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5 Introduction to Nonlinear Continuum Mechanics

5.2.7 Incompressible Elasticity

5.2.7.1 Nearly incompressible elasticity

Many engineering materials exhibit distinct behavior under
volumetric and isochoric deformations. Common examples
include the nearly incompressible elasticity of rubber-like
materials and soft biological tissues, shear-dominated duc-
tile viscoplasticity of amorphous glassy polymers, and vol-
ume-preserving plasticity of metals. To this end, we de-
compose the deformation gradient F multiplicatively into
the volumetric (spherical) Fvol and isochoric (unimodular) F̄

parts

F = F̄ · Fvol (5.2.29)

where Fvol := J1/3 1 and F̄ := J−1/3 F.

This implies that the volume map is solely described by the
volumetric part Fvol so that the identity det(Fvol) = J holds.
Therefore, the deformation under the unimodular part F̄

with detF̄ = 1 does not include any volume change but
purely isochoric deformations. Having this multiplicative
kinematic split at hand, the free energy of a hyperelastic
material can be additively decomposed into the volumetric
U(J) and isochoric ψ̄ parts

ψ = U(J) + ψ̄(F̄) . (5.2.30)

Owing to the material frame objectivity requirement, the
isochoric part of the free energy can also be expressed as
ψ̄ = ψ̂(F̄

T · F̄) = ψ̂(C̄), i.e.

ψ = U(J) + ψ̂(C̄) (5.2.31)
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5 Introduction to Nonlinear Continuum Mechanics

in terms of C̄ := F̄
T · F̄ = J−2/3C.

The additive decompostion of the free energy results in also
the additively split ‘stress response

S = 2∂Cψ = Svol + Siso (5.2.32)

in terms of the volumetric part

Svol := 2∂CU(J) = U′(J)2∂C J = JU′(J)C−1 (5.2.33)

and the isochoric part

Siso := 2∂Cψ̂(C̄) = 2∂C̄ψ̂(C̄) : ∂CC̄ = S̄ : Q (5.2.34)

of the second Piola-Kirchhoff stress tensor. In (5.2.34), the
chain-rule stresses S̄ and the fourth order Lagrangean devia-
toric projection tensor Q are defined as

S̄ := 2∂C̄ψ̂(C̄)

and

Q := ∂CC̄ = ∂C

(

J−2/3C
)

= J−2/3∂CC + C ⊗ ∂C

(

J−2/3
)

= J−2/3I + C ⊗
(

−2
3 J−2/3−1 1

2 JC−1
)

= J−2/3
[

I− 1
3 C ⊗ C−1

]

respectively. The overall expression of the second Piola-Kirchhoff
stresses can then be obtained as

S = JU′(J)C−1 + S̄ : J−2/3

[

I− 1

3
C ⊗ C−1

]

. (5.2.35)

The complete push forward of the second Piola-Kirchhoff
stress tensor yields the Kirchhoff stress tensor

τ = F · S · FT = JU′(J)1 + τ̄ : P (5.2.36)
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5 Introduction to Nonlinear Continuum Mechanics

where τ̄ := F̄ · S̄ · F̄
T and P := I− 1

3 1 ⊗ 1 denotes the spatial
deviatoric projection tensor such that tr(τ̄ : P) = 0.
Then, the Cauchy stress tensor reads

σ = J−1
τ = U′(J)1 + J−1

τ̄ : P . (5.2.37)

Employing the definition of the pressure, we obtain

p(J) := −1

3
tr(σ) = −U′(J) . (5.2.38)

This result leads us to the following decomposed represen-
tation of the Cauchy stresses

σ = −p(J)1 + σdev with σdev := J−1
τ̄ : P . (5.2.39)

In modeling of nearly incompressible response of materials
in three-dimensional boundary-value problems, the pressure
p(J) serves as a penalty parameter employed to enforce the
incompressibility condition. However, straightforward im-
plementation of this penalty formulation in standard dis-
placement finite elements often brings about undesired vol-
umetric locking effects. In order to overcome this drawback,
one of the remedies is the use of a three-field Hu-Washizu
functional-based mixed finite element formulation that con-
siders the pressure p̄, the Jacobian Θ, and the deformation
map ϕ as independent fields, albeit with different continu-
ity requirements. These numerical treatments, however, are
beyond the scope of this class.
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5 Introduction to Nonlinear Continuum Mechanics

5.2.7.2 Strictly incompressible elasticity

The strictly incompressible materials can be conceived as sub-
stances that are capable of carrying loads by undergoing
solely volume conserving (isochoric) deformations; that is,
the value of the volume map J is always restricted to unity

J := det(F)
.
= 1 . (5.2.40)

If the type of loading has a purely spherical character, i.e.
pure pressure or pure suction, an incompressible material
behaves rigidly and hence does not store energy. This means,
the pressure cannot be determined from the free energy func-
tion, e.g. by evaluating the function U′(J) as we did in the
preceding section. Therefore, pressure should be considered
as unknown in the stress expressions

S = −pJC−1 + 2∂Cψ or P = −pJF−T + ∂Fψ (5.2.41)

This formula holds only for the cases where the constraint
(5.2.40) is strictly fulfilled. This implies that for a given de-
formation F, one of the principal stretches, say λ3, can be ex-
pressed in terms of the other principal stretches λ1, λ2; that
is,

det(F) = λ1λ2λ3
.
= 1 ! λβ =

3

∏
α $=β

λ−1
α . (5.2.42)

For β = 3, we have λ3 = λ−1
1 λ−1

2 . For an isotropic, incom-
pressible material undergoing purely homogeneous defor-
mations such as uniaxial and biaxial tests, components of
the deformation gradient F are completely known. The fol-
lowing are the examples for the uniaxial, pure shear, and
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equi-biaxial cases with corresponding traction boundary con-
ditions:

Uniaxial F = diag[λ, λ−1
2 , λ−1

2 ], P = diag[P11, 0, 0]

Pure Shear F = diag[λ, λ−1, 1], P = diag[P11, 0, P33]

Equi-biaxial F = diag[λ, λ, λ−2], P = diag[P11, P22, 0]

The stress boundary conditions provide us with an addi-
tional equation that is solved to compute the unknown pres-
sure.

5.2.7.3 Stretch-Based Elasticity Models

In Section 5.2.6, we concluded that the free energy of an
isotropic material can be expressed as a function of princi-
pal stretches

ψ = ψ(λ1, λ2, λ3) .

In order to compute the second Piola-Kirchhoff stresses from
the stretch-based free energy function, we need to determine
the derivative of the principal stretches with respect to C. To
this end, we consider the third invariant

I3 = J2 = det(C) = λ2
1λ2

2λ2
3 .

The derivative of I3 with respect to C can be shown to be

∂C I3 =
3

∑
α=1

∂
λ2

α
I3 ∂Cλ2

α = I3

3

∑
α=1

λ−2
α ∂Cλ2

α .

We also know that cof(C) = ∂C I3 whose spectral representa-
tion is given by

∂C I3 = I3C−1 = I3

3

∑
α=1

λ−2
α Nα ⊗ Nα .
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Comparing these two results, we deduce that

∂Cλ2
α = Nα ⊗ Nα and 2∂Cλα = λ−1

α Nα ⊗ Nα .

We can then compute the second Piola-Kirchhoff stress ten-
sor in the spectral form

S = 2∂Cψ(λ1, λ2, λ3) =
3

∑
α=1

∂
λ2

α
ψ 2∂Cλ2

α =
3

∑
α=1

2∂
λ2

α
ψ Nα ⊗ Nα .

Substituting Sα := 2∂
λ2

α
ψ = λ−1

α ∂λα
ψ, we end up with the

compact spectral representation of S

S =
3

∑
α=1

Sα Nα ⊗ Nα with Sα := λ−1
α ∂λα

ψ

standing for the eigenvalues of the second Piola-Kirchhoff
stress tensor. From this result, we immediately observe that
the second Piola-Kirchhoff stress tensor S possesses the same
eigenvectors as C = ∑

3
α=1 λ2

αNα ⊗ Nα. This is a typical result
obtained from an isotropic free energy function. When two
second order tensors have the same eigenvectors, they are
said to be co-axial and therefore they commute, i.e.

S · C = C · S .

The first Piola-Kirchhoff stress tensor P and the Kirchhoff
stress tensor τ are then readily computed through the push
forward operation

P = F · S =
3

∑
α=1

Pα nα ⊗ Nα with Pα := λαSα = ∂λα
ψ

τ = P · FT =
3

∑
α=1

τα nα ⊗ nα with τα := λαPα = λα∂λα
ψ
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Example: The Ogden Model of Incompressible Elasticity

We now consider the well-known Ogden model of incom-
pressible elasticity

ψ = ψ(λ1, λ2, λ3) =
3

∑
n=1

µn

βn
(λ

βn
1 + λ

βn
2 + λ

βn
3 − 3) .

For exact incompressibility (J=1), we recall the expression
for P from (5.2.41)

P = −pF−T + ∂Fψ ,

or in the spectral form

P =
3

∑
α=1

Pα nα ⊗ Nα =
3

∑
α=1

(−p λ−1
α + ∂λα

ψ) nα ⊗ Nα .

The eigenvalues of P are then

Pα = −p λ−1
α + ∂λα

ψ for α = 1, 2, 3 .

For the Ogden model, the derivative of the free energy with
respect to each principal stretch has the following form

∂λα
ψ =

3

∑
n=1

µnλ
βn−1
α for α = 1, 2, 3 .

This leads us to the model-specific expressions for the prin-
cipal stresses

Pα = −p λ−1
α +

3

∑
n=1

µnλ
βn−1
α for α = 1, 2, 3 .

We can now derive the analytic stress expressions for three
distinct cases of homogeneous deformations:
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• Uniaxial F = diag[λ, λ−1
2 , λ−1

2 ], P = diag[P11, 0, 0]

For the stress-free lateral faces, we compute the pressure

P{2,3} = −p λ−1
{2,3} +

3

∑
n=1

µnλ
βn−1
{2,3} = 0 ! p =

3

∑
n=1

µnλ
βn

{2,3} .

Insertion of this result into P1 yields

P1 =
3

∑
n=1

µn(λ
βn−1
1 − λ

βn

{2,3} λ−1
1 ) .

For λ1 = λ, λ2 = λ3 = λ−1
2 , we obtain

P1 =
3

∑
n=1

µn(λβn−1 − λ−βn/2−1) .

• Pure Shear F = diag[λ, λ−1, 1], P = diag[P11, 0, P33]

Following the analogous steps

P2 = −p λ−1
2 +

3

∑
n=1

µnλ
βn−1
2 = 0 ! p =

3

∑
n=1

µnλ
βn
2 .

P1 =
3

∑
n=1

µn(λ
βn−1
1 − λ

βn
2 λ−1

1 ) =
3

∑
n=1

µn(λβn−1 − λ−(βn+1))

• Equi-biaxial F = diag[λ, λ, λ−2], P = diag[P11, P22, 0]

Similarly,

P3 = −p λ−1
3 +

3

∑
n=1

µnλ
βn−1
3 = 0 ! p =

3

∑
n=1

µnλ
βn
3 .

P{1,2} =
3

∑
n=1

µn(λ
βn−1
{1,2} −λ

βn
3 λ−1

{1,2}) =
3

∑
n=1

µn(λβn−1 −λ−(2βn+1))
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5 Introduction to Nonlinear Continuum Mechanics

For the material parameters µ1 = 0.63 MPa, µ2 = 0.0012 MPa,
µ3 = −0.01 MPa and β1 = 1.3, β2 = 5, β3 = −2, the Ogden
model captures the classical data of Treloar (1944) acquired
from vulcanized unfilled natural rubber.
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5.2.8 Transversely Isotropic Elasticity

This section is devoted to the coordinate-free representation
of transversely isotropic elasticity, which is probably the sim-
plest kind of anisotropy one can conceive. The coordinate-
independent framework is obtained in terms of structural
tensors that describe the microstructure of the material un-
der consideration.

X

B
NX

a

The microstructure of a transversely isotropic material can
be considered as a continuum reinforced by micro-fibers.
Common examples cover man-made fiber-reinforced com-
posites such as carbon nanotube loaded materials, automo-
bile tires, and natural collagenous biological tissues, to men-
tion a few.

The fibrous microstructure of a transversely isotropic ma-
terial possesses a well-defined preferred direction, which we
denote with the unit vector a, ||a||=1. This is the key in-
formation that helps us construct the symmetry group of
a transversely isotropic matter. As we mentioned in Sec-
tion 5.2.5, a symmetry group is defined by a set of rotations
that preserve the structural characteristics of the material on
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micro-level. In the case of transverse isotropy, the symmetry
group contains all rotations that do not alter the preferred
orientation a. These include the rotations of an arbitrary
amount about the axis a, i.e. Q‖a and the rotations about
the axis perpendicular to a by an amount of π, i.e. Qπ

⊥a, that
flip a horizontally. We then define the transversely isotropic
symmetry group defined as

Gtransiso :=
{

Q‖a, Qπ
⊥a

}

. (5.2.43)

The underlying key idea of coordinate-free representation
of anisotropic materials is the isotropic tensor functions with
extended set of arguments such that they remain invariant
under arbitrary rotations Q ∈ SO(3). This opens up a pos-
sibility to recast an anisotropic constitutive function into an
isotropic one by means of the so-called structural tensors. For
the case of transverse isotropy, we have

ψ = ψ̂(C, M) with M := a ⊗ a . (5.2.44)

denoting the constant rank-one structural tensor. The free
energy function with the extended list of arguments is then
required to be an isotropic function, i.e. invariant under ar-
bitrary rotations Q ∈ SO(3)

ψ̂(Q · C · QT, Q · M · QT) = ψ̂(C, M) ∀Q ∈ SO(3) .

(5.2.45)

Since the rotations belonging to the symmetric group Gtransiso

preserve the direction a, the structural tensor M remains in-
variant under these rotations

Q · M · QT = M ∀Q ∈ Gtransiso . (5.2.46)
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Therefore, the new isotropic free energy also fulfills

ψ̂(Q · C · QT, M) = ψ̂(C, M) ∀Q ∈ Gtransiso ⊂ SO(3) .

(5.2.47)

The representation theorem of general isotropic tensor func-
tions of several arguments is based on the concept of in-
tegrity bases, which defines a minimum number of invariants
for a particular set of arguments of the energy storage func-
tion. For two generic symmetric second order tensors, say A1

and A2, the irreducible integrity bases are given by

I = { J1(A1), J2(A1), J3(A1), J1(A2), J2(A2), J3(A2)

J4(A1, A2), J5(A1, A2), J6(A1, A2), J7(A1, A2)}
(5.2.48)

where

J1(Ai) := tr(Ai), J2(Ai) := tr(A2
i ), J3(Ai) := tr(A3

i )

are the basic invariants of respective tensors for i = 1, 2 and

J4 := tr(A1 · A2), J5 := tr(A2
1 · A2),

J6 := tr(A1 · A2
2), J7 := tr(A2

1 · A2
2)

denote the mixed invariants.
In transversely isotropic elasticity, the free energy function
depends on the symmetric tensors A1 = C and A2 = M.
Since the structural tensor M is also constant and Mn = M,
the following identities

J3(M) = tr(M3) = tr(M2) = tr(M) ! J3(M) = J2(M) = J1(M)

J6 = tr(C · M2) = tr(C · M) ! J6 = J4

J7 = tr(C2 · M2) = tr(C2 · M) ! J7 = J5
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reduce the integrity bases of transverse isotropy to

I = {J1(C), J2(C), J3(C), J4(C, M), J5(C, M); J1(M)} (5.2.49)

Since we also know that ||a|| = 1, the basic invariant(s) of
the structural tensor are none other than J1(M) = 1. There-
fore, it has no effect on the energy storage function. The ef-
fective list of deformation-dependent invariants then boils
down to

I = {J1(C), J2(C), J3(C), J4(C, M), J5(C, M)} .a (5.2.50)

Since the basic invariants of C can be expressed in terms of
the principal invariants

J1 = I1, J2 = I2
1 − 2I2, J3 = I3

1 − 3I1I2 + 3I3 ,

the set in (5.2.50) may be recast as

I = {I1(C), I2(C), I3(C), J4(C, M), J5(C, M)} . (5.2.51)

5.2.8.1 Extended Neo-Hookean Model of Transverse Isotropy

We consider a model problem of transverse isotropy. The
free energy is assumed to be given as

ψ = ψ̂I(I1, J) + ψ̂A(I1, I2, J4, J5) , (5.2.52)

which is split into the purely isotropic ψI and the anisotropic
ψA parts. This leads us to the additive form of the stresses

S = 2∂Cψ = SI + SA and P = PI + PA , (5.2.53)

where SI :=2∂Cψ̂I, SA:=2∂Cψ̂A and PI :=F · SI, PA:=F · SA.
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The isotropic free energy function is taken to be identical to
the compressible neo-Hookean model we discussed before

ψ̂I(I1, J) =
Λ

4
(J2 − 1)− (µ +

Λ

2
) ln J +

µ

2
(I1 − 3) . (5.2.54)

We then retrieve the stress expressions for the isotropic part

SI = 2
∂ψ̂I

∂C
= µ(1 − C−1) +

Λ

2

(

J2 − 1
)

C−1 ,

PI = F · SI = µ(F − F−T) +
Λ

2

(

J2 − 1
)

F−T . (5.2.55)

For the anisotropic part of the free energy we consider the
following form

ψ̂A(I1, I2, J4, J5) = α1(J4 − 1)2 + α2[J5 − I1 J4 + I2 − 1]

+ α2(J4 − I1 + 2) ,

(5.2.56)

where α1 and α2 are additional material parameters. Geo-
metrical interpretation of the kinematic terms appearing in
this free energy will make the meaning of these additional
material parameters more transparent. The square of the
stretch in the direction a is given by J4, i.e.

λ2
a := ||F · a||2 = (F · a) · (F · a) = C : (a⊗ a) = C : M ≡ J4 .

Thus, the first non-linear term of the free energy governs the
amount energy stored due to the stretching of fibers, and
the material parameter α1 is closely related to the stiffness of
these fibers. The second term in square brackets, however,
measures the area stretch νa in the direction a . We compute
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the square of the area stretch through the area map cof(F) :=
JF−T

ν2
a := || cof(F) · a||2 = J2(F−T · a) · (F−T · a) = J2C−1 : M .

In order to see the relation between this result and the sec-
ond term of ψ̂A, we recall the Cayley-Hamilton theorem

C3 − I1C2 + I2C − I31 = 0 ,

Multiplying this equation with C−1 and solving the result
for I3C−1, we obtain

I3C−1 = J2C−1 = C2 − I1C + I21 .

Contraction of this result with the structural tensor M then
gives the square of the area stretch in the preferred direction

ν2
a = J2C−1 : M = C2 : M − I1C : M + I21 : M

= J5 − I1 J4 + I2 .

Therefore, the material parameter α2 can be conceived as the
stiffness of the isotropic matrix that surrounds the fibers.
The third term α2(J4 − I1 + 2) in ψ̂A is introduced to have
a stress-free state in the undeformed configuration. Compu-
tation of the stress contributions from the anisotropic part
requires the knowledge of the following derivatives

2∂C I1 = 2∂C(C : 1) = 2 1 ,

2∂C I2 = 2∂C
1
2 (I2

1 − C2 : 1) = 2 (I11 − C) ,

2∂C J4 = 2∂C(C : M) = 2 M ,

2∂C J5 = 2∂C(C2 : M) = 2 (M · C + C · M) .
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The anisotropic part of the second Piola-Kirchhoff stresses is
shown to be

SA = 4 α1(J4 − 1)M

+ 2 α2[(M · C + C · M) − C + (I1 − J4 − 1)1 − (I1 − 1)M] ,

from which the first Piola-Kirchhoff stresses can readily be
computed through the push forward operation PA = F · SA.

Uniaxial stress-stretch response of the transversely isotropic
model in two perpendicular directions is depicted below.
Observe the fairly stiffer behavior in the direction coincid-
ing with the preferred direction a.

 1  2  2.5  3  3.5  4

 25

 20

 5

 0

 15

 10

 30

 1.5

P 1
1
,P

22
[M

P
a]

λ [−]

a

a
Λ = 0.3 MPa
µ = 0.8 MPa

α1 = 0.1 MPa
α2 = 0.1 MPa

184


