0 does not necessarily exist there
must be no relation between the initial values u0 and u0,Γ.
e) The sign of the diagonal entries of B can change from row to row. The reason is that
B∂ν is of lower order with respect to C1∆Γ. The fact that the sign has no influence can
also be seen in the verification of the Lopatinskii-Shapiro Condition above.
f) The theorem gives partial answers to the open questions posed in [83]. In this paper the
problem

∂tu = ∆u in Ω, t > 0,

∂tu− ∂νu = ∆Γu on Γ, t > 0, (5.2.5)

u(0, ·) = u0 in Ω,

is studied, and it is shown that (5.2.5) generates an analytic quasi-contractive semigroup
in the energy space

H =
{

(v, vΓ) ∈W 1
2 (Ω)×W 1

2 (Γ) : trΩv = vΓ

}
.

Our setting differs from the one in [83]. For p = 2 Theorem 5.2.1 yields a semigroup in
L2(Ω)×W 1/2

2 (Γ) for (5.2.5).
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5.3 The Local Semiflow for Quasilinear Problems

The functional analytical setting for the solutions of (5.1.1) is as follows. For p ∈ (3/2,∞)
we consider the Banach spaces

X0 := Lp(Ω,RN )×W 1−1/p
p (Γ,RN ), E0(J) := Lp(J ;X0),

X1 :=
{

(v, vΓ) ∈W 2
p (Ω,RN )×W 3−1/p

p (Γ,RN ) : trΩv = vΓ

}
,

Eu(J) := W 1
p (J ;X0) ∩ Lp(J ;X1),

and we write v ∼= (v, vΓ) ∈ Eu(J). Recall further the phase space

M :=
{

(v, vΓ) ∈W 2−2/p
p (Ω,RN )×W 3−3/p

p (Γ,RN ) : trΩv = vΓ

}
,

which we consider as a closed subspace of W 2−2/p
p (Ω,RN )×W 3−3/p

p (Γ,RN ). Denoting by
(·, ·)s,p the real interpolation functor, s ∈ (0, 1), we have the following characterization of
M.

Lemma 5.3.1. For p ∈ (3/2,∞) it holds thatM = (X0, X1)1−1/p,p.

Proof. Define on X0 the operator A by Au = (−∆u, ∂νu −∆ΓuΓ), where u = (u, uΓ) ∈
D(A) := X1. Combining Example 3.2 and Theorem 2.2 of [26] we obtain A ∈ MRp(0, 1)
for all p ∈ (1,∞), which implies that the Cauchy Problem

∂tu+ Au = 0, t ∈ (0, 1), u(0) = u0,

has a unique solution u ∈ Eu(0, 1) if and only if u0 ∈ (X0, X1)1−1/p,p. It further follows
from Lemma 1.3.5 that the temporal trace maps Eu(0, 1) continuously into (X0, X1)1−1/p,p.
On the other hand it is shown in [26, Corollary 2.3] that the above Cauchy problem has
a unique solution in Eu(0, 1) if and only if u0 ∈ M, provided p ∈ (3/2,∞), and Theorem
1.3.6 yields that the temporal trace maps

Eu(0, 1) ↪→W 1
p (0, 1;X0) ∩ Lp(0, 1;W 2

p (Ω,RN )×W 3−1/p
p (Γ,RN ))

continuously into W 2−2/p
p (Ω,RN )×W 3−3/p

p (Γ,RN ). ThereforeM and (X0, X1)1−1/p,p co-
incide as sets, and the maximal regularity estimates implied by Theorem 2.2, Corollary 2.3
of [26] and the continuity of the traces yield

|u0|(X0,X1)1−1/p,p
. |u|Eu(0,1) . |u0|W 2−2/p

p (Ω,RN )
+ |u0|W 3−3/p

p (Γ,RN )
,

and vice versa.

We define the maps A :M→ B(X1, X0) and F :M→ X0 by

A(u)v :=

(
−∂i(a1(u)∂iv) 0
b(·, uΓ)∂νv −divΓ(c1(·, uΓ)∇ΓvΓ)

)
, u ∈M, v ∈ X1,

F (u) :=

(
a2(u)∇u+ f(u)

c2(·, uΓ)∇ΓuΓ + g(·, uΓ)

)
, u ∈M.
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As an abstract quasilinear evolution equation, the system (5.1.1) takes the form

∂tu(t) +A(u(t))u(t) = F (u(t)), t > 0, u(0) = u0.

We show that the maps A and F are locally Lipschitz continuous for sufficiently large p.
Recall the Sobolev embeddings

W 2−2/p
p (Ω,RN ) ↪→ C1(Ω,RN ), W 3−3/p

p (Γ,RN ) ↪→ C2(Γ,RN ), p > n+ 2. (5.3.1)

Lemma 5.3.2. For p ∈ (n+ 2,∞) the functions

A :M→ B(X1, X0), F :M→ X0,

are Lipschitz continuous on bounded subsets ofM. Moreover, under the structural condi-
tions (5.1.2) we have that for all u0 ∈ M and all finite intervals J = (0, T ) the operator
A(u0) on X0 with domain X1 enjoys maximal Lp-regularity on J .

Proof. (I) The embeddings (5.3.1) show that A(u) ∈ B(X1, X0) and F (u) ∈ X0 for
u ∈M. For the regularity of A, we estimate for u, v ∈M and w ∈ X1 with |w|X1 ≤ 1

|(A(u)−A(v))w|X0

.
n∑
i=1

|(a1(u)− a1(v))∂iw|W 1
p (Ω,RN ) + |(b(·, uΓ)− b(·, vΓ))∂νw|W 1−1/p

p (Γ,RN )

+ |(c1(·, uΓ)− c1(·, vΓ))∇ΓwΓ|W 2−1/p
p (Γ,Rn)

. |a1(u)− a1(v)|C1(Ω,RN×N )

+ |b(·, uΓ)− b(·, vΓ)|C1(Γ,RN×N ) + |c1(·, uΓ)− c1(·, vΓ)|C2(Γ,RN ).

It is not hard to show that the superposition operators

u 7→ a1(u), uΓ 7→ b(·, uΓ), uΓ 7→ c1(·, uΓ),

are Lipschitz continuous on bounded sets as maps

C1(Ω,RN )→ C1(Ω,RN×N ), C1(Γ,RN )→ C1(Γ,RN×N ), C2(Γ,RN )→ C2(Γ,RN ),

respectively. Now (5.3.1) yields that A is Lipschitz continuous on bounded subsets ofM.
Similar arguments show the asserted regularity of F .
(II) Let u0 ∈M be given. The embeddings (5.3.1) yield that for u0 ∈M the coefficients of
A(u0) are continuous on Ω and continuously differentiable on Γ, respectively. Thus (SD),
(SB), (SC) and (5.2.4) are valid. The conditions (5.1.2) and Theorem 5.2.1 thus yield that
the realization of A(u0) on X0 with domain X1 enjoys maximal Lp-regularity on finite time
intervals.

After these preparations we obtain local well-posedness for (5.1.1) from the results in [59].
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Theorem 5.3.3. Assume that the coefficients of (5.1.1) are smooth, and that they satisfy
the structural conditions (5.1.2). Let further p ∈ (n + 2,∞). Then for all initial values
u0 ∈M the problem (5.1.1) has a unique maximal solution

u(·, u0) ∈ C
(
[0, t+(u0));M

)
,

such that u(·, u0) ∈ E1(0, τ) for all τ ∈ (0, t+(u0)), where t+(u0) > 0 denotes the
maximal existence time. The solution map u0 7→ u(·, u0) is a local semiflow2 on M. If
{u(·, u0)}t∈[0,t+(u0)) is bounded in M, then t+(u0) = +∞ and the corresponding orbit is
relatively compact inM.

Proof. Due to Lemma 5.3.2 we may apply the Theorems 2.1, 3.1 and Remark 2.3 of [59]
to the abstract quasilinear problem

∂tu(t) +A(u(t))u(t) = F (u(t)), t > 0, u(0) = u0 ∈M,

which is equivalent to (5.1.1). Hence all assertions follow, except the compactness property
of the solution map. Using [59, Theorem 2.1], the proof of this fact is completely analogous
to the proof of Proposition 4.3.5.

5.4 A Priori Hölder Bounds imply Global Existence

We show how maximal Lp-regularity can be used to reduce the question of global existence
of solutions to the boundedness in a Hölder norm.

Theorem 5.4.1. Under the assumptions of Theorem 5.3.3, let u(·, u0) be the maximal solu-
tion of (5.1.1) with initial value u0 ∈M. If u(·, u0) is uniformly continuous in [0, t+(u0))×Ω
and it holds

sup
t∈[0,t+(u0))

|u(t, u0)|Cα(Ω,RN ) < +∞

for some α > 0, then u(·, u0) exists globally, t+(u0) = +∞, provided p is sufficiently large.

Proof. The plan is to show that if t+(u0) < +∞ then the orbit is bounded inM, provided
p is sufficiently large. This leads to a contradiction to Theorem 5.3.3, and shows that t+(u0)
cannot be finite. Assume that t+(u0) < +∞, and denote by u = u(·, u0) the solution of
(5.1.1). We will show that for sufficiently small η > 0 the quantity |u|E1(tη ,T ), where

tη := t+(u0)− η,

is bounded by a constant independent of T ∈ (tη, t+(u0)). Then supT∈[0,t+(u0)) |u(T )|M is
finite, and we are done.
(I) We localize the problem in space. Due to its uniform continuity on [0, t+(u0)) we may
continue u = u(·, u0) to a bounded uniformly continuous function on [0, t+(u0)]×Ω. Thus
for given ε > 0 there are η, δ > 0 with

|u(t, x)− u(s, y)| < ε for |x− y| < δ, |t− s| < η, x, y ∈ Ω, t, s ∈ [0, t+(u0)]. (5.4.1)
2We refer to Section 4.3 for a precise definition of a local semiflow.
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For δ > 0 we choose a finite number of points xl ∈ Ω such that
⋃
lBδ(xl) covers Ω, and a

partition of unity {ψl} for Ω subordinate to this cover. Given δ > 0 we obtain

|u|E1(tη ,T ) ≤
∑

l
|ψlu|E1(tη ,T ). (5.4.2)

The function u solves the linear nonautonomous problem3

∂tv − ∂i
(
a1(u)∂iv

)
= a2(u)∇u+ f(u) =: f̃1 in Ω× (tη, T ),

∂tv + b(·, u)∂νv − divΓ(c1(·, u)∇Γv) = c2(·, u)∇Γu+ g(·, u) =: g̃1 on Γ× (tη, T ),

v(tη, ·) = u(tη, ·) in Ω.

Thus for each l the function w := ψlu satisfies

∂tw − ∂i
(
a1(u)∂iw

)
= ψlf̃1 − [∂i(a1(u)∂i), ψl]u

=: ψlf̃1 + f̃2 in Ω× (tη, T ),

∂tw + b(·, u)∂νw − divΓ(c1(·, u)∇Γw) = ψlg̃1 + b(·, u)[∂ν , ψl]u− [divΓ(c1(·, u)∇Γ), ψl]u

=: ψlg̃1 + g̃2 on Γ× (tη, T ),

w(tη, ·) = ψlu(tη, ·) in Ω.

Localizing in space and time, we obtain that w satisfies

∂tw − a1(u(tη, xl))∆w = ψlf̃1 + f̃2 + ∂i
(
a1(u)− a1(u(tη, xl))

)
∂iw

=: ψlf̃1 + f̃2 + f̃3 in Ω× (tη, T ),

∂tw + b(xl, u(tη, xl))∂νw − c1(xl, u(tη, xl))∆Γw

= ψlg̃1 + g̃2 +
(
b(·, u)− b(xl, u(tη, xl))

)
∂νw

+ divΓ

(
(c1(·, u)− c1(xlu(tη, xl)))∇Γw

)
=: ψlg̃1 + g̃2 + g̃3 on Γ× (tη, T ),

w(tη, ·) = ψlu(tη, ·) in Ω.

By the maximal regularity Theorem 1.2.3 there is a constant C, which does not depend
on T , η and δ, such that

|w|E1(tη ,T ) ≤ C
(
|
(
ψlf̃1 + f̃2 + f̃3, ψlg̃1 + g̃2 + g̃3

)
|E0(tη ,T ) + |ψlu(tη, ·)|M

)
. (5.4.3)

A compactness argument further yields that C is uniform in |u|BC([0,t+(u0)]×Ω,RN ). Our
objective is now to show that for given σ > 0 an estimate of the form

|
(
ψlf̃1 + f̃2 + f̃3, ψlg̃1 + g̃2 + g̃3

)
|E0(tη ,T ) ≤ σ|u|E1(tη ,T ) (5.4.4)

+ C
(
|u(·, u0)|BC([0,t+(u0);Cα(Ω,RN )), δ, η, σ

)
is valid. If we then combine (5.4.3) with (5.4.2) and choose σ sufficiently small we may
subtract 1

2 |u|E1(tη ,T ) on both sides of (5.4.2) to obtain the boundedness of |u|E1(tη ,T ) inde-
pendent of T . Throughout we write | · |∞ for any occurring sup-norm.

3Throughout we neglect the subscript Γ if u is considered on the boundary.
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(II) The functions ψlf̃1, f̃2 and f̃3 must be estimated in the Lp(tη, T ;Lp(Ω,RN ))-norm.
We start with the term

ψlf̃1 = ψl
(
a2(u)∇u+ f(u)

)
.

For the first summand we have for given σ > 0, using the interpolation inequality and
Young’s inequality,

|ψla2(u)∇u|Lp(tη ,T ;Lp(Ω,RN )) ≤ C(|u|∞)|∇u|Lp(tη ,T ;Lp(Ω,RN×n)) ≤ σ|u|E1(tη ,T ) + C(|u|∞, σ).

The next term is easily estimated by

|ψlf(u)|Lp(tη ,T ;Lp(Ω,RN )) ≤ C(|u|∞).

We now consider the commutator term f̃2 = [∂i(a1(u)∂i), ψl]u. For each i it holds

[∂i(a1(u)∂i), ψl]u = [a′1(u)∂iu∂i, ψl]u+ [a1(u)∂i∂i, ψl]u.

As above we have that

|[a′1(u)∂iu∂i, ψl]u|Lp(tη ,T ;Lp(Ω,RN )) = |∂iψla′1(u)u∂iu|Lp(tη ,T ;Lp(Ω,RN ))

≤ C(|u|∞, δ)|u|Lp(tη ,T ;W 1
p (Ω,RN ))

≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ),

and further

|[a1(u)∂i∂i, ψl]u|Lp(tη ,T ;Lp(Ω,RN )) ≤ C(|u|∞, δ)|u|Lp(tη ,T ;W 1
p (Ω,RN ))

≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ).

We next consider the term f̃3 = ∂i
(
a1(u)− a1(u(tη, xl))

)
∂i(ψlu). For each i we have

∂i
(
a1(u)− a1(u(tη, xl))

)
∂i(ψlu) =

(
a1(u)− a1(u(tη, xl))

)
∂i∂i(ψlu)

+ ∂iψla
′
1(u)u∂iu+ ψla

′
1(u)∂iu∂iu.

For the first summand we use (5.4.1) to obtain

|
(
a1(u)− a1(u(tη, xl))

)
∂i∂i(ψlu)|Lp(tη ,T ;Lp(Ω,RN ))

≤ |
(
a1(u)− a1(u(tη, xl))

)
∂i∂iu|Lp(tη ,T ;Lp(Ω∩Bδ(xl),RN ))

+ C(|u|∞, δ)|u|Lp(tη ,T ;W 1
p (Ω,RN ))

≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ),

provided δ and η are sufficiently small. We further have, as before,

|∂iψla′1(u)u∂iu|Lp(tη ,T ;Lp(Ω,RN )) ≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ).

For the next term we observe that, by Hölder’s inequality,

|ψla′1(u)∂iu∂iu|pLp(tη ,T ;Lp(Ω,RN ))
≤ C(|u|∞)

∫ T

tη

|u(t)|2p
W 1

2p(Ω,RN )
dt.
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The Gagliardo-Nirenberg inequality (Proposition A.6.2) yields a number s ∈ (0, 2), close
to 2, such that

|u(t)|2p
W 1

2p(Ω,RN )
≤ C|u(t)|p

W s
p (Ω,RN )

|u(t)|p
Cα(Ω,RN )

, t ∈ (tη, t+(u0)).

Therefore, again by the interpolation inequality and Young’s inequality,

|ψla′1(u)∂iu∂iu|Lp(tη ,T ;Lp(Ω,RN )) ≤ C(|u|BC([0,t+(u0));Cα(Ω,RN )))|u|Lp(tη ,T ;W s
p (Ω,RN ))

≤ σ|u|E1(tη ,T ) + C(|u|BC([0,t+(u0));Cα(Ω,RN )), σ).

We have thus estimated the terms ψlf̃1, f̃2 and f̃3 as desired for (5.4.4).
(III) We next treat the terms ψlg̃1, g̃2 and g̃3 in the Lp(tη, T ;W 1−1/p

p (Γ,RN ))-norm. It
follows from Lemma 1.3.20 that

|ϕφ|
W

1−1/p
p (Γ,RN )

. |ϕ|∞|φ|W 1−1/p
p (Γ,RN )

+ |ϕ|
W

1−1/p
p (Γ,RN )

|φ|∞ (5.4.5)

for all ϕ ∈ W 1−1/p
p (Γ,B(RN )) and φ ∈ W 1−1/p

p (Γ,RN ). It can further be shown as in the
proof of Lemma 4.2.3 that for a smooth function h : Γ× RN → RN it holds

|h(·, φ)|
W

1−1/p
p (Γ,RN )

≤ C(|φ|∞)
(
1 + |φ|

W
1−1/p
p (Γ,RN )

)
. (5.4.6)

We start with
ψlg̃1 = ψl

(
c2(·, u)∇Γu+ g(·, u)

)
.

For the first summand we have, using (5.4.5) and (5.4.6),

|ψlc2(·, u)∇Γu|Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

≤ C(δ)|c2(·, u)∇Γu|Lp(tη ,T ;W
1−1/p
p (Γ,RN×n))

≤ C(|u|∞, δ)|u|Lp(tη ,T ;W
2−1/p
p (Γ,RN ))

+ C(δ)|c2(·, u)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

|∇Γu|∞

≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ) + C(|u|∞, δ)(1 + |u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

)|∇Γu|∞.

For sufficiently small τ > 0 the Gagliardo-Nirenberg inequality yields

|u(t)|
W

1+(n−1)/p+τ
p (Γ,RN )

. |u(t)|θ
W

3−3/p
p (Γ,RN )

|u(t)|1−θ
Cα(Ω,RN )

,

provided θ ∈ (0, 1) satisfies 1 < θ
(
3− n+2

p

)
+ (1− θ)α. This inequality can be fulfilled by

some θ < 1
3−1/p , provided p is sufficiently large compared to 1

α . We use this fact together
with the embedding E1(tη, T ) ↪→ L∞(tη, T ;M) to obtain

|∇Γu|∞ ≤ C |u|L∞(tη ,T ;W
1+(n−1)/p+τ
p (Γ,RN ))

≤ C(|u|BC([0,t+(u0));Cα(Ω,RN )))|u|
θ

L∞(tη ,T ;W
3−3/p
p (Γ,RN ))

≤ C(|u|BC([0,t+(u0));Cα(Ω,RN )), η)|u|θE1(tη ,T ) (5.4.7)

for some θ < 1
3−1/p . By Young’s inequality we thus have

C(|u|∞, δ)|∇Γu|∞ ≤ σ|u|E1(tη ,T ) + C(|u|BC([0,t+(u0));Cα(Ω,RN )), δ, η, σ).
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The interpolation inequality implies that

|u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

≤ C(|u|∞) |u|
1−1/p
3−1/p

E1(tη ,T ). (5.4.8)

Combining this estimate with (5.4.7), we obtain

C(|u|∞, δ)|u|Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

|∇Γu|∞

≤ σ|u|E1(tη ,T ) + C(|u|BC([0,t+(u0));Cα(Ω,RN )), δ, η, σ),

which finishes the estimates for the first summand of ψlg̃1. Using (5.4.5) and (5.4.6), the
second summand of ψlg̃1 is estimated by

|ψlg(·, u)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

≤ C(|u|∞, δ)
(
1 + |u|

Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

)
≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ).

We continue with the commutator term

g̃2 = b(·, u)[∂ν , ψl]u− [divΓ(c1(·, u)∇Γ), ψl]u.

For the first summand we use again (5.4.5) and (5.4.6) to obtain

|b(·, u)[∂ν , ψl]u|Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

≤ C(δ)|b(·, u)u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

≤ C(|u|∞, δ)
(
1 + |u|

Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

)
≤ σ|u|E1(tη ,T ) + C(|u|∞, δ, σ).

For the second summand of g̃2 we have

|[divΓ(c1(·, u)∇Γ), ψl]u|Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

(5.4.9)

. |(∆Γψl)c1(·, u)u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

+ |c1(·, u)∇Γψl∇Γu|Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

+ |
(
∇Γc1(·, u) + ∂uc1(·, u)∇Γu

)
(∇Γ(ψlu) + ψl∇Γu)|

Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

.

Here the first and the second summand may be treated as above. For the third summand
we concentrate on the term involving ∇Γ(ψlu). We estimate

|∇Γc1(·, u)∇Γ(ψlu)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

≤ C(|u|∞)|∇Γ(ψlu)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN×n))

+ C(1 + |u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

)|∇Γ(ψlu)|∞

≤ C(|u|∞, δ)|u|Lp(tη ,T ;W
2−1/p
p (Γ,RN ))

+ C(δ)(1 + |u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

)|u|L∞(tη ,T ;W 1
∞(Γ,RN )).
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Note that the first summand is of lower order. Using (5.4.7) and (5.4.8) we obtain that
also the second term is of lower order. We further have

|∂uc1(·, u)∇Γu∇Γ(ψlu)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

≤ C(|u|∞)(1 + |u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

)|∇Γu∇Γ(ψlu)|∞

+ C(|u|∞)|∇Γu∇Γ(ψlu)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN×n))

≤ C(|u|∞, δ)(1 + |u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

)|u|2L∞(tη ,T ;W 1
∞(Γ,RN ))

+ C(|u|∞, δ)|u|L∞(tη ,T ;W 1
∞(Γ,RN ))|u|Lp(tη ,T ;W

2−1/p
p (Γ,RN ))

.

Since θ < 1
3−1/p it follows from (5.4.7), (5.4.8) and Young’s inequality that here the first

term may be estimated as desired. Moreover, the interpolation inequality yields

|u|
Lp(tη ,T ;W

2−1/p
p (Γ,RN ))

≤ C(|u|∞)|u|
2−1/p
3−1/p

E1(tη ,T ).

Combining this with (5.4.7) we obtain the desired estimate also for the second term of g̃2,
and this finishes the estimates for this term. We finally consider

g̃3 =
(
b(·, u)− b(xl, u(tη, xl))

)
∂ν(ψlu) + divΓ

(
(c1(·, u)− c1(xl, u(tη, xl)))∇Γ(ψlu)

)
.

For the first summand, choosing δ and η sufficiently small and using (5.4.1), (5.4.5), (5.4.7)
and (5.4.8) we obtain

|
(
b(·, u)− b(xl, u(tη, xl))

)
∂ν(ψlu)|

Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

≤ C |ψl(b(·, u)− b(xl, u(tη, xl)))|∞|∂νu|Lp(tη ,T ;W
1−1/p
p (Γ,RN ))

+ C(|u|∞, δ)(1 + |u|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

)|u|L∞(tη ,T ;W 1
∞(Γ,RN ))

≤ σ|u|E1(tη ,T ) + C(|u|BC([0,t+(u0));Cα(Ω,RN )), δ, σ).

We further have

|divΓ

(
(c1(·, u)− c1(xl, u(tη, xl)))∇Γ(ψlu)

)
|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

≤ |(c1(·, u)− c1(xl, u(tη, xl)))∆Γ(ψlu)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

+ |(∇Γc1(·, u) + ∂uc1(·, u)∇Γu)∇Γ(ψlu)|
Lp(tη ,T ;W

1−1/p
p (Γ,RN ))

.

Choosing δ and η sufficiently small, using (5.4.1), (5.4.5) and the treating lower order terms
as before, here the first term may be estimated as desired. The second term is of the same
type is the one in (5.4.9). This finishes the proof.

It is now natural to ask for sufficient conditions on the nonlinearities in (5.1.1) that guar-
antee an a priori Hölder bound of solutions. This will be subject to future work.

5.5 The Global Attractor for Semilinear Dissipative Systems

We now fix
p ∈ (n+ 2,∞)
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and investigate the long-time behaviour of the following semilinear version of (5.1.1),

∂tu = ∆u+ f(u) on Ω, t > 0,

∂tu+ ∂νu = ∆Γu+ g(u) on Γ, t > 0, (5.5.1)

u(0, ·) = u0 on Ω,

where the reaction terms f, g : RN → RN are assumed to be smooth. Theorem 5.3.3 implies
that (5.5.1) generates a compact local semiflow of solutions in the phase space

M =
{

(v, vΓ) ∈W 2−2/p
p (Ω,RN )×W 3−3/p

p (Γ,RN ) : trΩv = vΓ

}
,

However, due to [26, Theorem 2.2], the realization of the operator

A =

(
−∆ 0
∂ν −∆Γ

)

on X0 = Lp(Ω,RN )×W 1−1/p
p (Γ,RN ) with domain

D(A) = X1 =
{

(v, vΓ) ∈W 2
p (Ω,RN )×W 3−1/p

p (Γ,RN ) : trΩv = vΓ

}
enjoys maximal Lp-regularity on each finite interval J = (0, T ), and −A generates an ana-
lytic C0-semigroup on X0. Thus local well-posedness of (5.5.1) also follows from semilinear
theory [51, Chapter 3]. It is now a simple consequence of the variation of constants formula
that for u0 ∈ M the corresponding maximal solution u(·, u0) of (5.5.1) has the additional
regularity properties

u(·, u0) ∈ C
(
0, t+(u0);X1

)
∩ C1

(
0, t+(u0);M

)
, (5.5.2)

see [16, Corollary 2.3.1]. Interested in the long-time behaviour of solutions, we may thus
assume that u0 ∈ X1 for the initial values of (5.5.1).

For q ∈ (1,∞) and s > 0 with s 6= 1/q we introduce the Banach spaces

Ms
q :=

{
Bs
q,q(Ω,RN )×Bs+1−1/q

q,q (Γ,RN ), s < 1/q,{
(u, uΓ) ∈ Bs

q,q(Ω,RN )×Bs+1−1/q
q,q (Γ,RN ) : trΩu = uΓ

}
, s > 1/q,

equipped with the norm of Bs
q,q(Ω,RN )×Bs+1−1/q

q,q (Γ,RN ), respectively. Observe that

M =M2−2/p
p .

Using the maximal Lp,µ-regularity Theorem 5.2.1 for A, one can argue in the same way as
in the proof of Lemma 4.4.1 to obtain the following result. It shows that the solution in a
strong norm can be controlled by the solution in weaker norm.

Lemma 5.5.1. Let q ∈ (1, p] and µ ∈ (1/q, 1], set s = 2(µ−1/q) ∈ (0, 2−2/q], and assume
that s /∈ {1/q, 1+1/q}. Then for τ > 0 there is a constant C = C(|u(·, u0)|C([T1,T2]×Ω,RN ), τ)
such that

|u(T2, u0)|M2−2/q
q

≤ C
(
1 + |u(T1, u0)|Ms

q

)
is valid for all 0 < T1 < T2 < +∞ with τ = T2 − T1 and all u0 ∈ X1 with t+(u0) < T2,
where u(·, u0) denotes the corresponding solution of (5.5.1).
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As a consequence we have the following sufficient conditions for global existence and rela-
tively compact orbits.

Proposition 5.5.2. Let u0 ∈ X1, and suppose that the corresponding solution of (5.5.1)
satisfies u(·, u0) ∈ BC([0, t+(u0)) × Ω,RN ). Then t+(u0) = +∞. If it additionally holds
that {u(t, u0)}t∈[0,∞) is bounded inMs

p for some s > 0, then {u(t, u0)}t∈[0,∞) is relatively
compact inM.

Proof. (I) Suppose that t+(u0) <∞. It then follows from Lemma 5.5.1 that

|u(T, u0)|M . sup
t∈[0,t+(u0)/2)

(
1 + |u(t, u0)|M

)
for all T ∈ (t+(u0)/2, t+(u0)). Thus the orbit is bounded inM, which contradicts Theorem
5.3.3 and yields t+(u0) = +∞.
(II) Now suppose in addition that {u(t, u0)}t∈[0,∞) is bounded in Ms

p for some s > 0.
Then another application of Lemma 5.5.1 yields

|u(T + 1, u0)|M . 1 + |u(T, u0)|Ms
p

for all T ≥ 1. Thus {u(t, u0)}t∈[1,∞) is bounded inM, and the relative compactness of the
orbit follows again from Theorem 5.3.3.

We next want to establish an L∞ a priori estimate for (5.5.1) for a class of reaction terms
f, g : RN → RN . We first show that if

ζf(ζ) ≤ C(1 + |ζ|2), ζg(ζ) ≤ C(1 + |ζ|2), ζ ∈ RN , (5.5.3)

is valid for a constant C > 0, then the L∞-norm of a solution can be controlled by its
L1-norm. Observe that (5.5.3) is a sign condition for large |ζ|. We further derive an L∞-
estimate for the equilibria of (5.5.1) under the above assumption. Note that due to (5.5.2),
each equilibrium of (5.5.1) must belong to X1 ↪→W 2

p (Ω,RN )×W 3−1/p
p (Γ,RN ).

Lemma 5.5.3. Assume that (5.5.3) holds true. Then for each u0 ∈ X1 there is a constant
C1 such that the corresponding solution u(·, u0) of (5.5.1) satisfies

|u(·, u0)|BC([0,t+(u0))×Ω,RN ) ≤ C1 max
{
|u(·, u0)|BC([0,t+(u0)),L1(Ω,RN )×L1(Γ,RN )), 1

}
.

Moreover, there is a constant C2 > 0 such that for each equilibrium u0 ∈ X1 of (5.5.1) it
holds

|u0|BC(Ω,RN ) ≤ C2 max
{
|u0|L1(Ω,RN )×L1(Γ,RN ), 1

}
.

Proof. We use a Moser-Alikakos iteration procedure, presented in [16, Section 9.3] for
scalar problems with static boundary conditions. Given t ∈ (0, t+(u0)) and k ∈ N, the
plan is to find an upper bound for the L2k(Ω,RN )×L2k(Γ,RN )-norm of u(t, u0), which is
independent of t and k. With a slight abuse of notation we write u = u(t, u0) for fixed t.
Recall that it holds u ∈ X1 by (5.5.2).
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(I) We take the scalar product in RN of the domain equation ∂tu = ∆u+ f(u) at time t
with |u|2k−2u, integrate over Ω, and integrate by parts, to obtain

1
2k

d
dt

∫
Ω
|u|2k dx =

∫
Ω

∆u · |u|2k−2u dx+
∫

Ω
f(u) · |u|2k−2u dx

= −
∫

Ω

N∑
i=1

∇ui · ∇(|u|2k−2ui) dx+
∫

Γ
∂νu · |u|2

k−2u dσ(x) +
∫

Ω
f(u) · |u|2k−2u dx.

This manipulation is justified due to u ∈ X1. Now suppose that k ≥ 2. For the integrand
of the first summand we have

N∑
i=1

∇ui · ∇(|u|2k−2ui) =
N∑
i=1

n∑
j=1

∂jui∂j(|u|2
k−2ui)

= (2k − 2)
n∑
j=1

|u|2k−4|∂ju · u|2 +
n∑
j=1

|u|2k−2|∂ju|2

≥ (2k − 2)
n∑
j=1

|u|2k−4|∂ju · u|2 +
n∑
j=1

|u|2k−4|∂ju|2|u|2(cos(∂ju, u))2

= (2k − 1)
n∑
j=1

|u|2k−4|∂ju · u|2.

On the other hand it holds

(∂j |u|2
k−1

)2 = |2k−1|u|2k−1−2∂ju · u|2 = 22k−2|u|2k−4|∂ju · u|2,

so that we obtain

d
dt

∫
Ω
|u|2k dx ≤ −(2k − 1) 22−k

∫
Ω
|∇|u|2k−1 |2 dx

+ 2k
∫

Γ
∂νu · |u|2

k−2u dσ(x) + 2k
∫

Ω
f(u) · |u|2k−2u dx.

Note that this estimate is also true for k = 1, with |∇|u|2k−1 |2 replaced by |∇u|2. Similarly,
taking the scalar product in RN of the boundary equation ∂tu = ∆Γu−∂νu+ g(u) at time
t with |u|2k−2u and applying the surface divergence theorem on Γ yields

d
dt

∫
Γ
|u|2k dσ(x) ≤ −(2k − 1) 22−k

∫
Γ
|∇Γ|u|2

k−1 |2 dσ(x)

− 2k
∫

Γ
∂νu · |u|2

k−2u dσ(x) + 2k
∫

Γ
g(u) · |u|2k−2u dσ(x).

Again this is justified due to u ∈ X1. Adding these estimates and observing that for each
k it holds −(2k − 1) 22−k ≤ −2, we infer

d
dt
(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)
≤ −C

(
|∇|u|2k−1 |2L2(Ω,RN ) + |∇Γ|u|2

k−1 |2L2(Γ,RN )

)
(5.5.4)

+ 2k
∫

Ω
f(u) · |u|2k−2u dx+ 2k

∫
Γ
g(u) · |u|2k−2u dσ(x).
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(II) Using the sign condition (5.5.3) and that |ζ|2k−2 ≤ |ζ|2k + 1 for ζ ∈ RN , we estimate
the integral terms in (5.5.4) by a constant multiple of

2k
(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)
+ 2k.

It follows from the Gagliardo-Nirenberg inequality (Proposition A.6.1) and Young’s in-
equality that for ε ∈ (0, 1) it holds

|v|L2(Ω,RN ) ≤ C |v|
n
n+2

W 1
2 (Ω,RN )

|v|
1− n

n+2

L1(Ω,RN )
≤ ε|v|W 1

2 (Ω,RN ) + Cε−n/2|v|L1(Ω,RN ).

From this inequality we obtain

−|∇v|2L2(Ω,RN ) ≤ −
1− ε
ε
|v|2L2(Ω,RN ) + Cε−n/2−1|v|2L1(Ω,RN ).

Note that this estimate remains valid if one replaces Ω by Γ and n by n− 1, respectively.
Using that ε−(n−1)/2−1 ≤ ε−n/2−1 for ε ∈ (0, 1) we may estimate the gradient terms in
(5.5.4) by

−C 1− ε
ε

(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )) + C ε−n/2−1

(
||u|2k−1 |2L1(Ω) + ||u|2k−1 |2L1(Γ)

)
.

We therefore obtain from (5.5.4) that

d
dt
(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)
≤ C

(
− 1− ε

ε
+ 2k

)(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN ))

+ C ε−n/2−1
(
||u|2k−1 |2L1(Ω) + ||u|2k−1 |2L1(Γ)

)
+ C 2k.

Now we choose ε = δ 2−k with small δ > 0 such that

C

(
−1− ε

ε
+ 2k

)
≤ −2k.

We further observe that

||u|2k−1 |2L1(Ω) + ||u|2k−1 |2L1(Γ) ≤
(
|u|L

2k−1 (Ω,RN ) + |u|L
2k−1 (Γ,RN )

)2k
.

Therefore, setting

mk := sup
t∈[0,t+(u0))

(
|u|L

2k
(Ω,RN ) + |u|L

2k
(Γ,RN )

)
, k ∈ N0,

we arrive at the estimate

d
dt
(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)
≤ −2k

(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)
+ C (2k)n/2+1m2k

k−1 + C 2k. (5.5.5)

(III) Now suppose that m0 is finite. Then the Gronwall’s lemma yields, inductively,(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)
≤ C max

{
|u0|2

k

L
2k

(Ω,RN ) + |u0|2
k

L
2k

(Γ,RN ), 2
kn/2m2k

k−1 + 1
}
,
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and in particular that each number mk is finite. Taking the 2k-th roots on both sides and
the supremum over t on the left-hand side we obtain

mk ≤ 2 sup
t∈[0,t+(u0))

(
|u|2kL

2k
(Ω,RN ) + |u|2kL

2k
(Γ,RN )

)1/2k
≤ C max

{
|u0|L2k (Ω,RN )

+ |u0|L2k (Γ,RN )
, (2kn/2m2k

k−1 + 1)1/2k
}
.

There is a constant C, independent of k, such that

|u0|L2k (Ω,RN )
+ |u0|L2k (Γ,RN )

≤ C |u0|BC(Ω,RN ).

Thus the sequence (mk)k∈N satisfies the recursive estimate

mk ≤ C max
{

1, (2kn/2m2k

k−1 + 1)1/2k
}
,

with C ≥ 1, and is therefore dominated by the sequence (xk)k∈N, defined by

x0 = C max{m0, 1}, xk = (2kn/2)1/2k xk−1, k ∈ N.

Since

lim
k→∞

xk = C x0

∞∏
k=1

(2kn/2)1/2k = C 2n max{m0, 1},

we obtain
|u(·, u0)|BC([0,t+(u0))×Ω,RN ) ≤ 2 lim sup

k→∞
mk ≤ C max{m0, 1}.

This shows the asserted estimate for an arbitrary initial value u0 ∈ X1.
(IV) Now suppose that u0 ∈ X1 is an equilibrium of (5.1.1). Using (5.5.5) directly yields

mk ≤ C(2kn/2m2k

k−1 + 1)1/2k ≤ C max
{

2kn/2
k+1

mk−1, 1
}
,

where now simply mk = |u0|L
2k

(Ω,RN ) + |u0|L
2k

(Γ,RN ). As above we conclude that

|u0|BC(Ω,RN ) ≤ C2 max
{
|u0|L1(Ω,RN ) + |u0|L1(Γ,RN ), 1

}
,

and C2 is independent of u0 since the constant arising in (5.5.5) is independent of it.

The above lemma and Proposition 5.5.2 show that for the global existence of a solution of
(5.5.1) it suffices to find an a priori L1 bound, provided the reaction terms satisfy (5.5.3).
We now consider a class of reaction terms where such an L1 bound can in particular be
obtained.

We assume that (5.5.1) is conservative, i.e., there are potentials F,G : RN → R with

−∇F = f, −∇G = g, F (0) = G(0) = 0.

We further assume that (5.5.1) is dissipative, in the following sense. There are numbers
ci, di ∈ R, i = 1, ..., N , such that

lim sup
|ζi|→∞

fi(ζ)
ζi

< ci, lim sup
|ζi|→∞

gi(ζ)
ζi

< di, i = 1, ..., N, (5.5.6)



186 Boundary Conditions of Reactive-Diffusive-Convective Type

and there is η > 0 such that for i = 1, ..., N it holds

|∇ψ|2
L2(Ω,RN×n)

+ |∇Γψ|2L2(Γ,RN×n)
− 2ci|ψ|2L2(Ω,RN )

− 2di|ψ|2L2(Γ,RN )

|ψ|2
L2(Ω,RN )

+ |ψ|2
L2(Γ,RN )

≥ η (5.5.7)

for all ψ ∈W 1
2 (Ω,RN ) ∩W 1

2 (Γ,RN ). Observe that (5.5.7) is always satisfied for ci, di < 0.
But it may happen that (5.5.7) is valid although ci > 0 and di < 0, or vice versa. In
this sense the interplay between the reaction terms in Ω and on Γ determines if (5.5.1) is
dissipative, and the non-dissipativeness of one reaction term can be compensated by the
other. This is analogous to the dissipativity condition in [15] for nonlinear Robin boundary
conditions.

We record some simple consequences of the above assumptions.

Lemma 5.5.4. Assume that f and g are conservative and dissipative. Then there is a
constant c0 ∈ R such that

fi(ζ)ζi ≤ ciζ2
i + c0, gi(ζ)ζi ≤ diζ2

i + c0, i = 1, ..., N.

In particular, f and g satisfy (5.5.3). Moreover, for ζ ∈ RN it holds

F (ζ) ≥ −
N∑
i=1

ci
2
ζ2
i −Nc0, G(ζ) ≥ −

N∑
i=1

di
2
ζ2
i −Nc0.

Proof. The first assertion is clear. For ζ ∈ RN we set ζ ′ = (0, ζ2, ..., ζN ) and calculate

F (ζ) = F (ζ ′)−
∫ 1

0
f1(sζ1, ζ2, ..., ζN )ζ1 ds ≥ F (ζ ′)− c1

2
ζ2

1 − c0.

Iterating this argument with the remaining N − 1 variables yields second assertion.

The assumption that f and g are conservative allow to construct a Lyapunov function for
(5.5.1), which already appeared in [80]. We define V :M→ R by

V(φ) =
1
2

∫
Ω
|∇φ|2 dx+

∫
Ω
F (φ) dx+

1
2

∫
Γ
|∇Γφ|2 dσ(x) +

∫
Γ
G(φ) dσ(x).

Note that V is well-defined and continuous, due to

M ↪→W 1
p (Ω,RN ) ∩W 1

p (Γ,RN ) ∩BC(Ω,RN ).

Let u = u(·, u0) be the solution of (5.5.1) with initial value u0 ∈ M, and t ∈ (0, t+(u0)).
Since u(t) ∈ X1 we may integrate by by parts to obtain

d
dt
V(u(t)) = −

∫
Ω

(∆u(t) + f(u(t))) · ∂tu(t) dx

−
∫

Γ
(∆Γu(t)− ∂νu(t) + g(u(t))) · ∂tu(t) dσ(x)

= −|∂tu(t)|2L2(Ω,RN ) − |∂tu(t)|2L2(Γ,RN ). (5.5.8)
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Hence V is nonincreasing along solutions of (5.5.1), and it is constant only along equilibria.
Therefore V is a strict Lyapunov function for (5.5.1).4

Lemma 5.5.4 and assumption (5.5.7) also allow to obtain an energy estimate for (5.5.1),
as follows. From (5.5.8) we obtain that for u0 ∈ M and t ∈ (0, t+(u0)) it holds V(u(t)) ≤
V(u0), and further the estimate

V(φ) &
N∑
i=1

(
|∇φ|2L2(Ω,RN×n) + |∇Γφ|2L2(Γ,RN×n) − 2ci|φ|2L2(Ω,RN ) − 2di|φ|2L2(Γ,RN )

)
+ |∇φ|2L2(Ω,RN×n) + |∇Γφ|2L2(Γ,RN×n) − 1

& |φ|2W 1
2 (Ω,RN ) + |φ|2W 1

2 (Γ,RN ) − 1

holds true. The above considerations may be summarized as follows.

Lemma 5.5.5. Suppose that (5.5.1) is conservative and dissipative, and let p ∈ (n+2,∞).
Then V : M→ R is a strict Lyapunov function for (5.5.1), and there is C > 0 such that
for each u0 ∈M the solution u(·, u0) of (5.5.1) satisfies

sup
t∈[0,t+(u0))

|u(t, u0)|2W 1
2 (Ω,RN )∩W 1

2 (Γ,RN ) ≤ C (1 + V(u0)).

We use the above a priori estimate to show that (5.5.1) generates a compact global semiflow
inM, with relatively compact orbits.

Proposition 5.5.6. Suppose that (5.5.1) is conservative and dissipative, and let p ∈ (n+
2,∞). Then for u0 ∈ M the corresponding solution u(·, u0) exists globally, t+(u0) = +∞,
and the orbit {u(t, u0)}t∈[0,∞) is relatively compact in M. Moreover, for each t > 0 the
solution map u(t, ·) :M→M is compact.

Proof. (I) The Lemmas 5.5.3 and 5.5.5 yield that u(·, u0) is bounded in BC(Ω,RN ), and
thus Proposition 5.5.2 yields t+(u0) = +∞. The compactness of the time-t-map u(t, ·) :
M→M for all t > 0 follows from Theorem 5.3.3.
(II) For the relative compactness of orbits we also want to apply Proposition 5.5.2, and
therefore have to show that {u(t, u0)}t∈[0,∞) is bounded in Ms

p for some s > 0. Due to
Sobolev’s embeddings it holds

W σ
r (Ω,RN ) ↪→W s

q (Ω,RN ) for σ − n

r
≥ s− n

q
, σ ≥ s, r ≥ q,

and this remains true if one replaces Ω by Γ and n by n− 1, respectively. By Lemma 5.5.5
the solution is bounded in the energy spaces W 1

2 (Ω,RN ) and W 1
2 (Γ,RN ). We therefore

obtain the boundedness in

W s
q (Ω,RN ), s = 1− n/2 + n/q, and W s+1−1/q

q (Γ,RN ), s = 1/2− n/2 + n/q,

where q < 2n
n−1 . Thus for these q there is a small s > 0 such that the orbit is bounded in

Ms
q = W s

q (Ω,RN ) ∩W s+1−1/q
q (Γ,RN ).

4In the literature it is sometimes required that a Lyapunov function is bounded from below. In the
context of compact semiflows this property is not necessary, cf. [16, Remark 1.1.4].
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By Lemma 5.5.1, the orbit is therefore bounded in M2−2/q
q . If q > n

2 + 1 then Sobolev’s
embeddings yieldM2−2/q

q ↪→Ms
p for some s > 0, and we are done. Otherwise we iterate

the application of Sobolev’s embeddings and Lemma 5.5.5 as in the proof of Proposition
4.4.2, to obtain the boundedness of the orbit in Ms

p for some s > 0 after finitely many
steps.

The last step towards the global attractor for (5.5.1) is the boundedness of the set of its
equilibria.

Lemma 5.5.7. Suppose that (5.5.1) is conservative and dissipative, and let p ∈ (1,∞).
Then the set of its equilibria is bounded in X1.

Proof. (I) An equilibrium v ∈ X1 ↪→W 2
p (Ω,RN ) ∩W 3−1/p

p (Γ,RN ) of (5.5.1) solves

∆v + f(v) = 0 in Ω,

∆Γv − ∂νv + g(v) = 0 on Γ.

Multiplying the domain equation with v, integrating over Ω, integrating by parts and using
Lemma 5.5.4 we obtain

|∇v|2L2(Ω,RN×n) −
∫

Γ
∂νv · v dσ(x)−

N∑
i=1

ci|vi|2L2(Ω,RN ) −Nc0 ≤ 0.

Employing the boundary equation yields in a similar way that

|∇Γv|2L2(Γ,RN×n) +
∫

Γ
∂νv · v dσ(x)−

N∑
i=1

di|vi|2L2(Γ,RN ) −Nc0 ≤ 0.

Adding these estimates we obtain, using (5.5.7),

2Nc0 ≥ |∇v|2L2(Ω,RN×n) + |∇Γv|2L2(Γ,RN×n) −
N∑
i=1

(
ci|vi|2L2(Ω,RN ) + di|vi|2L2(Γ,RN )

)
& |v|2W 1

2 (Ω,RN ) + |v|2W 1
2 (Γ,RN ).

This estimate, together with Lemma 5.5.3, leads to

sup{|v|BC(Ω,RN ) : v ∈ X1 is equilibrium of (5.5.1)} <∞. (5.5.9)

(II) We have seen that the realization of

−A =

(
∆ 0
−∂ν ∆Γ

)
, D(−A) = X1,

on X0 = Lp(Ω,RN ) × W
1−1/p
p (Γ,RN ) is the generator of an analytic C0-semigroup. In

particular, there is λ > 0 such that A +λ is an isomorphism X1 → X0. For an equilibrium
v of (5.5.1) we may therefore estimate

|v|X1 = |(A + λ)−1(f(v) + λv, g(v) + λv)|X1

. |f(v) + λv|Lp(Ω,RN ) + |g(v) + λv|
W

1−1/p
p (Γ,RN )
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It follows from (5.4.6) that

|g(v)|
W

1−1/p
p (Γ,RN )

≤ C
(
|v|BC(Ω,RN )

)(
1 + |v|

W
1−1/p
p (Γ,RN )

)
.

Using (5.5.9), the interpolation inequality and Young’s inequality we thus obtain

|v|X1 . 1 + |v|
W

1−1/p
p (Γ,RN )

≤ ε|v|
W

3−1/p
p (Γ,RN )

+ Cε,

where ε > 0 is arbitrary. Choosing ε appropriately, we may subtract 1
2 |v|W 3−1/p

p (Γ,RN )
on

both sides of the above inequality, which yields a universal X1-bound for the equilibria of
(5.5.1).

The considerations in this section, together with [63, Theorem 2.3], yield the following
result on the long-time behaviour of (5.5.1).

Theorem 5.5.8. Suppose that (5.5.1) is conservative and dissipative. Then it generates a
compact global semiflow of solutions in the phase spaceM, and the set E of its equilibria
is nonempty. The semiflow possesses a connected global attractor A ⊂ X1, the ω-limit set
of each orbit is contained in E , and also the α-limit set of each complete orbit is contained
in E . If E is discrete, then A consists precisely of equilibria and complete orbits connecting
them. If in addition f and g do not have a common zero, then (5.5.1) has at least one
nonconstant equilibrium, and each solution converges inM to such a pattern.
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Appendix

A.1 Boundaries of Domains in Rn

Let Ω ⊂ Rn be a domain with boundary ∂Ω, n ≥ 2. We say that ∂Ω is smooth, if for each
x ∈ ∂Ω there are a bounded open set U ⊂ Rn with x ∈ U and a smooth diffeomorphism
ϕ : U → Rn with

ϕ(U ∩ Ω) ⊂ Rn
+, ϕ(U ∩ ∂Ω) ⊂ Rn−1 × {0} ∼= Rn−1.

The pair (U,ϕ) is called a chart for ∂Ω around x. The parametrization g : Rn−1 ∩ϕ(U)→
∂Ω of ∂Ω around x with respect to (U,ϕ), also called local coordinates, is defined by

g(y) := ϕ−1(y, 0), y ∈ Rn−1 ∩ ϕ(U).

It holds that g : Rn−1 ∩ ϕ(U) → ∂Ω ∩ U is a homeomorphism, and that the derivative
g′(y) ∈ B(Rn−1,Rn) has maximal rank n− 1 for each y ∈ Rn−1 ∩ ϕ(U).

The tangential space Tx∂Ω on ∂Ω in x is given by the image of the matrix g′(ϕ(x)), and it
has the dimension n−1. It becomes a Hilbert space when considering it as a closed subspace
of Rn. A canonical basis of Tx∂Ω is given by {∂1g(ϕ(x)), ..., ∂n−1g(ϕ(x))}. The outer unit
normal ν(x) ∈ Rn on ∂Ω at x is given a normalized element of the orthogonal complement
of Tx∂Ω in Rn. The tangential spaces and the outer unit normals are independent of the
chart and the corresponding parametrization, and the outer unit normal field is smooth.

The fundamental form G = (gij)i,j=1,...,n−1 with respect to (U,ϕ) is defined by

gij := ∂ig · ∂jg, i, j = 1, ..., n− 1,

where the scalar product is taken in Rn, and G(y) is for all y ∈ Rn−1 ∩ ϕ(U) a symmetric
positive definite matrix. Its inverse G−1 := (gij)i,j=1,...,n−1 is also symmetric and positive
definite. The determinant |G| of G is called the Gramian determinant.

It is useful to have charts and parametrizations with the following special properties.
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Lemma A.1.1. Let Ω ⊂ RN have a smooth boundary ∂Ω, let x∗ ∈ ∂Ω, r > 0 and let
Oν(x∗) be any orthogonal matrix that rotates ν(x∗) to (0, ..., 0,−1) ∈ Rn. Then there is a
chart (U,ϕ) for ∂Ω around x∗ with the properties

ϕ(x∗) = 0, ϕ′(x∗) = Oν(x∗), ϕ(U) = Br(0), ϕ(U ∩ Ω) ⊂ Rn
+, ϕ(U ∩ ∂Ω) ⊂ Rn−1,

and the corresponding first fundamental form satisfies G(x∗) = idRn−1 . The coordinates g
to such a chart are called associated to the point x∗ ∈ ∂Ω.

Proof. The diffeomorphism x 7→ Oν(x∗)(x − x∗) translates x∗ into the origin and rotates
Tx∂Ω to Rn−1×{0}. The implicit function theorem implies thatOν(x∗)(∂Ω−x∗) may locally
around the origin be represented as a graph of smooth function h : Ũ → R with ∇h(0) = 0,
where Ũ ⊂ Rn−1 is open, such that ∂Ω lies locally in the set {y = (y′, yn) : yn = h(y′)}.
Setting y = Oν(x∗)(x− x∗), we obtain that ϕ(x) := (y′, yn − h(y′)) defines a chart for ∂Ω
around x∗, which has the desired properties after restriction to the preimage of Br(0).

If E is a Banach space and (U,ϕ) a chart for ∂Ω one defines the push-forward operator Φ
for functions u : Ω ∩ U → E by

Φu : Rn
+ ∩ ϕ(U)→ E, Φu := u ◦ ϕ−1.

Similarly, one defines the pull-back operator Φ−1 for functions v : Rn
+ ∩ ϕ(U)→ E by

Φ−1v : Ω ∩ U → E, Φ−1v = v ◦ ϕ.

It is shown in [86, Thm. 10.3] that the principal part of a differential operator fortunately
transforms in a simple way.

Lemma A.1.2. Let E be a Banach space, let P(x,∇) =
∑
|α|≤k pα(x)∇α be a differential

operator of order k ∈ N0 on Ω with pα(x) ∈ B(E), and let (U,ϕ) be a chart for ∂Ω. Then
for the principal part of the transformed operator PΦ, which is for v : Rn

+ ∩ ϕ(U) → E

given by
PΦ(x,∇)v :=

(
ΦP(·,∇)Φ−1v

)
(x), x ∈ Rn

+ ∩ ϕ(U),

it holds PΦ
] (x,∇) = P](ϕ−1(x), ϕ′(x)T∇).

Finally, assume that ∂Ω is compact. Then there is finite collection of charts (Ui, ϕi) with

∂Ω ⊂
⋃

i
Ui.

There is further a smooth partition of unity {ψi} for ∂Ω subordinate to the cover
⋃
i Ui,

i.e., suppψi ⊂ Ui for all i.

A.2 Interpolation Theory

Let (E0, | · |E0) and (E1, | · |E1) be Banach spaces with E1
d
↪→ E0. For θ ∈ (0, 1) and

p ∈ [1,∞] the real interpolation spaces (E0, E1)θ,p and the complex interpolation spaces
[E0, E1]θ are defined and investigated in [13, 68, 82]. We list some well-known properties of
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these spaces. Recall that by the equality of Banach spaces we mean they coincide as sets
and have equivalent norms.

Throughout, let
0 < θ < 1, 0 < θ1 < θ2 < 1, p ∈ [1,∞].

Then the following holds true.

a) For 1 ≤ p1 ≤ p2 ≤ ∞: E1
d
↪→ (E0, E1)θ,p1

d
↪→ (E0, E1)θ,p2

d
↪→ E0, see [68, Prop. 1.3,

1.17].

b) E1
d
↪→ [E0, E1]θ2

d
↪→ [E0, E1]θ1

d
↪→ E0, see [82, Thm. 1.9.3].

c) For q ∈ [1,∞] (see [13, Thm. 4.2.1, 4.7.1]):

(E0, E1)θ2,p
d
↪→ (E0, E1)θ1,q, (E0, E1)θ2,p

d
↪→ [E0, E1]θ1 , [E0, E1]θ2

d
↪→ (E0, E1)θ1,p.

d) If F1 is a Banach space with E1
d
↪→ F1

d
↪→ E0:

(E0, E1)θ,p ↪→ (E0, F1)θ,p, [E0, E1]θ ↪→ [E0, F1]θ.

e) For q1, q2 ∈ [1,∞] (see [13, Thm. 3.5.3]):(
(E0, E1)θ1,q1 , (E0, E1)θ2,q2

)
θ,p

= (E0, E1)(1−θ)θ1+θθ2,p.

f)
[
[E0, E1]θ1 , [E0, E1]θ2

]
θ

= [E0, E1](1−θ)θ1+θθ2 ,
and this assertion remains valid if [E0, E1]θ1 is replaced by E0 and θ1 = 0 or [E0, E1]θ2
is replaced by E1 and θ2 = 0 (see [82, Rem. 1.9.3/1]).

g)
(
[E0, E1]θ1 , [E0, E1]θ2

)
θ,p

= (E0, E1)(1−θ)θ1+θθ2,p,
and this assertion remains valid for θ1 = 0 or θ2 = 0 as in e) (see [82, Thm. 1.10.3/2]).

h) If E0 and E1 are reflexive (see [82, Rem. 1.10.3/2]):[
(E0, E1)θ1,p, (E0, E1)θ2,p

]
θ

= (E0, E1)(1−θ)θ1+θθ2,p.

i) If F1
d
↪→ F0 with F1

d
↪→ E1, F0

d
↪→ E0, are Banach spaces (see [68, Thm. 1.6, 2.6]):

B(E0, F0) ∩ B(E1, F1) ↪→ B
(
(E0, F0)θ,p, (E1, F1)θ,p

)
∩ B
(
[E0, F0]θ, [E1, F1]θ

)
.

More precisely, for A ∈ B(E0, F0) ∩ B(E1, F1) it holds

|A|B((E0,F0)θ,p,(E1,F1)θ,p) ≤ |A|1−θB(E0,F0)|A|
θ
B(E1,F1),

and analogously for |A|B([E0,F0]θ,[E1,F1]θ).

j) By the interpolation inequality (see [68, Cor. 1.7, 2.8]):

|x|(E0,E1)θ,p ≤ C(θ, p)|x|1−θE0
|x|θE1

, |x|[E0,E1]θ ≤ |x|
1−θ
E0
|x|θE1

x ∈ E1.
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k) If
(
A,D(A)

)
is the generator of a bounded C0-semigroup {T (t)}t≥0 on E0, and D(A)

is equipped with the graph norm (see [68, Prop. 5.7]):(
E0, D(A)

)
θ,p

=
{
u ∈ E0 : [u]p∗ :=

∫ ∞
0

t−θp|T (t)u− u|pE0

dt
t
<∞

}
,

where the space on the right-hand side is equipped with the norm |u|E0 + [u]∗.

l) If
(
A,D(A)

)
is the generator of a bounded analytic C0-semigroup {T (t)}t≥0 on E0,

and D(A) is equipped with the graph norm (see [82, Thm. 1.14.5]):(
E0, D(A)

)
θ,p

=
{
u ∈ E0 : [u]p∗∗ :=

∫ ∞
0

tp(1−θ)|AT (t)u|pE0

dt
t
<∞

}
,

where the space on the right-hand side is equipped with the norm |u|E0 + [u]∗∗. In
[u]∗∗ one may restrict the integration over t to (0, δ), δ > 0. If {T (t)}t≥0 is in addition
exponentially stable then it suffices to take [u]∗∗ as a norm.

m) If (Ω, ν) is a σ-finite measure space and θ ∈ (0, 1), p ∈ [1,∞) (see [82, Thm. 1.18.4]):(
Lp(Ω;E0), Lp(Ω;E1)

)
θ,p

= Lp
(
Ω; (E0, E1)θ,p

)
,[

Lp(Ω;E0), Lp(Ω;E1)
]
θ

= Lp
(
Ω; [E0, E1]θ

)
.

n) If (Ω, ν) is a σ-finite measure space and 1 ≤ p1 < p2 ≤ ∞ (see [82, Thm. 1.18.4]):[
Lp1(Ω;E), Lp2(Ω;E)

]
θ

= Lq(Ω;E), where
1
q

=
1− θ
p1

+
θ

p2
.

Here one interpolates in fact between an interpolation couple, cf. [13, 68, 82].

The following Hardy-Young inequalities are useful for interpolation theory. It holds∫ T

0

(
t−α

∫ t

0
u(s)

ds
s

)p dt
t
≤ 1
αp

∫ T

0

(
t−αu(t)

)p dt
t
, (A.2.1)

∫ T

0

(
tα
∫ T

t
u(s)

ds
s

)p dt
t
≤ 1
αp

∫ T

0

(
tαu(t)

)p dt
t
, (A.2.2)

for all nonnegative measurable functions u : (0, T ) → R, T ∈ (0,∞], all α > 0 and all
p ∈ [1,∞), cf. [50, p. 245-246].

A.3 Sectorial Operators

For detailed informations on the concepts described in this section we refer to [7, 24, 48,
55, 62, 68, 82] and the references therein. Throughout, let E be a complex Banach space.

The space E is said to be of class HT if the Hilbert transform on L2(R;E) is bounded,
i.e., if the densely defined operator H, given by

(Hϕ)(s) := lim
ε→0

1
π

∫
|t|≥ε

ϕ(s− t)
t

dt, ϕ ∈ S(R;E),
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may uniquely be extended to L2(R;E). This property is equivalent to the boundedness of
the operator corresponding to the symbol −i sign. It is further equivalent for E to have
the property of unconditional martingale differences, an important concept in stochastic
analysis. Therefore spaces of class HT are also called UMD-spaces in the literature. Since
we have a purely analytic point of view in this work, we prefer the first notion.

Banach spaces of class HT are always reflexive. Many spaces in applications are of class
HT , like finite dimensional spaces, Hilbert spaces, and further Lp-, Sobolev, Slobodetskii,
Besov and Bessel potential spaces in the reflexive range, provided they take values in a
space of class HT (see Appendix A.4). L1-, L∞ and Ck-spaces are not of class HT . The
HT -property is stable under real and complex interpolation. For more information and
proofs we refer to [7, Sections III.4.3-4.5] and [55, Chapters 6-8].

A family of bounded operators T ⊂ B(E0, E1) between Banach spaces E0, E1 is called
R-bounded if there is C > 0 such that, for all T1, ..., Tm ∈ T and x1, ..., xm ∈ E0 with
m ∈ N, it holds ∣∣ m∑

n=1

rnTnxn
∣∣
L2(0,1;E1)

≤ C
∣∣ m∑
n=1

rnxn
∣∣
L2(0,1;E0)

,

where rn(t) := sign sin(2nπt) denote the Rademacher functions on [0, 1]. We stress that
the norms are outside the sums. If E0, E1 are Hilbert spaces this notion is equivalent to
the uniform boundedness of T . The infimum of all C satisfying the above estimate is called
the R-bound of T and is denoted by R(T ). We refer to [24, Chapter 3], [62, Chapter 2]
and [55, Chapter 4] for detailed informations.

Roughly speaking, spaces of class HT and the concept of R-boundedness can be used to
show the boundedness of operators for which standard norm estimates do actually not
lead to boundedness. The advantage is that one can avoid the application of the triangle
inequality at certain points, and ’leave the norm outside a sum’ while estimating. Besides
the interest in their own, the combination of these concepts leads to important results for
the applications to partial differential equations, like the operator-valued Fourier-multiplier
theorem due to Weis [85], the joint functional calculus due to Kalton and Weis [62], the
characterization of maximal Lp-regularity [85], the Dore-Venni theorem [31], and many
more (see below for more details on the latter two results).

Let A be an operator on E with domain D(A). We call A sectorial if A is closed, densely
defined, has dense range and if it holds (−∞, 0) ⊂ ρ(A) with the resolvent estimate

|t(t+A)−1|B(E) ≤ C, t > 0,

for some C > 0. Define the open sector

Σθ :=
{
λ ∈ C\{0} : | arg λ| < θ

}
.

If A is sectorial, then the resolvent estimate and a Neumann series yield an angle φ ∈ [0, π)
such that Σπ−φ ⊂ ρ(−A). One may thus define the spectral angle of A by

φA := inf
{
φ ∈ [0, π) : Σπ−φ ⊂ ρ(−A), sup

λ∈Σπ−φ

|λ(λ+A)−1| <∞
}
.
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A sectorial operator A is the generator of a bounded analytic C0-semigroup if and only
if φA < π/2 ([35, Theorem II.4.6]). For φA = π/2 the operator A does not necessarily
generate a semigroup. Note that sometimes in the literature only generators of analytic
semigroups are called sectorial.

The operator A is called R-sectorial if it is sectorial and if the family of operators{
t(t+A)−1 : t > 0

}
is R-bounded in B(E). As above one may define the R-angle φRA of A by

φRA := inf
{
φ ∈ (φA, π) : R{λ(λ+A)−1 : λ ∈ Σπ−φ} <∞

}
.

It is clear from the definitions that φA ≤ φRA . The importance of this concept lies in the
fact that on a Banach space of class HT the generator of an exponentially stable C0-
semigroup A is R-sectorial with φRA < π/2 if and only if it enjoys the property of maximal
Lp-regularity on the half line for p ∈ (1,∞), i.e., if for each f ∈ Lp(R+;E) there is a unique
solution u ∈W 1

p (R+;E) ∩ Lp(R+;D(A)) of the problem

u′ +Au = f, t > 0, u(0) = 0.

This result is due to Weis [85]. For more informations on (R-)sectorial operators we refer
to [24, 62], and to [30] for a survey on maximal Lp-regularity (see also Section 1.2.1).

We now consider the functional calculus for sectorial operators. For φ ∈ (0, π) one defines
the function algebras

H(Σφ) :=
{
f : Σφ → C : f is holomorphic

}
,

H∞(Σφ) :=
{
f : Σφ → C : f is holomorphic and bounded

}
,

H0(Σφ) :=
{
f ∈ H(Σφ) : there are α, β > 0 with sup

|λ|≤1
|λ−αf(λ)|+ sup

|λ|≥1
|λβf(λ)| <∞

}
,

H1(Σφ) :=
{
f ∈ H(Σφ) : there are α, β ∈ R with sup

|λ|≤1
|λ−αf(λ)|+ sup

|λ|≥1
|λβf(λ)| <∞

}
.

Now fix a sectorial operator A, and let φ ∈ (φA, π]. For a curve Γ = (∞, 0]eiψ ∪ [0,∞)e−iψ

with ψ ∈ (φA, φ) the map

ΦA : H0(Σφ)→ B(E), f(A) := ΦA(f) :=
1

2πi

∫
Γ
f(λ)(λ+A)−1 dλ,

defines a functional calculus for A, i.e., an algebra homomorphism. If there are φ ∈ (φA, π)
and a constant Kφ such that

|f(A)|B(E) ≤ Kφ|f |∞, f ∈ H0(Σφ),

then the functional calculus for A may uniquely be extended from H0(Σφ) to H(Σφ). In
this case A is said to admit a bounded H∞-calculus, and the H∞-angle φ∞A of A is defined
as the infimum of all φ ∈ (φA, π) that admit an estimate as above.
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For f ∈ H1(Σφ) and ψ(λ) := λ
1+λ2 , choose k ∈ N such that ψkf ∈ H0(Σφ). Then the

operator

f(A) := ψ(A)−k(ψkf)(A), D(f(A)) =
{
x ∈ E : (ψkf)(A)x ∈ D(Ak) ∩R(Ak)

}
,

is closed and densely defined on E, and it is independent of the chosen number k. The map
f 7→ f(A) is called the extended functional calculus for A. We refer to [24, 48] for proofs
and more informations on the functional calculus for sectorial operators.

For z ∈ C the extended functional calculus in particular allows to define the fractional
powers Az of a sectorial operator A. In general, Az is a closed and densely defined operator
on X, and the domains satisfy

D(Az1)
d
↪→ D(Az2)

d
↪→ E, Re z1 > Re z2 > 0,

when equipped with the graph norm, cf. [24, Thm. 2.1], [68, Lem. 4.11] and [7, Thm.
III.4.6.5]. If A is invertible then Az is a bounded operator for Re z < 0, and for Re z,Reω >
0 the operator Az is an isomorphism

D(Az+ω)→ D(Aω), D(Az)→ E,

see again [7, Thm. III.4.6.5]. For p ∈ (1,∞) and θ,Re z > 0 with θ+Re z < 1, the operator
Az is further an isomorphism

(E,D(A))Re z+θ,p → (E,D(A))θ,p,

cf. [82, Thm. 1.15.2]. The reiteration theorem [48, Prop. 6.6.7] states that for θ ∈ (0, 1)
and p ∈ (1,∞) it holds

(E,D(Az1))
θ

Re z2
Re z1

,p
= (E,D(Az2))θ,p, 0 < Re z2 < Re z1,

and moreover

(E,D(Az1))
(1−θ) Reω

Re z1
+θ

Re z2
Re z1

,p
= (D(Aω), D(Az2))θ,p, 0 < Reω < Re z2 < Re z1.

For s = k + θ ≥ 0 with k ∈ N0, p ∈ [1,∞] and θ ∈ [0, 1) it is convenient to define

DA(s, p) := D(As) if s ∈ N0,

DA(s, p) :=
{
x ∈ D(Ak) : Akx ∈ (E,D(A))θ,p

}
if s /∈ N0,

where these spaces are equipped with the norm |x|E0 + |Akx|(E,D(A))θ,p , respectively (with
E = (E,D(A))0,p).

There are rules analogously to the ones for powers of scalars. It holds that

AzAω ⊂ Az+ω, D(Aω) ∩D(Az+ω) = D(AzAω), z, ω ∈ C,
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see [48, Prop. 3.2.1], and for Re z,Reω > 0 we have AzAω = Az+ω by [48, Prop. 3.1.1].
For α ∈ R with |α| < π/φA the operator Aα is sectorial, and it holds φAα = |α|φA and

(Aα)z = Aαz, z ∈ C,

cf. [48, Prop. 3.1.4, Cor. 3.1.5].

Closed linear operators A,B on E are called resolvent commuting if there are λ ∈ ρ(A),
µ ∈ ρ(B) such that

(λ−A)−1(µ−B)−1 = (µ−B)−1(λ−A)−1.

For such operators real interpolation commutes with the intersection of the domains [47].

Lemma A.3.1. Let A and B be resolvent commuting sectorial operators on a Banach
space E. Then for θ ∈ (0, 1) and p ∈ (1,∞) it holds

(E,D(A) ∩D(B))θ,p = (E,D(A))θ,p ∩ (E,D(B))θ,p.

A sectorial operator A is said to admit bounded imaginary powers if Ais ∈ B(E) for all
s ∈ R and if there are ε > 0 and C > 0 with |Ais|B(E) ≤ C for |s| ≤ ε. In this case {Ais}s∈R

forms a C0-group of bounded operators on E, and the growth bound θA of this group, i.e.,

θA = lim sup
|s|→∞

1
|s|

log |Ais|B(E),

is called the power angle of A.

Operators with bounded imaginary powers enjoy very good properties. If A is invertible
and admits bounded imaginary powers then Yagi’s theorem states that for 0 ≤ Reω < Re z
and θ ∈ (0, 1) it holds

[D(Aω), D(Az)]θ = D(A(1−θ)ω+θz), (A.3.1)

where the domains are again equipped with the graph norm, respectively [82, Thm. 1.15.3].
The above identity is useful to determine a complex interpolation space in concrete situa-
tions. The following result is a variant of the Dore-Venni theorem [31, 72].

Theorem A.3.2. Let E be of class HT , and suppose that the operators A,B are resolvent
commuting and admit bounded imaginary powers with θA + θB < π. Then for all ρ > 0
the following holds true.

a) A+ ρB with D(A+ ρB) = D(A) ∩D(B) is closed and sectorial;

b) A+ ρB admits bounded imaginary powers with θA+ρB ≤ max{θA, θB};

c) there is a constant C > 0, independent of ρ, such that

|Ax|E + ρ|Bx|E ≤ C |Ax+ ρBx|E , x ∈ D(A) ∩D(B).

If A or B is invertible, then A+ ρB is invertible as well.
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The next result is also called the mixed derivative theorem, see [78] and also [27].

Lemma A.3.3. In the situation of the Dore-Venni Theorem A.3.2, for each α ∈ [0, 1] it
holds B1−αx ∈ D(Aα) for x ∈ D(A) ∩D(B), and there is a constant C > 0 such that

|AαB1−αx|E ≤ C |Ax+Bx|E for all x ∈ D(A) ∩D(B).

In particular, B1−α ∈ B(D(A) ∩D(B), D(Aα)).

We next state a variant of Lemma A.3.1 for complex interpolation, see [37, Lem. 9.5].

Lemma A.3.4. Let E be of class HT and θ ∈ (0, 1). Suppose that the operators A,B are
resolvent commuting, that they admit boundary imaginary powers with θA + θB < π, and
that A or B is invertible. Then

[E,D(A+B)]θ = [E,D(A)]θ ∩ [E,D(B)]θ, θ ∈ (0, 1),

i.e., D((A+B)θ) = D(Aθ) ∩D(Bθ).

For more properties of operators with bounded imaginary powers we refer to [7, Sec. III.4.7],
[68, Sec. 4.2] and [24, Sec. 2.3].

The above properties of a sectorial operator A on a Banach space E of class HT are related
as follows. If A admits a bounded H∞-calculus then A admits bounded imaginary powers,
and the latter property implies that A is R-sectorial [24, Sec. 2.4, Thm. 4.5]. The angles
satisfy

φ∞A ≥ θA ≥ φRA ≥ φA. (A.3.2)

In particular, if E is of class HT and A admits a bounded H∞-calculus or bounded imag-
inary powers with angles strictly smaller than π/2, then A enjoys maximal Lp-regularity
on the half-line for all p ∈ (1,∞). The converse of the above assertions is false, in general.

The standard examples for operators with a bounded H∞-calculus are for p ∈ (1,∞) and
a Banach space of class HT the derivative ∂t on Lp(R;E) with domain W 1

p (R;E), and the
negative Laplacian −∆n on Lp(Rn;E) with domain W 2

p (Rn;E). For the angles we have
φ∞∂t = π/2 and φ∞−∆n

= 0. For a proof we refer to [24, Thm. 5.5] and [48, Ch. 8] (see also
Theorem 1.1.7 and Lemma 1.3.1).

We now consider further properties of sectorial operators. We already saw that a real
fractional power of a sectorial operator remains sectorial if the power and the sectoriality
angle are appropriate. A similar result is true for other properties of an operator.

Lemma A.3.5. Assume that A admits a bounded H∞-calculus or bounded imaginary
powers, and let α > 0 satisfy

α < π/φ∞A , or α < π/θA.

Then Aα enjoys the same property, with

φ∞Aα ≤ αφ∞A , or θAα ≤ αθA.
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Proof. (I) First suppose that A admits a bounded H∞-calculus. Take a small ε > 0 with
α(φ∞A + ε) < π and φ∞A + ε < π. Then for f ∈ H∞0 (Σφ) with φ ∈

(
αφ∞A , α(φ∞A + ε)

)
the

function λ 7→ f̃(λ) := f(λα) belongs to H∞0 (Σφ/α), and φ/α ∈ (φ∞A , π). Using that Aα

is sectorial and the composition rule for the functional calculus of sectorial operators [48,
Theorem 2.4.2] we obtain

|f(Aα)|B(E) = |f̃(A)|B(E) ≤ Kφ/α|f̃ |∞ = Kφ/α|f |∞.

Hence Aα admits a bounded H∞-calculus of angle not larger than αφ∞A .
(II) Now assume that A admits bounded imaginary powers. Then (Aα)is = Aisα ∈ B(E)
for all s ∈ R, and |(Aα)is| ≤ C for all |s| ≤ ε/α. Thus Aα also admits bounded imaginary
powers. Moreover, due to [7, Corollary III.4.7.2], for all θ > θA we have |Aisα|B(E) ≤ Ceθα|s|.
Taking the logarithm yields that θAα ≤ αθ, and the assertion follows.

For a σ-finite measure space (Ω, ν) and p ∈ (1,∞) we may define the pointwise realization
of Ap on Lp(Ω;E) by

(Apu)(t) := Au(t), a.e. t ∈ Ω, u ∈ D(Ap) := Lp(Ω;D(A)),

where D(A) is endowed with the graph norm. We show that Ap enjoys the same properties
as A.

Lemma A.3.6. Let (Ω, ν) be a σ-finite measure space, and suppose that the operator A is
sectorial, admits a bounded H∞-calculus or admits bounded imaginary powers. Then for
p ∈ (1,∞) the pointwise realization Ap of A on Lp(Ω, E) enjoys the same property, with

φAp ≤ φA, φ∞Ap ≤ φ
∞
A , or θAp ≤ θA.

In addition, if A is sectorial and f ∈ H∞1 (Σφ) with φ ∈ (φA, π), then f(Ap) = f(A)p.

Proof. (I) Suppose that A is sectorial. We first show that Ap is densely defined. Let
ε > 0 be given, and let

∑m
i=1 αixi ∈ Lp(Ω;E) be a step function, with m ∈ N, αi ∈

Lp(Ω), αi 6= 0 and xi ∈ E. Since D(A) is dense in E we find yi ∈ D(A) with |xi −
yi|E ≤ ε/(m|αi|Lp(Ω))−1. It then holds

∑m
i=1 αiyi ∈ D(Ap) = Lp(Ω;D(A)), and further

|
∑m

i=1 αixi −
∑m

i=1 αiyi|Lp(Ω;E) < ε. Since the step functions are dense in Lp(Ω;E), it
follows that D(Ap) is dense in Lp(Ω;E). The density of the range of Ap in Lp(Ω;E) is
shown in a similar way.
Now let λ ∈ ρ(A). Then for h ∈ Lp(Ω;E) the unique solution u ∈ Lp(Ω;E) of (λ+Ap)u = h

is for almost every t ∈ Ω given by u(t) = (λ+A)−1h(t). Hence Ap is closed, and it holds

ρ(A) ⊂ ρ(Ap), (λ+Ap)−1 =
(
(λ+A)−1

)
p

for λ ∈ ρ(A). (A.3.3)

This yields for λ ∈ ρ(A) the estimate

|λ(λ+Ap)−1|B(Lp(Ω;E)) = sup
|h|Lp(Ω;E)=1

|λ(λ+Ap)−1h|Lp(Ω;E) ≤ |λ(λ+A)−1|B(E),

which shows that Ap is sectorial with φAp ≤ φA.
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(II) If A is sectorial then we infer from (A.3.3) that for f ∈ H∞0 (Σφ) with φ ∈ (φA, π),
h ∈ Lp(Ω;E) and almost every t ∈ Ω it holds(

f(Ap)h
)
(t) =

1
2πi

∫
Γ
f(λ)

(
(λ+Ap)−1h

)
(t) dλ = f(A)ph(t),

which yields f(Ap) = f(A)p. Similarly one obtains this identity for f ∈ H∞1 (Σφ). Using
this fact and estimating as above it is straight forward to check that the other properties
of A carry over to Ap as asserted.

A.4 Function Spaces on Domains and Boundaries

We first consider function spaces with values in a Banach space of class HT , and refer to
[8, 9, 75, 91] for more details and proofs. For scalar-valued function spaces we refer to [82].
The HT -valued function spaces share many properties with the scalar-valued spaces, due
to the fact that appropriate Fourier multiplier theorems are available.

Let E be a complex Banach space of class HT , and let Ω ⊂ Rn be a domain with smooth
boundary. We denote by ∇ = (∂1, ..., ∂n) the euclidian gradient on Ω, and α ∈ Nn

0 denotes
a multiindex. For k ∈ N0 the Banach space of the E-valued k-times bounded uniformly
continuously differentiable functions on Ω is denoted by

BUCk(Ω;E),

equipped with its canonical norm. For s = [s] + s∗ ∈ R+\N with [s] ∈ N0 and s∗ ∈ [0, 1)
the Banach space of bounded Hölder continuous functions of order s on Ω is given by

BUCs(Ω;E) :=
{
u ∈ BUC [s](Ω;E) : for |α| = [s] it holds [∇αu]BUCs−[s](Ω;E) <∞

}
,

where for τ ∈ (0, 1) the seminorm [·]BUCτ (Ω;E) is defined by

[u]BUCτ (Ω;E) := sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|τ

,

and BUCs(Ω;E) is equipped with the norm |u|BUC[s](Ω;E) +
∑
|α|≤[s][∇αu]BUCs−[s](Ω;E). For

k ∈ N0 we further denote by

Ck(Ω;E) and Ck(Ω;E)

the space of k-times continuously differentiable functions on Ω and Ω, respectively. For
s ≥ 0 the space of the locally Hölder continuous functions of order s on Ω and Ω are
denoted by Cs(Ω;E) and Cs(Ω;E), respectively. If Ω is bounded, it holds

Cs(Ω;E) = BUCs(Ω;E), s ≥ 0.

We further set

C∞(Ω;E) :=
⋂
k∈N0

Ck(Ω;E), C∞c (Ω;E) :=
{
u ∈ C∞(Ω;E) : suppu ⊂ Ω

}
,
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and analogously one defines C∞(Ω;E) and C∞c (Ω;E).

For p ∈ [1,∞) the Banach space of the E-valued Lp-space on Ω is defined by

Lp(Ω;E) :=
{
u : Ω→ E strongly measurable : |u|pLp(Ω;E) :=

∫
Ω
|u(x)|pE dx <∞

}
,

and is endowed with the norm |u|Lp(Ω;E). The space L∞(Ω;E) is defined with the usual
modification. Since E is assumed to be reflexive, for p ∈ (1,∞) these spaces are also
reflexive, with Lp(Ω;E)∗ = Lq(Ω;E∗) and 1

p + 1
q = 1. The set C∞c (Ω;E) is dense in

Lp(Ω;E) for p ∈ [1,∞). For the general theory of vector-valued Lp-spaces we refer to the
Chapters III and IV of [32].

For k ∈ N0 and p ∈ [1,∞] the E-valued Sobolev space over Ω is defined by

W k
p (Ω;E) :=

{
u ∈ Lp(Ω;E) : ∇αu exists weakly, ∇αu ∈ Lp(Ω;E) for |α| ≤ k

}
,

and is endowed with the norm |u|Wk
p (Ω;E) :=

(∑
|α|≤k |∇αu|

p
Lp(Ω;E)

)1/p, which turns it into
a Banach space.

We further define the following E-valued function spaces: for p, q ∈ [1,∞) and s > 0 the
Besov space

Bs
p,q(Ω;E) :=

(
Lp(Ω;E),W [s]+1

p (Ω;E)
)

s
[s]+1

,q
,

for p ∈ [1,∞) and s > 0 the Bessel potential space

Hs
p(Ω;E) :=

[
Lp(Ω;E),W [s]+1

p (Ω;E)
]

s
[s]+1

,

and for p ∈ [1,∞) and s > 0 the Slobodetskii space

W s
p (Ω;E) :=

{
W k
p (Ω;E), s = k ∈ N,

Bs
p,p(Ω;E), s /∈ N.

These Banach spaces form scales according to the general properties of interpolation spaces
listed in Appendix A.2. Since E is of class HT it further holds that

W k
p (Ω;E) = Hk

p (Ω;E), k ∈ N, (A.4.1)

see [91, Satz 3.6]. Usually the Besov spaces over Rn are defined by a Littlewood-Paley
decomposition and the Bessel potential spaces are defined using the Fourier transform [91,
Def. 3.1], [75, Def. 4.3], and then the spaces over domains are defined via restriction [9,
Sec 4]. But since E is assumed to be of class HT and we assume that ∂Ω is smooth, it is
equivalent to define them via interpolation, as in [45]. This can be seen using (A.4.1), the
characterizations [75, Thm. 4.2, 4.3/3] and the interpolation results [75, Thm. 4.3/2], [91,
Satz 3.21].

The Slobodetskii spaces admit for s /∈ N0 the intrinsic representation

W s
p (Ω;E) =

{
u ∈W [s]

p (Ω, E) : for |α| = [s] it holds [Dαu]
W
s−[s]
p (Ω;E)

<∞
}
,
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where for τ ∈ (0, 1) the seminorm [·]W τ
p (Ω;E) is given by

[u]pW τ
p (Ω;E) :=

∫
Ω

∫
Ω

|u(x)− u(y)|pE
|x− y|n+τp

dx dy, (A.4.2)

and the space on the right-hand side above is equipped with the norm(
|u|p

W
[s]
p (Ω;E)

+
∑
|α|=[s]

[Dαu]p
W
s−[s]
p (Ω;E)

)1/p
,

cf. [8, Sec. 1, 5]. As in the scalar case we have the Sobolev embeddings [8, Eq. 5.4]

W s
p (Ω;E) ↪→W τ

q (Ω;E), s− n

p
≥ τ − n

q
, s ≥ τ, p ≥ q,

and further
W s
p (Ω;E) ↪→ Cτ (Ω;E), s− n

p
≥ τ.

If E is finite dimensional, Ω is bounded and the above inequalities are strict, then these
embeddings are compact by [1, Thm. 6.3] and [7, Sec. I.2.7].

Now suppose that ∂Ω is compact. Then there are a finite collection of charts (Ui, ϕi) for
∂Ω with corresponding parametrisations gi and a partition of unity {ψi} subordinate to⋃
i Ui. For p ∈ [1,∞] the spaces Lp(∂Ω;E) are defined in a standard way with respect to

the surface measure on ∂Ω. Moreover, for s > 0 and p, q ∈ [1,∞) we define as in [82, Def.
3.6.1]

Bs
p,q(∂Ω;E) :=

{
u ∈ Lp(∂Ω;E) : (ψiu) ◦ gi ∈ Bs

p,q(Rn−1;E) for all i
}
,

|u|Bsp,q(∂Ω;E) :=
∑

i
|(ψiu) ◦ gi|Bsp,q(Rn−1;E),

Hs
p(∂Ω;E) :=

{
u ∈ Lp(∂Ω;E) : (ψiu) ◦ gi ∈ Hs

p(Rn−1;E) for all i
}
,

|u|Hs
p(∂Ω;E) :=

∑
i
|(ψiu) ◦ gi|Hs

p(Rn−1;E),

Cs(∂Ω;E) :=
{
u ∈ C(∂Ω;E) : (ψiu) ◦ gi ∈ Cs(Rn−1;E) for all i

}
,

|u|Cs(∂Ω;E) :=
∑

i
|(ψiu) ◦ gi|Cs(Rn−1;E),

which are all Banach spaces with their respective norms. Note that here we identify the
functions (ψiu)◦gi with their trivial extension to Rn−1. If one chooses another collection of
charts and another partition of unity for ∂Ω, one obtains the same spaces with equivalent
norms, respectively.

It follows from the definitions that the basic embeddings obtained from interpolation as
well as the Sobolev embeddings for spaces over domains carry over to the corresponding
spaces over a boundary, with dimension n replaced by n − 1. Moreover, as in [86, Thm.
4.3] it can be seen that

C∞(∂Ω;E)
d
↪→ Bs

p,q(∂Ω;E), Hs
p(∂Ω;E),

for s > 0 and p, q ∈ [1,∞).

We consider local properties of the above function spaces on and near the boundary.
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Lemma A.4.1. Let s > 0 and p, q ∈ [1,∞), and let (U, φ) be a chart for ∂Ω, with
corresponding push forward operator Φ. Then Φ induces a continuous isomorphism

Bs
p,q(Ω ∩ U ;E)→ Bs

p,q(Rn
+ ∩ ϕ(U);E),

with inverse Φ−1. Moreover, for φ ∈ C∞c (U) the map u 7→ Φ(φu) is continuous

Bs
p,q(∂Ω;E)→ Bs

p,q(Rn−1 ∩ ϕ(U);E),

and for φ̃ ∈ C∞c (Rn−1 ∩ ϕ(U)) the map u 7→ Φ−1(φ̃u) is continuous

Bs
p,q(Rn−1 ∩ ϕ(U);E)→ Bs

p,q(∂Ω;E).

All these assertions remain true if one replaces the Bs
p,q-spaces by the Hs

p-spaces, s ≥ 0.

Proof. In the scalar-valued case and for p = q = 2, first assertion is shown in [86, Thm.
4.1]. The proof for W s

p -spaces with s ∈ N0 and p ∈ (1,∞) carries over to the vector-valued
case, from which the general case follows from interpolation. The remaining two assertions
follow immediately from the definitions of the spaces over ∂Ω.

We finish this section with a general interpolation result for the H- and the B-spaces.

Proposition A.4.2. Let E be of classHT , let Ω ⊂ Rn be a domain with smooth boundary,
and let p ∈ [1,∞), 0 ≤ s1 < s2, θ ∈ (0, 1) and s = (1− θ)s1 + θs2. Then it holds[

Hs1
p (Ω;E), Hs2

p (Ω;E)
]
θ

= Hs
p(Ω;E),

(
Hs1
p (Ω;E), Hs2

p (Ω;E)
)
θ,p

= Bs
p,p(Ω;E),(

Bs1
p,p(Ω;E), Bs2

p,p(Ω;E)
)
θ,p

= Bs
p,p(Ω;E),

[
Bs1
p,p(Ω;E), Bs2

p,p(Ω;E)
]
θ

= Bs
p,p(Ω;E),

where the case s1 = 0 is excluded for the B-spaces. These identities remain true if one
replaces Ω 6= Rn by its boundary ∂Ω.

Proof. (I) First let Ω = Rn. The complex interpolation result for the H-spaces is shown
in [91, Satz 3.21]. For the real interpolation of the H-spaces we consider the realization of
the shifted Laplacian A := 1−∆n on Lp(Rn;E) with domain D(A) = W 2

p (Rn;E), which
is invertible and admits a bounded H∞-calculus of H∞-angle equal to zero, due to [24,
Theorem 5.5]. It thus follows from complex interpolation of the H-spaces and (A.3.1) that
D(Aτ/2) = Hτ

p , τ ≥ 0. From the reiteration theorem we infer(
Hs1
p , H

s2
p

)
θ,p

=
(
D(As1/2), D(As2/2)

)
θ,p

=
(
Lp, D(A([s2]+1)/2)

)
s

[s2]+1
,p

= Bs
p,p,

as asserted. The real interpolation result for the B-spaces is shown in [75, Thm. 4.2]. Taking
powers of A as isomorphisms we obtain from [24, Prop. 2.11] and the interpolation results
that were already shown that the realization of Aτ/2 on Bτ1

p,p with domain Bτ1+τ
p,p admits

a bounded H∞-calculus of H∞-angle equal to zero as well, τ, τ1 > 0. Thus the complex
interpolation result follows from Yagi’s theorem (A.3.1).
(II) Now suppose that Ω is a domain with smooth boundary. For given k ∈ N there is
a continuous extension operator EΩ from W l

p(Ω;E) to W l
p(Rn;E) for all l ∈ {0, ..., k},

which may be extended to the H- and the B-scale by interpolation. It also follows from
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interpolation that the restriction of functions on Rn to Ω is continuous on both scales.
From the result on Rn we thus infer that EΩ is continuous[

Hs1
p (Ω;E), Hs2

p (Ω;E)
]
θ
→ Hs

p(Rn;E),

and combined with the restriction to Ω this yields that
[
Hs1
p (Ω;E), Hs2

p (Ω;E)
]
θ
embeds

continuously into Hs
p(Ω;E). Conversely, EΩ maps continuously

Hs
p(Ω;E)→

[
Hs1
p (Rn;E), Hs2

p (Rn;E)
]
θ
,

and the restriction maps the latter space into
[
Hs1
p (Ω;E), Hs2

p (Ω;E)
]
θ
. We thus obtain

the asserted complex interpolation result for the H-spaces. The remaining identities follow
from the same arguments.
(III)We finally consider the spaces over ∂Ω. Describe the boundary by a finite collection of
charts (Ui, ϕi) with corresponding push-forward operators Φi, and let {ψi} be a partition
of unity subordinate to

⋃
i Ui. Choose further φi ∈ C∞c (Rn−1 ∩ ϕ(Ui)) with φi ≡ 1 on

suppΦiψi ∩ Rn−1. We decompose the identity on Hτ
p (∂Ω;E), τ ≥ 0, according to id =∑

i Φ−1
i φi

(
Φiψi

)
. For each i, Lemma A.4.1 shows that the map u 7→ Φi

(
ψiu
)
is continuous

Hτ
p (∂Ω;E) → Hτ

p (Rn−1 ∩ ϕi(Ui);E) for all τ , and from interpolation and the result on
domains we obtain that it is continuous[

Hs1
p (∂Ω;E), Hs2

p (∂Ω;E)
]
θ
→ Hs

p(Rn−1 ∩ ϕi(Ui);E).

Lemma A.4.1 also yields that u 7→ Φ−1
i (φiu) is continuous Hs

p(Rn−1 ∩ ϕi(Ui);E) →
Hs
p(∂Ω;E), which implies that

[
Hs1
p (∂Ω;E), Hs2

p (∂Ω;E)
]
θ
↪→ Hs

p(∂Ω;E). The converse
embedding and the remaining identities are shown in the same way.

A.5 Differential Operators on a Boundary

Let Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω, and let E be a Banach space
of class HT . We call a linear map

C : C∞(∂Ω;E)→ L1(∂Ω;E)

a linear differential operator on ∂Ω of order k ∈ N0, if for all local coordinates g for ∂Ω
there are coefficients cgγ ∈ L1

(
Rn−1 ∩ ϕ(U);B(E)

)
, γ ∈ Nn−1

0 , |γ| ≤ k such that(
Cu
)
◦ g =

∑
|γ|≤k

cgγ(x)∇γn−1(u ◦ g)(x), x ∈ g−1(U ∩ ∂Ω), (A.5.1)

for all u ∈ C∞(∂Ω;E). Here ∇n−1 = (∂1, ..., ∂n−1) is the euclidian gradient on Rn−1.
Of course it is understood that at least one top order coefficient is nontrivial. The local
coefficients cgγ may depend on the chosen coordinates g. We do not assume that C has
global coefficients, in the sense that there are cγ ∈ L1

(
Γ;B(E)

)
with cgγ = cγ ◦ g.
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The regularity of the local coefficients determines whether C can be continuously extended
to other function spaces, or even to a whole scale. Suppose that for all coordinates g and
all φ ∈ C∞c (U) there is an estimate of the form

|(φ Cu) ◦ g|W s
p (Rn−1∩ϕ(U);E) . |u|W s+k

p (∂Ω;E), u ∈ C∞(∂Ω;E),

where s ≥ 0. Then by density of C∞(∂Ω;E) in W s+k
p (∂Ω;E) the operator C may be

uniquely extended to a bounded linear map

W s+k
p (∂Ω;E)→W s

p (∂Ω;E).

In local coordinates the extended operator is of the same form as in (A.5.1) for smooth
functions, as a density argument shows. This reasoning remains valid for the extension of
C to Besov and Bessel potential spaces.

A sufficient condition for the extendability of C toW s+k
p (∂Ω;E) is that for all l ∈ {0, ..., k}

and all coordinates g the coefficients cgγ with |γ| = l are pointwise multipliers from W s+l
p

to W s
p . In particular, if the local coordinates are smooth then C extends to the whole scale

of Slododetskii, Besov and Bessel potential spaces, respectively.

We consider examples for differential operators on boundaries. For x ∈ ∂Ω a scalar-valued
function u ∈ C∞(∂Ω) induces an element of the dual space of Tx∂Ω via the directional
derivative of tangential vectors at x ∈ ∂Ω. Considering Tx∂Ω as a Hilbert space with the
scalar product induced from Rn, the surface gradient ∇Γu(x) of u at x is then the unique
element of Tx∂Ω corresponding to this dual space element via the Riesz isomorphism. In
local coordinates g for ∂Ω, with fundamental form G = (gij) and inverse G−1 = (gij), the
components of the surface gradient with respect to the canonical basis {∂1g, ..., ∂n−1g} of
Tx∂Ω are given by the components of G−1∇n−1(u ◦ g)T , i.e.,

∇∂Ωu ◦ g =
n−1∑
i,j=1

gij∂j(u ◦ g)∂ig. (A.5.2)

Now let E be a Banach space. We define the surface gradient for a function u ∈ C∞(∂Ω;E)
in coordinates by the formula (A.5.2), which yields that

∇∂Ωu ∈ C∞(∂Ω;En).

The application of functionals and the Hahn-Banach theorem show that this definition is
independent of the chosen coordinates, since it is independent of them in the scalar valued
case. Moreover, for α∗ ∈ E∗ and u ∈ C∞(∂Ω;E) it holds

α∗
(
∇∂Ωu

)
= ∇∂Ω

(
α∗u

)
,

where on the left-hand side the functional is applied componentwise to elements of En. In
this sense the definition of the surface gradient for E-valued functions is consistent with
the definition in the scalar case, and because of this we still speak of a gradient although
a Riesz isomorphism is only indirectly involved.
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For a multiindex γ ∈ Nn−1
0 the operator∇γ∂Ω is defined by taking iteratively the components

of ∇∂Ωu. This yields a linear map from C∞(∂Ω;E) into itself, and is thus a boundary
differential operator in the above sense. In particular ∇γ∂Ω extends to a bounded linear
map

W s+|γ|
p (∂Ω;E)→W s

p (∂Ω;E), s ≥ 0, p ∈ [1,∞],

and analogously for the Besov and Bessel potential scale.

The surface divergence div∂Ωv of a tangential vector field v ∈ C∞(∂Ω,Rn), i.e., v(x) ∈
Tx∂Ω for x ∈ ∂Ω, is in coordinates g given by

div∂Ωv ◦ g =
1√
|G|

n−1∑
i=1

∂i
(√
|G| vi ◦ g

)
,

where vi are the components of v with respect to the basis {∂1g, ..., ∂n−1g} of Tx∂Ω. It can
be shown the div∂Ω is independent of the coordinates. The Laplace-Beltrami operator

∆∂Ω := div∂Ω∇∂Ω

is then for u ∈ C∞(∂Ω) in local coordinates of the form

(
∆∂Ωu

)
◦ g =

1√
|G|

n−1∑
i, j=1

∂i
(√
|G|gij∂j(u ◦ g)

)
.

The Laplace-Beltrami operator of a vector-valued function u ∈ C∞(∂Ω;E) is defined in
coordinates by the above formula. In the same way as for the surface gradient we see that
this definition is independent of the coordinates, and it holds

α∗
(
∆∂Ωu

)
= ∆∂Ω

(
α∗u

)
, α∗ ∈ E∗,

which shows consistency to the scalar-valued case as above.

With the Laplace-Beltrami operator and the surface gradient one can define the boundary
analogon to general ’elliptic differential operators’ acting on vector-valued functions. We
finally remark that the considerations of this section carry over to a general Riemannian
manifold.

A.6 Gagliardo-Nirenberg Inequalities

The first version of the Gagliardo-Nirenberg inequality for integer differentiabilities is taken
from [41, Thm. 10.1].

Proposition A.6.1. Let Ω ⊂ Rn be a bounded domain with smooth domain ∂Ω, and let
the integers k ∈ N0, m ∈ N, with k < m, and the numbers p, q, r ∈ [1,∞] satisfy

k − n

p
= θ

(
m− n

q

)
− (1− θ)n

r
,
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where θ ∈ [k/m, 1] if m− k − n/r /∈ N0, and θ = k/m if m− k − n/r ∈ N0. Then there is
a constant C > 0 such that

|u|Wk
p (Ω) ≤ C|u|θWm

q (Ω)|u|
1−θ
Lr(Ω) for all u ∈Wm

q (Ω) ∩ Lr(Ω).

In [2, Prop. 4.1] an partial extension to fractional order Slobodetskii spaces is given. Ob-
serve that for integer differentiabilities Proposition A.6.1 may lead to a stronger result, for
instance for p = q = 2, r = 1, k = 0, m = 1 and θ = n

n+2 .

Proposition A.6.2. Let Ω ⊂ Rn be a domain with compact smooth boundary ∂Ω, and
let the numbers θ ∈ [0, 1], s, s0, s1 ≥ 0 with s0 6= s1 and p, p1 ∈ (1,∞), p0 ∈ [1,∞), satisfy

1
p
≤ θ

p1
+

1− θ
p0

, (A.6.1)

and
s− n

p
< θ

(
s1 −

n

p1

)
+ (1− θ)

(
s0 −

n

p0

)
, (A.6.2)

with the following exceptions: it holds s0 = 0 if p0 = 1, it holds θ > 0 if s0 = 0, and it
holds θ < 1 if s1 = 0. Then there is a constant C > 0 such that

|u|W s
p (Ω) ≤ C|u|θW s1

p1
(Ω)
|u|1−θ

W
s0
p0

(Ω)
for all u ∈W s1

p1
(Ω) ∩W s0

p0
(Ω).

If Ω is bounded and s < θs1 + (1− θ)s0 then (A.6.1) is not necessary. Further, the equality
sign in (A.6.2) is permitted if p0 > 1 and either s0, s1 ∈ N or θs1 + (1− θ)s0 /∈ N.

By definition these inequalities carry over to the spaces over ∂Ω, with n replaced by n− 1,
respectively.
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