ME 563 Mechanical Vibrations Lecture #1

Derivation of equations of motion (Newton-Euler Laws)

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range (<5 Hz, >15 Hz, etc.)
-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest (Degrees of freedom)

Panel rigid body degrees of freedom

Panel flexible body degrees of freedom

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range (<5 Hz, >15 Hz, etc.)
-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Define the vibrations of interest (Frequency range)

High-frequency (>100 Hz) response

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

assumptions Keep track 7

Define the vibrations of interest (Amplitude range)

9

Derivation of Equation of Motion

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)

-Continuous elements (beams, rods, membranes, plates, etc.)

-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

Develop model representation (Lumped/discrete elements)

Parallel elements – same motion Series elements – same force

Derivation of Equation of Motion¹¹

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Develop model representation (Continuous elements)

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

-Catalogues from vendors (bushings, mounts, couplings, etc.)

Develop model representation (Excitation function)

(impact)

Develop model representation (Excitation function)

Ascent aerodynamic noise levels. Maximum space average levels for nominal and wind-dispersed (XXX) vehicle attitudes.

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-**u**, **v**, **w**, θ, etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

Define motions (DOFs) (Generalized coordinates, datum, gravity) Acceleration **K1 K3** Μ Acceleration

x is defined w/r/t equilibrium position (under acceleration of shuttle)

K4

irframe

K2

Dynamic response is large compared to gravitational response

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.)
-Frequency range (<5 Hz, >15 Hz, etc.)
-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

Define motions (DOFs) (Constraints on coordinates)

D.O.F. = # generalized coordinates - # constraints = 2 - 1 = 1

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

Define the vibrations of interest

-Degrees of freedom (translational, rotational, etc.) -Frequency range (<5 Hz, >15 Hz, etc.)

-Amplitude range (<2 g, >10 g, linear or nonlinear, etc.)

Develop a model representation

-Discrete/lumped elements (springs, dampers, etc.)
-Continuous elements (beams, rods, membranes, plates, etc.)
-Excitation function (ground motion, wind, machinery, etc.)

Define motions (kinematics)

-u, v, w, θ , etc.

-Undeformed or deformed datum, direction w/r/t gravitational field -Constraints on/between the variables and #DOFs (base motion, gears)

Derive equations of motion

-Newton-Euler laws

-Energy/power methods

Calculate system parameters

-Strength of materials or experimentation

Calculate system parameters (Strength of materials)

What about the rotational motion?

What about the rotational motion?

What is K2?

$$\theta = \frac{IL}{JG}$$

$$\oint_{+} \sum_{Body I_{cm}} T = I_{cm} \ddot{\theta}$$

$$I_{cm}\ddot{\theta} + K_{equiv}\theta = T_{applied}(t)$$