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Economic Production Quantity EPQ in its classical version does not include a scenario of 

imperfect quality items. However, many researchers have considered this situation. We 

consider a manufacturing process that generates non-conforming items until proper 

adjustment of the process is reached. The time to perform the adjustment is treated as a 

fixed value and a random variable. Items produced after the adjustment period is always 

conforming and the demand rate for the produced items is constant. The process stops 

when the production of conforming items is sufficient to cover the demand, and then the 

cycle is repeated uninterrupted. Other considerations such as maximum allowable 

shortage, inspection errors, defective items processing and Taguchi’s quality loss 

function approach are incorporated as extensions. We determined the optimal production 

quantity and maximum allowable shortage that result in minimum expected total cost. 

Data example and sensitivity analysis are provided for illustration and is expected to 

provide more insights in managing this important problem. 

Keywords: Economic Production Quantity EPQ, adjustment period, non-conforming 

items, Taguchi’s quality loss function, inspection errors. 
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 ملخص الرسالة
 
 

 إسماعيل إبراهيم عباس المعراج :الاسم الكامل
 

بعض  –نموذج الكمية الاقتصادية للإنتاج المتضمن للإنتاج المعيوب خلال ضبط عملية التصنيع  :عنوان الرسالة
 الاعتبارات.

 

 هندسة نظم صناعية التخصص:
 

 3102مايو  :تاريخ الدرجة العلمية

 

للإنتاج في صيغتها التقليدية لسيناريو الإنتاج المعيوب. بيد أن الكثير من  الاقتصاديةلا تتضمن الكمية 

في أبحاثهم مؤخراً. أطروحتنا تدور حول عملية التصنيع التي تشتمل  الاعتبارالباحثين قد أدخلوا هذا 

ب على إنتاج معيوب، وبعد أن يتم ضبط عملية التصنيع يصبح الإنتاج بالجودة المطلوبة. الوقت المطلو

لضبط عملية التصنيع عومل على أنه إما قيمة ثابتة أو متغير عشوائي، كما أن معدل الطلب يكون ثابتاً. 

وعندما يكون الإنتاج ذات الجودة المطلوبة كافياً لتغطية الطلب، يتوقف الإنتاج. وبذلك تنتهي دورة 

في أطروحتنا كذلك بعض  إنتاجية كاملة وبعدها تتكرر دورات إنتاجية أخرى بنفس الأسلوب. ونناقش

الأخرى ككمية الإنتاج العليا غير المستوفاة للطلب، أخطاء الفحص، عملية التحسين للإنتاج  الاعتبارات

المعيوب و دالة تاجوشي للجودة. ومن خلال النماذج الرياضية التي قمنا بتطويرها، أوجدنا الكمية المثالية 

اة للطلب وذلك بأقل التكاليف المتوقعة. كما ناقشنا في أطروحتنا للإنتاج وكمية الإنتاج العليا غير المستوف

 .أمثلة وتحليلات رياضية لتوضيح فكرتنا والتي نأمل أن تفتح آفاقاً جديدةً للباحثين في المستقبل
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1 CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW  

1.1 Literature Review 

We have divided this review into three areas: economic production quantity model with 

imperfect quality items and inspection errors, optimum economic production quantity 

model and shortage, and optimum process parameters and economic production quantity 

model with quality loss function.  

1.1.1 Economic production quantity model with imperfect quality items and 

inspection errors: 

The economic order quantity EOQ model of Harris [1] is the foundation of modern-day 

inventory models. Many recent research papers have integrated areas of quality control, 

production systems, and process targeting together. This is because, today, a successful 

business needs to produce the proper quantity with high quality at a reasonable cost. 

Economic Production Quantity EPQ and EOQ models have been extended by introducing 

the assumption of imperfect quality items and inspection errors.  Two types of errors are 

committed in the inspection process. A Type I error  is committed when a conforming 

item is classified as non-conforming and a Type II error  is committed when a non-



2 

 

conforming item is classified as conforming. Inspection errors are traced back to 1952 

when Bennett and Jacobson studied their influences on quality control systems.  

Study of EOQ for items with imperfect quality was conducted by Salameh and Jaber [2]. 

Papachristos and Konstantaras [3] extended their work by assuming that imperfect items 

are withdrawn from the end of the planning horizon. Liao [4] considered imperfect 

production processes that require production correction and maintenance in his research. 

The production process is performed both under a Type I state (out-of-control state) and a 

Type II state (in-control state). Gary and Gong [5] studied the impact of random machine 

breakdowns on the EPQ model for a product subject to exponential decay and under a 

non-resumption inventory control policy. Darwish [6] generalized the EPQ model by 

considering a relationship between the setup cost and the production run length and their 

relationship to process deterioration, and learning and forgetting effects. Chakraborty and 

Chaudhuri [7] proposed production lot sizing with process deterioration and machine 

breakdown. They presented a generalized economic manufacturing quantity model for an 

unreliable production system in which the production facility may shift from an ‘in-

control’ state to an ‘out-of-control’ state at any random time and may ultimately break 

down. Seung et al. [8] extended the EPQ model by considering imperfect-quality items, 

two-way imperfect inspection, and sales return.  Chung et al. [9] presented a two-

warehouse inventory model with imperfect quality production processes. Leopoldo et al. 

[10] focused on the EPQ model with the rework process at a single-stage manufacturing 

system with planned backorders. Wen and Hog [11] investigated an EOQ inventory 

model for imperfect items under a one-time-only discount, where the defectives can be 
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screened out by a 100% screening process and then sold in a single batch by the end of 

screening. 

Liao et al. [12]  integrated maintenance and production programs with the EPQ model for 

an imperfect process involving a deteriorating production system with an increasing 

hazard rate, and imperfect repair and rework upon failure (out of control state). Yuan et 

al. [13] worked on optimization of the finite production rate model with processing the 

defective items, rework and stochastic machine breakdown. Lin et al. [14] studied the 

impact of inspection errors, imperfect maintenance, and minimal repairs on an imperfect 

production system.  Khan et al. [15] extended the work of Salameh and Jaber [2] by 

incorporating inspection errors. Sana [16] developed a production-inventory model of 

imperfect quality products in a three-layer supply chain. Wang et al. [17] investigated 

integrating the acquisition of input materials, material inspection, and production 

planning, where Type I and Type II inspection errors are allowed, and the unit acquisition 

cost is dependent on the average quality level. Widyadana and Wee [18] considered a 

production-inventory model with deteriorating items with random machine breakdown 

and stochastic repair time. In the same area, Gwo [19] studied an optimum policy for a 

production system with major repair and preventive maintenance. Liao and Sheu [20] 

presented an EPQ model for a randomly failing production process with minimal repair 

and imperfect maintenance. Liu and Zheng [21] introduced fuzzy economic order 

quantity model with imperfect items, shortages, and inspection errors. Tolgari et al. [22] 

studied an inventory model with imperfect items and inspection error under inflationary 

conditions. Seung et al. [23] investigated both internal and external effects of defective 
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production and delivery from imperfect production and inspection processes in a stable 

production and inventory system, and subsequent defective returns and disposing.  

1.1.2 Optimum economic production quantity model and shortage: 

The assumption of shortage allowance and backordering make EPQ models more 

realistic and hence more practical. Wee et al. [24] developed an inventory model for 

items with imperfect quality and shortage backordering. Later Cheng and Chih [25] 

investigated an imperfect production system with allowable shortages for products sold 

with free minimal repair warranty. They sought to minimize the total cost per item 

through optimal determination of the production run length and the time length when 

backorder is replenished.  Eroglu and Ozdemir [26] proposed an EOQ model with 

defective items and shortages. To deal with the uncertainties and randomness of defective 

percentage and shortages occurring in real-life situations, the order inventory model with 

a mixture of shortages and imperfect items was presented and investigated in the fuzzy 

environment by Li and Zhang [27]. Jaber and El Saadany [28] discussed the production, 

remanufacture, and waste disposal model with lost sales. 
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1.1.3 Optimum process parameters and economic production quantity 

model with quality loss function: 

Economic selection of process parameters has been an important topic in modern 

statistical process control. The optimal mean setting has a significant impact on 

production, the expected total profit/cost, defective fraction, and inspection/reprocessing 

cost. However, few papers have discussed the incorporation of the Taguchi’s quality loss 

function [29] into the EPQ model. Tsou [30] proposed the use of the EOQ model with 

Taguchi’s cost of poor quality. His model considered a situation where the process 

parameters are known. Chen and Lai [31] discussed EMQ, optimum process mean, and 

economic specification limits setting under a rectifying inspection plan model. Later 

Chen and Khoo [32] extended the work of Chen and Lai by considering a serial 

production system. Wang and Yeh [33] studied utilizing an approximate solution to 

obtain the optimal solution for a production and inspection model. Jeang [34] developed 

the simultaneous determination of production lot size and process parameters under 

process deterioration and process breakdown.  

 

1.2 The General View of the Model 

1.2.1 Machine adjustment period: 

One essential step that must be taken before or while running a production process is to 

ensure that all machines, equipment and tools used are properly adjusted. As it is 

common that laborers and technicians do not know, in advance, how much time the 
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machine adjustment takes, the machine adjustment period is a random variable. In some 

chemical processes, the chemical composition is properly adjusted during the machine 

adjustment period. . In practice there are examples where machines, equipment, and tools 

can be adjusted while the production is running such as: 

- Manufacturing or repairing parts and items of equipment by using a variety of 

machine tools and performing the following processes; the initial planning of the 

work, selecting the material, laying out the work to be machined, determining the 

machines to be used and proper machining sequences, setting up the work on the 

machine, performing necessary machining operations, and performing precision 

handwork to fit, finish, and assemble machined parts and equipment, Fig. 1.1 and 

1.2.  
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Figure 1.1: A Kurt Vise is used as an adjustment tool in Milling Techniques 
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Figure 1.2: A fly cutter and an off-the-shelf brazed carbide lathe tool which is used in the surface finish 
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          Figure 1.3: An electric arc furnace and the machines used in the steel making process. 
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-  Steel production provides an example of adjusting the chemical composition by 

adjusting furnace and machine parameters. In steel production iron is smelted from its ore 

which contains some carbon. To produce the desirable type of steel, iron must be melted 

and reprocessed by adjusting the furnace and machine parameters to change the carbon 

content to the desired amount, at which point other elements can be added, Fig. 1.3.  

1.2.2 General model description: 

In this thesis we consider an inventory system with a constant demand rate D. In 

traditional EPQ models it is assumed that items produced are of perfect quality. However, 

product quality in this model is not always perfect and is usually a function of the 

production process.  The demand of the produced item is continuous and constant and all 

demands must be met (production rate > demand rate). Also, the production rate is finite 

at a fixed rate.  

The behavior of the inventory level in our model is illustrated in Fig 1.4. When 

production starts, the inventory level will increase at a rate 𝑃(1 − 𝑑) − 𝐷. Within the 

screening/adjustment time 𝑡, the lot is inspected and the machines are adjusted. A product 

which is outside the specification limits will be detected and processing the defective 

items will be stopped. Then, production continues at a rate 𝑃 − 𝐷. After the production 

period ends, the inventory level decreases at a rate 𝐷 and this is one complete cycle of 

length 𝑇. 

Several extensions to the existing models have been proposed in this thesis. They are 

classified into different models in which each model takes some considerations into 

account (Table 1.1). 
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Figure 1.4: The inventory level during a production cycle. 
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Table 1.1: The models discussed in this thesis. 

Chapter 

# 

The Adjustment 

Machine Period  

Decision 

Variable(s) 
Cases  

2 Deterministic  𝑄 
Two cases of t are treated  

: 𝑡 <  𝑇𝑃 and 𝑡 >  𝑇𝑃 

  Stochastic 
 

𝑡 has a probability  

density function. 

3 Deterministic  𝑄 𝑎𝑛𝑑 𝑆𝑚𝑎𝑥  

Three cases of t are treated :  

𝑡 < 𝑇0, 𝑇0 < 𝑡 < 𝑇𝑃  
𝑎𝑛𝑑 𝑡 > 𝑇𝑃 

  Stochastic 
 

𝑡 has a probability  

density function. 

4 Deterministic 𝑄 𝑎𝑛𝑑 𝑆𝑚𝑎𝑥  

Taguchi’s quality loss function is 

introduced.  

The product’s quality distribution 

is normal. 

  
  

Two types of errors are 

committed in the inspection 

process.  

 Reworked items are perfect.  

    5 Deterministic 𝑄 𝑎𝑛𝑑 𝑆𝑚𝑎𝑥     

  Stochastic 
 

The two types of errors are 

random. 

Further processed items are sold 

at a reduced price at a secondary 

market. 
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2 CHAPTER 2 

3 THE OPTIMAL LOT SIZE UNDER MACHINE 

ADJUSTMENT PERIOD 

 

In this chapter we treat the adjusting machine period, 𝑡, as a deterministic value and a 

random variable and the order quantity size, 𝑄, as the decision variable. Accordingly , 

two cases of 𝑡 are treated in this model. They are cases where the adjusting machine 

period ends before the completion of the production period,  𝑡 <  𝑇𝑃 , (Fig. 2.1), and it 

takes longer than the production period,  𝑡 >  𝑇𝑃 , (Fig. 2.2). 

Fig. 2.1 shows the situation where the production is running and machines are being 

adjusted, and some defective items are produced. When the adjustment reaches the 

desired level, the production becomes always perfect and that leads to the increase of the 

slope from 𝑃(1 − 𝑑) − 𝐷 to 𝑃 − 𝐷. Unlike Fig. 2.1, Fig. 2.2 shows no change in the slope 

during the production period and that is because machine adjustment takes place during 

the entire production period. 
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Figure 2.1: The relationship between the inventory level and time when < 𝑻𝑷 . 
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Figure 2.2: The relationship between the inventory level and time when 𝒕 ≥ 𝑻𝑷. 
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2.1 The case where t is deterministic: 

When 𝑡 is a fixed value, the total costs are separately set for the two cases, namely, 𝑡 <

𝑇𝑃, and 𝑡 ≥ 𝑇𝑃. 

2.1.1 The case of 𝒕 <  𝑻𝑷 

In this case, the total inventory, I, during one cycle can be computed as the area under the 

graph in (Fig. 2.1), and is given by 

𝐼 = 𝑡. 𝑍/2 + 𝑇1. (𝑍 + 𝐼𝑚𝑎𝑥)/2 + 𝑇𝐷. 𝐼𝑚𝑎𝑥/2 = [𝑇𝑝. 𝑍 + (𝑇 − 𝑡)𝐼𝑚𝑎𝑥]/2  

where, the cycle length T = 𝑇𝑃 + TD, the production period Tp = 
𝑄

𝑃
, the demand during a 

production cycle, T.D = Q - t.P.d, Q=P.TP, Z is the inventory level at the end of the 

adjustment period and is given by; 𝑍 = 𝑡. (𝑃 × (1 − 𝑑) − 𝐷) and 𝐼𝑚𝑎𝑥 is the maximum 

inventory during a cycle and is given by; 

𝐼𝑚𝑎𝑥 =  𝑄 − 𝑡. 𝑃. 𝑑 − 𝐷 ∗ 𝑇𝑝 

And thus: 

                                    𝐼(̅𝑄|𝑡 < 𝑇𝑃) =
𝑃(𝑄−𝑑𝑃𝑡)2+𝐷 (−𝑄2+𝑑𝑃2𝑡2)

2𝑃(𝑄−𝑑𝑃𝑡)
                 (2.1) 

The cost per cycle is the sum of setup cost, 𝐴, the manufacturing cost, 𝐶𝑄, the process 

adjustment cost per cycle and the screening cost  r.t.P.d+Ad.t , and the holding cost, ℎ: 

                                         𝐴 + 𝐶𝑄 + 𝑟 𝑡 𝑃 + 𝐴𝑑 . 𝑡 + ℎ 𝑇 𝐼(̅𝑄/𝑡)                   (2.2) 

The total annual cost, for a given adjustment time, is obtained by multiplying Eq. 2.2 by 

the number of cycles per year 1/ T=D/(Q-t.P.d),  
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       𝑇𝐶𝑌(𝑄|𝑡 < 𝑇𝑃) = 

                        
𝐴𝐷

𝑄−𝑡 .𝑃 .𝑑
+

𝐶 𝑄 𝐷

𝑄−𝑡.𝑃.𝑑
+
𝑟 𝑡 𝑃 𝐷 𝑑

𝑄−𝑡.𝑃.𝑑
 +

𝐴𝑑 𝑡 𝐷

𝑄−𝑡.𝑃 .𝑑
+ ℎ(

𝑃(𝑄−𝑑𝑃𝑡)2+𝐷 (−𝑄2+𝑑𝑃2𝑡2)

2𝑃(𝑄−𝑑𝑃𝑡)
)       (2.3) 

where, 𝑡 is the process adjustment period and is assumed to be constant and 𝑃(1 − 𝑑) >

𝐷.  The convexity of the total cost per year can be demonstrated by finding the second 

derivative of 𝑇𝐶𝑌(𝑄): 

𝑑2𝑇𝐶𝑌(𝑄)

𝑑𝑄2
=
𝐷(2 𝐴 + 𝑡 (2 𝐹 + 𝑑 𝑃(2 𝑟 + 2 𝐶 + ℎ 𝑡 − 𝑑 ℎ 𝑡)))

(𝑄 − 𝑑 𝑃 𝑡)3
  > 0 

Then the production quantity, Q is obtained by setting  𝑇𝐶𝑌(𝑄) to zero and solving for 

Q. Thus, 

       𝑄∗ = 𝑑. 𝑃. 𝑡 + √−𝐷𝑃(−2𝐴 + 𝑡(−2𝐴𝑑  – 𝑑 𝑃(2 𝑟 + 𝑑(2𝐶 + ℎ 𝑡 − 𝑑 ℎ 𝑡))))      (2.4) 

If 𝑡 = 0, the formula for 𝑄∗ is reduced to  

                                                             𝑄∗ = √
2 𝐴 𝐷

ℎ(1−
𝐷

𝑃
)
                               (2.5) 

which is the traditional EPQ formula with a finite production rate. 

2.1.2 The case of 𝒕 ≥ 𝑻𝑷 

If we follow the same procedure used in the first case, we can compute the average 

inventory level as the area under the graph in Fig. 2.2 and it is given by: 

                                  𝐼(̅𝑄|𝑡 ≥ 𝑇𝑃) =
(−𝐷+(1−𝑑)𝑃)𝑄

2 𝑃
+
(−𝐷+(1−𝑑)𝑃)2𝑄2

2 𝐷 𝑃2
                            (2.6) 
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The total annual cost, for a given adjustment time, is obtained by multiplying Eq. 2.2 by 

the number of cycles per year 
𝟏

𝑻
= 

𝑫

𝑸(𝟏−𝒅)
, 

𝑇𝐶𝑌(𝑄|𝑡 ≥ 𝑇𝑃) = 

                  
𝐴𝐷

𝑄(1−𝑑)
+

𝐶 𝐷

1−𝑑
+
𝑟  𝐷 𝑑

1−𝑑
 +

𝐴𝑑  𝐷

𝑃(1−𝑑)
+ ℎ (

(−𝐷+(1−𝑑)𝑃)𝑄

2 𝑃
+
(−𝐷+(1−𝑑)𝑃)2𝑄2

2 𝐷 𝑃2
)         (2.7) 

Eq. 2.7 is a convex function, but it has no closed form solution for the optimal 𝑄. It is 

useful to know in advance which case applies, which can be achieved by dividing both 

sides of Eq. 2.4 by 𝑃; 

                         𝑇𝑃 =
𝑑.𝑃.𝑡+ √−𝐷𝑃(−2𝐴+𝑡(−2𝐴𝑑 –𝑑 𝑃(2 𝑟+𝑑(2𝐶+ℎ 𝑡−𝑑 ℎ 𝑡)))) 

𝑃
                  (2.8) 

For feasibility purposes, 𝑸 > 𝒕 . 𝑷 . 𝒅. 

 

2.2 The case where t is a random variable: 

It may happen that the machine adjustment period is a random variable where it finishes 

before the end of production period or takes a longer time than usual. In this model, t is 

treated as a random variable and has some probability density function 𝑓(𝑡).   

In such a situation the total costs must be calculated over the total cycles based on 

renewal theory; 

                                            
𝐸[𝑇𝐶(𝑄)]

𝐸[𝑇(𝑄)]
=  

𝑇𝐶1(𝑄)+𝑇𝐶2(𝑄)+ …+𝑇𝐶𝑛(𝑄)

𝑇1(𝑄)+𝑇2(𝑄)+⋯+𝑇𝑛(𝑄)
          (2.9) 
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According to renewal theory the formulation of this model is obtained as follows: 

𝐸[𝑇𝐶(𝑄|𝑡)]

𝐸[𝑇(𝑄|𝑡)]
= (∫ [𝐴 + 𝐶 𝑄 + 𝑟 𝑡 𝑃  𝑑 + 𝐴𝑑  𝑡 + ℎ

𝑃(𝑄−𝑑𝑃𝑡)2+𝐷(−𝑄2+𝑑𝑃2𝑡2)

2𝐷 𝑃
]  𝑓(𝑡)𝑑𝑡

𝑄

𝑃
0

+

 ∫ [𝐴 + 𝐶 𝑄 + 𝑟 𝑄  𝑑 + 𝐴𝑑  
𝑄

𝑃
+

∞
𝑄

𝑃

ℎ (−
(−1+𝑑)𝑄2((−1+𝑑)𝑃+𝐷)(𝑃((−1+𝑑)𝑄−𝐷)+𝑄𝐷)

2𝑃2𝐷2
)]  𝑓(𝑡)𝑑𝑡  ) ÷ (∫ [

𝑄−𝑃 𝑡 𝑑

𝐷

𝑄

𝑃
0

] 𝑓(𝑡)𝑑𝑡 +

 
𝑄(1−𝑑)

𝐷
∫ 𝑓(𝑡)𝑑𝑡
∞
𝑄

𝑃

)                                                                                                   (2.10) 

where the limits of the first and second integrals indicate the scenarios of, 𝑡 < 𝑇𝑃, and 

,𝑡 ≥ 𝑇𝑃, respectively. 

 

2.3 Numerical Examples: 

2.3.1 Example I: 

Consider the following data: 

𝑃  =  25,000 units per year 

𝑟   = $1 per unit 

𝐷  = 20,000 units per year 

ℎ  = $ 4 per unit/year 

𝐶  = $ 5 per unit 

𝑡  = 1 hour 

𝐴𝑑 = $ 50 per hour 

𝐴   = $ 100 per order 

𝑑   = 0.0455 

By using Eq. 2.8 to determine which case is applicable, we get: 

𝑇𝑃 = 0.41 < 𝑡 

Therefore the case, 𝑡 ≥ 𝑇𝑃 applies.  
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Then the total annual cost is given by Eq. 2.7 as follows: 

𝑇𝐶𝑌(𝑄) = 105,762.18 +
2,095,337.87

𝑄
+ 4(0.08𝑄 + 5.96 × 10−7𝑄2) 

This function is convex as Fig. 2.3 shows and its minimum is attained at  𝑄∗ =  2,554.13 

units and 𝑇𝐶𝑌(2,554.13) = $107,387. Note that 𝑇𝑃 = 𝑄/𝑃 = 0.102 < 1 = 𝑡. Hence 

the assumption is valid. 

Table 2.1 shows the effect of 𝑡 on the optimal lot size. As the adjustment time increases, 

more defectives are generated and hence a larger lot size is needed. Once 𝑡 exceeds a 

certain value, 0.1779, the lot size becomes constant.  
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Figure 2.3: The convexity of 𝒕 ≥ 𝑻𝑷 for the data given in Example I. 
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Table 2.1: The effect of t on the optimal lot size. 

Adjustment Period t Lot Size Q* 

0.000 2236.1 

0.025 2638.2 

0.050 2994.2 

0.075 3318.2 

0.100 3618.2 

0.125 3899.4 

0.150 4165.4 

0.175 4418.8 

≥ 0.1779 4447.5 
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2.3.2 Example II: 

Suppose that the adjustment period is a uniform random variable where 𝑓(𝑡) =   1/8, 

0 ≤ 𝑡 ≤ 8. Substituting the data of Example I into Eq. 2.10 gives the following function 

shown also in Fig. 2.4: 

𝐸[𝑇𝐶(𝑄)]

𝐸[𝑇(𝑄)]
=
100 + 5.05𝑄 + 1.47 × 10−5𝑄2 + 1.24 × 10−10𝑄3 − 5.70 × 10−16𝑄4

4.77 × 10−5𝑄 + 5.69 × 10−12𝑄2
 

 

The optimal lot size is given byQ∗ = 2,612.37 and the corresponding cost is $107,349. 

Table 2.2 shows the effect of 𝑟 and 𝐴𝑑  on 𝑄∗.   

As 𝑟 is fixed and 𝐴𝑑 goes up, there is a slight increase in Q*, indicated by the results 

across the rows. Likewise, as the results in the columns indicate, when 𝐴𝑑 is fixed and 𝑟 

increases, 𝑄∗ increases at a constant rate as well. 
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Figure 2.4: The plot of calculations of Example II where t is a random variable. 
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Table 2.2: The effect of 𝒓 and 𝑨𝒅 on 𝑸∗ 

 
Ad 

 r  
          

30.00  

          

40.00  

          

50.00  

           

60.00  

           

70.00  

           

80.00  

       

0.50  

 

2,607.00  

 

2,607.09  

 

2,607.19  

  

2,607.28  

  

2,607.37  

  

2,607.46  

       

1.00  

 

2,612.19  

 

2,612.28  

 

2,612.37  

  

2,612.46  

  

2,612.55  

  

2,612.64  

       

1.50  

 

2,617.40  

 

2,617.49  

 

2,617.58  

  

2,617.68  

  

2,617.77  

  

2,617.86  

       

2.00  

 

2,622.64  

 

2,622.74  

 

2,622.83  

  

2,622.92  

  

2,623.01  

  

2,623.11  

       

2.50  

 

2,627.92  

 

2,628.01  

 

2,628.11  

  

2,628.20  

  

2,628.29  

  

2,628.38  

       

3.00  

 

2,633.23  

 

2,633.32  

 

2,633.41  

  

2,633.51  

  

2,633.60  

  

2,633.69  
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4 CHAPTER 3 

5 THE OPTIMAL LOT SIZE UNDER MAXIMUM 

SHORTAGE ALLOWANCE 

 

In this chapter we extend the models in Chapter 2 by allowing for a shortage. A shortage 

cost is incurred if units of inventory are not available on demand. It includes the cost of 

lost sales, loss of goodwill, overtime payments, customer dissatisfaction, and special 

administrative efforts resulting from inability to meet the demand. There are two types of 

shortage costs: (1) one- time shortage cost per unit short, independent of the duration of 

the shortage, �̌�, and (2) shortage cost per unit short per unit time, �̂�. 

 There are three cases to be considered. The adjustment period can take place during the 

shortage period, can take place within the production period, or can  exceed the 

production period. We consider t as a fixed value (Section 3.1) and as a random variable 

(Section 3.2). 
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3.1 The case where 𝒕 is deterministic:  

In Section 3.1.1 we discuss the case of t < T0 where T0 is the period that starts with the 

resumption of the production cycle and ends when the shortage is zero as shown in 

Figure 3.1.  In Section 3.1.2 we discuss the case of T0 ≤ t < Tp where Tp  is the production 

period.  Finally, in Section 3.1.3, we disuses the case of t ≥ Tp. 

3.1.1 The case of 𝒕 < 𝑻𝟎 

In this case we assume that the adjustment and/or screening is completed before 

satisfying the shortage. So, during the interval 𝑇0  the shortage is initially satisfied at a 

rate 𝑃(1 − 𝑑) − 𝐷, and after 𝑡 it is satisfied at the rate  P – D, as shown in Fig. 3.1. 

The quantity produced in a production cycle, 𝑄, is used to replenish the shortage, 𝑆𝑚𝑎𝑥, 

build up inventory up to level Imax, and satisfy the demand during the production interval 

D Tp. In addition, some items are discarded, which is equal to 𝑡. 𝑃. 𝑑. Hence: 

                                         𝑄 =  𝑆𝑚𝑎𝑥 +  𝐼𝑚𝑎𝑥 +  𝐷 𝑇𝑃  +  𝑡. 𝑃. 𝑑                                  (3.1) 

The total inventory is the area above the horizontal axis in Figure 3.1 which is given by: 

                                                     𝐼 =  𝐼𝑚𝑎𝑥( 𝑇1  +  𝑇2)/2                                   (3.2) 

Note that T1 = Imax/(P – D), T2 = Imax/D and Tp = Q/P  Substituting T1 and T2 into (3.2) and 

Imax from (3.1) into (3.2) we get 

                                    𝐼(̅(𝑄, 𝑆max)|𝑡 ≤ 𝑇0) =  
(𝑃(−𝑄+𝑆𝑚𝑎𝑥)+𝑑 𝑃

2𝑡+𝑄𝐷)2

2𝑃(𝑄−𝑑 𝑃 𝑡)(𝑃−𝐷)
                        (3.3) 

                                            𝑇0 = 𝑇𝑃 − 𝑇1 =  
𝑄

𝑃
−
𝐼𝑚𝑎𝑥

𝑃−𝐷
= 

𝑆𝑚𝑎𝑥+𝑑 𝑃 𝑡

𝑃−𝐷
                       (3.4) 
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𝑇3 =
𝑆𝑚𝑎𝑥
𝐷

 

The average shortage �̅� over the cycle 𝑇 is the sum of the two areas, 𝑇0 and 𝑇3, divided 

by 𝑇: 

                                          �̅� =  
𝑃(𝑆𝑚𝑎𝑥

2 +2 𝑑 𝐷 𝑆𝑚𝑎𝑥 𝑡+𝑑 𝐷(𝐷+(−1+𝑑)𝑃) 𝑡
2)

2(𝑃−𝐷)(𝑄−𝑑 𝑃 𝑡)
                           (3.5) 

The average shortage cost during the cycle 𝑇 is: 

�̂� 𝑇 �̅� +  �̌� 𝑆𝑚𝑎𝑥 

Therefore, the total annual cost is given by: 

𝑇𝐶𝑌(𝑄, 𝑆𝑚𝑎𝑥|𝑡 ≤ 𝑇0) =  
𝐴𝐷

𝑄−𝑡 .𝑃 .𝑑
+

𝐶 𝑄 𝐷

𝑄−𝑡.𝑃.𝑑
+
𝑟 𝑡 𝑃 𝐷 𝑑

𝑄−𝑡.𝑃.𝑑
 +

𝐴𝑑 𝑡 𝐷

𝑄−𝑡.𝑃 .𝑑
+

ℎ (
(𝑃(−𝑄+𝑆)+𝑑𝑃2𝑡+𝑄𝑌)2

2𝑃(𝑄−𝑑𝑃𝑡)(𝑃−𝑌)
) + �̂�  (

𝑃(𝑆𝑚𝑎𝑥
2 +2 𝑑 𝐷 𝑆𝑚𝑎𝑥 𝑡+𝑑 𝐷(𝐷+(−1+𝑑)𝑃) 𝑡

2)

2(𝑃−𝐷)(𝑄−𝑑 𝑃 𝑡)
) + �̌�

𝑆𝑚𝑎𝑥 𝐷 

𝑄−𝑡.𝑃.𝑑
                             

                       (3.6) 
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Figure 3.1: The relationship between the inventory level and time when 𝒕 < 𝑻𝟎. 
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3.1.2 Numerical Example: 

Let us consider the following data:  

𝑡  =  0.15 hour 

𝑃  =  25,000 units per year 

𝑟   =  $1 per unit 

𝐷  =  23,000 units per year 

ℎ  =  $ 4 per unit/year 

𝐶  =  $ 5 per unit 

𝑡  =  0.15 hour 

𝐴𝑑 = $ 50 per hour 

𝐴   = $ 100 per order 

�̂� = $ 5/unit/year 

�̌� = $ 0.3 

𝑑 = 0.0455 

The optimal values of the order quantity and the maximum shortage permitted are𝑄∗= 

16,367.6 units and 𝑆𝑚𝑎𝑥
∗ = 357.585 units with minimum cost of $118,124.8. The plots of 

TCY versus Q at 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥
∗  and TCY versus 𝑆𝑚𝑎𝑥 at 𝑄 = 𝑄∗ are shown in Fig. 3.2 and 

3.3, respectively. 

Note that 0.15 = 𝑡 < 𝑇0 = 0.264, therefore this case applies. Table 3.1 and Fig. 3.4 show 

the effect of increasing 𝑡 on 𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌.  
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Figure 3.2: The behavior of Q as 𝑺𝒎𝒂𝒙
∗  is fixed for  t < T0 . 
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Figure 3.3: The behavior of 𝑺𝒎𝒂𝒙 as 𝑸∗ is fixed for  𝒕 < 𝑻𝟎 . 
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Table 3.1: The effect of increasing 𝒕 on 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 for  𝒕 < 𝑻𝟎 . 

𝑡 𝑄 𝑆𝑚𝑎𝑥 𝑇𝐶𝑌 

0 4,847.11 111.01 116,107.42 

0.05 10,382.7 253.48 117,081.03 

0.1 13,760.7 319.24 117,671.45 

0.15 16,367.62 357.58 118,124.8 

0.2 18,528.74 380.08 118,499 

0.25 20,384.53 391.71 118,818.69 

0.3 22,011.17 395.20 119,097.76 

0.4 24,748.8 383.846 119,344.42 
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It is obvious from Table 3.1 and Fig. 3.4 that as 𝑡 increases both 𝑄 and 𝑆𝑚𝑎𝑥 increase as 

well, and as a result, TCY goes up.  Indeed as t increases more units are discarded and 

hence Q should increase to compensate for these units. However, when 𝑡 > 0.3, 𝑆𝑚𝑎𝑥 

decreases. Fig. 3.5 shows the interaction of  𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌.  
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Figure 3.4: The behavior of  𝑸 and 𝑺𝒎𝒂𝒙 as t increases for case of 𝒕 < 𝑻𝟎 

 

 

 



36 

 

 

 

 

 

 

 

 

Figure 3.5: Three dimensional plot of 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 for 𝒕 < 𝑻𝑷 . 
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3.1.3 The case of 𝑻𝟎 ≤  𝑡 < 𝑻𝑷 

In this case 𝑡 extends beyond the shortage period but ends before end of production. 

Therefore 𝑡 exceeds 𝑇0 =
𝑆𝑚𝑎𝑥

𝑃(1−𝑑)−𝐷
 ,and the inventory increases at slope of 𝑃(1 − 𝑑) −

𝐷, then the slope changes to 𝑃 − 𝐷 until the end of production period, Fig. 3.6. 

The total inventory, I, during one cycle is given by the area under the graph above the 

horizontal axis and is given by 

𝐼 = 𝑇1.
𝑍

2
+ (𝑇𝑃 − 𝑡). (𝑍 + 𝐼𝑚𝑎𝑥)/2 + 𝑇𝐷. 𝐼𝑚𝑎𝑥/2 

Thus, the average inventory level is obtained as follows: 

𝐼(̅(𝑄, 𝑆max)|𝑇0 ≤  𝑡 < 𝑇𝑃) =

𝐷(−
(𝑆𝑚𝑎𝑥+𝑡((−1+𝑑)𝑃+𝐷))

2

(−1+𝑑)𝑃+𝐷
+
(𝑆𝑚𝑎𝑥+𝑑 𝑃𝑡+𝑄(−1+

𝐷
𝑃))

2

𝐷
+
(−𝑄+𝑃 𝑡)((−1+2 𝑑)𝑃2𝑡+𝑄 𝐷+𝑃(−𝑄+2 𝑆𝑚𝑎𝑥+𝑡 𝐷))

𝑃2
)

2(𝑄−𝑑 𝑃 𝑡)
         (3.7) 

The average shortage �̅� over the cycle 𝑇 is the sum of two areas of 𝑇0 and 𝑇2 divided by 

𝑇: 

                              �̅� =
1

𝑇
 
𝑆𝑚𝑎𝑥
2  𝑃 (1−𝑑)

2(𝑃(1−𝑑)−𝐷)𝐷
= 

𝑆𝑚𝑎𝑥
2  𝑃 (1−𝑑)

2 (𝑄−𝑡.𝑃.𝑑) (𝑃(1−𝑑)−𝐷)
                                (3.8) 
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Figure 3.6: The relationship between the inventory level and time when 𝑻𝟎 ≤  𝒕 < 𝑻𝑷. 
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Therefore, the total annual cost per cycle can be obtained as follows: 

𝑇𝐶𝑌(𝑄, 𝑆𝑚𝑎𝑥|𝑇0 ≤  𝑡 < 𝑇𝑃) =  
𝐴𝐷

𝑄−𝑡 .𝑃 .𝑑
+

𝐶 𝑄 𝐷

𝑄−𝑡.𝑃.𝑑
+
𝑟 𝑡 𝑃 𝐷 𝑑

𝑄−𝑡.𝑃.𝑑
 +

𝐴𝑑 𝑡 𝐷

𝑄−𝑡.𝑃 .𝑑
 +

ℎ 

𝐷

(

 
 
−
(𝑆𝑚𝑎𝑥+𝑡((−1+𝑑)𝑃+𝐷))

2

(−1+𝑑)𝑃+𝐷
+
(𝑆𝑚𝑎𝑥+𝑑 𝑃𝑡+𝑄(−1+

𝐷
𝑃))

2

𝐷
+
(−𝑄+𝑃 𝑡)((−1+2 𝑑)𝑃2𝑡+𝑄 𝐷+𝑃(−𝑄+2 𝑆𝑚𝑎𝑥+𝑡 𝐷))

𝑃2

)

 
 

2(𝑄−𝑑 𝑃 𝑡)
+

�̂� 
𝑆𝑚𝑎𝑥
2  𝑃 (1−𝑑)

2 (𝑄−𝑡.𝑃.𝑑) (𝑃(1−𝑑)−𝐷)
+ �̌�

𝑆𝑚𝑎𝑥 𝐷 

𝑄−𝑡.𝑃.𝑑
                                                                                  (3.9) 

3.1.4 Numerical Example 

Considering the data given in section 3.1.2 where 𝑡 = 3.5 hours, we find that the optimal 

values of order quantity and maximum shortage permitted are obtained at  𝑄∗= 99,531.95 

units and 𝑆𝑚𝑎𝑥
∗ = 1,507.24 units with a minimum cost of $ 121,295.57 .The plots of 𝑇𝐶𝑌 

versus 𝑄 at 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥
∗  and 𝑇𝐶𝑌 versus 𝑆𝑚𝑎𝑥 at 𝑄 = 𝑄∗ are shown in Fig. 3.7 and 3.8, 

respectively. Also, we see that the condition  𝑇0 <  𝑡 < 𝑇𝑃 is satisfied such that 1.75 <

3.5 < 3.98, and hence this case applies. Table 3.2 and Fig. 3.9 show the effect of 

increasing 𝑡 on 𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌. 

The second case shows that as 𝑡 increases, 𝑆𝑚𝑎𝑥 , 𝑄 and 𝑇𝐶𝑌. This can be justified from 

the first case.  Fig. 3.10 shows the interaction of  𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌. 
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Figure 3.7: The behavior of 𝑸 as 𝑺𝒎𝒂𝒙
∗  is fixed for 𝑻𝟎 ≤  𝒕 < 𝑻𝑷 . 
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Figure 3.8: The behavior of 𝑺𝒎𝒂𝒙 as 𝑸∗ is fixed for 𝑻𝟎 ≤  𝒕 < 𝑻𝑷 . 
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Table 3.2: Shows the effect of increasing 𝒕 on 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 for 𝑻𝟎 ≤  𝒕 < 𝑻𝑷 . 

𝑡 𝑄 𝑆𝑚𝑎𝑥 𝑇𝐶𝑌 

0.5 27,646.1 407.27 119,942.68 

1.25 48,040.15 721.18 121,800.64 

2 65,936.22 994.96 123,019.75 

2.75 82,950.68 1254.58 124,013.40 

3.5 99,531.95 1507.24 124,896.26 

4.25 115,864.26 1755.9 125,715.46 

5 132,039.14 2002.03 126,494.39 

5.75 148,107.73 2246.46 125,007.48 
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Figure 3.9: The behavior of  𝑸 and 𝑺𝒎𝒂𝒙 as t increases for case of 𝑻𝟎 ≤  𝒕 < 𝑻𝑷 . 
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Figure 3.10: Three dimensional plot of 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 for 𝑻𝟎 ≤  𝒕 < 𝑻𝑷 . 
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3.1.5 The case of 𝒕 ≥ 𝑻𝑷 

In this section we consider the case where 𝑡 is longer than the production period. 

Therefore, the inventory level keeps increasing at a rate of 𝑃(1 − 𝑑) − 𝐷 during the 

production period, as shown in Fig. 3.11.  

The total inventory, I, during one cycle can be computed as the area under the graph in 

Fig. 3.11 and is given by: 

                           𝐼(̅(𝑄, 𝑆max)|𝑡 ≥ 𝑇𝑃) = −
(𝑃((−1+𝑑)𝑄+𝑆𝑚𝑎𝑥)+𝑄 𝐷)

2

2 𝑃 𝑄 ((−1+𝑑)𝑃+𝐷)
                         (3.10) 

The shortage cost occurs over the time intervals, 𝑇0, and, 𝑇1, during the cycle 𝑇.  

𝑇0 =
𝑆𝑚𝑎𝑥

𝑃(1−𝑑)−𝐷
                      (Time to eliminate a backorder) 

𝑇1 =  
𝑆𝑚𝑎𝑥

𝐷
                           (Time to build a backorder of 𝑆𝑚𝑎𝑥 ) 

The average shortage, �̅�, over the cycle 𝑇 is the sum of two areas divided by 𝑇: 

                                     �̅� =
1

𝑇
 
𝑆𝑚𝑎𝑥
2  𝑃 (1−𝑑)

2(𝑃(1−𝑑)−𝐷)𝐷
=

𝑆𝑚𝑎𝑥
2  𝑃

2 𝑄(𝑃(1−𝑑)−𝐷)
                              (3.11) 

Therefore, the total annual cost per cycle can be obtained as follows: 

𝑇𝐶𝑌(𝑄, 𝑆𝑚𝑎𝑥|𝑡 ≥ 𝑇𝑃) =    

 
𝐴𝐷

𝑄(1−𝑑)
+
𝐶  𝐷

1−𝑑
+
𝑟  𝐷 𝑑

1−𝑑
 +

𝐴𝑑  𝐷

𝑃(1−𝑑)
+ ℎ (−

(𝑃((−1+𝑑)𝑄+𝑆𝑚𝑎𝑥)+𝑄 𝐷)
2

2 𝑃 𝑄 ((−1+𝑑)𝑃+𝐷)
) +

          �̂�  
𝑆𝑚𝑎𝑥
2  𝑃

2 𝑄(𝑃(1−𝑑)−𝐷)
+ �̌�

𝑆𝑚𝑎𝑥 𝐷 

𝑄 (1−𝑑)
                                                              (3.12) 
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The plot in Fig. 3.11 is similar to the graph of the classical version of 𝐸𝑃𝑄 where the 

slope is (𝑃 − 𝐷), and hence 𝑇𝐶𝑌 is a convex function, (A. Elsayed and O.Boucher, 

1985). Thus, if we treat this case similar to the classical version of 𝐸𝑃𝑄 except for a 

slope of 𝑃(1 − 𝑑) − 𝐷, then we can prove its convexity easily.  

As the production time is shorter than t, then the activity of adjusting the machine 

terminates with the end of production and one may substitute Tp for t.  For a feasible 

solution the condition 𝑄 > 0 must be met. 

3.1.6 Numerical Example: 

We use the same data given in examples of previous two cases. We find that at 𝑡 = 6.9 

hours, 𝑡 = 𝑇𝑃. Therefore at any value of 𝑡 which meets the condition 𝑡 ≥ 6.9, the lot size 

𝑄 and maximum shortage allowed 𝑆𝑚𝑎𝑥 become constant. Using Eq. 3.12, we find that 

the optimal values of order quantity and maximum shortage permitted are obtained at  

𝑄∗= 7,761.91 unit and 𝑆𝑚𝑎𝑥
∗ = 91.3051 unit with a minimum cost of $ 122,332. Fig. 3.12 

shows the behavior of maximum shortage allowed 𝑆𝑚𝑎𝑥 for the three cases of 𝑡. Fig. 3.13 

shows the interaction of  𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌.   
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Figure 3.11: The relationship between the inventory level and time when 𝒕 ≥ 𝑻𝑷. 
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Figure 3.12: The behavior of maximum shortage allowed 𝑺𝒎𝒂𝒙 for the three cases of 𝒕. 
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Figure 3.13: Three dimensional plot of 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 for 𝒕 ≥ 𝑻𝑷 . 
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3.2 The case where 𝒕 is random variable:  

In Chapter 2 we treated 𝑡 as a random variable where the order quantity 𝑄 is the only 

decision variable. In this section the optimal shortage 𝑆𝑚𝑎𝑥
∗   allowed is a decision variable 

too and 𝑡 has some probability density distribution 𝑓(𝑡). 

3.2.1 Model Formulation: 

As 𝑡 is a random variable, the three cases considered separately earlier are combined 

based on the renewal theory.  The limits of integrals refer to the period at which each case 

may occur. Note that  𝑡 ≤ 𝑇0, implies that  𝑡 ≤
𝑆𝑚𝑎𝑥+ 𝑡 𝑃 𝑑

𝑃−𝐷
 which in turn simplifies to 𝑡 ≤

𝑆𝑚𝑎𝑥

𝑃(1−𝑑)−𝐷
 .    

The total cost can be expressed as the sum of the following: ordering cost, 𝐴, the 

manufacturing cost, 𝐶𝑄, the process adjustment cost per cycle and the screening cost  

𝑟. 𝑡. 𝑃. 𝑑 + 𝐴𝑑 . 𝑡, the average shortage cost,�̂� 𝑇 �̅� + �̌� 𝑆𝑚𝑎𝑥,  and the holding cost,  𝑇𝐼ℎ̅. 

Therefore, the expected total cost is obtained as follows: 

𝐸𝑖[𝑇𝐶(𝑄, 𝑆𝑚𝑎𝑥)] = 

                      ∫ (𝐴 + 𝐶 𝑄 + 𝑟 𝑡 𝑃 𝑑 + 𝐴𝑑  𝑡 + +𝑇𝐼ℎ̅ +
𝑏𝑖
𝑎𝑖

�̂�𝑇 �̅� + �̌� 𝑆𝑚𝑎𝑥)𝑓(𝑡) 𝑑𝑡      (3.13) 

The expected cycle length is determined as follows:  

                                      𝐸𝑖[𝑇(𝑄, 𝑆𝑚𝑎𝑥)] = ∫ (
𝑄−𝑡 𝑃 𝑑

𝐷
)𝑓(𝑡) 𝑑𝑡

𝑏𝑖

𝑎𝑖

                                  (3.14) 

 



51 

 

where 𝑎, and 𝑏, are the lower and upper bounds of each integral, the index 𝑖 refers to the 

case number. 

Thus the expected total cost per cycle is obtained as follows: 

                                                        
∑ 𝐸𝑗[𝑇𝐶(𝑄,𝑆𝑚𝑎𝑥)]
3
𝑗=1

∑ 𝐸𝑗[𝑇(𝑄,𝑆𝑚𝑎𝑥)]
3
𝑗=1

                                                  (3.15) 

The objective of Eq. 3.15 is to find the optimal values of  𝑄 and 𝑆𝑚𝑎𝑥  such that the total 

cost per year is minimized. This model cannot be valid for any value of 𝑆𝑚𝑎𝑥 > 0. One 

condition that must be satisfied is 𝑇0 < 𝑇𝑃 or 
𝑆𝑚𝑎𝑥

𝑃(1−𝑑)−𝐷
<
𝑄

𝑃
 , thus:   

                                                    𝑆𝑚𝑎𝑥 <
𝑄 [𝑃(1−𝑑)−𝐷]

𝑃
                                                  (3.16) 

3.2.2 Numerical Example: 

Suppose that the adjustment period, t, is a uniform random variable where 𝑓(𝑡) =   1/8, 

0 ≤ t ≤ 8. We found that the optimal values of order quantity and maximum shortage 

permitted are obtained at  𝑄∗= 9,822.8 units and 𝑆𝑚𝑎𝑥
∗ = 123.69 units with a minimum 

cost of $ 122,193.01. Let us consider that 𝑡 is exponentially distributed, with 𝑓(𝑡) =

 1.25 𝑒−1.25 𝑡 where the expected value of 𝑡 is 
1

1.25
 . We found that the optimal values of 

order quantity and maximum shortage permitted are obtained at  𝑄∗= 24,349.5 units and 

𝑆𝑚𝑎𝑥
∗ = 407.96 units with a minimum cost of $ 120,520.35.  

The plots of 𝑇𝐶 versus 𝑄 at 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥
∗  and 𝑇𝐶 versus 𝑆𝑚𝑎𝑥 at 𝑄 = 𝑄∗ for both 

distributions are shown in Fig. 3.14 and Fig. 3.15, respectively. 
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Figure 3.14: The behavior of 𝑸 at 𝑺𝒎𝒂𝒙 = 𝑺𝒎𝒂𝒙
∗  is fixed. Blue is uniform and Red is exponential. 
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Figure 3.15: The behavior of 𝑺𝒎𝒂𝒙 at 𝑸 = 𝑸∗ is fixed. Blue is uniform and Red is exponential. 
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6 CHAPTER 4 

7 THE OPTIMAL LOT SIZE AND SHORTAGE 

ALLOWANCE UNDER PROCESSING THE DEFECTIVE 

ITEMS WITH TAGUCHI’S QUALITY LOSS FUNCTION 

AND INSPECTION ERRORS 

 

In this chapter we describe the results of incorporating the Taguchi’s quality loss function 

and inspection errors into our model. Also, we will address the processing the defective 

items situation and study how these aspects will affect the model’s decision variables. 

The machine adjustment period 𝑡 is treated as a fixed value. 

  

4.1 Taguchi’s Quality Loss Function Approach:  

Since 1960, Taguchi methods have been used for improving the quality of Japanese 

products with great success. During the 1980s, many companies finally realized that the 

old methods for ensuring quality were not competitive with the Japanese methods. The 

old methods for quality assurance relied heavily upon inspecting products as they rolled 

off the production line and rejecting those products that did not fall within a certain 

acceptance range. To measure quality, Taguchi defines a Quality Loss Function. The 
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quality loss function is a continuous function that is defined in terms of the deviation of a 

design parameter from an ideal or a target value.  

This function penalizes the deviation of a parameter from the specification value that 

contributes to deteriorating the performance of a product, resulting in a loss to the 

customer. The product’s quality distribution is assumed to follow a normal distribution 

function and the loss function given in our model is referred to as “nominal is best”. But 

there are also expressions for cases when higher or lower values of parameters are better. 

4.1.1 Model Formulation: 

Taguchi’s quality loss function approach can be used to determine the economic impact 

of the quality characteristic, 𝑋, as it deviates from the target value, 𝜇: 

𝑔(𝑥) =
1

√2𝜋𝜎
𝑒
−(𝑋−𝜇)2

2 𝜎2  

 Taguchi’s quality loss function 𝐿(𝑋) is defined as follows: 

𝐿(𝑥) = 𝐾(𝑋 − 𝜇)2                 𝐿𝑆𝐿 ≤ 𝑋 ≤ 𝑈𝑆𝐿 

where 𝐾 is Taguchi loss parameter 

𝐾 =
𝑉

∆2
 

∆= (𝑈𝑆𝐿 − 𝜇) = (𝜇 − 𝐿𝑆𝐿) 

Thus, the amount of loss is expressed as follows:  

(𝑄 − 𝑡. 𝑃. 𝑑)∫
1

𝜎√2𝜋
𝑒
−(𝑋−𝜇)2

2𝜎2  𝐾(𝑋 − 𝜇)2𝑑𝑥
𝑈𝑆𝐿

𝐿𝑆𝐿
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The defective items will be sent to the storehouse for the reworking process. We assumed 

that there is a negligible inventory holding cost associated with the storehouse. Once the 

non-conforming items are reworked, they become as good as new (Fig. 4.1). We assume 

that there are two different rework costs: one is for items produced below the 

specification limits, 𝑅𝐿, and the other one is for items produced above the upper 

specification limits, 𝑅𝑈. 

Rework Process Cost = (𝑡. 𝑃. 𝑑) (𝑅𝐿 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥 
𝐿𝑆𝐿

0
+ 𝑅𝑈 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥

∞

𝑈𝑆𝐿
) 
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Products as Good as New

 

Figure 4.1: Flow chart of the rework process. 
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4.2 Committing Inspection Errors with Processing the defective items  

Processing:  

Two types of errors are committed in the inspection process. Type I error, 𝑒1, is 

committed when a conforming item is classified as non-conforming and Type II error, 𝑒2, 

is committed when a non-conforming item is classified as conforming. Both types of 

errors are assumed to be known. The apparent conforming items fraction can be 

determined as follows: 

8                 (1 − 𝑑)(1 − 𝑒1) + 𝑑 𝑒2 = 1 − 𝑒1 − 𝑑(1 − 𝑒1 − 𝑒2) = 1 − �̀�         (4.1) 

where, 

9                                           �̀� = 𝑒1 + 𝑑(1 − 𝑒1 − 𝑒2)                                         (4.2) 

Apparent defective items are sent to the processing the defective items plant which has an 

inventory holding cost of, ℎ̂. Once defective items are processed, they become as good as 

new and are sent back to the original plant to meet the demand.  

This situation yields three different cases of the process adjustment time, 𝑡. The three 

cases and their sub-cases are shown in Table 4.1.  

Each case will be discussed in Sections 4.2.1, 4.2.2 and 4.2.3, which are followed by 

formulation and numerical examples in Sections 4.3.1 and 4.3.2. We assume 𝑡 to be 

provided. 
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Table 4.1: The three cases and their subcases with respect to t 

Case 

Number 
Case Status Sub-cases 

1 𝑡 ≤ 𝑇0 

1. Shortage is not met while  processing the defective 

items 

2. Shortage is met before Processing the defective items is 

completed 

3. Time for processing the defective items exceeds 𝑇𝑃  

4. Processing the defective items reaches the cycle end 

zone 

2 𝑇0 ≤ 𝑡 ≤ 𝑇𝑃 

1. Shortage is met before processing the defective items is 

completed 

2. Time for processing the defective items exceeds 𝑇𝑃  

3. Processing the defective items reaches the cycle end 

zone 

3 𝑡 ≥ 𝑇𝑃 

1. Time for processing the defective items exceeds 𝑇𝑃  

2. Processing the defective items reaches the cycle end 

zone 
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4.2.1 The Case of 𝒕 < 𝑻𝟎 

The sub-cases of 𝑷𝒔: 
 

In all the four sub-cases of this case,𝑡 lapses before meeting the shortage. We address the 

four subcases as follows: 

1.  Shortage is not met while  processing the defective items: 

The production starts at a rate of 𝑃(1 − �̀� )–𝐷, and an inventory of apparent defective 

items is built up at a rate of 𝑃�̀�. During,𝑇𝑠, processing the defective items  are processed 

at a rate of 𝑃𝑠 ,and then the processed items are used to meet the shortage at a rate of 𝑃𝑠 +

𝑃 − 𝐷. Subsequently, the rest of the production period continues with a slope of 𝑃 − 𝐷. 

Once the production stops, the inventory level decreases until the end of cycle with a 

slope of 𝐷 (Fig. 4.2).  

From Fig 4.2, the total shortage 𝑆, is computed as follows: 

                            𝑆 = 
𝑡.(𝑆𝑚𝑎𝑥+𝛾2+𝛾3)

2
+
𝑇𝑠 .(2𝛾2+𝛾3)

2
+
𝛾1
2(𝑃−𝐷)

2
+
𝑆𝑚𝑎𝑥
2

2𝐷
                              (4.3) 

where, 

𝛾1 = 𝑇𝑃 − (𝑡 + 𝑇𝑠), 𝛾2 = 𝛾1(𝑃 − 𝐷), 𝛾3 = 𝑇𝑠(𝑃𝑠 + 𝑃 − 𝐷) and 𝑇𝑠 =  
𝑡 𝑃 �̀�

𝑃𝑠
 

Therefore Eq. 4.3 can be rewritten as follows:  

  S =
�̀�2𝑃4𝑡2𝐷+�̀�𝑃3𝑃𝑠 𝑡

2 𝐷−𝑃𝑠 𝑄
2𝐷2+𝑃 𝑃𝑠 𝑄 𝐷(𝑄+𝑡 𝐷)+𝑃

2𝑃𝑠(𝑆
2
𝑚𝑎𝑥−𝑄 𝑡 𝐷+𝑆𝑚𝑎𝑥𝑡 𝐷)

2𝑃2𝑃𝑠 𝐷
  (4.4) 
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Figure 4.2: The relationship between the inventory level of conforming and defective items and the time when 

the shortage is not met while processing the defective items. 
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Also, the total inventory level is obtained as follows: 

                                               𝐼 =
𝐼𝑚𝑎𝑥
2

2 (𝑃−𝐷)
+
𝐼𝑚𝑎𝑥
2

2 𝐷
                                               (4.5) 

where, 

𝐼𝑚𝑎𝑥 =  𝑄 − 𝐷. 𝑇𝑝 − 𝑆𝑚𝑎𝑥 

Therefore Eq. 4.5 can be rewritten as follows:  

                                     𝐼 =
(𝑄−𝑆𝑚𝑎𝑥−

𝑄 𝐷

𝑃
)
2

2(𝑃−𝐷)
+
(𝑄−𝑆𝑚𝑎𝑥−

𝑄 𝐷

𝑃
)
2

2𝐷
                                        (4.6) 

Also, we compute the total inventory level of defective items as follows: 

                                             𝐼𝑠 =
�̀� 𝑃 𝑡2+ 𝑃𝑠 𝑇𝑠

2

2
                                                     (4.7) 

We may come up with a relationship that governs the value of 𝑡. from Fig. 4.2: 

        𝑡 ≤ 𝑇0                          and                        𝑡 + 𝑇𝑠 ≤ 𝑇0 

                              Thus, 𝑡 ≤
𝑆𝑚𝑎𝑥 

(𝑃−𝐷)
            and              𝑡 ≤

𝑆𝑚𝑎𝑥

(𝑃−𝐷)(1+
𝑃.�̀�

𝑃𝑠
)
                       (4.8) 

2. Shortage is met before Processing the defective items is completed: 

Once the apparent defective items are sent for processing, shortage is met while defective 

items are being processing (Fig. 4.3). 

From Fig. 4.3, the total shortage 𝑆, is computed as follows: 

                             𝑆 =
𝑡.(2𝑆𝑚𝑎𝑥−𝛽1)

2
+
(𝑆𝑚𝑎𝑥−𝛽1)

2

2(𝑃+𝑃𝑠−𝐷)
+
𝑆𝑚𝑎𝑥
2

2𝐷
                                (4.9) 
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where, 𝛽1 = 𝑡. [𝑃(1 − �̀�) − 𝐷]                               

Thus, 

                  𝑆 =
(−1+�̀�)�̀� 𝑃2𝑡2𝐷+𝑃𝑠(𝑆𝑚𝑎𝑥+𝑡 𝐷)

2+𝑃(𝑆𝑚𝑎𝑥
2 +2 �̀� 𝑆𝑚𝑎𝑥 𝑡 𝐷+𝑡

2𝐷((−1+�̀�)𝑃𝑠+�̀� 𝐷))

2(𝑃+𝑃𝑠−𝐷)𝐷
    (4.10) 

We compute the total inventory level as follows: 

                 𝐼 =
𝛽2
2(𝑃+𝑃𝑠−𝐷)

2
+
[𝑇𝑃−(𝑡+𝑇𝑠)].[𝛽2(𝑃+𝑃𝑠−𝐷)+𝐼𝑚𝑎𝑥]

2
+
𝐼𝑚𝑎𝑥
2

2𝐷
                 (4.11) 

where, 

𝛽2 = 𝑇𝑠 −
𝑆𝑚𝑎𝑥 − 𝛽1
𝑃 + 𝑃𝑠 −𝐷

 

Thus, 

 𝐼 =
1

2
(
(𝑆𝑚𝑎𝑥+𝑄(−1+

𝐷

𝑃
))
2

𝐷
+
(−�̀� 𝑃2𝑡+𝑃𝑠(𝑄−𝑃 𝑡))((−1+�̀�)𝑃

2𝑡−𝑄 𝐷+𝑃(𝑄+𝑡 𝐷))

𝑃2𝑃𝑠
 +

(�̀� 𝑃 𝑡(−𝑃+𝐷)+𝑃𝑠(𝑆𝑚𝑎𝑥+𝑡 (−𝑃+𝐷)))
2

𝑃𝑠
2(𝑃+𝑃𝑠−𝐷)

)                                                                        (4.12) 

 

 We compute the total inventory level of defective items as follows: 

                                                 𝐼𝑠 =
�̀� 𝑃 𝑡2+ 𝑃𝑠 𝑇𝑠

2

2
                                        (4.13) 

We may come up with a relationship that governs the value of 𝑡. from Fig. 4.3: 

𝑡 ≤ 𝑇0                   and              𝑇0 ≤ 𝑡 + 𝑇𝑠 < 𝑇𝑃 

Thus, 

           𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
           and             

𝑆𝑚𝑎𝑥

(𝑃−𝐷)(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
                              (4.14) 
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Figure 4.3: The relationship between the inventory level of conforming and defective items and the time when 

shortage is met before processing the defective items  is completed. 

 

 

 

 

 

3. Processing the defective items exceeds 𝑇𝑃:           
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This sub-case assumes that processing the defective items takes a longer time such that 

the production stops before processing the defective items is completed (Fig. 4.4). 

It is obvious from Fig. 4.4 that the total shortage,𝑆, is the same as the second case which 

is given in Eq. 4.10.  

We compute the total inventory level as follows: 

                   𝐼 =
𝛼2.(𝑃+𝑃𝑠−𝐷)

2
+ 

(𝑇𝑠+𝑡−𝑇𝑃).[2𝐼𝑚𝑎𝑥− (𝑇𝑠+𝑡−𝑇𝑃).(𝑃𝑠−𝐷)]

2
+
𝐼𝑚𝑎𝑥
2

2𝐷
                   (4.15) 

where, 

𝛼 = 𝑇𝑃 − [𝑡 +
𝑆𝑚𝑎𝑥−𝛽1

𝑃+𝑃𝑠−𝐷
]     and 

𝐼𝑚𝑎𝑥 = 𝑡. [𝑃(1 − �̀�) − 𝐷] + (𝑇𝑃 − 𝑡). (𝑃 + 𝑃𝑠 − 𝐷) + (𝑡 + 𝑇𝑠 − 𝑇𝑃). (𝑃𝑠 − 𝐷) − 𝑆𝑚𝑎𝑥 

Thus, 

𝐼 =
1

2
(
𝑄

𝑃
− 𝑡 −

𝑆𝑚𝑎𝑥−𝑡(1−�̀�−𝐷)

𝑃+𝑃𝑠−𝐷
)2(𝑃 + 𝑃𝑠 − 𝐷) +

(𝑄−
𝑃𝑠 𝑆𝑚𝑎𝑥 +�̀� 𝑃𝑡 𝐷+𝑃𝑠 𝑡 𝐷

𝑃𝑠
)2

2𝐷
+
1

2
(−

𝑄

𝑃
+ 𝑡 +

�̀� 𝑃 𝑡

𝑃𝑠
)(−(−

𝑄

𝑃
+ 𝑡 +

�̀� 𝑃 𝑡

𝑃𝑠
)(𝑃𝑠 −𝐷) + 2(𝑄 −

𝑃𝑠 𝑆𝑚𝑎𝑥+�̀� 𝑃 𝑡 𝐷+𝑃𝑠 𝑡 𝐷

𝑃𝑠
))                                (4.16) 
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Figure 4.4: The relationship between the inventory level of conforming and  defective items and the time when 

processing the defective items exceeds 𝑻𝑷 and when 𝒕 is small. 
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The formula for the total inventory level of defective items is the same as in the previous 

two sub-cases.  

Also we notice that: 

                                      𝑡 ≤ 𝑇0                     and             𝑇𝑃 ≤ 𝑡 + 𝑇𝑠 < 𝑇 −
𝑆𝑚𝑎𝑥

𝐷
                    

Thus, 

                   𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
                          and         

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
≤ 𝑡 <

𝑄−𝑆𝑚𝑎𝑥

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
                  (4.17) 

4.  Processing the defective items reaches the cycle end zone: 

This sub-case is valid only for 𝑃𝑠 − 𝐷 < 0, because when 𝑃𝑠 −𝐷 ≥ 0, the previous case 

is valid. Here we assume that processing the defective items reaches the end of the cycle 

where the shortage zone has not been met (Fig. 4.5).  

From Fig 4.5, the total shortage, 𝑆, is computed as follows: 

𝑆 =
𝑡.(2𝑆𝑚𝑎𝑥−𝛽1)

2
+
(𝑆𝑚𝑎𝑥−𝛽1)

2

2(𝑃+𝑃𝑠−𝐷)
+
1

2
[(𝑡 + 𝑇𝑠 − 𝑇𝑃) −

𝐼𝑚𝑎𝑥

𝑃𝑠−𝐷
]
2
(𝑃𝑠 − 𝐷) +

1

2
[𝑇 −

(𝑡 + 𝑇𝑠)][2𝑆𝑚𝑎𝑥 − (𝑇 − (𝑡 + 𝑇𝑠))𝐷]                                                                          (4.18) 

Thus, 

 𝑆 =
1

2
((−

(�̀� 𝑃+𝑃𝑠)𝑡

𝑃𝑠
+
𝑄

𝐷
)(2 𝑆𝑚𝑎𝑥 −

𝑄

𝐷
+
(�̀� 𝑃+𝑃𝑠)𝑡 𝐷

𝑃𝑠
) +

(𝑆𝑚𝑎𝑥+𝑡((−1+�̀�)𝑃+𝐷))
2

𝑃+𝑃𝑠−𝐷
+ 𝑡(2𝑆𝑚𝑎𝑥 +

𝑡((−1 + �̀�)𝑃 + 𝐷)) −
(�̀� 𝑃 𝑡 𝐷+Ps(−𝑄+𝑆𝑚𝑎𝑥+𝑡 𝐷))

2

𝑃𝑠
2(𝑃𝑠−𝐷)

)                                                       (4.19) 
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Figure 4.5: The relationship between the inventory level of conforming and defective items and the time when 

processing the defective items reaches the cycle end zone and when 𝒕 is small. 
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We compute the total inventory level as follows: 

                                               𝐼 =
1

2

𝐼𝑚𝑎𝑥
2

𝑃𝑠+𝑃−𝐷
+
1

2

𝐼𝑚𝑎𝑥
2

𝐷−𝑃𝑠
                                            (4.20) 

where, 

𝐼𝑚𝑎𝑥 = 𝑡. [𝑃(1 − �̀�) − 𝐷] + (𝑇𝑃 − 𝑡). (𝑃 + 𝑃𝑠 − 𝐷) − 𝑆𝑚𝑎𝑥 

Thus, 

                         𝐼 =
1

2
(𝑆𝑚𝑎𝑥 + (𝑑 𝑃 + 𝑃𝑠)𝑡 −

𝑄(𝑃+𝑃𝑠−𝐷)

𝑃
)2(

1

𝑃+𝑃𝑠−𝐷
+

1

−𝑃𝑠+𝐷
)            (4.21) 

The total inventory level of defective items can be obtained from Eq. 4.13. We may come 

up with a relationship that governs the value of 𝑡. from Fig. 4.5: 

𝑡 ≤ 𝑇0                              and            𝑇 −
𝑆𝑚𝑎𝑥

𝐷
≤ 𝑡 + 𝑇𝑠 < 𝑇 

          Thus, 𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
                        and           

𝑄−𝑆𝑚𝑎𝑥

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
≤ 𝑡 <

𝑄

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
                 (4.22)  

Formulation and numerical example: 

The total cost can be stated as the sum of the following costs divided by 𝑇 : ordering cost, 

𝐴, the manufacturing cost, 𝐶𝑄, the process adjustment cost per cycle and the screening 

cost, 𝑟. 𝑡. 𝑃. 𝑑 + 𝐴𝑑 . 𝑡, the production cost, 𝑄 𝜇 𝐶𝑃, Taguchi’s quality 

loss,𝑄 ∫
1

𝜎√2𝜋
𝑒
−(𝑋−𝜇)2

2𝜎2  𝐾(𝑋 − 𝜇)2𝑑𝑥
𝑈𝑆𝐿

𝐿𝑆𝐿
, rework process cost, and the defective items 

inventory holding cost of 𝑇𝐼�̅�ℎ̂. 

Therefore, the total cost per cycle is obtained as follows: 
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𝑇𝐶𝑌𝑖,𝑗(𝑄, 𝑆𝑚𝑎𝑥) =
𝐴 𝐷

𝑄
+ 𝐶 𝐷 +

𝑟 𝑡 𝑃 𝑑 𝐷

𝑄
+
𝐴𝑑 𝑡 𝐷

𝑄
+ 𝐷 𝜇 𝐶𝑃 + 𝐷 ∫

1

𝜎√2𝜋
𝑒
−(𝑋−𝜇)2

2𝜎2  𝐾(𝑋 −
𝑈𝑆𝐿

𝐿𝑆𝐿

𝜇)2𝑑𝑥 +
(𝑡.𝑃.𝑑)𝐷

𝑄
(𝑅𝐿 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥 

𝐿𝑆𝐿

0
+ 𝑅𝑈 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥

∞

𝑈𝑆𝐿
) + 𝐼ℎ̅ + 𝐼�̅�ℎ̂ + �̂� �̅� + �̌� 𝑆𝑚𝑎𝑥    

                                                                                                                                     (4.23) 

where the index 𝑖 refers to the case number and 𝑗 refers to sub-case number. 

The objective of Eq. 4.23 is to find the optimal values of  𝑄 𝑎𝑛𝑑 𝑆𝑚𝑎𝑥 such that the total 

cost per cycle is minimized.   

To illustrate how to apply the four sub-cases, let us consider the following numerical 

example. Consider the following data: 

𝑃 = 25,000 units per year 

𝐷 = 23,000 units per year 

𝑃𝑠= 1,500 units per year 

𝑟  = $1 per unit 

ℎ = $ 4 per unit/year 

ℎ𝑠 = $ 2 per unit/year 

𝐶 = $ 5 per unit 

𝐶𝑃= $ 3 per unit 

𝐴𝑑 = $ 50 per hour 

𝐴  = $ 100 per order 

�̂�= $ 5 per unit/year 

�̌�= $ 0.3 

𝑅𝐿 = $ 4 per unit 

𝑅𝑈 = $ 6 per unit 

𝜇 = 5 

𝜎 = 0.05 

𝑈𝑆𝐿 = 5.2 
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𝐿𝑆𝐿 = 4.8 

𝐾= $ 120  

𝑒1 = 𝑒2 = 0.02 

𝑑 = 0.0455 

 

Table 4.2 shows the optimal values of 𝑄 and 𝑆𝑚𝑎𝑥 as well as 𝑇𝐶𝑌𝑖,𝑗 at two different 

values of 𝑡 for the four sub-cases and their subjected constraints. For our example, the 

decision maker in terms of costs would choose the second sub-case where the shortage is 

met before processing the defective items is completed because it yields the minimum 

cost.    
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Table 4.2: The optimal values of 𝑸 and 𝑺𝒎𝒂𝒙 as well as 𝑻𝑪𝒀𝒊,𝒋 at two different values of 𝒕 for the four sub-cases. 

𝑇𝐶𝑌1,𝑗 𝑡 =  0.01 𝑡 = 0.1 

𝑇𝐶𝑌1,1 
Subject to 

 

𝑡 ≤
𝑆𝑚𝑎𝑥

(𝑃−𝐷)(1+
𝑃.�̀�

𝑃𝑠
)
  

𝑄 =  3,325.9 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  105.97𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,1 = $ 468,718 

𝑄 =  7,354.93  𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  412.27 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,1 = $ 469,851 

𝑇𝐶𝑌1,2 
Subject to 

 

𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
  

𝑆𝑚𝑎𝑥

(𝑃−𝐷)(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄

𝑃(1+
𝑃.�̀�

𝑃𝑠
)
  

𝑄 = 4136.65 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  4.08 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,2 = $ 468,139 

𝑄 = 7,728.43 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  40.8 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,2 = $ 468,526 

𝑇𝐶𝑌1,3 
Subject to 

 

𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
  

 
𝑄

𝑃(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄−𝑆𝑚𝑎𝑥

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
  

𝑄 = 515.333 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  4.08 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,3 = $ 473,164 

𝑄 = 5,153.33 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  40.8 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,3 = $ 478,270 

𝑇𝐶𝑌1,4 
Subject to  

 

𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
  

 
𝑄−𝑆𝑚𝑎𝑥

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
  

 

𝑄 = 478.187 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  4.08 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,4 = $ 472,671 

𝑄 = 4,741.07 𝑢𝑛𝑖𝑡𝑠 
𝑆𝑚𝑎𝑥 =  87.5289 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌1,4 = $ 469,217 
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4.2.2 The Case of 𝑻𝟎 ≤ 𝒕 ≤ 𝑻𝑷 

We address three subcases under this case, where 𝑡 is always performed after meeting the 

shortage, which takes place at the beginning of the cycle, i.e., 𝑡 > 𝑇0. However, we 

assume that 𝑡 ends before the end of the production or, 𝑡 ≤ 𝑇𝑃.    

The three sub-cases of 𝑷𝒔: 

1. Shortage is met before processing the defective items is completed: 

In this scenario the production starts with a rate of 𝑃(1 − �̀�) − 𝐷, while inventory level 

of  defective items is being built at a rate of 𝑃�̀� till the end of 𝑡. Then the processed items 

will be sent to the inventory which is given by the slope 𝑃𝑠 + 𝑃 − 𝐷. Once all the 

defective items have been processed and consumed, the inventory level continues at a 

rate of 𝑃 − 𝐷. Finally, the production stops and the inventory level starts decreasing with 

a slope of 𝐷 (Fig. 4.6).  

From Fig. 4.6, the total shortage 𝑆, is computed as follows: 

                                               𝑆 =
(�̀�−1)𝑃𝑆𝑚𝑎𝑥

2

2𝐷((�̀�−1)𝑃+𝐷)
                                                   (4.24) 

We compute the total inventory level as follows: 

𝐼 =
1

2
𝜃2. (𝑃(1 − �̀�) − 𝐷) +

𝑇𝑠.[2𝜃(𝑃(1−�̀�)−𝐷)+𝑇𝑠.(𝑃𝑠+𝑃−𝐷)]

2
+
(𝑇𝑃−(𝑡+𝑇𝑠)

2
[(𝜃. (𝑃(1 − �̀�) −

𝐷) + 𝑇𝑠(𝑃𝑠 + 𝑃 − 𝐷)) + 𝐼𝑚𝑎𝑥] +
𝐼𝑚𝑎𝑥
2

2𝐷
                                                                        (4.25) 
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where, 

𝜃 = 𝑡 −
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
 , and 

𝐼𝑚𝑎𝑥 =  𝑄 − 𝐷. 𝑇𝑝 − 𝑆𝑚𝑎𝑥 

Thus, 

 𝐼 =
�̀� 𝑃 𝑡(2(𝑡−

𝑆𝑚𝑎𝑥
(1−�̀�)𝑃−𝐷

)((1−�̀�)𝑃−𝐷)+
�̀� 𝑃 𝑡(𝑃+𝑃𝑠−𝐷)

𝑃𝑠
)

2𝑃𝑠
+
1

2
(𝑡 −

𝑆𝑚𝑎𝑥

(1−�̀�)𝑃−𝐷
)2((1 − �̀�)𝑃 − 𝐷) +

(𝑄−𝑆𝑚𝑎𝑥−
𝑄𝐷

𝑃
)2

2 𝐷
+
1

2
(
𝑄

𝑃
− 𝑡 −

�̀� 𝑃 𝑡

𝑃𝑠
)(𝑄 − 𝑆𝑚𝑎𝑥 + (𝑡 −

𝑆𝑚𝑎𝑥

(1−�̀�)𝑃−𝐷
)((1 − �̀�)𝑃 − 𝐷) +

�̀� 𝑃 𝑡(𝑃+𝑃𝑠−𝐷)

𝑃𝑠
−
𝑄𝐷

𝑃
)                                                                                                              (4.26) 

The total inventory level of defective items can be obtained from Eq. 4.13.  

The lower and upper bounds of 𝑡 are:   

                                𝑇0 ≤ 𝑡 < 𝑇𝑃                   and          𝑇0 ≤ 𝑡 + 𝑇𝑠 < 𝑇𝑃 

Thus, 

                
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
        and           

𝑆𝑚𝑎𝑥

[𝑃(1−�̀�)−𝐷](1+
𝑃 �̀�

𝑃𝑠
)
 < 𝑡 <

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
             (4.27) 

 

  



75 

 

 

 

 

 

 

 

 
Figure 4.6: The relationship between the inventory level of conforming and defective items and the time when 

shortage is met before processing the defective items is completed. 
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2. Processing the defective items period exceeds 𝑇𝑃: 

This sub-case assumes that processing the defective items continues after the production 

has been completed (Fig 4.7). 

The total shortage,𝑆, is obtained from Eq. 4.18. We compute the total inventory level as 

follows: 

𝐼 =
1

2
𝜃2. (𝑃(1 − �̀�) − 𝐷) +

1

2
 (𝑇𝑃 − 𝑡)[2𝜃. (𝑃(1 − �̀�) − 𝐷) + (𝑇𝑃 − 𝑡). (𝑃𝑠 + 𝑃 −

𝐷)] +
1

2
(𝑇𝑠 − (𝑇𝑃 − 𝑡)). [2𝐼𝑚𝑎𝑥 − (𝑇𝑠 − (𝑇𝑃 − 𝑡)). (𝑃𝑠 − 𝐷)] +

𝐼𝑚𝑎𝑥
2

2𝐷
                       (4.28) 

where, 

𝜃 = 𝑡 −
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
, and  

𝐼𝑚𝑎𝑥 = 𝑡. [𝑃(1 − �̀�) − 𝐷] + (𝑇𝑃 − 𝑡). (𝑃 + 𝑃𝑠 −𝐷) + (𝑡 + 𝑇𝑠 − 𝑇𝑃). (𝑃𝑠 −𝐷) − 𝑆𝑚𝑎𝑥 

 

Thus, 

 𝐼 =
1

2
(
𝑄

𝑃
− 𝑡)(2(𝑡 −

𝑆𝑚𝑎𝑥

(1−�̀�)𝑃−𝐷
) + (

𝑄

𝑃
− 𝑡)(𝑃 + 𝑃𝑠 −𝐷)) +

1

2
(𝑡 −

𝑆

(1−�̀�)𝑃−𝐷
)2((1 − �̀�)𝑃 −

𝐷) +
(𝑄−

𝑃𝑠 𝑆𝑚𝑎𝑥+�̀� 𝑃𝑡 𝐷+𝑃𝑠 𝑡 𝐷

𝑃𝑠
)2

2 𝐷
+
1

2
(−

𝑄

𝑃
+ 𝑡 +

�̀� 𝑃 𝑡

𝑃𝑠
)(−(−

𝑄

𝑃
+ 𝑡 +

�̀� 𝑃 𝑡

𝑃𝑠
)(𝑃𝑠 −𝐷) + 2(𝑄 −

𝑃𝑠 𝑆𝑚𝑎𝑥+�̀� 𝑃 𝑡 𝐷+𝑃𝑠 𝑡 𝐷

𝑃𝑠
))                                                                                                           (4.29 

The total inventory level of defective items can be obtained from Eq. 4.13.  

The lower and upper bounds of 𝑡 are: 

                                  𝑇0 ≤ 𝑡 < 𝑇𝑃                   and              𝑇𝑃 ≤ 𝑡 + 𝑇𝑠 < 𝑇 −
𝑆𝑚𝑎𝑥

𝐷
 

Thus, 

                               
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
             and        

𝑄

𝑃(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄−𝑆𝑚𝑎𝑥

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
           (4.30) 
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Figure 4.7: The relationship between the inventory level of conforming and  defective items and the time when 

processing the defective items exceeds 𝑻𝑷 and 𝒕 is between 𝑻𝟎 and 𝑻𝑷. 
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3. Processing the defective items reaches the cycle end zone: 

This sub-case is valid for 𝑃𝑠 −𝐷 < 0, because when 𝑃𝑠 − 𝐷 ≥ 0, the previous case is 

valid. Here we suggest that processing the defective items reaches the end of the cycle 

where the shortage zone has not been met (Fig 4.8). 

From Fig 4.8, the total shortage, 𝑆, is computed as follows: 

𝑆 = 

           
1

2
 

𝑆𝑚𝑎𝑥
2

𝑃(1−�̀�)−𝐷
+
1

2
[(𝑡 + 𝑇𝑠 − 𝑇𝑃) −

𝐼𝑚𝑎𝑥

𝐷−𝑃𝑠
]
2
(𝐷 − 𝑃𝑠) +

1

2
[𝑇 − (𝑡 + 𝑇𝑠)][2𝑆𝑚𝑎𝑥 −

            (𝑇 − (𝑡 + 𝑇𝑠))𝐷]                                                                                                (4.31) 

 where, 

𝐼𝑚𝑎𝑥 = 𝑡. [𝑃(1 − �̀�) − 𝐷] + (𝑇𝑃 − 𝑡). (𝑃 + 𝑃𝑠 − 𝐷) − 𝑆𝑚𝑎𝑥 

 

Thus, 

   𝑆 =           
1

2
(−

𝑆𝑚𝑎𝑥
2

(−1+�̀�)𝑃+𝐷
+ (−𝑡 −

�̀� 𝑃 𝑡

𝑃𝑠
+
𝑄

𝐷
)(2 𝑆𝑚𝑎𝑥

2 −
𝑄

𝐷
+
(�̀� 𝑃+𝑃𝑠) 𝑡 𝐷

𝑃𝑠
) −

          
(�̀� 𝑃 𝑡 𝐷+𝑃𝑠(−𝑄+𝑆𝑚𝑎𝑥

2 +𝑡 𝐷))2

𝑃𝑠
2(𝑃𝑠−𝐷)

)                                                                                           (4.32) 

We compute the total inventory level as follows: 

 𝐼 =
1

2
𝜃2. (𝑃(1 − �̀�) − 𝐷) + 

1

2
(𝑇𝑃 − 𝑡)[2𝐼𝑚𝑎𝑥 − (𝑇𝑃 − 𝑡)(𝑃𝑠 + 𝑃 − 𝐷)] +

1

2

𝐼𝑚𝑎𝑥
2

 𝑃𝑠−𝐷
  (4.33) 

 

 



79 

 

Thus, 𝐼 =          
1

2
[−

(𝑆𝑚𝑎𝑥+𝑡((−1+�̀�)𝑃+𝐷))
2

(−1+�̀�)𝑃+𝐷
+
(𝑆𝑚𝑎𝑥+�̀� 𝑃 𝑡+𝑄(−1+

𝐷

𝑃
))
2

𝑃𝑠−𝐷
+

         
(−𝑄+𝑃 𝑡)((−1+2𝑑)𝑃2𝑡+𝑄(𝑃𝑠+𝐷)−𝑃(𝑄−2𝑆𝑚𝑎𝑥+𝑃𝑠 𝑡−𝑡 𝐷))

𝑃2
]                                                (4.34) 

The total inventory level of defective items can be obtained from Eq. 4.13. The lower and 

upper bounds of 𝑡 are: 

𝑇0 ≤ 𝑡 < 𝑇𝑃                     and           𝑇 −
𝑆𝑚𝑎𝑥

𝐷
≤ 𝑡 + 𝑇𝑠 < 𝑇 

Thus, 

                           
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
         and         

𝑄−𝑆𝑚𝑎𝑥

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
                  (4.35) 

 

Formulation and numerical example: 

By referring to Eq. 4.23 we can obtain a model for each sub-case. To illustrate how to 

apply the three sub-cases, let us consider the data given in Subsection 4.2.1.  

Table 4.3 shows the optimal values of 𝑄 and 𝑆𝑚𝑎𝑥 as well as 𝑇𝐶𝑌𝑖,𝑗 at two different 

values of 𝑡 for the four sub-cases and their subjected constraints. For our example, the 

decision maker in terms of costs would choose the second sub-case where processing the 

defective items exceeds, 𝑇𝑃 because it yields the minimum cost.   
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Figure 4.8: The relationship between the inventory level of conforming and  defective items and the time when 

processing the defective items reaches the cycle end zone and 𝒕 is between 𝑻𝟎 and 𝑻𝑷. 
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Table 4.3: The optimal values of 𝑸 and 𝑺𝒎𝒂𝒙 as well as 𝑻𝑪𝒀𝒊,𝒋 at two different values of 𝒕 for the three sub-cases. 

𝑇𝐶𝑌2,𝑗 𝑡 = 0.5 𝑡 = 1 

𝑇𝐶𝑌2,1 
Subject to  

 
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
  

𝑆𝑚𝑎𝑥

[𝑃(1−�̀�)−𝐷](1+
𝑃�̀�

𝑃𝑠
)
 < 𝑡 <

𝑄

𝑃

1+
𝑃�̀�

𝑃𝑠

  

𝑆𝑚𝑎𝑥 = 186.242 𝑢𝑛𝑖𝑡𝑠 
𝑄 =  25,766.7 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌2,1 = $470,765 

𝑆𝑚𝑎𝑥 = 385.848 𝑢𝑛𝑖𝑡𝑠 
𝑄 = 51,533.3 𝑢𝑛𝑖𝑡𝑠  
𝑇𝐶𝑌2,1 = $473,712 

𝑇𝐶𝑌2,2 
Subject to  

 
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
  

 
𝑄

𝑃(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄−𝑆𝑚𝑎𝑥

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
  

 

𝑆𝑚𝑎𝑥 = 84.8247 𝑢𝑛𝑖𝑡𝑠 
𝑄 =  23,790.2 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌2,2 = $470,720 

𝑆𝑚𝑎𝑥 = 179.661 𝑢𝑛𝑖𝑡𝑠 
𝑄 =  47,590.3 𝑢𝑛𝑖𝑡𝑠 
𝑇𝐶𝑌2,2 = $472,855 

𝑇𝐶𝑌2,3 
Subject to  

 
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
  

 

 
𝑄−𝑆𝑚𝑎𝑥

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄

𝐷(1+
𝑃.�̀�

𝑃𝑠
)
 

𝑆𝑚𝑎𝑥 = 170.067 𝑢𝑛𝑖𝑡𝑠 
𝑄 = 23,705.3 𝑢𝑛𝑖𝑡𝑠  
𝑇𝐶𝑌2,3 = $470,475 

𝑆𝑚𝑎𝑥 = 353.481 𝑢𝑛𝑖𝑡𝑠 
𝑄 = 47,410.7 𝑢𝑛𝑖𝑡𝑠  
𝑇𝐶𝑌2,3 = $ 473,057 

 

  



82 

 

4.2.3 The Case of 𝒕 ≥ 𝑻𝑷 

This case discusses the situation where 𝑡 is large, 𝑡 ≥ 𝑇𝑃 such that during the production 

period the inventory is built at a rate of (1 − �̀�) − 𝐷, before its slope changes to 𝑃𝑠 −𝐷. 

Finally, the inventory level decreases at a rate of 𝐷. 

The two sub-cases of 𝑷𝒔: 

1. Processing the defective items exceeds 𝑇𝑃: 

The total shortage,𝑆, is obtained from Eq. 4.18. We compute the total inventory level 

from Fig. 4.9 as follows: 

             𝐼 =
1

2
�̃�2. (𝑃(1 − �̀�) − 𝐷) +

1

2
𝑇𝑠 . [2𝐼𝑚𝑎𝑥 − 𝑇𝑠 . (𝐷 − 𝑃𝑠)] +

𝐼𝑚𝑎𝑥
2

2𝐷
                  (4.36) 

where, 

𝐼𝑚𝑎𝑥 = 𝑇𝑃 . [𝑃(1 − �̀�) − 𝐷] +
𝑄 �̀�

𝑃𝑠
(𝐷 − 𝑃𝑠) − 𝑆𝑚𝑎𝑥  and  �̃� = 𝑇𝑃 −

𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
 , thus: 

𝐼 =
1

2
(
𝑄

𝑃
−

𝑆𝑚𝑎𝑥

(1−�̀�)𝑃−𝐷
)2((1 − �̀�)𝑃 − 𝐷) +

(𝑄−�̀� 𝑄−𝑆𝑚𝑎𝑥−
𝑄 𝐷

𝑃
)2

2 𝐷
+

�̀� 𝑄(−
�̀� 𝑄(−𝑃𝑠+𝐷)

𝑃𝑠
+2(−𝑆𝑚𝑎𝑥+

𝑄((1−�̀�)𝑃−𝐷)

𝑃
+
𝑑 𝑄(−𝑃𝑠+𝐷)

𝑃𝑠
))

2 𝑃𝑠
                                                              (4.37) 

Eq. 4.13 becomes: 

                                              𝐼𝑠 =
�̀� ( 

𝑄

𝑃
)2+ 𝑃𝑠 𝑇𝑠

2

2
                                          (4.38) 

where, 𝑇𝑠 = 
𝑄 �̀�

𝑃𝑠
. 

 

 

One condition must be satisfied which is: 
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𝑡 = 𝑇𝑃 =
𝑄

𝑃
                                     and            𝑇𝑃 ≤ 𝑇𝑃 + 𝑇𝑠 < 𝑇 −

𝑆𝑚𝑎𝑥

𝐷
 

Also, it may be noticed that as,  

𝑇𝑃 + 𝑇𝑠 < 𝑇 −
𝑆𝑚𝑎𝑥
𝐷

⇒ 𝑄(
1

𝑃
+
�̀�

𝑃𝑠 
−
1

𝐷
) ≤

−𝑆𝑚𝑎𝑥
𝐷

 

And therefore, 

                                                           
1

𝑃
+

�̀�

𝑃𝑠 
−
1

𝐷
 < 0                                                  (4.39) 

In other words condition 4.39 is satisfied only if 𝑃 and 𝑃𝑐 are very large quantities, and �̀� 

and 𝐷 are small enough. The data given in Subsection 4.2.1 do not satisfy condition 4.39.   

 

2. Processing the defective items reaches the cycle end zone: 

This sub-case is valid for 𝑃𝑠 −𝐷 < 0. Here we consider a case where processing the 

defective items continues while the shortage zone has not been met (Fig. 4.10).  
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Figure 4.9: The relationship between the inventory level of conforming and defective items and the time when 

𝒕 ≥ 𝑻𝑷. 
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The total shortage,𝑆, is obtained from Eq. 4.32. We compute the total inventory level as 

follows: 

                                            𝐼 =
1

2

𝐼𝑚𝑎𝑥
2

𝑃(1−�̀�)−𝐷
+
1

2

𝐼𝑚𝑎𝑥
2

𝑃𝑠−𝐷
                                   (4.40) 

where, 

𝐼𝑚𝑎𝑥 = 𝑇𝑃 . [𝑃(1 − �̀�) − 𝐷] 

Thus, 

                                               𝐼 =
−((−1+�̀�)𝑃+Ps)𝑄

2((−1+�̀�)𝑃+𝐷)

2𝑃2(Ps−𝐷)
                                    (4.41) 

Also, it may be noticed as, 

                                        𝑡 = 𝑇𝑃 =
𝑄

𝑃
          and        𝑇 −

𝑆𝑚𝑎𝑥

𝐷
≤ 𝑇𝑃 + 𝑇𝑠 < 𝑇 

the condition 4.39 might not be satisfied.  
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Figure 4.10: The relationship between the inventory level of conforming and  defective items and the time when 

processing the defective items reaches the cycle end zone and 𝒕 ≥ 𝑻𝑷. 
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The lower and upper bounds of 𝑡 for each case and sub-case are summarized as follows: 

The case of 𝒕 ≤ 𝑻𝟎 

1. Shortage is not met while  processing the defective items: 

𝑡 ≤ 𝑇0                          and                        𝑡 + 𝑇𝑠 ≤ 𝑇0 

Thus: 𝑡 ≤
𝑆𝑚𝑎𝑥 

(𝑃−𝐷)
            and                  𝑡 ≤

𝑆𝑚𝑎𝑥

(𝑃−𝐷)(1+
𝑃.�̀�

𝑃𝑠
)
 

2. Shortage is met before processing the defective items is completed: 

𝑡 ≤ 𝑇0                            and              𝑇0 ≤ 𝑡 + 𝑇𝑠 < 𝑇𝑃 

Thus,  

𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
                               and             

𝑆𝑚𝑎𝑥

(𝑃−𝐷)(1+
𝑃.�̀�

𝑃𝑠
)
≤ 𝑡 <

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
 

3. Processing the defective items exceeds 𝑇𝑃: 

𝑡 ≤ 𝑇0                                     and             𝑇𝑃 ≤ 𝑡 + 𝑇𝑠 < 𝑇 −
𝑆𝑚𝑎𝑥

𝐷
 

Thus, 

 𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
                                and                        

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
≤ 𝑡 <

𝑄−𝑆𝑚𝑎𝑥

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
 

4. Processing the defective items reaches the cycle end zone: 

𝑡 ≤ 𝑇0                                       and                𝑇 −
𝑆𝑚𝑎𝑥

𝐷
≤ 𝑡 + 𝑇𝑠 < 𝑇 

Thus: 𝑡 ≤
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
               and               

𝑄−𝑆𝑚𝑎𝑥

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
≤ 𝑡 <

𝑄

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
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The Case of 𝑻𝟎 ≤ 𝒕 < 𝑻𝑷 

1. Shortage is met before processing the defective items is completed: 

𝑇0 ≤ 𝑡 < 𝑇𝑃                   and          𝑇0 ≤ 𝑡 + 𝑇𝑠 < 𝑇𝑃 

Thus, 
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
                       and           

𝑆𝑚𝑎𝑥

[𝑃(1−�̀�)−𝐷](1+
𝑃 �̀�

𝑃𝑠
)
 < 𝑡 <

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
 

2. Processing the defective items exceeds 𝑇𝑃: 

𝑇0 ≤ 𝑡 < 𝑇𝑃                                and              𝑇𝑃 ≤ 𝑡 + 𝑇𝑠 < 𝑇 −
𝑆𝑚𝑎𝑥

𝐷
 

Thus, 
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
                         and                            

𝑄

𝑃[1+
𝑃 �̀�

𝑃𝑠
]
≤ 𝑡 <

𝑄−𝑆𝑚𝑎𝑥

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
 

3. Processing the defective items reaches the cycle end zone: 

𝑇0 ≤ 𝑡 < 𝑇𝑃                          and         𝑇 −
𝑆𝑚𝑎𝑥

𝐷
≤ 𝑡 + 𝑇𝑠 < 𝑇 

Thus: 
𝑆𝑚𝑎𝑥

𝑃(1−�̀�)−𝐷
≤ 𝑡 <

𝑄

𝑃
               and                   

𝑄−𝑆𝑚𝑎𝑥

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
≤ 𝑡 <

𝑄

𝐷[1+
𝑃 �̀�

𝑃𝑠
]
 

 

The case of 𝒕 ≥ 𝑻𝑷 

1. Processing the defective items exceeds 𝑇𝑃: 

𝑡 = 𝑇𝑃 =
𝑄

𝑃
                              and            𝑇𝑃 ≤ 𝑇𝑃 + 𝑇𝑠 < 𝑇 −

𝑆𝑚𝑎𝑥

𝐷
 

2. Processing the defective items reaches the cycle end zone: 

𝑡 = 𝑇𝑃 =
𝑄

𝑃
                            and           𝑇 −

𝑆𝑚𝑎𝑥

𝐷
≤ 𝑇𝑃 + 𝑇𝑠 < 𝑇 
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10 CHAPTER 5 

11 THE OPTIMAL LOT SIZE WITH RANDOM 

INSPECTION ERRORS AND PROCESSED ITEMS SOLD 

AT A SECONDARY MARKET 

 

In this chapter we treat models discussed in Chapter 4 as if the inspection errors are 

random variables. Moreover, we assume that defective items that are further processed 

will be sold at a reduced cost at a secondary market. 

  

5.1 Random Inspection Errors and Processed Items Sold at  

a Secondary Market:   

5.1.1 Random Inspection Errors: 

Assuming that inspection errors are fixed or constant is not always a valid assumption. 

Random inspection errors are more likely to take place in practice such that the fractions 

of Type I and II errors are calculated according to some probability distribution. That is, 

𝑒1 (a probability of conforming item is classified as non-conforming) and 𝑒2 (a 

probability of non-conforming item is classified as conforming) are randomly distributed. 

The expected value of defective items is taken as follows: 

�̀� = 𝑒1 + 𝑑(1 − 𝑒1 − 𝑒2) 
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 Thus, 

                                       𝐸(𝑑)̀ = 𝐸(𝑒1) + 𝑑[1 − 𝐸(𝑒1) − 𝐸(𝑒2)]                                (5.1) 

and 

                                     𝑉(𝑑)̀ = 𝑉(𝑒1) + 0 − 𝑑
2 𝑉(𝑒1) − 𝑑

2 𝑉(𝑒2)                              (5.2) 

We assume both types of inspection errors are normally distributed then, 

𝑒1~ 𝑁(𝜇1, 𝜎1) and 𝑒2~ 𝑁(𝜇2, 𝜎2) . Hence, Eq. 5.1 and 5.2 become, 

                                              𝐸(𝑑)̀ = 𝜇1 + 𝑑(1 − 𝜇1 − 𝜇2)                                          (5.3) 

                                             𝑉(�̀�) = 𝜎1
2 − 𝑑2 𝜎1

2 − 𝑑2 𝜎2
2                                        (5.4) 

Therefore, the expected value of 𝐸(𝑑)̀  is given by Eq. 5.3 and its variance is given by Eq. 

5.4.  

In this case 𝑒1 + 𝑒2 = 𝑒, is also a normal random variable with the probability density 

function given as: 

                                                     𝑔(𝑒) =
1

𝑉(�̀�)√2𝜋
𝑒
−(𝑒−𝐸(𝑑)̀ )2

2 𝜎2                                          (5.5) 
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5.1.2 Further Processed Items Sold at a Secondary Market: 

When apparently defective items are detected, they are sent for further processing. In this 

model, the processed items are not perfect as new and therefore will be sold at a reduced 

cost at a secondary market. Also, we assume that the items processing starts after 𝑡 ends. 

This makes the behavior of further processed items inventory level completely 

independent of the behavior of apparently perfect items inventory level. Thus, the 

behavior of further processed items inventory level always follows the graph in Fig. 5.1. 

The average inventory level of processed items is obtained from Fig. 5.1 as follows: 

                                          𝐼�̅� =  
1

2
 𝑡2.𝑃 .𝐸(�̀�)+

1

2
 𝑇𝐶

2.𝑃𝐶

𝑇
                                     (5.6) 

One condition must be satisfied to ensure that the adjustment machine period and items 

processing period will not exceed the cycle length. That is, 

                                                              𝑡 + 𝑇𝐶 ≤ 𝑇                                                      (5.7) 

Thus,  

                                                      𝑡 +
𝑡 𝑃 𝐸(�̀�)

𝑃𝑐
≤
𝑄−𝑡 𝑃 𝐸(�̀�)

𝐷
                                             (5.8) 

We also observe that the behavior of the apparently perfect items inventory level as 𝑡 

varies, is exactly what we obtained in Chapter 3, except that the inspection errors are 

random variables.  
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Figure 5.1: The behavior of the further processed items and the inventory level. 
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5.2 The case when 𝒕 is deterministic:   

There are three cases to be considered.  In Section 5.2.1 we discuss the case of t < T0, 

where T0 is the period that starts with the resumption of the production cycle and ends 

when shortage is zero, as shown in Fig. 3.1. In Section 5.2.3 we discuss the case of T0 ≤ t 

< Tp where Tp  is the production period.  Finally, in Section 5.2.5, we consider the case 

where t ≥ Tp. 

Total cost per cycle is obtained as follows: 

𝑇𝐶𝑌(𝑄, 𝑆𝑚𝑎𝑥) = 

𝐴 𝐷

𝑄−𝑡 𝑃 𝐸(�̀�)
+ 𝐶 𝐷 +

𝑟 𝑡 𝑃 𝐸(�̀�)𝐷

𝑄−𝑡 𝑃 𝐸(�̀�)
+

𝐴𝑑  𝑡  𝐷

𝑄−𝑡 𝑃 𝐸(�̀�)
+ 𝐷 𝜇 𝐶𝑃 + 𝐷 ∫

1

𝜎√2𝜋
𝑒
−(𝑋−𝜇)2

2𝜎2  𝐾(𝑋 − 𝜇)2𝑑𝑥
𝑈𝑆𝐿

𝐿𝑆𝐿
  

+
(𝑡.𝑃.𝐸(�̀�))𝐷

𝑄−𝑡 𝑃 𝐸(�̀�)
(𝑅𝐿 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥 

𝐿𝑆𝐿

0
+ 𝑅𝑈 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥

∞

𝑈𝑆𝐿
) + 𝐼ℎ̅ + �̅�𝑐 ℎ̂ + �̂� 𝑆̅ + �̌� 𝑆𝑚𝑎𝑥       (5.9) 

5.2.1 The case of 𝒕 < 𝑻𝟎 

By referring to Fig. 3.1 where we replace 𝑑 by 𝐸(�̀�), we calculate the average inventory 

as follows: 

                                            𝐼 ̅ =  
(𝑃(−𝑄+𝑆𝑚𝑎𝑥)+𝐸(�̀�) 𝑃

2𝑡+𝑄𝐷)2

2𝑃(𝑄−𝐸(�̀�) 𝑃 𝑡)(𝑃−𝐷)
                                         (5.10) 

Also, the average shortage is calculated as follows: 

                             �̅� =  
−𝑃(𝑆𝑚𝑎𝑥

2 +2 𝐸(�̀�) 𝐷 𝑆𝑚𝑎𝑥 𝑡+𝐸(�̀�) 𝐷(𝐷+(−1+𝐸(�̀�))𝑃) 𝑡
2)

2(𝐷−𝑃)(𝑄−𝐸(�̀�) 𝑃 𝑡)
                       (5.11) 
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5.2.2 Numerical Example: 

Let us consider the following data:  

𝑃 = 25,000 units per year 

𝐷 = 23,000 units per year 

𝑃𝐶= 1,500 units per year 

𝑟  = $1 per unit 

ℎ = $ 4 per unit/year 

ℎ𝐶 = $ 2 per unit/year 

𝐶 = $ 5 per unit 

𝐶𝑃= $ 3 per unit 

𝐴𝑑 = $ 50 per hour 

𝐴  = $ 100 per order 

�̂�= $ 5 per unit/year 

�̌�= $ 0.3 

𝑅𝐿 = $ 4 per unit 

𝑅𝑈 = $ 6 per unit 

𝜇 = 5 

𝜎 = 0.05 

𝑈𝑆𝐿 = 5.2 

𝐿𝑆𝐿 = 4.8 

𝐾= $ 120  

𝜇1 = 0.02 

𝜇2 = 0.03 

𝑑 = 0.0455 

 

The optimal values of the order quantity and the maximum shortage permitted when 𝑡 =

2 ℎ𝑜𝑢𝑟𝑠 are 𝑄∗= 131,730 units and 𝑆𝑚𝑎𝑥
∗ = 1,601.64 units with a minimum cost of 

$ 490,002. The plots of TCY versus Q at 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥
∗  and TCY versus 𝑆𝑚𝑎𝑥 at 𝑄 = 𝑄∗ 

are shown in Fig.  5.2 and 5.3 respectively.  

Note that 2 = 𝑡 < 𝑇0 = 2.38 which means that this case applies. Table 5.1 and Fig. 5.4  

show the effect of increasing 𝑡 on 𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌.  
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Figure 5.2: The behavior of Q as 𝑺𝒎𝒂𝒙

∗  is fixed. 

 

 

 

 

 

  



96 

 

 

 

 

 

 

 

 

 
Figure 5.3: The behavior of 𝑺𝒎𝒂𝒙 as 𝑸∗ is fixed. 
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Table 5.1: The effect of increasing 𝒕 on 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 

𝑡 𝑄 𝑆𝑚𝑎𝑥 𝑇𝐶𝑌 

0 4,847.11 111.01 468,007 

0.4 58,943.48 1,430.28 477,511 

0.8 83,357.05 1,694.17 481,739 

1.2 102,099 1,756.4 484,959 

1.6 117,872 1,713.07 487,650 

2 131,730 1,601.64 490,002 

2.4 144,214 1,441.38 492,109 

2.8 155,649 1,243.79 494,029 
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Figure 5.4: The behavior of  𝑸 and 𝑺𝒎𝒂𝒙 as t increases for case: 𝒕 < 𝐓𝟎 
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Figure 5.5: Three dimensional plot of   𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 
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It is obvious from Table 5.1 and Fig. 5.4 that as 𝑡 increases both 𝑄 and 𝑆𝑚𝑎𝑥 increase as 

well, and as a result, 𝑇𝐶𝑌 goes up.  Indeed as t increases more units are discarded and 

hence Q should increase to compensate for these units. However, at 𝑡 > 2, 𝑆𝑚𝑎𝑥 goes 

down. Fig. 5.5 shows the interaction of  𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌.  

5.2.3 The case of  𝑻𝟎 ≤  𝒕 < 𝑻𝑷 

Referring to Fig. 3.5, the average inventory level is obtained as follows: 

 𝐼 ̅ =
𝐷(−

(𝑆𝑚𝑎𝑥+𝑡((−1+𝐸(�̀�) )𝑃+𝐷))
2

(−1+𝐸(�̀�))𝑃+𝐷
+
(𝑆𝑚𝑎𝑥+𝐸(�̀�)𝑃𝑡+𝑄(−1+

𝐷
𝑃
))2

𝐷
+
(−𝑄+𝑃 𝑡)((−1+2 𝐸(�̀�) )𝑃2𝑡+𝑄 𝐷+𝑃(−𝑄+2 𝑆𝑚𝑎𝑥+𝑡 𝐷))

𝑃2
)

2(𝑄−𝐸(�̀�) 𝑃 𝑡)
   (5.12) 

Also, the average shortage is calculated as follows: 

                          �̅� =
1

𝑇
 
𝑆𝑚𝑎𝑥
2  𝑃 (1−𝐸(�̀�))

2(𝑃(1−𝐸(�̀�))−𝐷)𝐷
= 

𝑆𝑚𝑎𝑥
2  𝑃 (1−𝐸(�̀�))

2 (𝑄−𝑡.𝑃.𝐸(�̀�)) (𝑃(1−𝐸(�̀�))−𝐷)
                         (5.13) 

Therefore, total cost per year is obtained from Eq. 5.9. 

5.2.4 Numerical Example: 

Let’s consider the data given in section 5.2.2. This case applies for any value of 𝑡 > 2.8 

hours, and this aspect can be derived from Eq. 5.8 as follows: 

𝑡 +
𝑡 𝑃 𝐸(�̀�)

𝑃𝑐
≤
𝑄 − 𝑡 𝑃 𝐸(�̀�)

𝐷
 

Thus: 

𝑄 > 𝑡 . 𝐷 (1 +
𝑃 𝐸(�̀�)

𝑃𝑐
+
𝑃 𝐸(�̀�)

𝐷
) and this yields that 

𝑄

𝑃
> 𝑡. 

Therefore, any given value of 𝑡 > 2.8 hours is applicable on this model. Now let’s 

consider t = 5 hours. The optimal values of the order quantity and the maximum 
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shortage permitted when are 𝑄∗= 244,084 units and 𝑆𝑚𝑎𝑥
∗ = 1,865.98 units with minimum 

cost of $ 503,210. The plots of TCY versus Q at 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥
∗  and TCY versus 𝑆𝑚𝑎𝑥 at 

𝑄 = 𝑄∗ are shown in Fig.  5.6 and Fig. 5.7, respectively.  

 Table 5.2 and Fig. 5.8 show the effect of increasing 𝑡 on 𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌. 

It is obvious from Table 5.2 and Fig. 5.8 that as 𝑡 increases both 𝑄 and 𝑆𝑚𝑎𝑥 increase as 

well, and as a result, 𝑇𝐶𝑌 goes up. Fig. 5.9 shows the interaction of  𝑄, 𝑆𝑚𝑎𝑥 and 𝑇𝐶𝑌. 

5.2.5 The case 𝐨𝐟 𝒕 ≥ 𝑻𝑷 

Referring to Fig. 3.9, the average inventory level is obtained as follows: 

                                          𝐼 ̅ = −
(𝑃((−1+𝐸(�̀�))𝑄+𝑆𝑚𝑎𝑥)+𝑄 𝐷)

2

2 𝑃 𝑄 ((−1+𝐸(�̀�))𝑃+𝐷)
                                         (5.14) 

Also, the average shortage is calculated as follows:                                

                                   �̅� =
1

𝑇
 
𝑆𝑚𝑎𝑥
2  𝑃 (1−𝐸(�̀�))

2(𝑃(1−𝐸(�̀�))−𝐷)𝐷
=

𝑆𝑚𝑎𝑥
2  𝑃

2 𝑄(𝑃(1−𝐸(�̀�))−𝐷)
                                 (5.15) 

Therefore, total cost per cycle is obtained from Eq. 5.9. 

The following conditions must be satisfied: 

𝑇𝑃 + 𝑇𝐶 ≤ 𝑇 

𝑄

𝑃
+
𝑄 𝐸(�̀�)

𝑃𝑐
≤
𝑄(1 −  𝐸(�̀�))

𝐷
 

                                                Thus: 
1

𝑃
+
𝐸(�̀�)

𝑃𝑐
≤  

1− 𝐸(�̀�)

𝐷
                                              (5.16) 
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In other words condition 5.16 is satisfied only if 𝑃 and 𝑃𝑐 are very large quantities, and 

𝐸(�̀�) and 𝐷 are small enough. So, when we refer to the data given in Section 5.2.2, we 

find that this case does not apply. 
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Figure 5.6: The behavior of Q as 𝑺𝒎𝒂𝒙

∗  is fixed. 
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Figure 5.7: The behavior of 𝑺𝒎𝒂𝒙 as 𝑸∗ is fixed. 
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Table 5.2: The effect of increasing 𝒕 on 𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 

𝑡 𝑄 𝑆𝑚𝑎𝑥 𝑇𝐶𝑌 

3 162,394 1,240.98 494,934 

4 198,929 1,519.18 499,190 

5 244,084 1,865.98 503,210 

6 292,901 2,241.92 507,220 

7 341,718 2,617.86 511,231 

8 390,535 2,993.8 515,241 

9 439,352 3,369.74 519,253 

10 488,169 3,745.68 523,264 
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Figure 5.8: The behavior of  𝑸 and 𝑺𝒎𝒂𝒙 as t increases for the case of 𝑻𝟎 ≤  𝒕 < 𝑻𝑷 
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Figure 5.9: Three dimensional plot of  𝑸, 𝑺𝒎𝒂𝒙 and 𝑻𝑪𝒀 
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5.3 The Case when  𝒕 is a random variable: 

In this section we treat 𝑡 as a random variable and hence some probability density 

distribution 𝑓(𝑡) must be defined. Section 5.3.1 considers model formulation and Section 

5.3.2 provides a numerical example. 

5.3.1 Model Formulation: 

As 𝑡 ,is a random variable, the three cases are combined based on the renewal theory, 

according to Eq. 2.1. The limits of integrals refer to the period during which each case 

may occur according to Table 5.3. 

Thus: 

𝐸𝑖[𝑇𝐶(𝑄, 𝑆𝑚𝑎𝑥)] = ∫ (𝐴 + 𝐶 𝑄 + 𝑟 𝑡 𝑃 𝐸(�̀�) + 𝐴𝑑  𝑡 + 𝑄 𝜇 𝐶𝑃 + 𝑄 ∫
1

𝜎√2𝜋
𝑒
−(𝑋−𝜇)2

2𝜎2  𝐾(𝑋 −
𝑈𝑆𝐿

𝐿𝑆𝐿

𝑏𝑖

𝑎𝑖

𝜇)2𝑑𝑥 + (𝑡. 𝑃. 𝐸(�̀�)) (𝑅𝐿 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥 
𝐿𝑆𝐿

0
+ 𝑅𝑈 ∫ 𝑔(𝑥; 𝜇)𝑑𝑥

∞

𝑈𝑆𝐿
) + 𝑇𝐼ℎ̅ + 𝑇𝐼�̅�ℎ𝐶 + �̂�𝑇 𝑆̅ +

�̌� 𝑆𝑚𝑎𝑥)𝑓(𝑡) 𝑑𝑡                                                                                                               (5.17) 

Moreover, the expected cycle length is determined as follows:  

                                  𝐸𝑖[𝑇(𝑄, 𝑆𝑚𝑎𝑥)] = ∫ (
𝑄−𝑡 𝑃 𝐸(�̀�) 

𝐷
)𝑓(𝑡) 𝑑𝑡

𝑏𝑖

𝑎𝑖

                                 (5.18) 

where, 𝑎 and 𝑏 are the lower and upper bounds of each integral, the index 𝑖 refers to the 

case number. Thus the expected total cost per cycle is obtained as follows:  

                                                       
∑ 𝐸𝑖[𝑇𝐶(𝑄,𝑆𝑚𝑎𝑥)]
3
𝑖=1

∑ 𝐸𝑖[𝑇(𝑄,𝑆𝑚𝑎𝑥)]
3
𝑖=1

                                         (5.19) 
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The objective of Eq. 5.19 is to find the optimal values of  𝑄 𝑎𝑛𝑑 𝑆𝑚𝑎𝑥 such that the total 

cost per cycle is minimized.            

 This model cannot be valid for any value of 𝑆𝑚𝑎𝑥 > 0. The condition 𝑇0 < 𝑇𝑃 or 

𝑆𝑚𝑎𝑥

𝑃(1−𝐸(�̀�))−𝐷
<
𝑄

𝑃
 must be satisfied, thus, 

                                                    𝑆𝑚𝑎𝑥 <
𝑄 [𝑃(1−𝐸(�̀�))−𝐷]

𝑃
                                             (5.20) 
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Table 5.3: The limits of integrals for the three cases. 

𝒊 𝒂𝒊 𝒃𝒊 

1  0 
 

𝑆𝑚𝑎𝑥

𝑃(1−𝐸(�̀�))−𝐷
 

2 
𝑆𝑚𝑎𝑥

𝑃(1−𝐸(�̀�))−𝐷
   

𝑄

𝑃
 

3 
𝑄

𝑃
   ∞ 
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5.3.2 Numerical Example: 

Let us consider the following data:  

𝑃 = 25,000 units per year 

𝐷 = 23,000 units per year 

𝑃𝐶= 1,500 units per year 

𝑟  = $1 per unit 

ℎ = $ 4 per unit/year 

ℎ𝐶 = $ 2 per unit/year 

𝐶 = $ 5 per unit 

𝐶𝑃= $ 3 per unit 

𝐴𝑑 = $ 50 per hour 

𝐴  = $ 100 per order 

�̂�= $ 5 per unit/year 

�̌�= $ 0.3 

𝑅𝐿 = $ 4 per unit 

𝑅𝑈 = $ 6 per unit 

𝜇 = 5 

𝜎 = 0.05 

𝑈𝑆𝐿 = 5.2 

𝐿𝑆𝐿 = 4.8 

𝐾= $ 120  

𝜇1 = 0.02 

𝜇2 = 0.03 

𝑑 = 0.0455 

 

When we use the above data, we discard the third case because the condition 5.16 is not 

satisfied. Suppose that the adjustment period 𝑡, is a uniform random variable where 

f(t) =   1/8,  0 ≤ t ≤ 8. We find that the optimal values of order quantity and maximum 

shortage permitted are obtained at  𝑄∗=219,250 units and 𝑆𝑚𝑎𝑥
∗ =2,284.71 units with a 

minimum cost of $ 502,631. The plots of TC versus Q at 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥
∗  and TCY versus 

𝑆𝑚𝑎𝑥 at 𝑄 = 𝑄∗ are shown in Fig. 5.9 and 5.10, respectively. 
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Figure 5.10: The behavior of Q as 𝑺𝒎𝒂𝒙

∗  is fixed. 

 

 

 

 

 

 

10000 20000 30000 40000 50000 60000
Q

200000

400000

600000

800000

1.0 106

1.2 106

TC



113 

 

 

 

 

 

 

 

 

 
Figure 5.11: The behavior of 𝑺𝒎𝒂𝒙 as 𝑸∗ is fixed. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this chapter we summarize the models proposed in the previous chapters and briefly 

describe the results obtained from these models. Studies which can be undertaken in the 

future and possible extensions to the proposed models are also discussed.  This chapter is 

divided into two sections; in Section 6.1 we summarize our work, and in Section 6.2 we 

propose several ideas which could be considered as future extensions. 

 

6.1 Summary: 

The research discussed in this thesis investigated economic production quantity models 

where items with imperfect quality are produced during the process adjustment period. 

The main objective of these models is to find the allowed lot size quantity and 1shortage 

that will result in a minimum inventory and production cost. 

In Chapter 1 we presented a literature review of the researches that are relevant to 

our work. The issue of the process adjustment period has not been addressed in 

the way we did in our research. Moreover, we found that there are not many 

papers which address the concept of the process adjustment period. We 

introduced the concept of the process adjustment period, during which all 

machines, equipment and tools associated with the production process are 
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properly adjusted while the production is taking place. In some chemical 

processes, the machine adjustment period is the time taken for the attainmentofthe 

proper chemical composition. Some practical real life examples such as milling 

techniques, metal surface finishing and the steel making process are provided in 

Chapter 1. 

 In Chapter 2 “The Optimal Lot Size under Machine Adjustment Period” model is 

discussed. The two cases considered are when the machine adjustment takes place 

during the production period, 𝑡 <  𝑇𝑃, and when the machine adjustment takes a 

longer time such that it exceeds the production period ,𝑡 ≥  𝑇𝑃. We treat the 

machine adjustment period, 𝑡, as a deterministic value and a random variable and 

the order quantity size as the decision variable, 𝑄. We developed a mathematical 

model representing each case. When 𝑡 is a random variable the two cases are 

combined mathematically, based on the renewal theory. Numerical examples for  

𝑡 as a deterministic value and a random variable are provided for illustration 

purposes. We also showed that the optimal production size increases as the 

adjustment period increases, then at a certain value, it becomes constant.  

 

 In Chapter 3 we discussed “The Optimal Lot Size under Maximum Shortage 

Allowance”. In this model three cases of the machine adjustment and screening 

process, time for which is 𝑡, are considered. It may take place during the shortage 

period, t < T0, or could take place within production period, T0 ≤ t < Tp, or can 

exceed the production period, t ≥ Tp. Moreover, 𝑡 is treated as a fixed value and as 

a random variable. A mathematical model was developed and a numerical 

example is provided for each of the three cases of 𝑡. We showed that as 𝑡 
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increases both 𝑄 and 𝑆𝑚𝑎𝑥 increase for t < T0 and T0 ≤ t < Tp , and as a result, 𝑇𝐶𝑌 

goes up. For t ≥ Tp, 𝑄 and 𝑆𝑚𝑎𝑥 become constant.  

 

 Chapter 4 titled “The Optimal Lot Size and Shortage allowance under Processing 

the defective items with Taguchi’s Quality Loss Function and Inspection Errors”, 

incorporates three contributions; processing the defective items , Taguchi’s 

quality loss function and inspection errors.  In processing the defective items , the 

apparent defective items are sent to the recycling process plant which has an 

inventory holding cost of ℎ̂. Once defective items have been recycled, they 

become as good as new and are sent back to the original plant to cover the 

demand. In Taguchi’s quality loss function, the product’s quality distribution is 

assumed to follow a normal distribution function and the loss function in our 

model is referred to as “nominal is best”. Two types of errors are committed in the 

inspection process. Type I error (𝑒1) is committed when a conforming item is 

classified as non-conforming and Type II error (𝑒2) is committed when a non-

conforming item is classified as conforming. Both types of errors are assumed to 

be known. Processing the defective items yields four different cases of 𝑡 which is 

treated as a fixed value. The four cases and their sub-cases are shown in table 4.1. 

We developed a mathematical model and provided a numerical example for each 

case where the decision variables are 𝑄 and 𝑆𝑚𝑎𝑥.   
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 In Chapter 5 another extension titled “The Optimal Lot Size with Random 

Inspection Errors and Processed Items Sold at Secondary Market” is discussed. In 

this extension the fractions of Type I and II errors are randomly distributed and 

the processed items are not defect-free and therefore will be sold at a reduced 

price on a secondary market. Also, we assume that the processing of the items 

starts after 𝑡 has lapsed and 𝑡 is treated as a fixed value and as a random variable. 

In this model also three cases of the machine adjusting and screening process, 

time for which is 𝑡, are considered. It may take place during the shortage period, t 

< T0, or could take place within the production period, T0 ≤ t < Tp , or can exceed 

the production period, t ≥ Tp. We developed a mathematical model and provide a 

numerical example for each case where the decision variables are 𝑄 and 𝑆𝑚𝑎𝑥.   
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6.2 Future Work: 

The models that we have developed in this work can be extended in several ways as 

shown below: 

 Integrating this model with design of control charts.  

 Treating the adjusting machine period as a fuzzy.  

 Incorporating the lead time and the stochastic demand.  

 Incorporating more than one adjusting machine period into a cycle.  

 Integrating this model with vendor selection problem in a supply chain.  
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