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Phylogenetic Reconstruction Methods

� Input: A set of � aligned sequences (genes,
proteins) from � species,

Goal: Reconstruct the tree which best explains
the evolutionary history of this gene/protein.

Tree reconstruction is still a challenge today.

Many concrete questions are still unresolved (e.g.
mammalian evolutionary tree).

Most realistic formulations of the problem, which
take errors into account, give rise to hard
computational problems.

Maximum Likelihood Analysis ofPhylogenetic Trees – p.2



Phylogenetic Reconstruction Methods

� Input: A set of � aligned sequences (genes,
proteins) from � species,

� Goal: Reconstruct the tree which best explains
the evolutionary history of this gene/protein.

Tree reconstruction is still a challenge today.

Many concrete questions are still unresolved (e.g.
mammalian evolutionary tree).

Most realistic formulations of the problem, which
take errors into account, give rise to hard
computational problems.

Maximum Likelihood Analysis ofPhylogenetic Trees – p.2



Phylogenetic Reconstruction Methods

� Input: A set of � aligned sequences (genes,
proteins) from � species,

� Goal: Reconstruct the tree which best explains
the evolutionary history of this gene/protein.

� Tree reconstruction is still a challenge today.

Many concrete questions are still unresolved (e.g.
mammalian evolutionary tree).

Most realistic formulations of the problem, which
take errors into account, give rise to hard
computational problems.

Maximum Likelihood Analysis ofPhylogenetic Trees – p.2



Phylogenetic Reconstruction Methods

� Input: A set of � aligned sequences (genes,
proteins) from � species,

� Goal: Reconstruct the tree which best explains
the evolutionary history of this gene/protein.

� Tree reconstruction is still a challenge today.

� Many concrete questions are still unresolved (e.g.
mammalian evolutionary tree).

Most realistic formulations of the problem, which
take errors into account, give rise to hard
computational problems.

Maximum Likelihood Analysis ofPhylogenetic Trees – p.2



Phylogenetic Reconstruction Methods

� Input: A set of � aligned sequences (genes,
proteins) from � species,

� Goal: Reconstruct the tree which best explains
the evolutionary history of this gene/protein.

� Tree reconstruction is still a challenge today.

� Many concrete questions are still unresolved (e.g.
mammalian evolutionary tree).

� Most realistic formulations of the problem, which
take errors into account, give rise to hard
computational problems.

Maximum Likelihood Analysis ofPhylogenetic Trees – p.2



Popular Reconstruction Methods

� Distance based methods:

UPGMA
Neighbor Joining.
Buneman trees.

Character Based Methods:
Maximum Parsimony.
Maximum Likelihood.

Additional Methods:
Quartets Based.
Disc Covering.
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Talk Outline

� Maximum likelihood (ML).

The likelihood surface.

Existence of multiple maxima.

Computation complexity: Maximum likelihood
vs. maximum parsimony (MP).

Ancestral maximum likelihood (AML) and its
computational complexity.
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Maximum Likelihood

� Input: A set of � observed sequences and an
underlying substitution model.

Desired Output: The weighted tree that
maximizes the likelihood of the data.

Likelihood of a data: The conditional probability
of producing the data, given the model
parameters.

Likelihood is a common optimization criteria in
numerous settings, including phylogenetic
(Felsenstein 1981).
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Neyman 2–State Substitution Model

species observed data

1 XXXXXXXYYY XXY XY YX XY X
2 XXXXXXXYYY YYX YX YX YX X
3 XXXXXXXYYY YYX XY XY XY X
4 XXXXXXXYYY YYX XY XY YX Y

� Just two characters states, X and Y.

Transitions between states are symmetric.

Equal rates across sites.

Every column induces a pattern.

Remark: A simple model, yet very powerful.
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Neyman 2–State Substitution Model

��� �

� �
� � ���

� � ��

1

2

3

4

For each edge � of a tree , the edge weight ��� repre-

sents the probability of having

different states at the two ends of �.
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A Very Simple Example
Four species ( � � �

), just one site ( � � �

)

species observed data

1 X
2 X
3 Y
4 Y

Analyze the natural tree

� �� � ��� � �

� � �� �
� � ��

��� ��

(1) X

(2) X

Y (3)

Y (4)

? ?
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Computing the Likelihood
Each unknown state (?) can assume one of two
possibilities, X or Y. For example, the assignment

�� �� �
�� ��

�� ��
(1) X

(2) X

Y (3)

Y (4)

X Y

contributes

� �
� ��

�
�

� �
� � �

�
� �� ��

� �
� ��

�
�

� �
� �� ��

�

.

The likelihood is the sum of this

three similar expressions � � �
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Computing the Likelihood

� Last expression has the form

internal assignments edges

�

e,a,t
where each �

e,a,t is either �

e or
�

� �

e,
depending on the assignment �, and input pattern

�

at two ends of the edge.

When the data has more then one column, we
multiply the expressions to get the likelihood of
the data, given the model parameters,

data tree & edge weights :

columns internal assignments edges

e,a,t
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Three Likelihood Versions

� Big Likelihood: Given the sequence data, find a
tree and edge weights that maximize

� �

data

�

tree & edge weights

�

.

Small Likelihood: Given observed data & a tree,
but not the edge weights, find the edge weights
that maximize the likelihood.

Tiny Likelihood: Given observed data & a tree &
edge weights, find the likelihood.

Tiny likelihood can be efficiently computed using
dynamic programming (Felsenstein, 1981).
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Hill Climbing and Small Likelihood

� Typical approach to small likelihood, used in
practice:

Start at some initial point with edge weights .

Apply hill climbing on the likelihood function to
reach a maximum.
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The Likelihood Surface

� For hill climbing to be guaranteed to find the
maximum, there must be a single local and
global maximum in the parameter space.

Fukami and Tateno (89), Tillier (94): For any
tree, the ML point will be unique.

Steel (94): Proofs are erroneous - A simple but
pathological counter example (multiple maxima
on the wrong tree).

( –present): Hill climbing techniques still used.
Steel’s counter example is considered too
“biologically unrealistic” to warrant concern.
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The Likelihood Surface (cont.)

� Rogers and Swofford (99): Simulation Study

Data is simulated on a tree.
Multiple optima are rare...
...especially on the correct tree.

Goal here: Investigate the problem analytically
(joint work with Hendy, Holland, Penny).
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Maximizing Likelihood on Trees
Tools used

� Hadamard conjugation (Hendy and Penny 93).

Splits and sequence spectra (change of variables)

Constrained optimization.

Systems of polynomial equations.

Analytical solution: very hard in general, even
for four taxa.

Employing computer algebra and algebraic
geometry tools.
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Example: Conservative Data,
Two Very Different ML Trees

species observed data

1 XXXXXXXYYY XXY XY YX XY X
2 XXXXXXXYYY YYX YX YX YX X
3 XXXXXXXYYY YYX XY XY XY X
4 XXXXXXXYYY YYX XY XY YX Y
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�

�

�

�

�

�

�

�

��
�

�
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Molecular Clock Model

� Phylogenetic trees under a molecular clock (MC):

Rooted trees.
Equal distance from root to all leaves.

MC-triplet

one rooted topology two rooted topologies

4 taxa3 taxa

MC-combMC-fork
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Molecular Clock Model

� Phylogenetic trees under a molecular clock (MC):
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Negative Examples:
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MC Trees, 4 Taxa

2 3 44 2131

MC-fork MC-comb

� Fork: Closed form ML solution.

Comb: Analytical ML solution (root of 9-th
degree poly).

In both cases, ML solution is unique.

Attaining solutions requires fairly heavy math
and computer algebra tools.

Joint work with Snir and Khetan.
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Small Likelihood & Multiple Maxima

� Small Likelihood (reminder): Given observed
data & a tree, but not the edge weights, find the
edge weights that maximize the likelihood.

Multiple ML points for general case imply small
likelihood cannot be solved by hill climbing.

Not clear if small likelihood has efficient (worst
case) solutions.
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Maximum Parsimony (MP)

� Big Parsimony: Given the sequence data, find a
tree and assignment of sequences to internal
nodes that minimizes the number of changes
across all edges.

Small Parsimony: Given the sequence data and a
tree, find internal assignment(s) that minimizes
total number of changes.

MP considered by practitioners easier than ML.
Indeed small parsimony has efficient algorithms
(Fitch 1971, Sankoff and Cedergren 1983).
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Complexity: MP vs. ML

� Small parsimony is in P.

Small likelihood – unknown.

Big parsimony is NP hard (Day, Johnson and
Sankoff, 1986).

Big likelihood – unknown. Given the importance
of ML, it would be nice to know more about its
complexity than just “seems harder than MP”.
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Ancestral Max. Likelihood (AML)

� A tree reconstruction method that is “in between”
ML and MP.

The goal is to simultaneously find edge weights
and assignment of sequences to internal nodes so
that the likelihood of the data, given the tree
parameters, is maximized.

AML is widely used in evolutionary studies.

Also termed joint reconstruction of ancestral
sequences.

AML computes the likelihood contribution
resulting from best assignment to internal nodes,
while “regular ML” sums up over all
assignments.
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Two AML Versions

� Big AML: Given the sequence data, find a tree,
assignment to internal nodes, and edge weights
that maximize the likelihood of the data.

Small AML: Given observed data, a tree and
edge weights, but not the internal assignment,
find the assignment that maximize the likelihood.

PPSG 2000: A poly time, dynamic programming
algorithm for small AML.

ACHLPW 2003: Big AML is NP-hard.
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Useful AML Observation

� Given sequence data, a tree, and assignment to
internal nodes.

The edge weights that maximize the likelihood of
the data equal .

Where equals the number of changes accross
edge , and is the common sequence length.
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AML, Reformulated
Previous observation implies

� Input: A set

�

of � binary sequences, each of
length

Goal: Find a tree with leaves, an assignment
of edge probabilities, and a

labelling of the vertices such
that
1. The labels of the leaves are exactly the

sequences from .
2. the sum of all “edge entropies”

is minimized.
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AML vs. MP
Optimization criteria

� Input: A set

�

of � binary sequences, each of
length

�

.

AML: Minimize the sum of all “edge entropies”
.

MP: Minimize the sum of all “edge differences”
.

Can think of the two problems as attempting to
minimize different edge weights (functions of

).
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NP hardness of AML: Ideas

� MP was shown NP-hard by Day, Johnson,
Sankoff using reduction from vertex cover (VC).

Analogy of AML and MP optimization criteria
suggests using similar approach.

Reduction from VC indeed identical.

Proof substantially more involved as entropy
is not as “well behaved” as plain edge

differences .
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Conclusion and Open Problems

� Analytic solutions to additional ML problems
with few taxa may be feasible, and may reveal
additional properties of likelihood surface (e.g.
number of local maxima).

Multiple ML points for MC trees with more than
4 taxa?

Hardness proof for big AML as a stepping stone
for big ML?

Is small ML in poly-time?

Thank you!
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