ME 563
 Mechanical Vibrations Lecture \#1
 Derivation of equations of motion (Newton-Euler Laws)

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field -Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field
-Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest (Degrees of freedom)

Panel rigid body degrees of freedom

Panel flexible body degrees of freedom

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $\mathrm{w} / \mathrm{r} / \mathrm{t}$ gravitational field -Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest (Frequency range)

Low-frequency ($<50 \mathrm{~Hz}$)
response

High-frequency $(>100 \mathrm{~Hz})$ response

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field -Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest (Amplitude range)

Ceramic tile attached to orbiter using adhesive bond

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field
-Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Develop model representation

(Lumped/discrete elements)

Parallel elements - same motion
Series elements - same force

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field -Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Develop model

 representation (Continuous elements)

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)
Define motions (kinematics)
$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field -Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Develop model representation (Excitation function)

Base motion

Applied force
(impact)

Develop model

 representation (Excitation function)

Ascent aerodynamic noise levels. Maximum space average levels for nominal and wind-dispersed (XXX) vehicle attitudes.

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $\mathrm{w} / \mathrm{r} / \mathrm{t}$ gravitational field
-Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define motions (DOFs) (Generalized coordinates,

 datum, gravity) Acceleration

Acceleration
x is defined
$w / \mathbf{r} / \mathbf{t}$ equilibrium position (under acceleration of shuttle)

Dynamic response is large compared to gravitational response

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $\mathrm{w} / \mathrm{r} / \mathrm{t}$ gravitational field
-Constraints on/between the variables and \#DOFs

Derive equations of motion

-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define motions (DOFs) (Constraints on coordinates)

\# D.O.F. = \# generalized coordinates - \# constraints

$$
\begin{aligned}
& =2-1 \\
& =1
\end{aligned}
$$

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field
-Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Derive equations of motion (Newton-Euler, force)

$$
\begin{aligned}
\rightarrow \sum_{\text {Body } M} \vec{F} & =\frac{d \vec{P}}{d t}=M \ddot{x} \\
& =-K_{1} x-K_{2} x-K_{3} x-K_{4} x+f(t) \\
& =-\left(K_{1}+K_{2}+K_{3}+K_{4}\right) x+f(t) \\
& =-K_{\text {equiv }} x+f(t)
\end{aligned}
$$

$$
M \ddot{x}+K_{\text {equiv }} x=f(t)
$$

Derive equations of motion (Newton-Euler, base motion)

K4

$$
\begin{aligned}
\rightarrow \sum_{\text {Body } M} \vec{F} & =\frac{d \vec{P}}{d t}=M \ddot{x} \\
& =-\left(K_{1}+K_{2}+K_{3}+K_{4}\right)\left(x-x_{a f}\right) \\
& =-K_{\text {equiv }}\left(x-x_{a f}\right) \\
M \ddot{x}+K_{\text {equiv }} x & =K_{\text {equiv }} x_{a f}
\end{aligned}
$$

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range ($<5 \mathrm{~Hz},>15 \mathrm{~Hz}$, etc.)
-Amplitude range ($<2 \mathrm{~g},>10 \mathrm{~g}$, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

$-u, v, w, \theta$, etc.
-Undeformed or deformed datum, direction $w / r / t$ gravitational field -Constraints on/between the variables and \#DOFs (base motion, gears)
Derive equations of motion
-Newton-Euler laws
-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Calculate system

 parameters (Strength of materials)

What about the

 rotational motion?

What about the

 rotational motion?

What is K2?

$$
\theta=\frac{T L}{J G}
$$

$$
\begin{aligned}
\bigcap_{+} \sum_{\text {Body } I_{c m}} T & =I_{c m} \ddot{\theta} \\
I_{c m} \ddot{\theta}+K_{\text {equiv }} \theta & =T_{\text {applied }}(t)
\end{aligned}
$$

