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The Data: HIV env sequences from 9 linked patients.
 Index case patient 1 transmitted the virus to female patients 
8, 11, 7, 5, and 2.

 Patient 5 transmitted the virus to male patient 6.

 Patient 2 transmitted the virus to child patient 3

 Patient 8 transmitted the virus to child patient 9

 Times for each transmission are known within a few 
months.

Gene Evolution Example I
Recall: Leitner’s Swedish Social Network 



The Swedish Social Network -  
(Tree of highest likelihood) 

8      9  11       7     5       6     2    3     1

P(Tree) = 

P(Topology)P(Split Times|Topology)P(Sequences|Topology, Times)



Markov Probability Model for calculating 
P(Sequences|Topology, Times)

  Define  X(t) = letter at time t, 
  Pij(t) = P(X(t+s) = j|X(s) = i)    (stationarity)

  Matrix notation  P(t) (note: rows add to 1)
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The Data: complete Phosphoglycerate Kinase (PGK) sequences in 
public databases with duplicate species removed.

PGK was chosen for its role in DNA metabolism

131 Amino acid sequences of length 411 ± 23

33 Eukaryotes

98 Prokaryotes (15 Archaea; 83 Bacteria)

(note: there are ≈10257 possible tree topologies relating 131 sequences)

A Gene Evolution Example: PGK

Reference: Pollack, Li, & Pearl, Molecular Phylogenetics and Evolution, 2005.



The age of the universe:

1010 years

The radius of the universe:

 6 x 1012 miles/year (1010 years) = 6 x 1022 miles

The volume of the universe:

5.4 x 1069 miles3 or 3.9 x 1079 meters3

# of atoms that could fit in a cubic meter:

(5 x 109)3 = 1.25 x 1029

# of atoms that could fit in the universe:

5 x 10108  or about 2261

Compare:  there are at least 10257 ≈ 2853 possible topologies for the 
PGK data



HUMAN     ... DFNVPMKNN-QITNNQRIKAAVPSIKFCLDNGAKSVVLMSHLGR ...
RAT       ... DFNVPMKNN-QITNNQRIKAAVPSIKFCLDNGANSVVLMSHLGR ... 
TOBACCO   ... DLNVPLDDNQNITDDTRIRAAVPTIKHLMANGAK-VILSSHLGR ...
WHEAT     ... DLNVPLDDNQNITDDTRIRAAIPTIKYLLSNGAK-VILTSHLGR ...
CHICKEN   ... DFNVPMKDH-KITNNQRIKAAVPTIKHCLDHGAKSVVLMSHLGR ...
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rooted display of 90% 
central tree based on 

R-F distance



Idea: Find the distribution of trees that would 
produce the observed data.

P(Hypothesis | Data) = P(H )P(D | H )
P(D)

= P(H )P(D | H )
p(h)P(D | H = h)dh∫

.

In words:

Posterior probabilities are proportional to prior probabilities times 
the likelihood of the data.

Bayesian Phylogenetics & MCMC



Gor i l l a

Human

Chimp Gor i l l a

Human

Chimp Gor i l l a

Human

Chimp

Tree 1: (G,C) Tree 2: (H,G) Tree 3: (H,C)

Tree 1: (G,C) Tree 2: (H,G) Tree 3: (H,C)
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Bayes Theorem tells how prior probabilities can be updated once data is known.



Probability framework for trees

P(T,t,θ,a,d) = P(d|T,t,a,θ )P(T , t,a,θ ).

T = topology, t = branch lengths, v = internal node sequences,    = 
parameters of model of evolution, a = alignment, and d = sequence 
data.  

Usually, the sequences at the internal nodes are ignored, so the 
probability structure is 

The first term on the right is the likelihood in the ML approach to 
phylogeny estimation (which for sequence data is found using the 
peeling algorithm to sum over all possible values of v). 

� 

θ



Probability framework for trees

The alignment is usually considered as given and the data is fixed, so 
the purpose of a Bayesian phylogenetic analysis is then to learn about:

P(T,t,θ | d,a) = P(T,t,θ|a)P(d|T,t,θ,a)
P(T,t,θ|a)P(d|T,t,θ,a)

t
∫

T
∑ dt

prior
↓

likelihood
↓posterior

Denominator is a constant (impossible to calculate)

P(G|d,a) =



Markov Chain Monte Carlo

Idea: Even though a distribution depends on an 
impossible to calculate normalizing constant, ratios 
of values are still accessible.  This fact can be 
exploited to  create a Markov chain whose 
equilibrium distribution is the posterior distribution 
of interest.



  Start with an initial tree x 
  Define a density q(x,y) that specifies probabilities of 
moves from x to a proposed tree y 
   Accept y with probability  

   Theory: Repeating these steps many times will create a 
Markov Chain whose stationary distribution is the desired 
posterior. 

The Metropolis-Hastings Algorithm

min posterior(y)q(y, x)
posterior(x)q(x, y)
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To complete the algorithm we need to specify: 

  a prior distribution,  
  a model for calculating the likelihood,
  a method for proposing new trees for the chain, and 
   how long to run the chain to gain a practical approximation to 
the equilibrium distribution.

  Need a “Burn-In” for the chain to reach equilibrium
  Need a long chain at the equilibrium state to provide sufficient samples 

from the posterior to approximate the full distribution.

The Metropolis-Hastings Algorithm



  Prior: T ~ Uniform on “histories,” t|T &       also “uninformative” 
  Move in tree space based on simultaneous perturbations in the 
branch lengths. 

  Calculations require use of Felsenstein’s peeling technique at 
each step but moves rapidly through topology space. 

MCMC Algorithm (Mau, 1996)
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  Prior: T ~ Uniform on Topologies, t|T~Uniform,      and v 
estimated using data (empirical Bayes) 
  Move in tree space based on random NNI movements for 
topologies while branch lengths and internal node sequences are 
chosen to target the posterior.
  Calculations at each step are rapid since they are only local to a 
single node but the chain moves slowly through tree space.

MCMC Algorithm (Li, 1996)
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Idea: Algorithm must balance desire to 
accept a high percentage of proposed trees 
with computational efficiency and with need 
to visit every island of high probability. 

MCMC: Choosing a proposal mechanism



  Wide variety of nucleotide, amino acid, and codon 
models
  Variety of proposal distribution options
  Parallel “hot” and “cold” chains to balance efficiency 
while covering large tree spaces. 

  ”Cold" chain runs as usual for the desired posterior. 
  "Hot" chains use the posterior raised to a power < 1.  
  Periodically an attempt is made to accept the current 

trees from the hot chains into the cold chain. 

Implementation:  MrBayes (open source)

Ronquist & Huelsenbeck, Bioinformatics, 2003  



cold chain 
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  Read the data 
  Set the model (data|gene tree)  
  Set the Prior 
  Set the MCMC rules 
  Run the MCMC 
  Check convergence 
  Summarize results 

Summary of Steps in Bayesian Analyses



  Start with an initial tree x 
  Define a density q(x,y) that specifies probabilities of 
moves from x to a proposed tree y 
   Accept y with probability  

   Theory: Repeating these steps many times will create a 
Markov Chain whose stationary distribution is the desired 
posterior. 

The Metropolis-Hastings Algorithm

min posterior(y)q(y, x)
posterior(x)q(x, y)
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  Start with an initial tree x 
  Define a density q(x,y) that specifies probabilities of 
moves from x to a proposed tree y 
   Accept y with probability  

   Theory: Repeating these steps many times will create a 
Markov Chain whose stationary distribution is the desired 
posterior. 

How many? 

The Metropolis-Hastings Algorithm

min posterior(y)q(y, x)
posterior(x)q(x, y)
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   The issues addressed 
   Some Methods  

Diagnostics:  Ways to examine whether an 
MCMC phylogenetic analysis has properly 
described the desired posterior distribution.



Idea: We need to run the burn-in long enough to reach the stationary 
distribution and we need to run the chain long enough to get a precise 
measure of our endpoint.
  Is the dependence structure so strong that the effective sample size 
is too small?

  Is the burn-in long enough to eliminate the effect of the initial 
starting point?

  Does the chain make regular visits to all parts of the parameter 
space?

The Issues



Distribution of elevation of a randomly selected spot on Earth
(from Freedman, Pisani, & Purves, Statistics, 3rd ed. 1998)

ML



 Autocorrelation plots
 Multiple runs with different starting points
 Log-posterior & other time series plots

Applicable standard techniques



Idea: Time series diagnostics can be applied to any characteristic of 
the model or tree since all must reach their equilibrium distributions.

Chain length 100,000



Time series diagnostics comparison of 105 versus 106 chain lengths



Trees with similar posterior probabilities or similar lengths are not 
necessarily close in tree space.  

How far apart in the chain do trees have to be for them to be 
essentially independent with respect to distance in tree space?

Need for multiple diagnostics



Lag Quartet 
Distance plot 
for chain length 
=    1 million 



rooted display of 90% 
central tree based on 

R-F distance



Even chains of length 1 million did not always visit both islands of high 
posterior probability.



Ti = the time in the chain when it returns to a specific topology, 
i = 1,…,N

A Scaled Regeneration Quantile plot is a plot of Ti/TN versus i/N.

Interpretation:  Large deviations from the 45o line indicates a 
problem with mixing.

The slope of the line connecting the SRQ plot at i/N and the SRQ plot 
at j/N is the ratio of the estimated probability of the specific topology 
based on the entire chain to the estimate based on the chain between 
tours i and j. 

Scaled Regeneration Quantile (SRQ)  plots
Mykland, Tierney, & Yu (1995, JASA)



Application when any individual phylogeny is rare:

Form a ball around a specific tree that captures 5% of the 
distribution and mark returns to this ball.

SQR Plots: adaptation to large tree spaces



Steep slope indicates 
topology was rarely 
visited during this 
period

 



Theory (Maa, Pearl, and Bartoszynski, 1996) :  

For independent replicate X1, X2, … from distribution F and 
Y1, Y2, … from G, then F = G if and only if the one-dimensional 
distances d(X1, X2), d(Y1, Y2), and d(X3, Y3) 
all have the same distributions.  

Note: “d” can be any arbitrary distance, and F & G can be continuous, 
discrete, vector-valued, or even tree-valued.

Distance Density Plots



Application to MCMC phylogenetics (Li, Pearl, and Doss, 2000):  
Run the chain twice independently, then compare the distributions of 
distances for random pairs of trees drawn 

i) both from within the first chain, 

ii) both from within the second chain, and 

iii) one from each chain.  

If these three distributions don’t look the same then the two chains 
did not converge to the same distribution.

Distance Density Plots



Distance histograms chain lengths 100,000 (quartet distance)



Distance histograms chain lengths 1,000,000 (quartet distance)



Idea:  Partition support values should be nearly the same in two runs 
of an MCMC phylogenetic analysis.  

Split Support Correlation Plots
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MrBayes look at the average 
standard deviation of split 
probabilities across samples.





Hillis et all, 1992 produced a 
laboratory generated set of 
nine Bacteriophage T7 
DNA sequences with a 
known phylogeny (1091 
sites, 63 informative for 
parsimony).  The true tree 
had an estimated 47% 
posterior probability and the 
top four, out of 135135 
topologies, made up 96% of 
the distribution. 

K
L

J
M

N
Q

O
P
R

Neighbor-JoiningPars imony

Maximum Likelihood

K
L

J
M

N
Q

O
P
R

MCMC (Li Algorithm)
chain length = 100000
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Summary

  An estimate of a phylogeny must be made together with an 
analysis of its variability.

  Uncertainty in the evolutionary history can be summarized as 
a distribution of trees given the data (Bayesian approach)

  The MCMC Algorithm provides a means to find this 
distribution

  Checking for convergence of the chain & summarizing the 
estimated posterior distribution are still difficult. 




