
FEE232
Database Management Systems

(DBMS)

Database Management Systems -

Ramakrishnan-Gherke-3rd. Ed.
McGraw-Hill, 2003.

Main areas to cover:

1. Introduction to databases
2. Database conceptual design (Entity-Relationship model)
3. Database Logical design (Relational model)
4. Relational Database theory (Schema refinement)
5. Relational Query Languages

What Is a DBMS?

● A very large, integrated collection of data
describing activities of organizations.

● Models real-world.
– Entities (e.g., students, courses)
– Relationships (e.g., Raul is taking FEE232)

● A Database Management System (DBMS) is a
software package designed to store and
manage databases.

A Little Bit of History
● First DBMS: Bachman at General Electric, early

60’s (Network Data Model). Standardized by
CODASYL.

● Late 60’s : IBM’s IMS (Inf. Mgmt. Sys.)
(Hierarchical Data Model).

● 1970: Edgar Codd (at IBM) proposed the
Relational Data Model. Strong theoretical basis.

● 1980’s -90’s: Relational model consolidated.
Research on query languages and data models
=> logic-based languages, OO DBMSs =>
Object-relational data model (extend DBMSs
with new data types)

Why Use a DBMS?

● Data independence and efficient access.
● Reduced application development time.
● Data integrity and security. Different users

may access different data subsets.
● Uniform data administration.
● Concurrent access, recovery from crashes.

Files vs. DBMS

● Application must transfer large datasets
between main memory and secondary
storage (e.g., buffering, page-oriented access,
32-bit addressing, etc.)

● Special code for different queries
● Must protect data from inconsistency due to

multiple concurrent users
● Crash recovery
● Security and access control

Describing Data: Data Models
● A data model is a collection of concepts and

constructs for describing data.
● A schema is a description of a particular

collection of data, using a given data model.
● The relational model of data is the most widely

used model today.
– Main concept: relation, basically a table with rows

and columns.
– Every relation has a schema, which describes the

columns, or fields.

Describing Data: Data Models (cont.)
● The data model of the DBMS hides details -

Semantic Models assist in the DB design
process.

● Semantic Models allow an initial description
of data in the “real world”.

● A DBMS do not support directly all the
features in a semantic model.

● Most widely used: Entity-Relationship
model (E/R).

The Relational Model (Introduction)
● Central construct: the RELATION : a set of

records.
● Data is described through a SCHEMA specifying

the name of the relation, and name and type of
each field:
– Students(sid: string, name: string, login: string,

 age: integer, average:real)

The Relational Model (Introduction)
● Actual data: instance of the relations : a set of

tuples, e.g.:
{<F17/1001/2016,Paul,paul@uonbi,20,80>,
 <F17/1002/2016,Alex,alex@uonbi,21,85>,

 <F17/1003/2016,Jane,jane@uonbi,20,70>,
...}

● Integrity constraints (condition every instance
must verify) can also be specified.

Levels of Abstraction
● Data is described at three

Levels of Abstraction
● Many views, single

conceptual (logical) schema
and physical schema.
– Views describe how users

see the data (data tailored to
different user groups) .

– Conceptual schema defines
logical structure.

– Physical schema describes
the files and indexes used.

● Schemas are defined using DDL; data is modified/queried using DML.

Physical
Schema

Conceptual
Schema

View
1

View
2

View
3

Example: University Database
● Conceptual schema:

– Students(sid: string, name: string, login: string,
 age: integer, average:real)

– Courses(cid: string, cname:string, hours:integer)
– Enrolled(sid:string, cid:string, marks:int)

● describes data in terms of the data model of the DBMS

● Physical schema:
– Relations stored as unordered files.
– Index on first column of Students.

● External Schema (View):
– Course_info(cid:string, enrollment:integer)

Data Independence
● Advantage of using a DBMS: applications are

isolated from changes in the way data is
structured and stored.

● Logical data independence: Protection from
changes in logical structure of data (if the CS
is changed, views can be redefined in terms of
the new relations).

● Physical data independence: Protection from
changes in physical structure of data.

● One of the most important benefits of using a DBMS!

Querying a DBMS

● A DBMS provides a Query Language.
● Query languages allow querying and

updating a DMBS in a simple way.
● Most popular DML (Data Manipulation

Language) : SQL (Structured Query
Language).

● Queries:
– List the name of student with sid=F17/1003/2016
– Name and age of students enrolled in FEE232

Concurrency Control

● Concurrent execution of user programs is
essential for good DBMS performance.
– Because disk accesses are frequent, and relatively

slow, it is important to keep the CPU working on
several user programs concurrently.

● Interleaving actions of different user programs
can lead to inconsistency: e.g., check is cleared
while account balance is being computed.

● DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system.

Transaction: An Execution of a DB Program
● Key concept is transaction, which is an atomic

sequence of database actions (reads/writes).
● Each transaction, executed completely, must

leave the DB in a consistent state if DB is
consistent when the transaction begins.
– Users can specify some simple integrity constraints on

the data, and the DBMS will enforce these constraints.
– Beyond this, the DBMS does not really understand the

semantics of the data.
– Thus, ensuring that a transaction (run alone) preserves

consistency is ultimately the user’s responsibility!

Ensuring Atomicity

● DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a
transaction.

● Idea: Keep a log (history) of all actions carried out
by the DBMS while executing a set of transactions:
– Before a change is made to the database, the

corresponding log entry is forced to a safe location.
– After a crash, the effects of partially executed

transactions are undone using the log. (the change was
not applied to database but to the log itself!)

Structure of a DBMS (cont.)

Files and Access Methods

Buffer Management

Disk Space Management

DB

Parser + Optimizer +
Plan Execution

Query evaluation
engine

Recovery
Manager

Transaction
Manager

Lock
Manager

Index files + data
files+ system

catalog

Web
Forms

Application
Front Ends

SQL
Interface

SQL Commands

Typical users of a DBMS...

● End users and DBMS vendors
● DB application programmers
● Database administrator (DBA)

– Designs logical /physical schemas
– Handles security and authorization
– Data availability, crash recovery
– Database tuning as needs evolve

Must understand how a DBMS
works!

Summary
● DBMS used to maintain, query large datasets.
● Benefits include recovery from system crashes,

concurrent access, quick application
development, data integrity and security.

● Levels of abstraction give data independence.
● A DBMS typically has a layered architecture.
● DBAs hold responsible jobs!
● DBMS R&D is one of the broadest,

most exciting areas in CS.

