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Quote of the Day

If a cluttered desk is a sign of a cluttered 
mind, of what, then, is an empty desk a sign?

Albert Einstein
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Before we get started…
 You have learned so far:

 Rigid multibody dynamics and mechanical joints
 Principles of Mechanics, generalized coordinates, equations of Lagrange
 Numerical methods
 Numerical integration of DAEs

 During next few lectures
 We will learn about how to introduce flexibility in multibody system applications
 Small deformation formulations
 Large deformation formulations
 Finite elements and their implementation in software (Chrono)

 Things that we are going to look into…
 Co-rotational formulation –small deformation
 Floating Frame of Reference (FFR) formulation
 Model order reduction techniques
 Geometrically exact beam theory
 Absolute Nodal Coordinate Formulation
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Disclaimer

 First version of this part of the course
 Material obtained from here and there; much from papers
 Notation is NOT completely consistent on all the slides
 Not much time is spent reviewing ideas from previous lectures; basic 

knowledge on finite elements and elasticity is assumed
 There will be a need to take notes
 There will be a need for questions
 There might be a need for side explanations/discussions
 Additional material will be provided (mostly freely available online)
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Flexible Multibody Systems
 How to deal with bodies that deform, in addition to rotate and 

translate?

 We’ll use methods of flexible multibody system dynamics
 Close relation to finite element formulations
 Implemented in commercial multibody software: COMSOL, Altair, 

MSC Software, SIMPACK, etc.
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Source: 

https://www.comsol.com/blo
gs/modeling-a-helicopter-
swashplate-mechanism/



TOC – Flexible Multibody 
System
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 Lecture 1:Introduction
 Quick approach to continuum mechanics
 Small deformation methods

 Lecture 2: Small Deformation - Kinematics of the FFR
 Methods for small deformation in FMBD
 Kinematics of FFR, reference conditions, modes of deformation

 Lecture 3: Full Equations of the FFR
 Derivation of equations of motion
 Inertia, and inertia shape integrals
 Model order reduction



TOC – Flexible Multibody 
System

7

 Lecture 4: Finite Element FFR
 Use of FE in the equations of motion of FFR
 Intermediate coordinate system
 Present kinematics of FFR including finite elements

 Lecture 5: Applications of FFR
 Strain measures
 Applications: How to approach problem solving

 Lecture 6: Large Deformation Formulations
 Geometrically exact beam theory 
 Isoparametric elements
 Absolute nodal coordinate formulation kinematics



TOC – Flexible Multibody 
System
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 Lecture 7: Absolute Nodal Coordinate Formulation
 ANCF beam element strains
 Generalized, inertia forces
 Examples with Chrono

 Lecture 8: ANCF bilinear shell element
 Definition of strains for initially distorted geometry
 Kinematics 
 Generalized forces

 Lecture 9: ANCF bilinear shell element
 Locking in finite elements
 Applications – Chrono



Mechanics of Deformable 
Bodies
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Mechanics of Deformable 
Bodies
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Global deformed 
position

Rigid body 
displacement

Deformation 
displacement vector

Initial position



Configurations of a Solid
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Name Definition Identification

Initial Configuration of body/solid at the onset 
of the simulation – typically undeformed

C0

Reference Configuration at which no deformation is 
considered to occur. Used in 
incremental/non-incremental methods

CR

Co-rotated 
(or 
shadow)

Body- or element- attached configuration 
from C0 describing rigid body motion

CCR

Current Admissible configuration taken by the 
body through dynamic analysis

C



Kinematic Descriptions
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Name Definition Applicability

Total 
Lagrangian

Initial and reference configuration
are equivalent and remain fixed 
throughout the simulation

Finite but moderate strains
(we’ll call it large deformation)

Co-
rotational

Reference configuration split into 
initial and corotated. Strains are 
measured from corotated to current, 
whereas the initial configuration is 
used to measure rigid body motion

Solid and structural dynamics
with arbitrarily translation and 
rotation and small strains –
usually elastic behavior

Updated 
Lagrangian

Initial configuration remains fixed,
but reference configuration is 
updated periodically. Reference 
configuration is updated to a 
recently computed configuration

Can capture large 
displacements and massive 
strains. Handles flow-like
behavior (metal processing) 
and fracture

More details on solid configurations and their kinematics may be found in Chapter 7: REVIEW OF CONTINUUM 
MECHANICS: KINEMATICS by Carlos Felippa (Univ. of Colorado)  - available online 



Kinematic Descriptions
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Name In this course…
Total 
Lagrangian

Deformation of bodies referred to inertial frame (no intermediate 
reference configuration). They describe nonlinear measures (large) 
deformation:  - Absolute Nodal Coordinate Formulation. -
Geometrically Exact Beam Theory 

Co-
rotational

The use of a corotated frame usually implies linearization of strains. 
As such, these formulations can only deal with small deformation:
- Floating Frame of Reference Formulation: We’ll go in depth
- Corotational formulation: We’ll outline its kinematics

Updated 
Lagrangian

Will not be addressed. Not mainstream in FMBD



A word on Solid Mechanics 
approaches
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 Two main approaches
 Continuum Mechanics or Solid Mechanics: We do not make any 

assumption as to the geometry of the bodies we are analyzing
 Structural Mechanics: Geometric particularities of the bodies under 

study are leveraged to develop more efficient/accurate formulations. 
E.g.
 Beams
 Shells
 Solid shells



Deformation gradient
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 How to use the kinematics to compute strains (deformation 
measures)?
 The derivatives of       with respect to       constitute a fundamental 

tensor in Computational Mechanics, the deformation gradient:

 Determinant of      must never vanished. Allows coordinate 
transformation



Gradient Transformation
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 Let rigid body position of a material point in a body be defined 
by      in the coordinate system            , and by the vector      in 
another coordinate system          . If    is an orientation matrix 
that transforms vectors in           to           , we get

 Or, analogously

 Gradient transformation is key to define local directions in flexible 
bodies/solids* and allows having distorted initial configurations. This 
will be used in later lectures to define orthotropy in materials, i.e. 
directions along which material properties differ

*Terms ‘flexible bodies’ and ‘solids’ will be used interchangeably in this course with the understanding 
we are describing bodies that can translate, rotate, and deform

Allows us to introduce distorted configuration



Strain Components
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 Here, we use a continuum mechanics approach (not structural)
 Let’s draw a small vector in the undeformed body and see how 

it deforms

Measure of how much differential length deformed



Strain Components
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 Green-Lagrange strain tensor

 Components of the tensor as a function of 
displacement gradients

What can we tell from the expression above?



Strain Components
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 Green-Lagrange strain tensor

 Features
 It is nonlinear in terms of displacement gradients

 Can capture moderate deformation: Finite strain
 Can be truncated (linearized), small deformation, 

infinitesimal strain
 Defines three normal strains (one direction) and three 

shear strains (angle between two directions)

 It can be rearranged in vector form using 3 stretches 
(normal strains) and 3 shear strains. Note matrix 
symmetry



Strain Components: Structural 
Mechanics
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 Green-Lagrange strain tensor 
 does not consider simplifications in the geometry of the solid
 uses 6 general strain components
 In other words, continuum mechanics approach

 Structural mechanics
 Simplifies solid’s kinematics to take advantage of characteristic geometries
 Beams, shells, and plates are paradigms of these simplifications –

structural approach
 Structural mechanics often involves the use of curvature

Deformed beam –structural 
mechanics. Source: Wikipedia



Corotational Formulation
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 In a nutshell:
 Each finite element has a frame of reference associated with it

 This frame describes base rotations and translations –rigid body-style
 Based on linear finite elements –infinitesimal deformation
 The element frame of reference absorbs rigid body motion and allows 

defining infinitesimal deformation with respect to the element 
 We will analyze this formulation on a per-element basis, only a beam elem.



Corotational Formulation
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Global coordinates



Corotational Formulation
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Corotational Formulation

24

Local displacements

Possible initial relative rotation between node and reference frame
Infinitesimal 
rotations for 
elastic forces
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Corotational Formulation


