
Image Processing & Communications, vol. 21, no. 3, pp.15-26
DOI: 10.1515/ipc-2016-0013 15

MAZE EXPLORATION ALGORITHM FOR SMALL MOBILE PLATFORMS

ŁUKASZ BIENIAS KRZYSZTOF SZCZEPAŃSKI PIOTR DUCH

Institute of Applied Computer Science,

lukaszbienias@gmail.com

Abstract. An algorithm that enables efficient

maze exploration is presented in the paper.

The algorithm involves two phases: first the

whole maze is explored in an ordered way and

then, the shortest possible way out is deter-

mined. The algorithm has been derived in a

way that combines main advantages of the two

known labirynth-exploration algorithms: "Wall

follower" and "Trémaux’s algorithm". The al-

gorithm has been tested using an autonomous

vehicle, controlled by Arduino UNO, with two

DC engines, ultrasonic sensors and gyroscope.

It has been shown that the proposed approach

provides a few crucial advantages with respect

to already known solutions.

Key words. maze exploration, small mobile

platforms, arduino

1 Introduction

An amount of standalone devices which operates fully au-

tonomously is growing every day. Nowadays, technology

development is driven by a need to delegate different tasks

to robots instead of people. There are many reasons for

that, from time saving, through increasing precision, to

avoiding threats to life or health. Tasks where autonomous

vehicles can become especially attractive is exploration

of different hazardous areas, such as contaminated zones,

collapsed buildings, mines [9], inaccessible enivronments

such as sea bed [3] or volcanos [2] etc. Functionalities

that need to be supported by autonomous vehicle com-

puters, necessary for enabling unmanned exploration, in-

clude avoiding obstacles and path-finding.

One of the tasks that autonomous vehicles could be

confronted with is mapping a maze and determining ways

out of it. To research various maze exploration strategies,

the authors developed a small laboratory setup, compris-

ing different mazes and a mobile platform operating under

control of various maze-exploration algorithms.

An objective of the paper is to present a novel algorithm

for real-time maze mapping and shortest-path determina-

tion, which has been developed as an alternative to ex-

isting approaches. The algorithm has been implemented

on the two-wheeled platform, controlled by Arduino Uno

and equipped with a set of sensors, including encoders,

ultrasound sensors and gyroscopes. Performance of the

proposed method has been evaluated and compared with

performance of alternative solutions.

A structure of the paper is the following. Selected

existing maze solving algorithms are presented in Sec-



16 Ł. Bienias, K. Szczepański, P. Duch

tion 2. The proposed algorithm for labirynth exploration

is described in Section 3 and the mobile platform used

throughout experiments is presented in Section 4. Sec-

tion 5 presents results of experimental evaluation of the

considered algorithms and Section 6 summarizes the pa-

per.

2 Maze solving algorithms

Currently two different types of maze solving algorithms

can be distinguished. The first type of algorithms are de-

signed to be used inside a maze. It means that the traveller,

who is going to explore a maze, has no prior knowledge

about its configuration. On the other hand, the second

group of algorithms is designed to be used by a computer

or a person, who knows maze structure and can analyze it

off-line. In the latter case, the way out can be determined

in the most efficient way, before entering the maze. All

dead-ends, which actually pose the greatest challenge for

algorithms of the first group, are automatically avoided.

Unfortunately, the real life conditions are not as com-

fortable as assumptions of the second type of algorithms.

In the majority of cases, a traveller does not have any per-

spective on the whole area, which should be explored. As

a consequence, algorithms useful in real life scenarios, fall

into the first of the aforementioned categories.

2.1 Left Wall Follower

One of the most popular algorithms, used to find the way

out of the maze is "Wall Follower"[7]. The algorithm has

two variants "Left Wall Follower" ("LWF") and "Right

Wall Follower" ("RWF"). The principle of operation is

analogous for both methods, so in what follows the logic

of "Left Wall Follower" is presented. The main idea of

this algorithm is to continuously follow the left wall inside

the maze until the way out is found. The corresponding

algorithm involves the following steps:

Step 1: Sense the left wall.

Fig. 1: "Left Wall Follower" solvable maze [7]

Step 2: If left wall present, then set flag1 to 1, else set

flag1 to 0.

Step 3: If flag1 is 1, then go to Step 4, else turn left by

90 degrees.

Step 4: Sense the front wall.

Step 5: If front wall present, then set flagf to 1, else set

flagf to 0.

Step 6: If flagf is 0, then move straight, else turn right by

90 degrees.

Step 7: Return to Step 1.

Even though this logic ensures that the maze is tra-

versed in an ordered way, it does not always guarantee

that the way out will be found. If the exit from a labyrinth

is placed inside the maze, while a structure of the maze

contains free standing walls, a traveller can fall into an

endless loop, which in turn would prevent from finding

the solution. Sample result of applying "LWF" algorithm

on a simple maze is presented in Fig. 1.

2.2 Pledge Algorithm

"Pledge Algorithm" is a modified version of the previ-

ously described "Left Wall Follower" algorithm [6]. The



Image Processing & Communications, vol. 21, no. 3, pp. 15-26 17

main advantage of this method comparing to the "LWF"

is the fact that "Pledge Algorithm" is able to find way out

of any labyrinth, even if the maze is disjointed and the

solver starts inside the maze. Falling into an infinite loop

is impossible, thanks to the ability of jumping between

"islands". As a consequence, "Pledge Algorithm" can find

its implementation for maze escaping robots.

The first step of the method it to pick a direction and

always move towards it when possible. As soon as wall is

faced, the "Left Wall Follower" algorithm is used until the

chosen direction is available again. As long as "Left Wall

Follower" method is used, the angles turned are counted.

When the solver is facing the original direction again, and

the angular sum of the turns made is 0, the solver leaves

the obstacle and continues moving in its original direc-

tion. The counting ensures the traveller to be able to reach

the far side of the island he is currently on, and jump to

the next island in the chosen direction. This algorithm will

keep on island jumping in that direction until the bound-

ary wall will be faced, at which point "Left Wall Follower"

takes the traveller to the exit.

This algorithm allows a user to find his way from any

point inside to an outer exit of any finite two-dimensional

maze, regardless of the initial position of the solver. How-

ever, this algorithm will not work in doing the reverse,

which would be finding the way from an entrance on the

outside of a maze to some end goal within it.

2.3 Flood Fill Algorithm

Another very interesting approach in solving mazes is

provided by "Flood Fill Algorithm". To best understand

the principle of operation of this algorithm, it can be imag-

ined that the solver stands in the maze, which has non-

permeable walls and flat level floors. The hosepipe is sit-

uated in the entrance of the maze and water starts to fill

the maze from this point. The shortest path to the exit will

be indicated by the first drop of water that arrives there.

Fig. 2 presents an example of maze solved by this method.

Fig. 2: "Flood Fill Algorithm" sample maze solved

Solution is found by starting at the destination cell and fol-

lowing the path of decreasing numbers. At this point, it

should be clear why the algorithm is called flood fill. This

method not only finds all possible solutions, but also in-

dicates the best one and ensures exploration of the whole

maze [7]. Although this algorithm seems very effective,

its implementation on the mobile platform is difficult, as

it requires knowledge of the structure of the maze before

entering into it.

2.4 Tremaux’s Algorithm

As it was stated before, "Left Wall Follower" strategy en-

ables finding the way out, in general it is beneficial also

to learn explored environments, as this would provide effi-

cient behavior in potential future tasks related to the maze.

Mobile platform, controlled by "LWF", would not be able

to draw conclusions from its previous experiences.

Several more sophisticated algorithms have been in-

troduced so far. One of them is "Trémaux’s algorithm",

which was proposed by Charles Pierre Tremaux in the

nineteenth century [8]. In its original version, the algo-



18 Ł. Bienias, K. Szczepański, P. Duch

rithm requires marking an already travelled path with a

line on a floor [7]. The most important rule of this ap-

proach is that no path can be traversed more than twice.

When a traveller finds a dead-end or the junction, which

is already marked, he has to turn around and go back the

way he came. The last assumption prevents from moving

around in circles. Subsequently, when a new junction is

found, direction in which he has to follow is chosen ran-

domly. Three types of passages can be distinguished in

Trémaux’s algorithm:

• empty, which means that the passage wasn’t ex-

plored yet,

• marked once, pointing that the path was visited ex-

actly once,

• marked twice, meaning that traveller was going that

way and was forced to turn back, which indicates the

wrong path.

Two different results of the maze exploration are pos-

sible. The first one is when a solution is found - the path

marked exactly once indicates a way out of the maze. The

second result describes the case, in which there is no exit

from the maze. Such situation occurs when at the same

time the traveller comes back to the start point and all

paths are marked twice. Fig. 3 presents exploration his-

tory using "Trémaux’s algorithm" in the exemplary maze.

There are many advantages of "Trémaux’s algorithm",

which makes it worth consideration for real life situations.

The method is designed to be used by a traveller who is

inside the maze. Moreover, a logic of the algorithm guar-

antees to work for any maze. Another benefit of this logic

is the fact that the way out of a maze is mapped, in other

words, "remembered". During the second and subsequent

visit in a maze, it will be possible for a traveller to head

directly to the exit of the maze, following the saved way

and avoiding all dead-ends.

On the other hand, a few disadvantages can be pointed

out. Firstly, the logic assumes random choice of direc-

Fig. 3: "Trémaux’s algorithm" sample maze solved [1]

tion, which should be followed in case of more than one

free passage going out of one junction. This introduces

some disorder, which can be avoided. Secondly, the algo-

rithm requires painting a line to mark the path, which in

real life conditions might be a problem. Thirdly, as it was

already mentioned, there is a possibility that not whole

maze will be traversed, which in turn may result in miss-

ing the shortest paths to the same exit.

The purpose of this project was to develop an algorithm

that meets two objectives: provides a complete maze map-

ping and produces information for generation of shortest

paths to exit. The proposed solution combines elements of

presented maze exploration algorithms with some novel

ideas and is explained in the following sections.

3 Proposed Algorithm

The proposed algorithm combines elements from the two

aforementioned methods: "Left Wall Follower" and "Tré-

maux’s algorithm" to ensure both maze exploration and

path finding functionalities.



Image Processing & Communications, vol. 21, no. 3, pp. 15-26 19

3.1 Algorithm description

The proposed algorithm uses "Left Wall Follower" rule,

which says that if it is possible, turn left. As a result,

a mobile platform that explores the maze, can do it in a

systematic way, which simplifies implementation of the

algorithm. The second functionality - path-finding - is

provided by the Trémaux method: already visited pas-

sages are marked and the information about traversed path

is stored in an array A[1..n][1..m] (where n and m de-

fines the size of the maze in the unit of number of cells).

As a result, all dead-ends as well as all passages, which

lead to the exit, are appropriately identified. Information

about all turns made on junctions encountered during ex-

ploration of the maze are stored on the stack, which is

initialized as empty.

The algorithm can be summarized in the following

steps:

Step 1: Explore a maze using "Left Wall Follower" rule

and store visited passages in an array A[1..n][1..m],

according to "Trémaux’s algorithm". If an exit is

found, then save the travelled path in a memory.

Step 2: If the whole maze is explored, then set a flagFull

to 1.

Step 3: If flagFull is 1, then choose the shortest path from

all stored ones and terminate the procedure, else go

to Step 4.

Step 4: If flagFull is 0, then go back to the first not visited

passage.

Step 5: Using "Left Wall Follower" rule explore unvisted

part of the maze virtually marking traversed pas-

sages.

Step 6: If exit is found, then save a path in the memory

and go to Step 2.

Step 7: If the start point is found and the stack is empty,

then go to Step 1.

Step 8: If the start point is found and the stack is not

empty, then reverse stack content, appropriately con-

vert values, save the path into a memory and go to

Step 1.

During the first stage of the algorithm, the first path

from the start point to the exit of a maze is found and

saved in a robot memory. From the start point informa-

tion about travelled path is kept in the memory (shape of

the path as well as the distance), the traveller is moving

forward until a junction or dead-end is met. If a new

passage is explored and a junction, which has not been

visited before is encountered, new passage is chosen us-

ing "LWF" rule. When a dead-end is met, traveller turns

around and goes the way he came, remembering that this

path led to a dead-end. The same action is taken when on

a new passage traveller finds a junction, which was visited

before. If a traveller is walking a passage which was vis-

ited before, and encounters a junction, a new passage, if

available, should be chosen using "LWF" rule. Otherwise,

using the same rule, an old passage, but only this which

was visited exactly once, can be chosen.

If a maze does not have a solution, a traveller will re-

turn to the start point. If an exit of a maze is found for

the first time, the second step of the algorithm is exe-

cuted. A traveller has to check if there are still any unex-

plored passages, and if so, continues the exploration and

explores unvisited branches. Only newly visited passages

are marked. Each time when a traveller finds the way out

of a maze the new path is additionally stored in the mem-

ory.

At this point, three different cases are possible. The

first scenario expects that the start point is found and the

memory containing information about current solution is

empty, which means that during backward exploration,

new solution was not found. In the second possible sit-

uation, start point is met and path representing solution of

the maze is stored in the temporary memory. This case

is the most complicated, since found solution is leading



20 Ł. Bienias, K. Szczepański, P. Duch

from the end to the start of a maze, which is opposite to the

desired. Performing a few appropriate operations, con-

version of the solution is made and saved in the memory

as one of possible solutions. The third situation occurs,

when traveller founds exit. In this case, full content of the

temporary memory is stored as a possible solution.

Finally, when the condition for exploring all places in

the maze is satisfied, traveller is going back to the be-

ginning of the maze using path stored in the temporary

memory. Afterwards, length of each saved solution can

be calculated and the shortest possible path is chosen. In

case of maze, which does not have a solution, traveller

will come back to the start point, marking all passages as

visited twice. Exit will not be found and no path will be

stored in the memory.

3.2 Algorithm implementation

To test the developed algorithm, it has been implemented

on a small mobile platform. This approach forced a spe-

cific way of implementation. Information about a path

is saved in a two dimensional array, which represents a

structure of the maze. In order to reduce the problem, it

was assumed that the starting position as well as a size of

the maze is known before entering it. In such a case, there

is no need to resize the array during the program execu-

tion. Each array cell reflects an exact position in the maze

(Fig. 4). Information about all turns made on junctions

encountered during exploration of the maze are stored in

a stack.

At the beginning the array is filled with zeros. Zeros

are equivalent to unvisited cells. Similarly to Trémaux’s

algorithm, a value of each visited cell is automatically in-

creased by one - a "virtual" line in the maze is drawn.

As mentioned before, a traveller is moving in accordance

to "Left Wall Follower" rule. It means that if junction

that was not visited before is met, traveller chooses the

path according to mentioned rule. Whenever a dead-end

is faced, the traveller turns around and goes the way he

Fig. 4: Mapping the maze into an array

came. Length of a path, which leads to the exit, is mea-

sured as a number of travelled cells. Each time, when a

new cell is visited, a variable that stores distance is in-

creased by one. Whenever a dead-end is faced, the trav-

eller turns around and goes the way he came, and the

length of the path is decreased by one. During that op-

eration, the same path is traversed second time, which

also causes increase of the cell values by one. As a con-

sequence, cells that were visited only once, store a value

one, while those visited twice (excluded paths) have value

two (respectively, in Trémaux’s algorithm it would be rep-

resented as a double line).

It can be stated that passages coming out of a junction

are prioritized, indicating the order of selection. "Zero" -

the highest priority, "One" - a lower priority, "Two" - do

not enter. On each hierarchy level, "LWF" rule applies.

The main advantage of an array implementation is the

fact that positioning of the traveller becomes very sim-

ple. What is more, checking whether a maze was fully

explored, requires verification if any "zeros" are left in

the array.

Data that is pushed on the stack is a value of an angle, at

which the mobile platform turns. Only turns on junctions,

from which alternate passages comes out, are pushed on

the stack in Fig. 6. Values representing right, left, forward

and backward directions are presented in Fig. 5.

Storing subsequent turns made by the traveller, enables



Image Processing & Communications, vol. 21, no. 3, pp. 15-26 21

Fig. 5: Values used to describe direction of turns

to restore the traversed path, which in turn, together with

mapped array, enables to find the way out of a maze. On

the other hand, if a dead-end is found, saved turns on the

stack are used to find way back to the last appropriate

junction. The corresponding elements are removed from

the stack, which enables to keep only information related

to a solution. It must be emphasized, that popping data

from the stack does not mean that information about ex-

plored part of maze, which turned out to be dead-end, are

lost. Quite the opposite, this data is stored in the array.

There is one special case where the value of the stack must

be further modified, which was described in the previous

paragraph. If the traveller has explored the maze from the

exit to the start and some data is left on the stack, it means

that a new solution has been found. In such a case, a con-

tents of the stack must be reversed and each value, except

of 0◦, has to be increased by 180◦, with assumption that if

final value will be equal or greater than 360◦, then value

360◦ has to be subtracted.

As soon as the exit is found, a copy of the stack content

is saved in the memory. This data, together with values

stored in an array, gives all possible maze solutions. From

this point, two kinds of stack can be distinguished - solu-

tion stack and operating stack. It cannot be forgotten to

store also zero degree angles. Although mobile platform

does not turn on such a junction, not recording this ma-

neuver, would result in missing junctions on a path from

Fig. 6: Maze with marked turns, which would be or would
not be stored on the stack

Fig. 7: Marking angles at path junctions

start to the exit. Situation in which storing "forward" turn

is necessary, is presented in Fig. 7.

Another important assumption is that if a junction is

visited for the second or subsequent time, traveller has

to turn to an initial orientation - relative to the maze, in

which he was when he has visited the junction for the first

time. Only with respect to this position, the next turn can

be determined.

Figure 8 presents a filled array after full maze explo-

ration. The content of two stacks which contain all turns

leading to the way out of the maze are presented in Fig. 9.

Taking into consideration memory requirements of the

algorithm, all information are stored in an array and stack.



22 Ł. Bienias, K. Szczepański, P. Duch

Fig. 8: Filled array after full maze exploration, with two
solutions marked

The array is type integer and has the same dimensions as

the maze. Its memory size will increase linearly with di-

mensions of the labyrinth, which in turn enables to ap-

proximate required amount of space in the memory to

store the whole array. On the other hand, information

about turns is stored on the stack of type integer. In this

case, it is more difficult to predict required memory. Its

size will change with the number of turns, which depends

on the complexity of the maze. However, it can be stated

that the number of turns will not exceed the number of el-

ements in the array. Possibility of several solutions should

be also taken into account. In such case memory for a few

stacks has to be reserved.

4 Robot description

A small mobile platform equipped with two DC engines

was used throughout experiments. In order to navigate in

a maze, information from several sensors: accelerometers,

gyroscopes, encoders and ultrasound, was used. Fig. 10

Fig. 9: Two stacks presenting possible solutions

Fig. 10: Block diagram of connections and relationships
between components of small mobile platform

presents a block diagram of connections and relationships

between components of the platform. Fig. 11 and 12 pro-

vide a detailed view of the mobile platform.

All components of the platform are powered by a cir-

cuit, which consists of eight 1.2V batteries (Fig. 12 -

point 6) connected in series, and a step-down transformer,

PCB-CON5-28 (Fig. 12 - point 5). An initial supply

volatage of around 9.6V is decreased by step-down trans-

former to a required level of 5V. Stable input voltage is

crucial for proper operation of all used electronic compo-

nents. Voltage stabilization reduces measurement errors

of sensors.

The system can generate 3A current, which is sufficient

for driving two DC-motors DG01D (Fig. 12 - point 8), via

H bridge L923D (Fig. 11 - point 3). The main idea of con-

trolling both engines bases on Pulse Width Modulation

(PWM), with constant amplitude and frequency. By ob-



Image Processing & Communications, vol. 21, no. 3, pp. 15-26 23

Fig. 11: Small mobile platform components - upper part

Fig. 12: Small mobile platform components - lower part

taining the desired effective voltage at motors’ terminals,

smooth regulation of wheels angular velocity is possible.

A control signal applied to the bridge is generated using

Arduino UNO platform (Fig. 11 - point 1). Such a sys-

tem, enables programmer to control both wheels seper-

ately, with different speed and direction. As a conse-

quence, it allows to navigate a mobile platform in each

direction (forward, backward, left and right).

In order to determine a distance travelled by the vehicle

as well as for correct straight track driving, two electro-

mechanical encoders RS030 (Fig. 12 - point 7) are used.

Each encoder is attached to one wheel. The device con-

sists of neodymium 4-pole magnets with rubber hub and

hall-effect sensor, which allows to determine current po-

sition of the wheel. Signals from encoders are sent to

Arduino UNO, which basing on counted impulses, after

simple calculations, computes linear distance traversed by

the vehicle. On the other hand, comparing values from

two encoders, it is possible to distinguish whether one of

wheels is turning faster than another, which in turn helps

to correct the path. At this point it must be emphasized

that in order to move straight forward it is not enough to

put identical effective voltage for both engines, since each

DC engine, will give slightly different angular speed for

the same voltage input.

The most sensitive component of the mobile platform

is motion tracking device MPU-6050 (Fig. 11 - point 4),

which combines a 3-axis gyroscope and a 3-axis ac-

celerometer on the same printed circuit board together

with an onboard Digital Motion Processor (DMP) capa-

ble of processing complex 9-axis Motion Fusion algo-

rithms [4]. Data collected from MPU-6050 allows to

determine angular orientation of the mobile platform in

the maze. Having this kind of data, precise rotation of

the vehicle at a specified angle (in this case it would be

multiple of 90 degrees) is possible. There is one crucial

drawback of motion tracking device, such as MPU-6050.

Along with the time of collecting data, the measurement



24 Ł. Bienias, K. Szczepański, P. Duch

error significantly increases. For this reason it was not

reasonable to use this data for the purpose of correcting

forward motion. Nevertheless, comparing data collected

from MPU-6050, obtained in a short period of time gives

an opportunity to determine angle of turn with relatively

small error. This assumption is sufficient for controlling

motion of the vehicle during turns.

The platform is equipped with three ultrasonic sensors

HC-SR04 (Fig. 11 - point 2), which provide non-contact

measurment function ranging from 2cm to 400cm [5].

The module includes ultrasonic transmitters, receiver and

a control circuit. Sensors are mounted on the vehicle in

such way that the distance between mobile platform and

the nearest wall can be precisely measured from three

sides: front, right and left. Algorithm implemented on

Arduino UNO, basing on these data, is able to distinguish

between free passages and walls. This type of information

is directly used to effectively explore a maze, and map its

structure in robot memory.

Figure 13 presents constructed small mobile platform

in a fully equipped version.

5 Experiments

In order to verify the effectiveness of the presented al-

gorithm, a few experiments were performed. The first

part involved computer simulations, aimed to verify log-

ical correctness as well as collect statistical data about

algorithm effectiveness. In the second phase of experi-

ments, the developed algorithm was implemented on the

platform, set to explore few different mazes and, subse-

quently, to find the shortest possible paths.

The main purpose of the experiment was to confront

performance of the proposed algorithm and the two refer-

ence ones. As a consequence, three different maze explo-

ration algorithms were examined:

- "Left Wall Follower",

- "Trémaux algorithm",

Fig. 13: Final version of self-constructed small mobile
platform

- developed algorithm.

5.1 Computer simulations

All three maze exploration methods, were implemented

in a form of a C++ program on a desktop computer. Few

mazes of different structure and size was prepared and fed

as input to the code. Mazes were generated on the web-

site http://www.mazegenerator.net/. The user defines the

number of cells (range from 2 to 200), and the parame-

ters E and R (values from 0 to 100). The first one defines

the relationship between path length and the size of the

maze, while the second affects to the length and quan-

tity of dead-ends. The higher the value, the less branches

in the maze, but their path is longer. The mazes of two

different size were used in the experiments (small - 50

cells and large - 200 cells). For each size three sets of

the labirynths were generated - soft, medium and hard. It

should be pointed out that structure of generated mazes

excludes free standing walls - not connected with any of

the side walls of the maze, which makes "LWF" always

http://www.mazegenerator.net/


Image Processing & Communications, vol. 21, no. 3, pp. 15-26 25

Tab. 1: Length of paths determined for six different
maze structures by three algorithms: "Left Wall Fol-
lower", "Trémaux’s algorithm", Developed Algorithm,
using computer simulations

"LWF" "Trémaux’s" Developed
Soft Small 5223 804 239
Soft Large 81706 10525 836
Medium Small 5136 728 237
Medium Large 79136 9463 885
Hard Small 5014 684 464
Hard Large 79461 6130 2032

Fig. 14: Sample maze used in computer simulations

capable of finding the way out. All three algorithms were

tested on each set of mazes. An exception was the "Tré-

maux’s algorithm", which was run 10 times for each maze

and the final result was calculated as an average from all

attempts. The aim of the experiment was to find, which

algorithm determines the shortest path. Results are pre-

sented in Tab. 1. A sample maze is presented on the

Fig. 14.

As it can be seen in the Tab.1, the longest path is deter-

mined by the "Left Wall Follower" method. It is approxi-

mately 4500% less efficient than the developed algorithm.

"Trémaux’s algorithm" is significantly more effective than

"LWF", but at the same time it finds paths leading to the

Fig. 15: Four different maze structures taken for tests with
marked paths for three algorithms: a) blue - "Left Wall
Follower" b) green - "Trémaux’s algorithm" c) red - De-
veloped algorithm

exit 470% longer than the developed algorithm. Computer

simulations confirmed that the developed algorithm oper-

ates correctly and is significantly more efficient than "Left

Wall Follower" method and "Trémaux’s algorithm".

5.2 Test stand description - maze explo-
ration by small mobile platform

The next part of the experiment, was to test the developed

algorithm in a real environment.

Mazes have been built using polystyrene walls. Each

wall is perpendicular or parallel to another and the maze

is composed of equal cells of size 60 cm by 60 cm, which

simplifies cell mapping in vehicle’s memory. Four differ-

ent maze structures were used (Fig. 12) in testing each of

the three algorithms: "Left Wall Follower", "Trémaux’s

algorithm" and the developed one.

For each maze, a blue path indicates "Left Wall Fol-

lower", while a red one shows a path for the developed

algorithm and, finally, a green line presents cells traversed

by a selected run of Trémaux’s algorithm.

Distances traversed by each algorithm for all four pre-

sented mazes in the Fig. 15, are shown in Table 2. Sim-

ilarly as it was in case of computer simulation, for "Tré-

maux’s algorithm", the platform was launched 10 times



26 Ł. Bienias, K. Szczepański, P. Duch

Tab. 2: Length of paths determined for four different
maze structures by three algorithms: "Left Wall Fol-
lower", "Trémaux’s algorithm", Developed Algorithm,
using small mobile platform

"LWF" "Trémaux’s" Developed
Maze No. 1 15 8 7
Maze No. 2 9 8.2 7
Maze No. 3 13 8.6 5
Maze No. 4 9 7.6 7

through the maze. The final path length is calculated as

an arithmetic average from all attempts.

Analysing obtained results, it can be stated that devel-

oped algorithm greatly improves exploration efficiency of

small mobile platform in the maze. Invented logic is about

43% more effective than "Left Wall Follower" and around

20% better than "Trémaux’s algorithm".

6 Summary

An objective of the paper was to present an algorithm de-

veloped for efficient maze exploration, which can become

an alternative for already known solutions. The algorithm

explores a whole maze in a systematic way and finds the

shortest possible way out. Experimental evaluation of the

algorithm shows that it outperforms its counterparts and

provides:

• a solution to arbitrary maze types,

• systematic maze exploration,

• determination of the shortest possible way out of a

maze,

• can be implemented on mobile platforms with simple

microcontrollers.

The proposed algorithm proved efficiency in real life

conditions, enabling autonomous exploration of previ-

ously unknown environments, avoiding obstacles and

finding shortest possible way between chosen points.

References

[1] Anagnostou, L. (2009). Maze Solving Algorithms:

Tremaux’s Algorithm Visual Example, https://

www.youtube.com/watch?v=6OzpKm4te-E

[2] Bares, J.E., Wettergreen, D.S. (1999). Dante II:

Technical description, results, and lessons learned.

The International Journal of Robotics Research,

18(7), 621-649

[3] Durrant-Whyte, H., Majumder, S., Thrun, S., De

Battista, M., Scheding, S. (2003). A bayesian algo-

rithm for simultaneous localisation and map build-

ing. In Robotics Research (pp. 49-60). Springer

Berlin Heidelberg

[4] InvenSense Inc. (2012). MPU-6000 and MPU-6050

Product Specification Revision 3.3. Sunnyvale, 6–7

[5] ITead Studio. (2010). Ultrasonic ranging module

HC-SR04. Micropik, pp 1–3

[6] Klein, R., Kamphans, T. (2011). Pledge’s

Algorithm-How to Escape from a Dark Maze.

In Algorithms Unplugged (pp. 69-75). Springer

Berlin Heidelberg

[7] Mishra, S., Bande, P. (2008, November). Maze

solving algorithms for micro mouse. In Signal Im-

age Technology and Internet Based Systems, 2008.

SITIS’08. IEEE International Conference on (pp.

86-93). IEEE

[8] Snapp, R.R. (2010). Threading Mazes, [on-

line access 07.05.2016], http://www.cems.uvm.edu/

~snapp/teaching/cs32/lectures/tremaux.pdf

[9] Thrun, S., Thayer, S., Whittaker, W., Baker, C.,

Burgard, W., Ferguson, D., Reverte, C. (2004). Au-

tonomous exploration and mapping of abandoned

mines. IEEE Robotics & Automation Magazine,

11(4), 79-91

https://www.youtube.com/watch?v=6OzpKm4te-E
https://www.youtube.com/watch?v=6OzpKm4te-E
http://www.cems.uvm.edu/~snapp/teaching/cs32/lec tures/tremaux.pdf
http://www.cems.uvm.edu/~snapp/teaching/cs32/lec tures/tremaux.pdf

