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Abstract

Ever since its introduction in 1952, the Mean-Variance (MV) portfolio selection theory has re-
mained a centerpiece within the realm of efficient asset allocation. However, in scientific circles,
the theory has stirred controversy. A strand of criticism has emerged that points to the phe-
nomenon that Mean-Variance Optimization suffers from the severe drawback of estimation errors
contained in the expected return vector and the covariance matrix, resulting in portfolios that
may significantly deviate from the true optimal portfolio.

While a substantial amount of effort has been devoted to estimating the expected return
vector in this context, much less is written about the covariance matrix input. In recent times,
however, research that points to the importance of the covariance matrix in MV optimization
has emerged. As a result, there has been a growing interest whether MV optimization can be
enhanced by improving the estimate of the covariance matrix.

Hence, this thesis was set forth by the purpose to investigate whether financial practition-
ers and institutions can allocate portfolios consisting of assets in a more efficient manner by
changing the covariance matrix input in mean-variance optimization. In the quest of achieving
this purpose, an out-of-sample analysis of MV optimized portfolios was performed, where the
performance of five prominent covariance matrix estimators were compared, holding all other
things equal in the MV optimization. The optimization was performed under realistic invest-
ment constraints, taking incurred transaction costs into account, and for an investment asset
universe ranging from equity to bonds.

The empirical findings in this study suggest one dominant estimator: the covariance matrix
estimator implied by the Gerber Statistic (GS). Specifically, by using this covariance matrix es-
timator in lieu of the traditional sample covariance matrix, the MV optimization rendered more
efficient portfolios in terms of higher Sharpe ratios, higher risk-adjusted returns and lower maxi-
mum drawdowns. The outperformance was protruding during recessionary times. This suggests
that an investor that employs traditional MVO in quantitative asset allocation can improve their
asset picking abilities by changing to the, in theory, more robust GS covariance matrix estimator
in times of volatile financial markets.

Keywords: portfolio allocation, mean-variance optimization, efficient frontier, covariance ma-
trix, estimation error, optimization enigma, random matrix theory, shrinking, robust statistics
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Chapter 1

Introduction

This chapter aims to provide a background of the phenomenon under study as well as to introduce
the reader to the problem that constitutes the focal point of this thesis.

1.1 Background

Financial researchers and practitioners have long been interested in ways of allocating various
assets in an efficient manner. In this setting, an efficient portfolio refers to a portfolio that
yields the highest possible return given a certain level of risk that the investor is willing to take.
Naturally, such portfolios are appealing to portfolio managers around the world and the existing
body of knowledge includes a significant amount of research on this matter, which to a large
extent is dominated by quantitative models.

Out of these quantitative models, one particular approach is protruding and prominent:
Mean-Variance Optimization (MVO), introduced in a groundbreaking article published in 1952
by Markowitz (1952) for which he later was awarded the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel (KVA 1990). The publication proved to become a cornerstone
in Modern Portfolio Theory (MPT) and an important stepping stone towards the creation of
further financial models such as the Capital Asset Pricing Model (CAPM), developed by Sharpe
(1964). Some purists of modern financial economics go as far as claiming that the publication
by Markowitz was “the moment of birth of modern financial economics”, as exemplified by
Rubinstein (2003).

The article by Markowitz (1952) can be seen as a reaction to previous and existing research
at that time, which to a large extent employed the law of large numbers theorem by Bernoulli,
leading to conclusions that all risk could be diversified away. Markowitz, however, did not share
this assertion. Instead, he claimed that the law of large numbers was not applicable to a portfolio
of securities, partly due to the prevalent interdependency and complexity in financial markets.
In other words, the inter-correlation between financial securities implies that diversification can
not entirely eliminate risk according to Markowitz. It is from this assertion that the essence of
Markowitz’s revolutionary theory stems, i.e. the existence of a trade-off relationship between
return and variance where variance is perceived as a measure of risk.

An underlying assumption of MVO is that investors are risk averse and rational. Thus,
an investor will always select a portfolio associated with less variance, ceteris paribus, and the
choice of the portfolio is solely based on the relationship between expected return and variance.
According to Markowitz (1952), the portfolio selection process is divided into two stages:

1



Chapter 1. Introduction

1. Parameter estimation: from historical observations and beliefs, one forms estimations of
future performance (in terms of return and variance) of the specified universe of securities.

2. Portfolio selection: employing the estimated parameters in the first stage, one choose an
efficient portfolio of securities. The security weights of the portfolio is obtained by solving
an optimization problem that is in line with the investor’s preferences.

In Markowitz’s pivotal publication in 1952, he was primarily interested in the portfolio selection
stage. In greater detail, this stage is related to his main proposal that an investor solely should
consider efficient portfolios. Recall that an efficient portfolio refers to a portfolio with a maximum
expected return for a given variance or less, or conversely, a portfolio with minimum variance
for a given expected return or more. In order to obtain efficient portfolios, Markowitz (1952)
presents a corresponding optimization problem, with the following mean-variance (MV) objective
function:

w>µ− δ

2
w>Σw (1.1.1)

where w is a vector of portfolio weights, µ is a vector of expected returns for a set of assets and
Σ is a corresponding covariance matrix of asset returns. Furthermore, δ denotes the coefficient
of risk aversion, which controls the extent of how much additional risk is penalized. In short,
the objective function represents a trade-off between the expected return of a portfolio and its
expected variance. Markowitz (1952) showed that by solving this problem for different values of
the risk aversion coefficient, a set of efficient portfolios is obtained. These portfolios constitute
what Markowitz’s refers to as the efficient frontier and are the only portfolios that an investor
should consider in the context of portfolio selection.

During the years following the publication of Markowitz’s original work in 1952, his contribu-
tion to the modern portfolio theory has been eminent. Despite decades of research and debate,
Markowitz’s mean-variance MPT has remained the cornerstone of portfolio selection methods. It
is up to this state of time still topical and widely employed by financial practitioners, in particular
by portfolio managers (Tu and Zhou 2011). However, since the emergence of the MPT in 1952
and as economic and mathematical theory have progressed, several critics have questioned the
original work of Markowitz. While many agree that Markowitz’s mean-variance MPT is an im-
portant theoretical advance, questions have been raised regarding the first stage of Markowitz’s
portfolio selection process, i.e. the stage where one estimates the expected return vector, µ, and
the covariance matrix, Σ, both serving as essential inputs for the MVO problem. This was, and
still is, a universally encountered problem regarding the application of traditional MPT.

There is, however, an extensive literature devoted to the above mentioned critique. In greater
detail, within the realm of modern portfolio theory, the importance of the covariance matrix
has historically been overshadowed by the expected return parameter. This has led to several
proposals put forward regarding how one should estimate the expected return vector, some of
which are illuminated below:

• In 1992, Black and Litterman (1992) published their newly developed model: the Black-
Litterman model. This model stems from an equilibrium assumption that the global market
portfolio is well diversified and efficient, serving as the neutral initial stage of the approach.
Thereafter, through the use of a reverse optimization process, the model derives returns of
assets implied by the market portfolio. In addition, an investor may convey agreement or
disagreement with the returns implied by the market, as they may claim expertise in value
investment that differs from the market consensus. Following the procedure of Black and
Litterman (1992), a vector consisting of the forecasted expected returns for a considered
asset universe can then be obtained.

2



Chapter 1. Introduction

• In addition to the Black-Litterman model, Sharpe (1964) and Fama and French (1993)
developed the CAPM and the Fama-French three-factor model respectively. In short, these
are models that attempt to describe asset returns and aid in estimating expected returns.

The above models merely capture a glimpse of the existing body of literature on this matter.
In recent times, however, research that point to the importance of the covariance matrix esti-
mation in MVO has emerged. Thus, a demand for the relative performance between different
methods in estimating the covariance matrix has surged among financial practitioners. While
the existing body of knowledge regarding the estimation of expected returns is extensive, the
covariance matrix (Σ) estimation, which is an essential input in MVO, has arguably been over-
shadowed. Thus, in comparison to the return parameter, less is known regarding the performance
of MVO when the way of estimating the covariance matrix is varied, ceteris paribus. In a sense,
there exists a gap in the existing literature regarding this phenomenon, a gap which this thesis
aims to reduce.

1.2 Problematization

In the search for optimal portfolio allocations, investment managers have traditionally relied on
MPT as introduced by Markowitz in 1952. However, finding optimal allocations in MPT requires
estimation of covariances as well as expected returns of the assets included in the portfolio
optimization. Additionally, since portfolio optimization is dependent on expectations about
stochastic phenomena, the process of optimizing portfolios is prone to estimation error (Elton,
Gruber, Brown, et al. 2014).

It is well known that estimation errors of the input parameters, the expected return vector and
the covariance matrix, has a vital impact on the output of MV optimization. In other words, the
resulting portfolios obtained from the solution of the MVO problem are sensitive to the choice of
inputs. Hence, the out-of-sample performance of these optimized portfolios is strongly dependent
on the estimation accuracy of the input parameters. Michaud (1989) coined this phenomenon as
“Markowitz optimization enigma”, where he claims that MV optimized portfolios are unfeasible
in practice due to their susceptibility to estimation errors.

Despite these drawbacks, MV optimization continues to be a prominent method for portfolio
selection among investment managers as more accurate estimation techniques regarding expected
returns have emerged since the assertion by Michaud (1989). These include the Fama and French
(1993) response to CAPM and the Black and Litterman (1992) procedure that combines CAPM
with unique investor views.

However, research regarding estimation techiques for the covariance matrix input in MVO
has not been subject to the same level of attention until recently where Gerber, Markowitz, and
Pujara (2015) introduced a, supposedly, more robust co-movement measure as a replacement
for historical correlation in the estimation of the covariance matrix. Gerber et al. (2015) coin
this measure as the Gerber Statistic (GS) and their main findings suggest that MV optimized
portfolios using GS as a substitute to historical correlation in the covariance matrix estimation
consistently outperformed portfolios using the traditional estimation technique. More specifically,
their results indicate that the entire efficient frontier can be raised upward, thus resulting in higher
Sharpe ratio portfolios being attainable.

The findings by Gerber et al. (2015) are indeed interesting and can result in significant
monetary benefits for investment managers if deemed valid and reliable. More importantly, the
research poses a problem (or an opportunity) regarding whether financial practitioners that today
employ the traditional covariance matrix estimation technique should alter their quantitative
models. Clearly, the choice of estimation technique for the covariance matrix affect the MV
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optimized portfolios. The problem is that there is an inadequate body of research regarding
the effect of out-of-sample performance when solely varying the estimation technique for the
covariance matrix. In other words, there is not a strong foundation regarding this field and
investment managers are most likely not willing to risk capital based on frontier research that
has not yet proven to stand up under close scrutiny.

1.3 Purpose, research questions and expected contribution

This thesis addresses investors that apply Markowitz’s mean-variance modern portfolio theory
in their quantiative models.

The purpose of this thesis is to investigate if portfolio managers that employ traditional
mean-variance optimization in practice can improve their asset-picking abilities by altering the
estimation technique regarding the covariance matrix. In addition, this thesis attempts to ex-
amine whether the relative forecasting performance of various covariance matrix estimators can
be tied to the prevailing market regime.

The study will attempt to achieve the purpose by answering the following research questions:

RQ 1: How does the choice of technique on how to estimate the covariance matrix
affect the out-of-sample performance of mean-variance optimization?

RQ 2: How does the prediction accuracy differ between the traditional sample co-
variance matrix and alternative estimators, and can the relative performance be tied
to the prevailing market dynamics?

In addition to providing insight for financial practitioners that employ MVO in their quanti-
tative models, I expect this thesis to add to the current knowledge regarding the robustness of
different covariance estimation techniques. This knowledge can be applied to fields that are not
necessarily strictly related to modern portfolio theory. Examples of such fields are the insurance
industry and machine learning.

1.4 Disposition of the thesis

• Chapter 2, Literature Review, provides a literature review of relevant research within the
field of portfolio optimization. This chapter further motivates the theoretical framework
and methodology employed in this thesis.

• Chapter 3, Theoretical Framework, introduces the underlying theory that underlie this
thesis. It starts off by presenting some preliminaries, followed by a derivation of the portfolio
optimization problem considered in this thesis. Lastly, theory regarding the estimation
process of the expected return vector and the covariance matrix is presented.

• Chapter 4, Methodology, presents the general methodology employed for investigating the
research questions in this thesis.

• Chapter 5, Results, provides the empirical findings in this study.

• Chapter 6, Discussion, consists of a discussion regarding the empirical findings. In addition,
the validity of the thesis is challenged here.

• Chapter 7, Conclusion, concludes the thesis and presents some suggestions for further
research.

4



Chapter 2

Literature Review

This chapter will provide an extensive review of literature associated with portfolio optimization.
Essentially, this chapter motivates the theoretical framework and methodology employed in this
thesis.

2.1 Portfolio allocation

Almost 65 years have passed since Markowitz (1952) pioneered the use of mean-variance optimiza-
tion in the context of portfolio management, where he quantified the concept of diversification
by employing the notions of return, volatility and covariance. Markowitz’s (1952) seminal work
has played a prominent role in modern portfolio theory and has been widely debated in the lit-
erature. Despite the fact that Markowitz became a Nobel laureate for the aforementioned work,
the framework has stirred controversy in scientific circles and has been subject to criticism which
challenges the validity of his proposed portfolio allocation model. Prior to illuminating the crit-
icism in greater detail, it is important to understand the concept of mean-variance optimization
and how it is composed of several tethered components. In doing so, the literature review can
be divided into several parts, addressing different aspects of the mean-variance framework. The
following Figure 2.1 provides an overview of the portfolio selection process:

Mean-Variance
Optimization

Constraints on
Portfolio Choice

Consciousness
regarding the model’s

applicability

Parameter Estimation Investor Objectives

Optimal Portfolio

- Expected Return Model
- Volatility & Correlation Estimates

Figure 2.1: The MPT investment process. Illustration inspired by Fabozzi, Gupta, and Markowitz
(2002).
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The node regarding model applicability is an extension of the original representation of the
MPT investment process described by Fabozzi, Gupta, and Markowitz (2002). Its appearance
in this thesis may be well motivated by tracing back to events where ignorance towards model
applicability resulted in catastrophic outcomes. Such an event can be found by recollecting the
work by Li (1999) who pioneered the use of Gaussian copulas for predicting the performance of
collateralized debt obligations (CDOs). In the years following his work, Li’s model became deeply
entrenched within the financial industry - in fact, it became so deeply entrenched that warnings
about its limitations and applicability were ignored by the practitioners. Moving forward to
the crisis of 2008, when the financial system’s foundation was severely ruptured, the financial
environment had altered in such magnitude that Li’s model could not anticipate. Hence, the
model became a recipe for disaster and has been partly credited to blame for laying the global
banking system in serious peril (Jones 2009). Already in 2005, Li warned the practitioners that
employed the model without being aware of the underlying assumptions of the formula. In
Whitehouse (2005, p.2), Li stated that:

‘The most dangerous part is when people believe everything coming out of it.’

In this context, Derman and Wilmott (2009) discuss the concept of model awareness within
the field of finance. They appreciate the simplicity in financial models, but hasten to assert that
while models are simple, reality is not. In other words, in the essence of models lies that they
do not perfectly mirror the reality. Confusing an illusion, which is what a model essentially is,
with reality can be a recipe for disaster. Moreover, Derman and Wilmott (2009, p.2) claim:

‘The most important question about any financial model is how wrong it is likely to
be, and how useful it is despite its assumptions.’

They further argue that, in stark contrast to true laws that may be found in the field of
physics, financial models are more fragile systems. The motivation behind this assertion is that
the world of finance is profoundly connected to human behavior which is too complex to entirely
capture in a simplified model. Thus, in contrast to true laws such as Newton’s law of gravity
found in the field of physics, there are no fundamental laws of finance - and even if there were,
it would not be possible to verify them through repeated experiments. Hence, Derman and
Wilmott (2009) argue that it is of utmost importance to be aware of the subtleties associated
with a quantitative model and not to confuse its illusion with reality. Knowing what is assumed
and what is swept out of view in a model is crucial.

Having illuminated the importance of being aware of the assumptions underpinning a model,
the focus of the literature review is now shifted towards the cornerstone model in this thesis: the
mean-variance framework. Fabozzi, Kolm, et al. (2007) note that a common misunderstanding
that is prevalent in the literature is that Markowitz’s mean-variance framework relies on the
assumption that security returns are jointly normally distributed. Fabozzi, Kolm, et al. (2007)
argue, however, that the mean-variance approach is consistent with the assumption of joint
normality and that the misconception may stem from this relationship. The basic assumption
and principle of the mean-variance framework may be found in a wide range of textbooks and
articles, such as inter alia Markowitz (1959) and Fabozzi, Kolm, et al. (2007) and follows as:

• The underlying assumption for the MPT mean-variance model is that an investor’s pref-
erences can be captured by a utility function of the following two moments of portfolio
returns: the expected return and the variance of the portfolio.

• The principle underpinning mean-variance optimization is that for a given level of expected
return, a rational investor will choose a portfolio associated with a minimum amount of
variance amongst the feasible set of portfolios.
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Markowitz (1959) argue that these aspects underpin the mean-variance framework under the
umbrella of portfolio allocation. Following the introduction of MPT mean-variance optimization,
decades of debate and research on the subject have lead to an ambiguous academic support for the
framework. While the approach has found a widespread acceptance among financial practitioners
(Tu and Zhou 2011), the framework has been subject to a large extent of criticism in the academic
circles for not matching the real world in many ways (Feldstein (1969); Rockafellar and Uryasev
(2000)).

The first strand of criticism that will be illuminated relates to the concept of employing
variance as a proxy for risk. Hult et al. (2012) provide a lucid example that shed light on
one of the shortcomings with employing variance as a risk measure. Noting that the following
description may be considered as a parsimonious version of the mentioned example, Hult et
al. (2012) remark that location (mean) and dispersion (variance) are reasonable measures of
probable reward and risk, respectively, under the condition that the return is approximately
normally distributed. They further assert that since variance is a full domain measure that
quantifies a range of likely deviations from the mean, it may inaccurately describe the riskiness
of a position if the return is e.g. asymmetrically distributed. This is illustrated in Figure 2.2:
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Figure 2.2: Density functions for a random variable R with E[R] = 1.1 and Var(R) = 0.32. For the left
plot, R is N(1.1,0.32)-distributed. For the right plot, the distribution comes from a two point mixture
of normal distributions.

Having the same mean and variance, both profiles in Figure 2.2 are identical from a mean-
variance perspective. However, from a downside risk perspective, the riskiness of the positions
is inherently nonequivalent due to the asymmetric display of the density function to the right.
As the variance symmetrically accounts for deviations from the mean, it fails to adequately
discriminate between return distributions (Grootveld and Hallerbach 1999).

Research by, inter alia, Post and Van Vliet (2005) and Ang, Chen, and Xing (2006) suggest
that investors assign greater importance to downside risk as opposed to upside risk which they
view favorably. To cope with the shortcomings of employing variance as a risk measure in this
regard, several downside risk measures have emerged throughout the literature, leading to several
offsprings of the MPT mean-variance framework. Arguably, Value-at-Risk (VaR), popularized by
J.P. Morgan’s RiskMetrics in 1996, is the downside measure that has gained most traction over
the recent years within the field of finance (Glasserman, Heidelberger, and Shahabuddin 2002).
VaR allows the investor to measure the maximum predicted loss at a certain confidence level
(typically 95%). Consequently, empirical findings suggest that VaR enables one to better account
for downside risk in comparison to variance (Litterman (1996); Hendricks (1996)). However, a
general consensus prevails in the body of literature that VaR has its own drawbacks. Artzner
and Delbaen (1997) display that VaR has undesirable mathematical properties such as a lack
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of sub-additivity and convexity. Thus, VaR does not necessarily reward diversification and can
exhibit multiple local extrema, making it computationally intractable to find the global optimal
point in the optimization process for portfolio allocation (Beder (1995); Mausser and Rosen
(1999)). In addition, in the presence of fat left tails, VaR, like variance, has been criticized for
not accomodating for the magnitude of losses beyond the VaR value (Fabozzi, Kolm, et al. 2007).

Conditional Value-at-Risk (CVaR) is a risk measure that has surfaced the academic field of
finance in recent years. It attempts to rectify the mentioned shortcomings of VaR (Artzner,
Delbaen, et al. 1999). In fact, Pflug (2000) proved that CVaR is a coherent risk measure, which
was later supported by Krokhmal, Palmquist, and Uryasev (2002) who concluded that CVaR is
indeed a more reliable risk measure than VaR as it is sub-additive and convex.

While the above risk measures have been hailed in scientific circles and led to extensions of
the mean-variance framework (see e.g. mean-VaR, mean-CVaR; Artzner, Delbaen, et al. (1999)),
it comes at the cost of simplicity and computational tractability. Fantazzini (2004) argue that
this is why the vast majority of applied professionals prefer to rely on more traditional models
such as the mean-variance framework. He supports this assertion by drawing a parallel to the
financial field of option pricing where Black & Scholes still is the most practised model despite
the fact that more sophisticated models have emerged within the academia.

Following the aftermath of the financial tumult in 2008, downside risk measures have regained
an increased attention due to its ability to better consider for black swan events1. However,
despite their theoretical appeal, Fabozzi, Kolm, et al. (2007) argue that downside risk measures
are difficult to implement in a portfolio allocation setting. They remark that this is partly due
to the fact that downside risk measures often entails computational intractability.

In light of the above review, it should be apparent that the definition of risk is ambiguous
in the literature. While some prefer the simplicity and interpretability of the mean-variance
approach, others argue for the use of downside risk measures. As the purpose of this thesis does
not lie in evaluating different risk measures, but rather how they can be estimated, it should
exist no ambiguity in how risk is measured. Hence, with the motivation that the mean-variance
framework is seemingly most employed in practice and in line with Markowitz (1952), this thesis
will restrain to variance as a proxy for risk, bearing its limitations in mind.

2.2 Parameter estimation

More importantly for this thesis is the strand of criticism that refers to the phenomenon that
mean-variance optimization suffers from the problem of estimation error. In the pivotal work by
Markowitz (1952), the focus lied on the theoretical soundness of the suggested portfolio selection
approach. Consequently, less emphasis was placed on how to implement MVO in practice.
In order to practically implement MVO, one needs to estimate the means and covariances of
asset returns as these moments are not known. These estimates are then employed to obtain a
solution for the investor’s optimization problem (Elton, Gruber, Brown, et al. 2014). There is
an abundance of literature that conclude that this leads to one of the most important drawbacks
of the mean-variance approach: i.e. the estimation error of the plug-in moments (see, inter
alia, Michaud (1989); Chopra and Ziemba (1993)). The drawback arises from the fact that the
optimizer is not aware that the inputs are statistical estimates and not known with certainty.

When estimating asset means and covariances of returns, the classical statistical procedure
has been to gather a history of past returns and compute their respective sample estimates.
This procedure relies on the assumption that historical data has some predictive power for

1Coined by Taleb (2007), a black swan event an event that significantly deviates from the expected normal
case but has a major impact, i.e. an outlier that lives in the utmost point of a heavy tail.
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future performance. However, throughout the literature, several deficiencies of employing sample
estimates in a portfolio setting have been well documented. For instance, Frankfurter, Phillips,
and Seagle (1971) assert that MV optimized portfolios obtained by using sample estimates as
plug-in parameters do not necessarily outperform an equally weighted portfolio (also known
as the näıve portfolio). This was later supported by Jobson and Korkie (1980) who obtained
similar results. Moreover, Best and Grauer (1991) show that the estimation error of the parameter
estimates is transferred to the obtained portfolio weights from the portfolio optimization. Hence,
the estimated optimal weights will almost certainly always deviate from the true optimal weights.

In this context, Ledoit and Wolf (2003a) contribute to the discussion by explaining why
sample estimates may come with severe problems in a portfolio setting. They argue that the
poor performance of MV optimized portfolios stem from sample estimates that contain a lot of
error: in this case, the most extreme sample coefficients tend to take extreme values not because
it is the truth, but rather due to the associated error. Consequently, they argue that the MV
optimizer will, consistently, latch onto these extreme coefficients and place the biggest portfolio
weights accordingly. It is from this phenomenon that the critique by Michaud (1989) stems,
claiming that the portfolio optimizers introduced by Markowitz (1952) are in fact “estimation
error maximizers”. Michaud (1989) further coined this puzzle as “Markowitz’s optimization
enigma”.

The critique by Michaud (1989) implies that in the presence of inaccurate plug-in estimates in
MVO, asset managers will underrepresent their true asset-picking abilities, leading to suboptimal
portfolios. To cope with this prevalent problem, a proliferation of studies regarding the subject
have emerged. However, as pointed out by Ledoit and Wolf (2014), while a substantial amount
of effort has been devoted to estimating the expected return vector, much less has been written
about the covariance matrix. To exemplify this assertion, they refer to Green, Hand, and Zhang
(2013) who list over 300 articles that relate to methods of estimating expected returns.

The disparity in attention devoted to the expected return vector versus the covariance ma-
trix input may potentially be explained by tracing back to the findings by Chopra and Ziemba
(1993), suggesting that error in the expected return has more impact on the optimized portfo-
lio’s out-of-sample performance than error contained in the covariance matrix. In addition, the
concept of forecasting returns has always been subject to a great deal of attention ever since
the introduction of financial markets, beyond the field of portfolio allocation. However, recently
Michaud, Esch, and Michaud (2012) challenged the aforementioned claim by Chopra and Ziemba
(1993). Michaud et al. (2012) remark that there is a persistent widespread error in the literature
regarding the relative importance of estimation error in return relative to the covariance matrix.
They argue that the paper by Chopra and Ziemba (1993) is highly flawed and unreliable: their
underlying argument for this assertion is that the analysis in Chopra and Ziemba (1993) is based
on an in-sample specific study, thus having no bearing regarding the impact of estimation error
in rigorous out-of-sample MV optimization. Furthermore, in stark contrast, they claim that the
estimation error in the covariance matrix may in fact overwhelm the optimization process as the
size of the asset universe increases.

In light of the above review, it should be apparent that estimation error is one of the most
important aspects of MV optimization. Reducing such error has the potential to increase out-of-
sample performance of MV optimized portfolios. In other words, there is a potential to obtain
more efficient portfolios, leading to significant monetary benefits for asset managers that employ
MVO. Historically, the general consensus has been to focus on forecasting returns. Consequently,
the body of literature regarding this matter is extensive. However, more recently, research that
point to the importance of the covariance matrix estimation in MVO has emerged. Thus, a
demand for the relative performance between different methods in estimating the covariance
matrix has surged among financial practitioners.
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The following two subsections will (i) provide an overview of different approaches in forecast-
ing expected returns, and (ii) review the literature that include research on how estimation error
in the covariance matrix can be reduced, in line with the research questions in this thesis.

2.2.1 Expected returns

Explaining future return characteristics may be considered as the grail of financial economics.
It can be considered as the quest for financial practitioners that seek efficient asset allocation
through portfolio optimization.

The classical approach when estimating expected returns in MVO is to rely on the sample
means as predictors. Under the hypothesis of normality, the sample mean is the maximum likeli-
hood estimate (MLE) and thus the best linear unbiased estimator for the assumed distribution.
In this case, the sample mean exhibits the property that an increase in sample size, leads to an
improved performance of the estimate. Fabozzi, Kolm, et al. (2007), however, note that under
distributions that are heavy tailed or significantly deviate from a symmetrical unimodal distri-
bution, the above properties of the sample mean are no longer valid. They support this claim by
referring to the work of Ibragimov (2005). An example where the sample mean is a poor forecast
is depicted in Figure 2.3.
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Figure 2.3: A bimodal density function symmetric around the mean, with E[R] = 1.1 and Var(R) = 0.32.

As one can observe, the outcomes of the random variable (in this case the return of an
arbitrary asset) are not necessarily likely to take values described by the overall mean. In this
case, the sample mean is a poor predictor for future returns.

Furthermore, Fabozzi, Kolm, et al. (2007) argue that the return generating process of financial
time series usually do not exhibit stationarity, but varies over time. This implies that historical
data from a long past may have little explanatory power for future behavior. Hence, in such
a setting, the mean is not a good forecast of expected returns - consequently leading to large
estimation error in the optimization process.

To cope with the shortcomings regarding sample moments, two prevalent approaches can
be found in the literature. The first approach is to impose structure on the estimator, usually
by relying on some factor model to forecast expected returns. The other approach is to use
Bayesian estimators such as the Black-Litterman model. These different perspectives will be
further presented throughout this section.

Factor models

The capital asset pricing model (CAPM) is a single-factor model that marked the birth of asset
pricing theory. Building on the foundation of MPT set forth by Markowitz (1952), CAPM
was initially introduced by Sharpe (1964). Following the footsteps of Markowitz, Sharpe was
awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel for his
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pioneering contribution to financial economics in 1990 (KVA 1990). In the context of CAPM,
Lintner (1965) and Mossin (1966) are worthy mentions as they independently proposed similar
theories as Sharpe (1964). The CAPM can be seen as an abstraction of the real-world capital
markets and is based on a strict set of equilibrium assumptions. Sharpe (1964) conclude that
the following three main assumptions underlie CAPM:

1. Investors are rational and choose mean-variance efficient portfolios according to Markowitz
(1952).

2. Investors are in complete agreement: i.e. investors have homogeneous expectations regard-
ing the volatilities, correlations and expected returns of the assets.

3. Investors can borrow and lend at the risk-free rate, which is the same for all investors.

Under these assumptions, CAPM states that the aggregated market portfolio is efficient.
Furthermore, as investors can eliminate firm-specific risk by diversifying their portfolios, no
investor should price it. It is from this assertion that the key idea of CAPM stems: i.e. that all
risk originates from a single factor, the market. This is commonly referred to as the systematic
risk that cannot be diversified away. The major implication of CAPM is then that the expected
return of any asset is determined by its covariation to the market. In other words, the CAPM is
a single-factor linear model that relates expected returns of an asset and a market portfolio.

Within the field of finance, the CAPM has found a widespread application amongst practi-
tioners ever since its introduction. Five decades later, the model is still regarded as a centerpiece
in finance literature (Da, Guo, and Jagannathan 2012) and widely employed in a portfolio al-
location setting. Fama and French (2004) argue that the attraction of the CAPM lies in its
simplicity: it offers a quick quantitative insight into risk-reward interplay and an intuitive tool
for predicting expected returns. In addition, the model is supported by a strong theoretical back-
ground from economic theory. However, in academic circles, the empirical validity of CAPM has
been widely debated and there is a prevalent consensus that, owing to its idealized assumptions,
the empirical record regarding the model’s validity is poor. Fama and French (2004) claim that
it is in fact poor enough to invalidate the way CAPM is used in applications altogether. Levy
and Roll (2010) remark that the widespread belief regarding the invalidity of CAPM stems from
research that conclude that various, commonly used market proxies are inefficient (see, for ex-
ample, Jobson and Korkie (1982); Shanken (1985); Gibbons, Ross, and Shanken (1989)). These
findings do not coincide with the CAPM theory, consequently casting doubt on CAPM. However,
Levy and Roll (2010) show that slight adjustments, well within estimation error bounds, on the
sample parameters employed in evaluating the market portfolio suffice to make the market proxy
efficient. Hence, in stark contrast to the belief that beta is dead, their findings suggest that mar-
ket proxies may be consistent with the CAPM theory after all, thus strengthening the usefulness
of employing CAPM when estimating expected returns. It is important to note, however, that
Levy and Roll (2010) hasten to add that their findings do not constitute a proof of the empirical
validity of CAPM, but acts as a response to the rejection of the model. They further note that
the validity of the global CAPM is not empirically testable as the true market portfolio is in fact
not observable (hence why proxies are employed), in accordance to the critique by Roll (1977).

Following the conception of the CAPM, several offsprings have emerged throughout the lit-
erature. These offsprings are often referred to as multi-factor models, whose birth may be
motivated by the growing number of studies that found that the market alone is not sufficient
in explaining asset returns (see Banz (1981); Basu (1983)). Often viewed as a counterpart to
CAPM, Ross (1976) derived an asset pricing model solely based on arbitrage arguments such as
the no-arbitrage condition. This model is commonly referred to as the arbitrage pricing theory
(APT) model. Contrary to the CAPM, the APT postulates that the expected return of an asset
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is influenced by a variety of risk factors, allowing for a more accurate explanation of asset returns
(Ross 1976). In addition, supporters of the APT argue that an advantage over the CAPM is that
it relies on less restrictive assumptions, e.g. by not relying on the assumption that all investors
are mean-variance optimizers. However, the strength of allowing for more explanatory variables
in explaining returns is also its weakness, as the APT provides no specification on which factors
to include in the model. Consequently, there is no consensus on the identity of explanatory vari-
ables and no consensus on the number of factors to include, resulting in a less tractable approach
than the CAPM.

Moreover, the Fama and French three-factor model is a prominent extension of the CAPM
that attempts to rectify the strand of criticism related to the aspect of omitted explanatory
variables in the CAPM (Fama and French 1995). Based on findings implying higher average
returns on small stocks and high book-to-market stocks, Fama and French (1993) argue that
there are unidentified variables that produce undiversifiable risks in returns, not captured by
the market return. They support this claim by illuminating the phenomena that the returns
of small firms covary more with one another compared to large firms, and that returns on high
book-to-market stocks covary more with one another in relation to the covariation between low
book-to-market stocks. Based on this evidence, Fama and French (1995) proposed a three-factor
model that extends the CAPM with the addition of two factors.

In the academic world, the Fama and French three-factor model has been widely accepted
as a CAPM empirical successor (Zabarankin, Pavlikov, and Uryasev 2014). Less so by financial
practitioners, which Bartholdy and Peare (2005) argue can be explained by their findings that
the additional cost in complexity associated with Fama and French is not justified by its relative
performance over the CAPM. Fama and French (2004) argue that the main shortcoming of
their three-factor model lies in its empirical motivation: the added explanatory variables are not
intuitive from a theoretical perspective, they are rather mere ’brute force’ constructs meant to
capture return patterns illuminated by previous research.

Noting that the above review merely captures a glimpse of the literature on factor models
in a forecasting context, these models stem from the assertion that sample moments based on
historical data are likely to contain random noise and errors. Factor models attempt to smooth
historic data and focus on the underlying relationships, while ignoring deviations from perceived
statistical relationships that are inferred by random noise. In the literature, one can indeed find
that factor models tend to outperform the plug-in sample mean in a portfolio allocation setting.
For instance, Chan, Karceski, and Lakonishok (1999) show in their study that estimates based
on factor models lead to improved out-of-sample performance of optimized portfolios, compared
to when sample plug-in estimates are employed. However, no favorite specification emerges
regarding the choice of factor model.

Ait-Sahalia and Hansen (2009) note that moving from theoretical factors such as the market
portfolio, to empirical factors (see Fama and French (1995)) and potentially to statistical factors,
we may by construction capture more underlying relationships. However, in exchange, the factors
become more difficult to interpret, which Ait-Sahalia and Hansen (2009) argue raises concerns
regarding data mining. Ultimately, choosing between factor models involves a trade-off between
estimation error, bias and interpretability. In this context, invoking the following quote by Ledoit
and Wolf (2003b, p.2) is appropriate:

‘The art of choosing a factor model adapted to a given data set without seeing its
out-of-sample fit is just that: an art’

Essentially, Ledoit and Wolf (2003b) convey the message that as there is no general consensus
on the identity of factors (except for the market) to employ in factor models, choosing a specific
factor model is very ad hoc (we do not know how well it works a priori). The simplicity of the
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CAPM does not entail that it necessarily performs worse than more complex models. In fact,
a common finding in forecasting literature is that simple, parsimonious models that may suffer
from severe misspecification often provide stronger forecasts than more complicated models (see
inter alia Swanson and White (1997); Stock and Watson (1999)). Ultimately, when it comes
to factor models, the Fama-French factor model is regarded as the front figure in the academic
world. However, there is a presence of disparity between the academic world and the real world
setting as financial practitioners find the theoretical motivation and the mathematical simplicity
of the CAPM appealing. It provides a quick quantitative insight on the risk-reward interplay of
assets. Hence, as in the working paper by Gerber et al. (2015) who analyze portfolio performance
in a real-world setting, this thesis will rely on the CAPM when estimating expected returns, while
still acknowledging that its application have been heavily debated within scientific circles (see
e.g. Galagedera and Galagedera (2007) for a detailed capital asset pricing review).

The Black-Litterman model

Within the realm of asset allocation, the Black-Litterman model is regarded as a prominent
extension of traditional MVO. Developed in the original paper by Black and Litterman (1992),
the Black-Litterman model stems from an equilibrium assumption that the global portfolio is well
diversified and efficient, serving as the neutral initial stage of the approach. Thereafter, through
the use of a reverse optimization process, the model derives returns of assets implied by the
market equilibrium. At this stage, a natural question that arises is how the model differentiates
from the CAPM. The answer lies in the model’s flexibility to combine the market equilibrium
with additional market views of an investor. More precisely, the Black-Litterman model permits
analysts to convey agreement or disagreement with the returns implied by the market (Black
and Litterman 1992). The intuition behind the model is that an analyst may claim expertise in
value investment that differs from the market consensus: so why not let the analyst incorporate
these views when deriving the vector of expected returns? In their original paper, Black and
Litterman (1992) conclude the intuition of their proposed model in the following manner:

‘...our approach allows us to generate optimal portfolios that start at a set of neutral
weights and then tilt in the direction of the investor’s views.’

If carefully used, Nikbakhtt (2011) summarize some of the advantages that the Black-Litterman
model may endow on the final portfolio, in comparison to a portfolio obtained through traditional
MVO. These advantages include:

• Estimation error is usually reduced.

• Portfolio weights are often, by construction, more intuitive with respect to the expressed
views.

• The recommended portfolio obtained through the optimization should be more efficient
and less concentrated on individual assets.

However, the Black-Litterman model has been critcized for its ambiguity as Black and Litter-
man (1992) did not discuss the precise nature of how one practically applies the model. Nikbakhtt
(2011) argue that the incorporation of views is in fact a major limitation when putting the Black-
Litterman model into practice. He claims that only the most naive analysts are confident in their
additional market views and in the presence of casually expressed views, the model may become
dangerous. Hence, it is of utmost importance that analysts integrate their views with the greatest
of care. How one estimates the parameter of confidence on views in the Black-Litterman model
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is not clear as Black and Litterman (1992) did not discuss the precise nature of this phenomenon
in their original article. The criticism regarding the great deal of vagueness associated with the
Black-Litterman model stems from the lack of properly described parameters underpinning the
model. In particular, the most severe problem of the model concerns the vagueness of how one
determines the confidence parameter often referred to as the weight-on-views or tau. Articles
such as: “A demystification of the Black-Litterman model” (Satchell and Scowcroft 2000) and
“A step-by-step guide to the Black-Litterman model” (Idzorek 2002) serve as strong examples
regarding the difficulties of interpreting the original work by Black and Litterman (1992).

In addition, Nikbakhtt (2011) illuminates the question regarding the impact of legal risk
when using the Black-Litterman model: he argues that in the absence of a reliable algorithm
that incorporates investor views, clients may use the “prudent expert” principle for portfolio
management in court. On the other hand, if the views are well documented, objectively defined
and well justified, legal risk may decline.

In this thesis, the neutral initial stage of the Black-Litterman model will be used (i.e. the
CAPM model) to estimate expected returns, without incorporating any additional market views.
The reasoning behind this is simply that I deem it inappropriate to dilute the portfolio out-
of-sample analysis with subjective opinions and leave this additional flexibility open for asset
managers to integrate, if sought.

2.2.2 The covariance matrix

Within the realm of modern portfolio theory, the importance of the covariance matrix has ar-
guably been overshadowed by the expected return parameter. As previously mentioned, this
can partly be credited to the findings of Chopra and Ziemba (1993), suggesting that the relative
influence of errors in the expected return vector is higher. In recent times, this claim has been
challenged by the likes of Michaud et al. (2012) who take an opposing stance. They argue that
errors in the covariance matrix may in fact overwhelm the optimization process when the asset
universe grows large.

Nevertheless, the disparity in attention devoted to the different areas is not to be confused
by an absence of literature regarding the covariance matrix estimator. In fact, following the
advancements of mathematical theory and computational power in recent times, a fair amount of
consideration has been put in developing alternative methods of estimating the covariance matrix
(see e.g. Laloux et al. (2000); Ledoit and Wolf (2003b); Gerber et al. (2015)). Other reasons
for the gained interest regarding this phenomenon can be found in Bengtsson and Holst (2002)
who argue that the notorious difficulty of estimating expected returns compared to estimating
the covariance matrix implies that most of the improvement that can be made on MVO lies in
the covariance matrix estimation.

The classical method of estimating the covariance matrix in the context of MV optimization
is to employ the sample covariance matrix. During the years following the work by Markowitz
(1952), numerous studies have shown that the sample covariance matrix may suffer from draw-
backs which undermine its forecasting power of future covariances (Elton, Gruber, Brown, et al.
2014). This may come as a surprise as the sample covariance matrix has the appealing property
of being the maximum likelihood estimate under normality. However, this is to forget what
maximum likelihood actually means. Following Ledoit and Wolf (2003b), it means that all the
trust is put in the data which clearly is a sound principle if there is enough data to trust it. Not
enough data is thus a problem and while increasing the amount of data is a potential solution, it
may come at the expense of employing outdated noisy data with no explanatory power regarding
the future. Consequently, as exemplified in Bengtsson and Holst (2002), an important drawback
of the sample covariance matrix is that it may follow noise too closely and suffer from overfitting
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which will undermine the out-of-sample fit, despite being the best estimate in-sample.
In other words, the sample covariance matrix has been shown to require a lot of data. This

is exemplified in Bengtsson and Holst (2002) who show that the sample covariance matrix of 100
(N) assets implies that 5050 (N(N + 1)/2) parameters have to be estimated. Therefore, small
sample problems may occur when the considered asset universe is large.

In the literature, the cure for the feasible drawbacks associated with the sample covariance
matrix is to impose some form of structure on the estimator. The vast majority of challengers
stem from the notion that there exists a bias-variance tradeoff. While imposing structure may
reduce the instability (variance) of the estimator, it may come at the expense of specification
error (bias). The idea is to find an estimator that prevails at the optimum balance between
bias and variance. Strong challengers found in the body of research regarding this area include
estimators based on factor models, shrinkage models, random matrix theory and threshold theory
(Elton, Gruber, Brown, et al. 2014).

Factor models

Ledoit and Wolf (2003b) claim that a natural way to impose structure on the covariance matrix
estimator is to use a low-dimensional factor structure. Within the world of finance, factor models
have found a widespread traction. However, as in the discussion regarding factor models when
estimating expected returns, Ledoit and Wolf (2003b) argue that two questions arise in this
context: how many factors should one use and what factors should be considered in the model?
According to Elton, Gruber, Brown, et al. (2014), there is no general consensus regarding the
answers to these questions, except for the common understanding that a market factor should
be included. The use of a market factor to explain the return generating process of asset is
motivated by economic theory and was first introduced in such a setting by Sharpe (1964).

Not surprisingly, the single-index model by Sharpe (1964) is one of the most prominent
structural model found in the literature. The key idea of the single-index model is to impose
structure by assuming that the only reason that two securities move together is due to their
common response to market changes. Effectively, all other factors (such as industry factors)
beyond the market are assumed not to account for any comovement between securities. This
rather strong assumption is the core of the single-index model and the validity of the model is
thus strongly dependent on how well the assumption holds.

In some embodiments, empirical studies have found that the estimated covariance matrix
implied by the single-index outperforms the full historical covariance matrix. More specifically,
Elton, Gruber, and Urich (1978) investigated the relative ability in forecasting the correlation
structure between securities for various correlation estimation techniques. Some striking results
of their study was that the sample correlation matrix underperformed the correlation matrix
implied by the single-index model when comparing predicted and realized correlation between
financial securities. Furthermore, they showed that these results were statistically significant.
This suggests that a part of the correlation structure for the full historical model represents
random noise, which is not captured by the structured single-index model.

Ledoit and Wolf (2003b) argue that the sample covariance matrix and the estimated covari-
ance matrix implied by the single-index model can be viewed as two extremes. The first one
can be regarded as a full factor model that puts all the trust in the data, whereas the second
one is a single factor model that makes a rather restrictive assumption regarding what data is
relevant. In the presence of effects beyond the market factor that account for security comove-
ment, the single-index model may thus come at the expense of introducing specification error.
In this context, a similar discussion as in the CAPM model for expected returns can be car-
ried out regarding the introduction of additional factors. Recall that Ait-Sahalia and Hansen
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(2009) argue that one may, by construction, capture more underlying relationships by moving
to a multi-factor model that accounts for e.g. industry factors. However, it does not necessarily
entail a better out-of-sample fit. In addition, the lack of a general consensus regarding factors
apart from the market factor remains a problem as it raises concerns about data mining. Ledoit
and Wolf (2003b) add that choosing between factor models thus becomes very ad hoc and calls
it an art.

In this context, Chan et al. (1999) study the performance of different factor specifications
in a realistic portfolio allocation setting. Their findings suggest no dominating factor specifi-
cation emerges. In fact, the parsimonious single-index model performed only marginally worse
than more complex specifications based on a weaker theoretical foundation. However, all consid-
ered factor models outperformed the sample covariance matrix, which once again suggests that
improvements can be made on this estimate.

With respect to prediction, Elton, Gruber, Brown, et al. (2014) further conclude that parsi-
monious models tend to outperform more complex models in many tests. Their explanation for
this is that complex models with multiple factors tend to contain more noise than real informa-
tion.

Shrinking

Thus far, two extreme estimators have been reviewed: the sample covariance matrix and the
covariance matrix estimator implied by Sharpe’s (1964) single-index model. In addition, the
drawbacks of these two estimators illuminated in the literature have been presented. To reiterate,
it is well known that the sample covariance matrix may suffer from overfitting as it puts all the
trust in the data which in turn may render a poor out-of-sample fit. On the other hand, the
strong structure imposed by the single-index model comes at the price of potentially introducing
specification error. Thus, there exists a trade-off between specification error (bias) and estimation
error (variance) within the realm of estimation.

With this in mind, a recent proposal by Ledoit and Wolf (2003b) is to take a different approach
in imposing structure. They suggest to take a weighted average of the sample covariance matrix
and the covariance matrix estimator implied by the single-index model. This way, they let the
weight assigned to the single-index estimator control how much structure that is imposed. The
approach is inspired by the concept of shrinking, dating back to the work by Stein (1956) where
the weight assigned to the single-index estimator is the shrinkage intensity and the shrinkage
target is the estimated covariance matrix implied by the single-index model. Ledoit and Wolf
(2003b) argue that this approach has the advantage of being able to account for effects beyond
the market factor without the need of specifying an arbitrary multi-factor structure. This is very
convenient, given that there is no general consensus regarding the identity of factors except for
the market factor. The method is commonly called shrinkage to market.

The central idea is to find an optimal compromise between estimation error commonly asso-
ciated with the sample covariance matrix and specification error introduced by the structured
single-index model. In order to achieve this, Ledoit and Wolf (2003b) derives a formula for the
optimal linear shrinkage intensity that controls the amount of structure that is imposed. The
derivation is done by working under large-dimensional asymptotics.

Applying their shrinkage estimator in mean-variance optimization, they further show that for
NYSE and AMEX stock returns ranging from 1972 to 1995, lower out-of-sample variance of MV
optimized portfolios can be obtained compared to solely using, inter alia, the sample covariance
matrix or the covariance matrix estimator implied by the single-index model. Here, Ledoit and
Wolf (2003b) use an equally weighted index of the asset returns as a market proxy. In this
context, Bengtsson and Holst (2002) found similar results for Swedish asset returns. Both these
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studies only use the minimum variance portfolio in their evaluations. Consequently, their results
provides limited information regarding the performance of the covariance matrix estimators in a
portfolio selection context (only one special portfolio is considered). In practice, investors have
various risk profiles and may be interested in portfolios beyond the minimum variance portfolio.
However, a valid response to this critique can be found in Bengtsson and Holst (2002) where they
motivate this choice by not wanting to dilute the covariance matrix performance with potential
errors in the expected return vector.

It is important to note that the single-index estimator is not an exclusive shrinkage target in
this setting. This is illuminated in Ledoit and Wolf (2003a) where they develop a new shrinkage
estimator using the constant correlation model as the shrinkage target. However, they hasten to
add that for an asset universe consisting of different asset classes, the constant correlation model
is not appropriate.

Lastly, Ledoit and Wolf (2004) are very clear that the improvement that the linear shrinkage
introduced in Ledoit and Wolf (2003b) has over the sample covariance matrix is dependent on
the situation at hand. For a relatively large asset universe (N) compared to the number of
observations per asset (T ), the improvement is expected to be significant. On the contrary, if
the data per estimated parameter is high (i.e. when N/T is small), the improvement may be
minuscule.

Random matrix theory

Although developed in the 1950s by quantum physicists, random matrix theory (RMT) is a
fairly recent area within the realm of portfolio optimization. In this context, Laloux et al. (2000)
conducted a pivotal study where they seek to identify measurement noise often associated with
the sample covariance matrix. Their approach stems from the idea that if one can devise a method
to distinguish measurement noise that devoid useful information from signal (useful information)
contained in the estimated covariance matrix, the estimate can be enhanced. Employing known
results from random matrix theory, they show that approximately 94% of the eigenvalues that
constitute the sample correlation matrix for S&P500 stock returns (daily data ranging from 1991-
1996) agree with the theoretical prediction of RMT. This suggests that the sample correlation
matrix may be considered random, to a certain extent. In other words, merely a few eigenvalues
were found to contain useful information in the construction which is a remarkable finding in
a quantitative portfolio selection context. Under the assumption that these results are valid,
Laloux et al. (2000) as well as Plerou et al. (2002) that if one filters the noisy eigenvalues and
reconstructs a cleaned correlation matrix, the forecast of realized risk is improved. These findings
suggests that employing random matrix theory in estimating the covariance matrix in portfolio
optimization can be beneficial in portfolio optimization. However, Laloux et al. (2000) mention
that the noise filtering will in particular improve the least risky portfolios, as these diversified
portfolios seem to mostly be influenced by noise.

However, no general consensus exists in how one should filter the perceived noisy eigenvalues.
The only consensus lies in the fact that regardless of filtering method, the trace of the correlation
matrix should be preserved to ensure that the variance of the system is preserved. Nevertheless,
prominent filtering methods may be found in Laloux et al. (2000), Plerou et al. (2002) and Sharifi
et al. (2004).

Robust statistics

More recently, Gerber et al. (2015) contributed to the research of enhancing the covariance matrix
estimation. In their working paper, a new measure of comovement is introduced altogether, based
on the field of robust statistics. They coin this measure as the Gerber Statistic which aims to be
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more robust than the conventional historical correlation by accommodating for noise and outliers
in the data. The claim is supported by a following evaluation test, where Gerber et al. (2015)
compare out-of-sample performance of MV optimized portfolios in a realistic investment setting.
The asset universe is a multi-asset universe, consisting of various asset classes such as equity
indices, bonds and commodities. Furthermore, the results of the evaluation test indicated that
the entire realized efficient frontier could be raised upwards by replacing the sample covariance
matrix with an estimated covariance matrix based on the Gerber Statistic, implying larger Sharpe
ratios. Solely by changing the estimation technique for the covariance matrix, ceteris paribus,
they showed that the MV optimized portfolios obtained via their newly introduced measure
consistently outperformed obtained portfolios via the sample covariance matrix over a range of
different investor profiles.

Clearly, the findings by Gerber et al. (2015) are of great interest for portfolio managers that
employ MVO, if deemed valid. However, the study gives rise to the question whether previously
developed estimators would yield an even stronger performance (i.e. weak competition). In
addition, in the article by Gerber et al. (2015), it is recognized that in computing the Gerber
Statistic, a non-positive semidefinite matrix may be obtained in theory. Clearly, this poses a
problem in the optimization process since a solution to the problem cannot be guaranteed to be
a globally optimal solution. The authors, however, claim that this problem has not been found
to occur, neither in real nor in simulated practice.

Comparing covariance matrix estimators in MVO

The most common approach found in the literature to compare various covariance matrix estima-
tors is to analyze obtained MV optimized portfolios in backtesting procedures (see e.g. Bengtsson
and Holst (2002); Ledoit and Wolf (2003b)). This enables one to study the out-of-sample perfor-
mance of the obtained portfolios in a real world setting, as data from the testing period is left out
in the estimation phase. However, many studies only evaluate the minimum variance portfolio.
This portfolio merely captures a glimpse of the relative performance in practice, as investors
have varying risk profiles. A common response to this shortcoming is that by leaving out the
expected return parameter, more emphasis is made on the covariance matrix and the relative
performance is not diluted by potential errors in the estimated vector of expected returns. While
this is a valid response, it will nonetheless render the results to be less applicable in practice.
Furthermore, many studies exclude asset classes beyond stocks while it has been shown that a
portfolio may experience significant benefits if asset classes such as commodity is included in the
asset universe due to the recent increase in equity volatility (Conover et al. 2010).

In light of some of the above issues regarding matching the real-world environment associated
with the vast majority of studies on this matter, this thesis will attempt to complement the
existing body of research by studying out-of-sample performance over a range of investor profiles.
In addition, the asset universe will include different asset classes. The covariance estimators that
will be investigated are the ones reviewed in this section. There are indeed more estimators to
be found in the literature, but it is deemed that these are not as prominent as the ones that have
been reviewed.
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Theoretical Framework

This chapter introduces the foundation that the thesis operates within. The framework is divided
into three tethered components. The first part serves as an introduction in the form of presenting
some crucial preliminaries. The following two parts will provide extensive theory on mean-
variance optimization and estimation techniques regarding the expected return and the covariance
matrix, with the focal point lying in the latter of these elements.

3.1 Basic preliminaries

This section serves as a brief introduction to fundamental notions and concepts with regard to
mean-variance optimization.

3.1.1 Return

The return of a financial security is is the gain or loss over a certain time horizon. The return
of a security in this thesis is denoted as R where the return for a particular security i is Ri.
In addition, the price of a security at a particular time, t, is denoted as St. The return for a
non-dividend security over a time period [t, T ], where T > t is then calculated in the following
manner:

Ri =
ST − St
St

(3.1.1)

As for a security that pays dividends over the time period [t, T ], the return is calculated as:

Ri =
Divt,T + (ST − St)

St
=

Divt,T
St︸ ︷︷ ︸

Yield of dividends

+
ST − St
St︸ ︷︷ ︸

Capital gain yield

(3.1.2)

At time t, the outcome of ST and Divt,T is not known, hence the return of a security over the
time period is a random variable. The expected outcome of this random variable will be denoted
as:

µi = E[Ri] (3.1.3)

In the setting of portfolio allocation, a portfolio can be composed of multiple securities where
each portfolio weight, wi, of security i is calculated accordingly:

wi =
Value of the investment in security i

Total value of the portfolio
(3.1.4)

19



Chapter 3. Theoretical Framework

Thus, for an asset universe of size n, we have that:

n∑
i=1

wi = 1 (3.1.5)

The expected return of such a portfolio, E[RP ] is then given by:

E[RP ] = E

[
n∑
i=1

wiRi

]
=

n∑
i=1

wiE[Ri] =

n∑
i=1

wiµi = w>µ (3.1.6)

Here, w> = [w1, . . . , wn] and µ = [µ1, . . . , µn]>. I.e., these are vector notations where w, µ ∈
Rn×1.

3.1.2 Variance

In the setting of mean-variance optimization introduced by Markowitz (1952), the notion of
variance is also fundamental. For a portfolio of assets, where the asset universe consists of n
assets, its variance can be derived in the following manner:

V ar(RP ) = E

( n∑
i=1

wiRi − E[RP ]

)2
 = E

( n∑
i=1

wi(Ri − E[Ri])

)2


= E

( n∑
i=1

wi(Ri − E[Ri])

) n∑
j=1

wj(Rj − E[Rj ])


=

n∑
i=1

n∑
j=1

wiwj E[(Ri − E[Ri])(Rj − E[Rj ])︸ ︷︷ ︸
:=σij

] =

n∑
i=1

n∑
j=1

wiwjσij = w>Σw

To summarize, the variance of the portfolio is given by:

V ar(RP ) = w>Σw (3.1.7)

where Σ denotes the covariance matrix of the asset returns, composed of all covariances between
the returns defined as σij (σii ∀ i = {1, . . . , n} simply is the variance of asset i’s return, these
constitute the diagonal of the covariance matrix).

3.1.3 Optimization

In mathematics, optimization refers to the selection of a best element, with regard to certain
conditions, from a set of possible alternatives. A mathematical representation of an optimization
problem is presented below: {

min
x

f(x)

s.t. gi(x) ≤ bi, i = 1, . . . ,m
(3.1.8)

The solution to this general form must lie within the feasible set which is given by F = {x ∈
Rn : gi(x) ≤ bi, i = 1, . . . ,m}. A graphical example of a feasible set with the form as in (3.1.8),
spanned by three constraints, is illustrated in Figure 3.1. In this example, it is assumed that x1

and x2 (two dimensional case) cannot take negative values.
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Figure 3.1: A feasible set spanned by three constraints. The shadowed area illustrates the feasible set.

Convexity

With regard to opimization, convex functions plays an important role. They have the appealing
property that a local minimum is also a global minimum. For concave functions, this means
that a local maximum is also a global maximum. Reconnecting to the feasible set spanned by a
certain number of constraints in the general optimization problem 3.1.8, a set F ⊂ Rn is referred
to as convex if for all x, y ∈ F and t ∈ [0, 1], it holds that:

(1− t)x+ ty ∈ F (3.1.9)

Now, a function f : F → R is called convex if for all x, y ∈ F , the following holds:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) ∀t ∈ (0, 1) (3.1.10)

If the above holds when the equality sign is flipped, f is said to be concave. A graphical
illustration of a convex function is shown in Figure 3.2.

Figure 3.2: An illustration of a convex function. Source: Sasane and Svanberg (2014, p.79).
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Optimality

Moreover, optimality is an important concept in mean-variance optimization. Given a real-valued
function of a random variable x, a point x̂ ∈ F is said to be a local minimizer if it holds that:

f(x̂) ≤ f(x) ∀x ∈ F such that |x− x̂| < δ, δ ∈ R+ (3.1.11)

and a global minimizer of f if the following holds true:

f(x̂) ≤ f(x) ∀x ∈ F (3.1.12)

An illustration for these two events is depicted in Figure 3.3

Figure 3.3: Q and all points in the interior of the segment AB are local minimizers, whereas P is a global
minimizer. Source: Sasane and Svanberg (2014, p. 105).

Reconnecting to convexity, the special property of a convex (concave) problem entails that a
local minimizer (maximizer) is also a global minimizer (maximizer). Clearly, this is an appealing
property in the optimization process as a solution to the problem can be guaranteed to be a
globally optimal solution. This renders the optimizer to produce stable solutions.

Quadratic programming

Quadratic programming (QP) refers to the problem of minimizing or maximizing a quadratic
function subject to linear equality and inequality constraints. Let f : Rn → R be a quadratic
function with the following representation:

f(x) =
1

2
x>Hx+ c>x+ c0 (3.1.13)

where x ∈ Rn, H ∈ Rn×n is a symmetric matrix, c ∈ Rn and c0 ∈ R. A general mathematical
representation of minimizing the above function is as follows:

(QP)


min
x

1
2x
>Hx+ c>x+ c0

s.t. Ax = b

x ≥ 0

(3.1.14)

where A ∈ Rm×n and b ∈ Rm. Note that all of these are given, including H, c and c0, with an
exception of x, sought to be solved. The above problem (QP) is a general form of the optimization
problem presented by Markowitz (1952) for portfolio allocation. Reconnecting to convexity, the
quadratic function f(x) is convex if and only if H is positive semi-definite. Consequently, the
optimization problem is perceived to be nice if this holds. This implication is important to
remember throughout this thesis.
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3.2 Portfolio optimization

This section introduces the fundamental concepts of Modern Portfolio Theory (MPT). Serving
as the cornerstone of MPT, the mean-variance optimization framework for portfolio selection
is presented. Moreover, this section derives the MV formulation for allocating asset portfolios
in a quantitative manner. The structure of this section is largely inspired by Lundström and
Svensson (2014).

In its most basic form, the problem of portfolio selection may be summarized by the following
four aspects (Steuer, Qi, and Hirschberger (2008); Lundström and Svensson (2014)):

• A fixed amount of money to be invested

• An asset universe of size n, constituted of possible security investments

• A predetermined holding period for the portfolio

• A portfolio rebalance frequency, determining the length of possible sub-periods within the
holding period

Recalling the notations outlined in Section 3.1.1, the portfolio weight for the i:th asset is
denoted as wi. As shown in equation 3.1.4, the portfolio weights are defined as proportions of
the fixed sum to be invested. Therefore, the portfolio weights must sum to 1. This relation serves
as the first constraint for the optimization problem and is often referred to as the condition of
a fully invested portfolio. Furthermore, note that future returns of assets are unknown at the
beginning of the holding period, and thus to be considered as random variables. However, in
MPT, the optimizer assumes that all future asset characteristics (µi, σii and σij) are known
when the optimization is initialized. As this does not hold true in reality, these parameters have
to be estimated. The real performance of the optimized portfolio is thus heavily reliant on the
estimation accuracy of these parameters. How these are estimated in practice will be further
described in the subsequent sections, Section 3.3 and Section 3.4.

Mathematically, the random return for a portfolio is defined below:

RP =

n∑
i=1

wiRi = w>R (3.2.1)

where R = (R1, R2, . . . , Rn)>. Now, assuming that an investor is solely interested in maxi-
mizing the uncertain portfolio return, the portfolio selection problem has the following stochastic
programming representation:

(SP)

{
maximize

w
RP = w>R

subject to w ∈ F

Here, F defines the feasible region that is spanned by the portfolio constraints:

F = {w ∈ Rn |
n∑
i=1

wi = 1, αi ≤ wi ≤ βi} (3.2.2)

The second constraint bounds the weights for each asset, where αi and βi is the lower and
upper bound, respectively. Two notable cases are referred to as the unconstrained and con-
strained case. The unconstrained case allows for wi to take any value (i.e. αi → −∞ and βi
→ ∞), which is equivalent to removing the weight constraint altogether. On the other hand, a
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common constrained case is to bound the portfolio weights by imposing αi = 0. This is equal to
not allowing short positions in the portfolio. Moreover, an important aspect to note is that (SP)
is a stochastic programming problem. This follows from the fact that the future returns of the
securities are random variables and the composition of the portfolio (i.e. the vector of portfolio
weights, w) must be determined at the beginning of the holding period (Steuer et al. 2008).
Hence, in similar fashion as in Steuer et al. (2008), (SP) will be referred to as the investor’s
initial stochastic programming problem. At this stage, (SP) is not a tractable problem to solve
due to the presence of stochastic variables in the objective function.

3.2.1 MVO - an equivalent deterministic formulation

The difficulty with a stochastic programming problem is that its solution is not well defined.
This renders the problem to become intractable in a mathematical sense as it is not solvable
through standard optimization methods.

To cope with this difficulty and to solve (SP), one requires an interpretation and a decision
(Steuer et al. 2008). A common approach taken in the literature is to formulate the stochastic
problem as an equivalent deterministic problem (Lundström and Svensson 2014). Typically,
these formulations involve the utilization of some statistical characteristic or characteristics of
the random variables. In short, (SP) has to be transformed into a simplified deterministic
problem in order to be solvable. In this context, Steuer et al. (2008) argue that it is illuminating
to delve into the rationale that leads from (SP) to an equivalent deterministic formulation and
reviews some historical findings as follows.

In the early 17th century, mathematicians assumed that a gambler would be indifferent in
receiving the uncertain outcome of a gamble and receiving its expected outcome in cash. In the
context of portfolio selection, this assumption translates to the situation where an investor is
indifferent in holding a portfolio of stocks or receiving its certainly equivalent (CE), defined as
follows:

CE = E[RP ] (3.2.3)

Under the assumption that an investor seek to maximize the amount of cash received for
certain, one arrives at the following deterministic representation:{

maximize
w

E[RP ] = w>µ

subject to w ∈ F
(3.2.4)

Recall here that the column vector of random future returns over a time period of n assets is
denoted as: R = (R1, R2, . . . , Rn)>. The column vector of expected values is further defined as
µ = E[R].

However, in 1738, Bernoulli discovered the famously known St. Petersburg paradox (a trans-
lated version of his work can be found in Bernoulli (1954)). The paradox provides an example of
a gamble with an infinite expected value but where a gambler in reality would be willing to forgo
the gamble in exchange for a finite/less amount of money (Steuer et al. 2008). This example
contradicts the classical theory that an investor is solely interested in maximizing the expected
cash outcome without taking its volatility into account. Hence, in order to better match the real
world setting and in contrast to the previous theory, Bernoulli suggested not to directly compare
cash outcomes, but rather to compare the utilities of cash outcomes. Now, if the utility of a
cash outcome is given by a function U : R → R, the utility of the certain equivalent can be
represented as follows:
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U(CE) = E[U(RP )] (3.2.5)

More specifically, the utility of the certainty equivalent equals the expected utility of the
uncertain future portfolio return. Given that an investor seeks to maximize the utility of the
certainty equivalent, we arrive at Bernoulli’s principle of maximizing expected utility as follows:

(UP)

{
maximize

w
E[U(RP )]

subject to w ∈ F

This moves us one step further towards the mean-variance optimization problem suggested
by Markowitz (1952). However, in its present form, (UP) cannot be solved as the utility function
and its parameters are unknown. Therefore, the next step is to find a suitable utility function
that properly mirrors the utility function of an investor.

In the literature, two schools of thought have evolved for dealing with the undetermined
nature of the utility function. The first one involves attempting to incorporate an investor’s
preference structure into (UP) and obtaining an optimal portfolio, as suggested by Roy (1952).
The other one, in the spirit of Markowitz, has arguably found most traction within the field of
portfolio optimization. It involves a parameterization of the utility function U : thereafter, (UP)
is solved for all possible values of its unknown parameters. In this context, Markowitz (1952)
considered the following parameterized quadratic and concave utility function:

U(x) = x− (δ/2)x2 (3.2.6)

Using this quadratic utility function, Markowitz (1952) showed that an optimal portfolio for
an investor with a risk-aversion coefficient δ can be obtained by solving the following deterministic
problem:

(DP)

{
maximize

w
E[RP ]− δ

2V ar(RP )

subject to w ∈ F

The set of all optimal solutions of w ∈ Rn is called the efficient set, which constitutes the
efficient frontier. This frontier refers to efficient portfolios that has the highest possible expected
return given a specified level of variance, or conversely, the lowest possible variance given a
specified level of return. The interpretation of Markowitz’s suggested utility function is that
an investor is solely interested in the relationship between expected return and variance when
choosing between portfolios, where variance is a proxy for risk. Here, it is assumed that all
investors are risk-averse. This means that any additional risk lowers the perceived utility. The
risk-aversion coefficient determines the perceived cost of risk.

In greater detail, mean-variance optimization (MVO) seeks to find optimal asset allocations
when both expected risk and return is considered. Indeed, this can be formulated mathematically
in a number of ways. In this study the utility-maximization problem is considered, which implies
that maximal utility is the objective for the investor. This is obtained by including both the
expected risk and the expected return in the objective function, where the trade-off is determined
by a risk aversion parameter. Extending (DP), we finally arrive at the following MVO problem:
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(MVO)


maximize

w
w>µ− δ

2
w>Σw

subject to
n∑
i=1

wi = 1

αi ≤ wi ≤ βi, ∀i = {1, 2, . . . , n}.

In this form, the problem is solvable by employing tractable optimization methods. Further-
more, recall that w>µ denotes the expected portfolio return and that w>Σw is the portfolio
variance, where Σ is the covariance matrix of all asset returns. Solving (MVO) for different
values of the risk-aversion coefficient, one obtains an efficient frontier as displayed in Figure 3.4:

Volatility (I.e. Standard Deviation)
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c
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d
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Transition point

Efficient frontier

All feasible portfolios that can be 
formed within the asset universe. 

Figure 3.4: The blue frontier illustrates the efficient frontier. According to Markowitz, an investor should
only consider portfolios lying on the efficient frontier when selecting a portfolio. The choice of portfolio
on the efficient frontier depends on the risk-aversion coefficient of the investor.

The unconstrained optimal solution to the above MVO, i.e. when the portfolio weight con-
straints are lifted, has the following representation:

w? =
Σ−11
c

+
1

δ

(
Σ−1

(
µ− 1a

c

))
(3.2.7)

where
a = 1>Σ−1µ

c = 1>Σ−11

where 1 is a column vector of ones. For future references, note that the only portfolio that
does not require an estimate of expected returns, thus only depndent on the covariance matrix,
is the minimum variance portfolio (MVP). This is given by:

wMV P =
Σ−11
c

(3.2.8)

The proof of these solutions can be found in Hult et al. (2012, p.88) for the interested reader.
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3.2.2 Matching the real world - short selling and transaction costs

In the setting of portfolio optimization, short-selling constraints are commonly imposed. The
mathematical implication of this is to require the portfolio weights wi:s to be greater or equal to
zero. In practice, this constraint is frequently imposed as many funds and institutional investors
are prohibited from selling short. A natural question that one may ask is whether enforcing
such a constraint leads to suboptimal solutions as the optimizer is not allowed to freely allocate
portfolio weights within the set of real numbers. Assuming that the optimizer is accurate and
not influenced by estimation error, this is true in a global context. However, if the investor is
prohibited from taking short positions, the constraint is not viewed as a limitation, but rather an
adjustment so that the optimizer properly reflects the environment where the investor prevails.

Interestingly, it has also been shown in the literature that enforcing short-selling constraints
often improves out-of-sample performance of the optimized portfolios. This was shown in Ja-
gannathan and Ma (2003) who proved that mean-variance optimizers are implicitly applying
some form of shrinkage on the sample covariance matrix when short positions are not allowed,
consequently leading to more stable portfolio weights. Their findings can be explained by the
prevalent perception that the optimal portfolio tends to amplify large estimation errors in certain
directions. This stems from the inherent behavior of the mean-variance optimizer, which will
assign large weights to assets that appear to have a small variance due to a significant underesti-
mation. Similarly, if the expected return of an asset is significantly overestimated and appears to
be large, a large weight will be assigned to the corresponding asset. Thus, the portfolio risk of the
optimal portfolio is typically underpredicted and the return overpredicted (Karoui 2013). How-
ever, imposing short-selling constraints does not allow the optimizer to assign extreme weights
as they are then bounded between zero and one. As a result, the problem of error amplifica-
tion is reduced. This finding further motivates investors that apply MVO to rule out short sale
positions.

The long-only MVO problem thus becomes:
maximize

w
w>µ− δ

2
w>Σw

subject to
n∑
i=1

wi = 1

0 ≤ wi ≤ 1, ∀i = {1, 2, . . . , n}.

(3.2.9)

Furthermore, the inclusion of transaction costs in the portfolio selection problem is important
to consider in order to better reflect the real world capital markets. In the initial MVO problem
presented by Markowitz (1952), transaction costs were ignored. However, when portfolios are
frequently rebalanced, the effect of transaction costs are far from insignificant. Recall that MV
optimizers are by nature prone to estimation error due to the stochastic nature of future returns
and covariances. In addition, small changes in these estimates (the vector of expected returns and
the covariance matrix) can result in reallocations that would not necessarily occur if transaction
costs were incorporated in the model. As a result, considering the inclusion of transaction costs
and incorporating it into the model is expected to reduce the amount of trading and rebalancing.
This is appealing for investors, as a low portfolio turnover is preferable.

Moreover, disregarding transaction costs may render inefficient portfolios as the cost of re-
balancing may overwhelm the expected monetary gain of reallocating the portfolio. Thus, the
investor’s ability to allocate optimal portfolios is undermined.

There are numerous ways to implement transaction costs into the problem of portfolio se-
lection. Some of these involve complicated nonlinear functions that emulate the cost penalty
function of transaction costs. However, while these functions might potentially capture the ac-
tual incurred effects of transaction costs, they come with the cost of computational intractability.
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Thus, common approaches in practice involve a simplification to the transaction cost function
which assumes the penalty function to only be dependent on the proportional cost of portfolio
weight changes. Mathematically, the net expected portfolio return can thus be represented as
follows:

E[RP ] = w>µ− (b>max{0, w − w0}+ s>max{0, w0 − w}︸ ︷︷ ︸
penalty function of transaction costs

) (3.2.10)

Here, b ∈ Rn is the proportional cost to purchase assets and s ∈ Rn the proportional cost
to sell assets. Furthermore, w0 contain the weights of the current portfolio, which is held at the
time as the optimizer is initialized. In practice, when incorporating transaction costs, b and s
are often set to be equal. Furthermore, one can make the assumption that the proportional cost
of all individual assets are homogeneous. Clearly, this is a simplified case. It has the advantage
of allowing the model to accommodate for transaction costs while still being easy to implement.
Under the assumption that the cost of purchasing and selling assets is the same, in addition to
assuming that the proportional transaction cost is the same for every asset, we can define the
term accommodating for transaction costs in the following manner (using equation 3.2.10):

ψ1>Λ = b>max{0, w − w0}+ s>max{0, w0 − w} (3.2.11)

Here, Λ is a vector of absolute values of portfolio weight changes, ψ a fixed proportional trans-
action cost, and 1 is a column vector of ones. In practice, ψ typically ranges between 10 to 50
basis points (Bessler, Opfer, and Wolff (2014);Gerber et al. (2015)).

Now, combining the long-only MVO problem in 3.2.9 with equation 3.2.11, we arrive at the
following long-only MVO representation, where the effect of transaction costs is incorporated in
the asset allocation model:

(MVO)


max
w

w>µ− ψ1>Λ− δ

2
w>Σw

s.t.

n∑
i=1

wi = 1

0 ≤ wi ≤ 1, ∀i = {1, 2, . . . , n}.

(3.2.12)

To clarify once again, Λ is a vector of absolute values of portfolio weight changes, ψ a fixed
proportional transaction cost, and 1 is a column vector of ones. δ is a risk aversion parameter
that determines the trade-off between risk and return in the problem. The first constraint forces
the portfolio to be fully invested in the included assets. The second constraint bounds the weights
for each asset, where 0 and 1 is the lower and upper bound, respectively (short-selling is thus
prohibited). Indeed, (3.2.12) requires both µ and Σ to be estimated before the optimization
is attempted. This leaves us the important task of constructing viable estimates, which is the
purpose of the subsequent sections.

Furthermore, in (3.2.12) the matrix Σ needs to be positive semidefinite for the problem to be
concave and consequently have the property that a local optimum is also a global optimum (see
Section 3.1.3). If the matrix is negative definite, the problem is non-concave, making it difficult
to find the global optimum. In order for the matrix to be a valid covariance matrix, it should by
definition be positive semidefinite.
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3.3 Estimating expected returns

The expected returns need to be estimated before problem 3.2.12 can be solved. The Capital
Asset Pricing Model (CAPM) proposes a method for such estimation. Under rational expecta-
tions of investors, the CAPM model offers a quick quantitative insight of risk-reward interplay
of assets. Three main assumptions underlie CAPM (Berk and DeMarzo 2014):

1. Investors are rational and choose mean-variance efficient portfolios according to Markowitz
(1952).

2. Investors are in complete agreement: i.e. investors have homogeneous expectations regard-
ing the volatilities, correlations and expected returns of the assets.

3. Investors can borrow and lend at the risk-free rate, which is the same for all investors.

Under these assumptions, the CAPM implies that the market portfolio of all risky securities
is an efficient portfolio. Furthermore, the capital market line (CML) is spanned by the set of
portfolios with the highest possible expected return for a given level of volatility (risk) (Berk and
DeMarzo 2014).

At its core, CAPM is a single-factor linear model (commonly referred to as the security market
line) that relates the expected return of an asset and the market portfolio. The mathematical
representation of the security market line is as follows:

µi = E[Ri] = rf + βi,mkt(E[Rmkt]− rf )︸ ︷︷ ︸
Risk premium for security i

(3.3.1)

Here, βi,mkt serves as a measure of non-diversifiable (systematic) risk. It measures the amount
of risk associated with an asset, that is common to the market risk. Ri is the return of some
asset, Rmkt the total return of the market, and rf the risk-free interest rate available to all
investors in the market. The estimate of βi,mkt can be obtained by using the sample covariance
and variance:

βi,mkt =
Cov(Ri, Rmkt)

V ar(Rmkt)
(3.3.2)

An estimate of the expected market return E[µmkt], denoted as µ̂mkt, is obtained by taking
the mean return over a lookback period for each asset, where the mean returns are denoted
as λ̂i, and then weighing the means by their respective market weight mi. In other words,
µ̂mkt = m>λ̂ where m = (m1, . . . ,mN )> and λ̂ = (λ̂1, . . . , λ̂N )>. This is referred to as a
value-weighted market index and serves merely as a proxy for the market portfolio. In reality,
the global market portfolio is unknown which is why proxies are employed. Now, the CAPM
estimated return vector is denoted:

µ̂ = (µ̂1, . . . , µ̂N )> (3.3.3)

where each individual return estimate is obtained by the estimated CAPM returns, i.e.:

µ̂i = rf + β̂i,mkt(µ̂mkt − rf ) (3.3.4)

In Section 3.4.2, the idea behind single-index models such as CAPM is explained in greater
detail, hopefully providing a better understanding of the model.
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3.4 Estimating the covariance matrix

In order to estimate the risk of a portfolio, one needs to know to which degree the assets in the
portfolio face common risks and how their returns move together. For this intended purpose, the
covariance is a widely employed measure.

In the context of covariance matrix estimation, the conventional sample covariance matrix
has the appealing property of being the maximum likelihood estimator under the assumption
of normality. This means that it is the best unbiased estimator. However, it also comes with
drawbacks. Being the maximum likelihood estimator, all the trust is put in the data. This is a
sound principle, provided that there is enough data (Ledoit and Wolf 2003b). In small samples,
however, the estimator is subject to the risk of overfitting the data (follows noise too closely). This
means that the sample covariance matrix (also referred to as the historical covariance matrix)
may perform poorly out-of-sample, despite the fact that it performs best in-sample. Intuitively,
one might think that increasing the lookback window of the sample solves this, but in reality,
it may come at the cost of trusting outdated data with little explanatory power for the future.
In a sense, the estimator is a double edged sword as the low bias often comes at the cost of
high variance (see top right circle in Figure 3.5). In addition, the sample covariance matrix runs
the risk of becoming ill-conditioned if the number of assets under consideration is large relative
to the number of historical observations. More specifically, if the number of assets exceeds the
number of observations for every asset, the sample covariance matrix will not be invertible which
is very alarming in a portfolio optimization context (Bengtsson and Holst 2002).

Figure 3.5: Illustration of the bias-variance tradeoff. The blue dots correspond to estimates. Estimates
within the red circle are considered accurate. Source: Fortmann-Roe (2012, p. 1).

3.4.1 The sample covariance matrix

Let ri,t denote the historical return for asset i at time period t. Then, the average historical
return over the time span [1, T ] with step increment of size one for each asset i is given by:

r̄i =
1

T

T∑
t=1

ri,t (3.4.1)

The sample covariance between two assets can then be estimated in the following manner:

Cov(ri, rj) =
1

T − 1

T∑
t=1

(ri,t − r̄i)(rj,t − r̄j) := σ̂ij (3.4.2)
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Performing equation 3.4.2 for all combinations i, j of assets, the historical covariance matrix
for N assets is then obtained by:

Σ̂HC =


σ̂11 σ̂12 · · · σ̂1N

σ̂21 σ̂22 · · · σ̂2N

...
...

. . .
...

σ̂N1 σ̂N2 · · · σ̂NN

 .
Note that the covariance matrix Σ can be constructed according to:

Σ = diag(σ) C diag(σ) (3.4.3)

where σ is a column vector of standard deviations. diag(σ) denotes a matrix with the elements of
σ on the main diagonal. C is a correlation matrix. Thus, by changing the method of calculating
correlation and in turn the correlation matrix C, different covariance matrices can be obtained.
Here, the estimate of σ, denoted as σ̂, is obtained as the sample standard deviation of the
historical asset returns. Note that σ̂ will not depend on which correlation estimation method is
used. Therefore, the estimated covariance matrices obtained by historical correlation are:

Σ̂HC = diag(σ̂)ĈHCdiag(σ̂)

An expression of CHC is given by:

CHC =


ρ1,1 ρ1,2 · · · ρ1,N

ρ2,1 ρ2,2 · · · ρ2,N

...
...

. . .
...

ρN,1 ρN,2 · · · ρN,N

 (3.4.4)

where ρi,j is the correlation between asset returns ri and rj . The estimate of CHC , denoted as

ĈHC , is computed by using the pairwise sample correlations of the historical asset returns.

3.4.2 The single-index market model

A prominent competitor to the sample covariance matrix is the single-index model introduced by
Sharpe (1964). The single-index model is a one factor model that attempts to cure the problem of
overfitting associated with the sample covariance matrix by imposing structure on the estimator.

By observing stock prices, one can see that individual stock prices tend to move together with
the aggregated market. Not surprisingly, the market factor thus usually proves to be the most
important factor when explaining the return generating process of stock returns. In addition,
this suggests that the comovement between stocks to some extent stems from a common response
to market changes.

In Sharpe’s (1964) single-index model, one attempts to capture this correlation by relating
the return on an individual stock to the return of a stock market index in the following manner:

Ri = ai + βiRm (3.4.5)

where ai is a component of the return that is independent of market changes (random variable),
Rm is the return on the employed market index (random variable) and βi is a constant that
measures the expected change in Ri given a change in Rm. More specifically, beta (β) measures
the sensitivity of asset i’s return to the market index return. A beta of 0.5 implies that the return

31



Chapter 3. Theoretical Framework

of the asset is expected to increase (decrease) by 0.5% when the market increases (decreases) by
1%.

The term ai can be decomposed into two components as following:

ai = αi + εi (3.4.6)

where αi is the expected value of ai and εi is the random element of ai, where E[εi] = 0. The
return of an asset i can then be written as:

Ri = ai + βiRm + εi (3.4.7)

where the residual εi and the market return Rm are uncorrelated by construction (Elton,
Gruber, Brown, et al. 2014). This means that:

Cov(εi, Rm) = 0 (3.4.8)

which can be ensured with regression analysis.
Up to this point, all equations can be made to hold by construction. To proceed in the

derivation of the single-index covariance matrix estimator, an assumption now must be made.
The assumption is that the residual terms between different assets are independent, i.e. that εi
and εj are independent for all i and j such that:

E[εiεj ] = 0 ∀ i, j (i 6= j) (3.4.9)

This is the core assumption of Sharpe’s (1964) single-index model. It implies that the only
reason that two securities move together is due to their common response to market changes.
As such, the model assumes that there are no effects beyond the market (e.g. industry and firm
size effects) that account for comovement between securities. This assumption can not be made
to hold by regressions analysis, unlike the assumed independence between the residual and the
market. It is merely an idealized assumption that represents an approximation of reality, and
is not to be confused as the truth. Thus, the validity of the single-index model and how well it
describes asset characteristics is to a large extent dependent on how well this assumption holds.

Having laid down the assumptions and the basic equation that underlie the single-index
model, one can now show that the variance of an asset i implied by the model is given by:

σ2
i = β2

i σ
2
m︸ ︷︷ ︸

Systematic risk

+ σ2
εi︸︷︷︸

Firm specific risk

(3.4.10)

where σ2
m is the variance of the market returns and σ2

εi is the variance of εi. Moreover, the
covariance between two assets i, j is given by:

σij = βiβjσ
2
m (i 6= j) (3.4.11)

Note here that an asset’s variance has two components, a systematic risk (market risk) and
a firm specific risk whereas the covariance between two assets solely depends on the systematic
risk, which is a result of the above mentioned key assumption. To be parsimonious, the complete
derivations of equation 3.4.10 and equation 3.4.11 are left out here. A rigorous derivation for
these results can be found in e.g. Elton, Gruber, Brown, et al. (2014).

Now, let β̂ = (β̂1, . . . , β̂N )> represent a vector containing estimated betas for each asset
and σ̂2

ε = (σ̂2
ε1, . . . , σ̂

2
εN )> denote the vector of estimated residual terms. These estimates can

be obtained by performing linear regressions for each asset. The estimated covariance matrix
implied by the single-index model is then given by:
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Σ̂SI = β̂β̂>σ̂2
m + diag(σ̂2

ε ) (3.4.12)

where σ̂2
m denotes the sample variance of the market index returns.

Note that the single-index covariance matrix only requires 2N+1 parameters to be estimated,
as opposed to the historical covariance matrix where one must estimate N(N + 1)/2 parameters.
This is a major reduction and since one has more data per estimation, the estimation error is
expected to decrease (Bengtsson and Holst 2002). However, it comes at the expense of introducing
specification error (bias) due to its rather restrictive assumption that there are no effects beyond
the market that account for comovement between assets.

3.4.3 Shrinkage towards the single-index model

Thus far, two extreme estimators have been presented. The first one being the sample covariance
estimator which puts all the trust in the data and that can be considered as a full N factor
model where each individual asset is considered a factor. On the other hand, the single-index
is an extreme estimator in the sense that it is a one factor model that with strong structure.
Now, recall that imposing structure comes at the expense of introducing specification error due
to omitted variables while the unbiased sample covariance estimator may suffer from instability.
In short, there exists a trade-off between bias and variance in the realm of estimation.

This is where the concept of shrinkage comes at play. In this context, shrinkage is a Bayesian
statistical procedure that strives to find an optimal compromise between the sample covariance
estimator and some prior with strong structure. The idea stems from the notion that the best
model lies between these two extremes.

The shrinkage estimator that is considered in this thesis is the one introduced by Ledoit and
Wolf (2003b). They suggest to use the single-index covariance matrix, introduced in Section
3.4.2, as the prior. Following Ledoit and Wolf (2003b), let F denote the estimated covariance
matrix implied by the single-index model of Sharpe (1964) and S denote the estimated sample
covariance matrix. Furthermore, it is assumed that F converges to the true covariance matrix
implied by the single-index model as T → ∞, which is assumed not to be equal to the true
covariance matrix. The proposed shrinkage estimator then has the following representation:

αF + (1− α)S (3.4.13)

where α, 0 ≤ α ≤ 1, denotes the shrinkage intensity. This is the weight that is assigned to the
single-index estimator and controls the amount of structure that is imposed on the sample covari-
ance estimator. Note that more structure is imposed on the shrinkage estimator as the shrinkage
intensity increases. In addition, asset returns are assumed to be independent and identically dis-
tributed with finite fourth moments (Ledoit and Wolf 2003b). Now, the difficulty lies in finding
the optimal shrinkage intensity, α. Ledoit and Wolf (2003b) suggest to use a quadratic measure
of distance between the asymptotically true covariance matrix and the shrinkage estimator based
on the Frobenius norm as the objective function in determining the optimal shrinkage intensity.

Note that the definition of the Frobenius norm of a symmetric matrix H ∈ RN×N with entries
hij and eigenvalues λi, i = 1, . . . , N , follows as:

‖H‖2F = tr(H2) =

N∑
i=1

N∑
j=1

hij =

N∑
i=1

λ2
i (3.4.14)

The quadratic loss function is thus defined as:

L(α) = ‖αF + (1− α)S − Σ‖2F (3.4.15)
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where Σ is the true covariance matrix. Now, minimizing the expected value of L(α) with respect
to α yields the following optimal shrinkage intensity (Ledoit and Wolf 2003b):

α? =

∑N
i=1

∑N
j=1 V ar(sij)− Cov(fij , sij)∑N

i=1

∑N
j=1(V ar(fij − sij) + (φij − σij)2)

(3.4.16)

where φij denote the entries for the true covariance matrix implied by the single-index model,
sij the entries of the estimated sample covariance matrix and fij the entries for the estimated
covariance matrix implied by the single-index model.

Invoking the following theorem, the asymptotic behavior of the optimal shrinkage intensity
is shown.

Theorem 1 Let π denote the sum of the asymptotic variances of the entries in the sample co-
variance matrix scaled by

√
T , i.e. π =

∑N
i=1

∑N
j=1AsyV ar[

√
Tsij ]. Also, let ρ denote the sum of

asymptotic covariances of the entries in the estimated single-index covariance matrix with the en-
tries of the sample covariance matrix scaled by

√
T , i.e. ρ =

∑N
i=1

∑N
j=1AsyCov[

√
Tfij ,

√
Tsij ].

Lastly, let γ measure the specification error of the true covariance matrix implied by the single-
index model, i.e. γ =

∑N
i=1

∑N
j=1(φij − σij)2. Then the optimal shrinkage intensity satisfies the

following:

α? =
1

T

π − ρ
γ

+O

(
1

T 2

)
(3.4.17)

See Ledoit and Wolf (2003b) for the proof. �

Note that the weight placed on the shrinkage target increases as the error of the sample
covariance matrix increases and decreases as the specification error of the shrinkage target (single-
index model in this case) increases. Furthermore, let κ denote the constant that determines the
shrinkage intensity:

κ =
π − ρ
γ

(3.4.18)

which inserted in equation 3.4.13 gives the following optimal shrinkage estimator (asymptoti-
cally):

κ

T
F +

(
1− κ

T

)
S (3.4.19)

S F

Σ

κ
T F +

(
1− κ

T

)
S

Figure 3.6: Geometric interpretation of Theorem 1. Source: Ledoit and Wolf (2003b).
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Estimating the optimal shrinkage intensity

At this point, 3.4.19 is not practically useful as κ depends on unknown parameters (π, ρ, γ).
Hence, κ has to be estimated in order for equation 3.4.19 to be applicable. First, decompose π
such that π =

∑N
i=1

∑N
j=1 πij where πij = AsyV ar[

√
Tsij ]. Similarly, let ρ =

∑N
i=1

∑N
j=1 ρij

where ρij = AsyCov[
√
Tfij ,

√
Tsij ] and γ =

∑N
i=1

∑N
j=1 γij where γij = (φij − σij)

2. Now,
following Ledoit and Wolf (2003b), we have the three following Lemmas.

Lemma 1 A consistent estimator for πij is given by:

π̂ij =
1

T

T∑
t=1

((rit − r̄i)(rjt − r̄j)− sij)2 (3.4.20)

See Ledoit and Wolf (2003b) for the proof. �

Lemma 2 A consistent estimator for ρii is given by ρ̂ii = π̂ii. For i 6= j, a consistent estimator
for ρij is given by ρ̂ij = 1

T =
∑T
t=1 ρ̂ijt where

ρ̂ijt =
sjMsMMait + siMsMMajt − siMsjMbMt

s2
MM

bMtaitajt − fijsij (3.4.21)

where M denotes the market index element, ait = rit − r̄i and bMt = rMt − r̄M .

See Ledoit and Wolf (2003b) for the proof. �

Lemma 3 A consistent estimator for γij = (φij − σij)2 is given by its estimated counterpart,
γ̂ij = (fij − sij)2.

See Ledoit and Wolf (2003b) for the proof. �
Employing all three Lemmas, the consistent estimator for the optimal shrinkage constant

thus follows as:

κ̂ = max

(
0,min

(
π̂ − ρ̂
γ̂

, 1

))
(3.4.22)

where κ̂ is truncated to ensure that 0 ≤ κ̂ ≤ 1. Now, the Ledoit and Wolf (2003b) optimal
shrinkage estimator with the single-index model as the shrinkage target becomes the following
(asymptotically):

Σ̂SM =
κ̂

T
F +

(
1− κ̂

T

)
S (3.4.23)

3.4.4 Random matrix theory

In the context of modern portfolio theory, random matrix theory (RMT) is considered to be a
relatively new area despite its development by quantum physicists in the 1950s.

The idea of employing RMT in estimating the covariance matrix of financial returns stems
from the problems that arise in the sample covariance matrix when the data per estimated
parameter is low. More specifically, such an estimator runs the risk of being dominated by mea-
surement noise. Therefore, it is interesting to distinguish between noise and signal (information).
RMT enables one to achieve this by comparing the properties of the sample correlation matrix
to a ’null hypothesis’ completely random matrix.
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Consider a random correlation matrix C̃. This can be written as C̃ = 1
TGG

>, where G ∈
RN×T . Furthermore let the variance of the elements in G equal to 1 and have zero mean. It can
be shown that when N (number of assets) and T (observations per asset) tend to infinity such

that Q = T/N ≥ 1 is fixed, then the density of eigenvalues of C̃ is given by (Laloux et al. 2000):

ρC̃(λ) =
Q

2π

√
(λmax − λ)(λmin − λ)

λ
(3.4.24)

where λ ∈ [λmin, λmax]. The theoretical maximum and minimum eigenvalues predicted by RMT
are given by:

λmaxmin = 1 +
1

Q
± 2

√
1

Q
(3.4.25)

Via the eigen decomposition theorem, the sample correlation matrix C can be decomposed
in the following manner:

C = EΛE−1 (3.4.26)

where E is a square matrix whose ith column is given by the ith eigenvector and Λ is the diagonal
matrix whose diagonal elements are the corresponding eigenvalues.

Laloux et al. (2000) suggest to enhance the correlation matrix C by filtering out noisy eigen-
values in the following manner. Employing equation 3.4.25, the idea is that eigenvalues beneath
the upper noise band (the maximum eigen value) are considered to be noise that does not con-
tain information. These eigenvalues constitute the noisy part of C, not expected to contain real
information. The filtering method by Laloux et al. (2000) is to assign all noisy eigenvalues to
the average of these eigenvalues as they are considered equally useless. The reasoning for why
the noisy eigenvalues are updated with the average of their previous values is to retain the trace
of the correlation matrix such that the variance of the system is preserved.

Moreover, eigenvalues in Λ that exceed the theoretical maximum eigenvalue are preserved as
they are considered to significantly deviate from the random matrix noise, thus containing signal
(information).

Having filtered the noisy eigenvalues according to the above, the cleansed correlation matrix
is now re-built in the following manner:

Cfiltered = EΛfilteredE
−1 (3.4.27)

This yields us the following covariance matrix implied by the random matrix filtering esti-
mator suggested by Laloux et al. (2000):

Σ̂RMT = diag(σ̂)Ĉfiltereddiag(σ̂) (3.4.28)

where, diag(σ̂) is a diagonal matrix whose diagonal elements are the sample standard deviations.

3.4.5 Gerber statistic based covariance matrix

Explained as a “robust co-movement measure” by Gerber et al. (2015), the Gerber Statistic
(GS) introduces a new method for estimating correlation between asset returns in MPT. The
statistic is applied to pairs of series observations, where each pair of observations obtains a

value in {−1, 0, 1}. By introducing time-indexation n of observed pairs of returns r
(n)
i and r

(n)
j ,

corresponding to observations of the asset returns Ri and Rj at time n, we create a new sequence

36



Chapter 3. Theoretical Framework

of observations M
(n)
i,j . This sequence depends on a determined threshold value denoted by Ti

and Tj respectively. Then, the values M
(n)
i,j are computed based on whether the observed return

pairs exceed their respective thresholds or not. The procedure for calculating the sequence goes
as follows:

M
(n)
i,j =


1, if [r

(n)
i ≥ Ti & r

(n)
j ≥ Tj ] or [r

(n)
i ≤ −Ti & r

(n)
j ≤ −Tj ]

−1, if [r
(n)
i ≥ Ti & r

(n)
j ≤ −Tj ] or [r

(n)
i ≤ −Ti & r

(n)
j ≥ Tj ]

0, otherwise.

(3.4.29)

The threshold can be based upon a standard deviation of past variable movement, whereby a
lower standard deviation represents a lower threshold which implies higher sensitivity to variable
movement. For example, a threshold may be set to a multiple of the variable’s standard deviations
based on past behavior. Here, the thresholds Ti and Tj are defined as 0.5 standard deviations of

a rolling window of asset returns r
(n)
i and r

(n)
j respectively, following Gerber et al. (2015). The

Gerber Statistic GSi,j for the assets i and j is then calculated as:

GSi,j =

∑
nM

(n)
i,j∑

n |M
(n)
i,j |

. (3.4.30)

Note that −1 ≤ GSi,j ≤ 1. Then, for any selection of asset returns R = (R1, . . . , RN )>, a
GS-based correlation matrix can be obtained by:

ĈGS =


GS1,1 GS1,2 · · · GS1,N

GS2,1 GS2,2 · · · GS2,N

...
...

. . .
...

GSN,1 GSN,2 · · · GSN,N

 (3.4.31)

where the GS-based covariance matrix estimate Σ̂GS is obtained by:

Σ̂GS = diag(σ̂)ĈGSdiag(σ̂) (3.4.32)

Here, diag(σ̂) is simply a diagonal matrix holding the sample standard deviation estimates.

Furthermore, ĈGS cannot be guaranteed to to be positive semidefinite (Gerber et al. 2015).
This is a problem for any optimizer and needs correction in terms of either finding the closest
positive semidefinite matrix or a change in method of calculation of ΣGS . To cope with this
shortcoming, GS based covariance matrix estimators may have to be modified in a way that
the matrix becomes positive semidefinite. The procedure for this is explained in Section 3.4.6.
Alternatively, one can alter the thresholds to not be as restrictive.

As shown in 3.4.29, the discretization process associated with the Gerber Statistic implies that
data points that are beyond their thresholds are given equal weight, regardless of the magnitude
of exceedance. In contrast, more conventional measures consider the magnitude of deviation
which renders the measure to be sensitive to outliers that may erroneously skew the analysis. In
short, the idea behind the Gerber Statistic considered in this thesis is to eliminate noise from
data and to normalize any outliers: the estimator is only interested in significant coordinated
movements and shrinks the effect of perceived outliers. In doing so, the estimator aims to be
more robust to noise in the data and attempts to reduce relationships inferred by statistical
fluctuations.
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To better gain an understanding of the GS-based covariance matrix, a lucid example follows
below. First, in the following Figure 3.7, 24 monthly returns have been simulated for two assets.
Let us call them asset A and asset B.
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Gerber Statistic - An example
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Figure 3.7: Simulated asset returns in a 24-month window.

Now, we need to impose the thresholds for the two assets. Recall that the thresholds are
based upon a standard deviation of past variable movement for respective asset. In this case,
the lookback window for past movements is 24 months. This is depicted in Figure 3.8, following
below:
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Figure 3.8: Thresholds imposed on both assets, which determines the sensitivity to variable movement.

In the above Figure 3.8, month four, nine and eighteen are highlighted. This is due to the
fact that they all serve as great examples of different cases. The first case, in month four,
both assets exceed their thresholds in the same direction. As they both exceed their thresholds,
the pairwise movement is considered to be significant. In addition, as they move in the same
direction, the value of the case is assigned 1 (positive union). Furthermore, in month nine, asset
B exceeds its threshold while asset A does not. Hence, their pairwise movement is not considered
to be significant. Lastly, one can observe that respective asset exceed their thresholds in month
eighteen. However, they move in opposing directions. Thus, this value is assigned to be -1
(negative union).
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After further inspection of Figure 3.8, one can derive seven significant pairwise returns. This
is shown in Figure 3.9.
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Figure 3.9: An illustration of the significant pairwise returns.

Alternatively, the above is depicted in the following manner:
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Gerber Statistic - Pairwise returns

Figure 3.10: Significant pairwise returns. Points lying in upper right area and the lower left area
correspond to significant pairwise returns in the same direction (marked blue). Points lying in the upper
left and lower right area correspond to significant pairwise returns in the opposing direction (marked
red).

Now, by employing the definition of the Gerber Statistic, defined in equation 3.4.30, together
with Figure 3.10 we arrive at the following estimate of monthly correlation between the assets:

GSA,B =

∑4
i=1 1−

∑3
i=1 1∑7

i=1 1
=

1

7
≈ 0.1429

Comparing this to the sample correlation coefficient, which would amount to approximately
-0.0210, a clear difference in the estimates is noted.
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3.4.6 Nearest positive semidefinite covariance matrix

In mean-variance optimization, it is important that the estimated covariance matrix is positive
semidefinite. If not, the definition of a covariance matrix is violated which is alarming (negative
variances are undefined). In addition, it may lead to unstable solutions from the optimizer.
Clearly, this poses a problem in the optimization process since a solution to the problem cannot
be guaranteed to be a globally optimal solution.

In Gerber et al. (2015), it is recognized that in computing the Gerber Statistic, a non-positive
semidefinite correlation matrix could theoretically be obtained. While not found to occur in their
study, it is important to be aware of the problem as it would halt the optimization process.

To cope with this potential problem, Higham (2002) proposes a method of finding the nearest
correlation matrix, or in other words, the nearest symmetric positive semidefinite matrix with
unit diagonal. In this sense, the nearest matrix is the matrix that minimizes the Frobenius norm
between the matrices. This is not a trivial task. However, Higham (2002) derived an alternatating
projections algorithm for solving the optimization problem (minimizing the Frobenius norm) of
finding the nearest correlation matrix, which will be used in this thesis1. This algorithm can
also be employed for finding the nearest positive semidefinite covariance matrix by relaxing the
constraint that the matrix must have a unit diagonal.

3.5 Performance measures

This section will define the performance measures used to evaluate the optimized portfolios in
this thesis.

3.5.1 Sharpe ratio

The Sharpe ratio, introduced by Sharpe (1964), is a commonly used measure in finance. It mea-
sures the ratio between excess return (return after substracting the risk-free rate) and volatility.
In this thesis, the Sharpe ratio for a strategy i is defined as:

SRi =
R̄i − R̄f

σ̄i
(3.5.1)

where R̄i denotes the annualized net return (after transaction costs) for strategy i. R̄f is the
annualized risk-free rate for the evaluated period and σ̄i is the annualized volatility for strategy
i. The Sharpe ratio characterizes how well one is compensated for the risk taken. Thus, a higher
Sharpe ratio is sought, as this implies more return per risk taken. This is a strong measure under
the assumption that volatility (standard deviaton) as a good proxy for risk holds true.

3.5.2 Maximum drawdown

To further evaluate portfolio performance, the maximum drawdown is also a prominent measure.
It measures the maximum loss from a peak to a nadir over a period of time of a portfolio, and
complements the notion of using volatility well as it is an indicator of downside risk. In other
words, it measures the maximum accumulated loss that an investor may suffer from buying high
and selling low. The maximum decline of a value series i measured in return is defined as:

1MATLAB code that implements the algorithm of finding the nearest correlation matrix can be found at Nick
Highams website, nickhigham.wordpress.com.
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MDDi = max
i,t?∈(0,T )

[
max

i,t∈(0,t?)

(
Vi,t − Vi,t?

Vi,t

)]
(3.5.2)

where Vi,t denotes the value of the portfolio at period t when the portfolio of strategy i is
rebalanced. Clearly, a lower maximum drawdown (MDD) reflects a less risky strategy. Thus, a
low maximum drawdown is attractive.

3.5.3 Portfolio weight turnover

Following DeMiguel and Nogales (2009), portfolio turnover provides information regarding the
stability of a strategy i that rebalance portfolios over an investment horizon. It measures the
extent of trading that has to be done to implement the strategy. A low turnover is often prefer-
able, as it reduces risks such as liquidity risks and implies lower transaction costs. The portfolio
turnover of a strategy i is defined as:

PTi =
1

T

T∑
t=1

N∑
j=1

(|wi,j,t+1 − wi,j,t|) (3.5.3)

where T is the number of rebalancing points and wi,j,t+1 is the weight of asset j under strategy
j at time t+ 1. N is the size of the considered asset universe. I.e., equation 3.5.3 measures the
average absolute changes of the portfolio weights over the T rebalancing points.

3.5.4 Risk-adjusted return

To compare returns for portfolios obtained via a different estimator than employing the sam-
ple covariance matrix, these returns have to be adjusted so that they are associated with the
same level of volatility. This can be achieved by deleveraging the volatility associated with the
competing portfolio i in the following manner:

RARi = Rf +
Ri −Rf

σi
σHC (3.5.4)

where RARi is the risk-adjusted return for the competing portfolio i, Rf the risk-free rate and
σHC the standard deviation for the portfolio obtained by using the sample covariance matrix in
MVO.
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Methodology

This chapter will present the methodology used to answer the research questions in this thesis.
First, the data included in the portfolio optimization procedure is presented. This is followed by
a description of the methodology adapted to evaluate the performance of portfolio performance.

4.1 Data

In order to construct multi-asset portfolios, global stocks, bonds and commodity indices will be
included in the asset universe. More specifically, the S&P500 (U.S. large cap), Russell 2000 (U.S.
small cap), MSCI EAFE (developed market outside the U.S. and Canada) and MSCI Emerging
Markets (captures large and mid cap representation across emerging markets) equity indices will
be included to cover both developed and emerging markets as well as large cap and small cap
stocks. Emerging markets usually are associated with higher stock returns compared to developed
markets due to higher exposure to risk factors such as low liquidity or political conditions (Iqbal,
Brooks, and Galagedera 2010). It has further been shown that including equity that allows for
international diversification is beneficial in a portfolio selection context (Chiou, Lee, and Chang
2009). Hence why these different indices will be included in the optimization process.

Furthermore, bonds will be included as an asset class. More specifically, US Government
bonds will be employed as a low risk investment. As bond prices are typically negatively corre-
lated with stock prices, the inclusion of this asset class is expected to provide additional diver-
sification benefits during e.g. stock market downturns. In addition, high yield corporate bonds
will be included, adding exposure to corporate default risk. These are typically associated with
higher returns, however often penalized with higher risk exposure, in comparison to government
bonds. To represent US Government bonds, the Barclays U.S.-Government Bond (all maturi-
ties) index will be employed. Furthermore, the Barclays U.S. Corporate High Yield index will
be employed to represent high yield bonds.

Lastly, real estate and commodities will be included in the investment universe. In this con-
text, the FTSE U.S. Real Estate Investment Trust (REIT) index will be employed to represent
real estate. Furthermore, the S&P GSCI index and gold will be included to provide diverse invest-
ments in commodities. Several studies have found that investing in commodities can be viewed
against a hedge against inflation and that including commodities in the investment universe may
yield more efficient portfolios in the sense that higher Sharpe ratios can be obtained (Anson
(1999); Conover et al. (2010)). This justifies the inclusion of commodity as an asset class. As for
real estate, the FTSE U.S. REIT index is expected to further improve diversification possibilities.
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In short, the data to be included in the optimization procedure are monthly series on asset
prices from which monthly returns are computed for all included assets. These will be corrected
for dividends and capital changes such as splits. The assets to be included in the optimization are
global indices: S&P500 (U.S. large cap), Russell 2000 (U.S. small cap), FTSE U.S. Real Estate
Investment Trust (REIT), MSCI EAFE (developed market outside the U.S. and Canada), MSCI
Emerging Markets, Barclays U.S.-Government Bond (all maturities), Barclays U.S. Corporate
HY, Gold, and S&P GSCI (diversified commodity index). The price data stretches from January
1992 to December 2013 with 264 observations in total. The data is obtained from Bloomberg
and is USD denominated. Descriptive statistics are presented in Table 4.1.

Index Arithmetic Return Geometric Return Standard Deviation Skew Kurtosis

S&P500 TR 10.5 9.22 15.22 -0.7 4.06
Russell 2000 TR 11.42 9.27 19.68 -0.53 4.1
MSCI EAFE TR 7.19 5.68 16.74 -0.67 4.39

MSCI Emerging Markets TR 8.82 5.7 23.81 -0.7 4.84
FTSE REIT TR 12.63 10.32 20.1 -0.79 11.07

Barclays US Government TR 5.52 5.42 4.26 -0.12 3.99
Barclays US Corporate High Yield TR 8.19 7.75 9.03 -1.13 12.1

S&P GSCI TR 6.8 4.26 21.82 -0.4 4.53
Gold TR 5.59 4.21 16.36 0.16 4.15

Table 4.1: Asset descriptive statistics for the nine assets to be considered in the empirical analysis. The
series from which the descriptive statistics relate to constitute monthly data from the period January 1994
to December 2013. Data from the period January 1992 to January 1994 is excluded as the optimizer will
require two years worth of monthly data to initialize the first portfolio. I.e., January 1994 to December
2013 is the evaluation period. TR denotes total return data, which accommodates for dividends and
splits.

Moreover, in line with Gerber et al. (2015), the three months US T-Bill rate will be used as
a proxy for the risk-free rate.

4.1.1 Sub-periods

In an attempt to further investigate portfolio performance, the full evaluation period ranging from
January 1994 to December 2013 will be divided into sub-periods, depending on the prevailing
market regime. The reasoning behind doing this is to provide additional information regarding
the performance during recessionary times, typically associated with high equity volatility, and
during expansionary times. The regime dependent sub-periods will be determined on an ex ante
basis by studying signals from monetary policy as well as stock market patterns, in line with
Bessler, Holler, and Kurmann (2012). The advantage of this method, outlined in their study, is
that the number of sub-periods are reduced and that the probability for valid signals is increased.
More specifically, the monetary cycle is defined as the first trend change in short term interest
rate by the Federal Reserve (Jensen and Mercer 2003). As for the stock market signal, this will
be determined based on the intersection of the 24-month moving average of the S&P500 index
with the S&P500 index itself: an intersection where S&P500 comes from above the 24-month
moving average is interpreted as a recessionary signal, whereas an intersection from below is
interpreted as an expansionary signal. For a transition from one market regime to another, the
monetary policy signal and the stock market signal must be consistent.
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4.2 Portfolio performance evaluation methodology

To test performances of different covariance matrix estimators in a portfolio optimization context,
this thesis will follow a backtesting procedure. Starting 1st January 1994, monthly historical
data from two years back will be used to estimate the expected return vector and the covariance
matrix in the MVO problem specified in (4.2.1). This is referred to as the in-sample period.
Thereafter, MV optimized portfolios for various investor profiles will be formed, which will be
held for one month. This is referred to as the out-of-sample period. In other words, the portfolios
are rebalanced on a monthly basis. At each rebalancing point, the expected return vector and the
covariance matrices are re-estimated. This process will be repeated until 31st December 2013,
which is the last rebalancing point. To evaluate whether improvements can be made on the MV
optimized portfolios by changing the covariance matrix method, the backtesting procedure will
be performed for all the covariance matrix estimators evaluated in this thesis (outlined in Section
3.4), while all other things are kept equal. The employed method of estimating the expected
return vector is the CAPM, outlined in Section 3.3.

To reiterate, the method of evaluation in this study follows a backtesting procedure where
the considered covariance matrix estimators will be compared by their realized results over time,
holding everything except the covariance estimation equal. The performance of the covariance
matrices will be evaluated historically in their use in portfolio optimization. This implies that
the MVO problem in (4.2.1) is solved at the beginning of one period so that realized portfolio
values over the following period can be calculated. By looking at different target risk levels in
the MVO over time, accumulated results are obtained by the realized portfolio values for each
target in each period of evaluation. Then, realized returns as well as realized volatility can be
obtained for each target so that realized efficient frontiers can be calculated for comparison. This
will be implemented in MATLAB.

4.2.1 MVO Specifics

In the MVO solved in each period, the restriction on the portfolio weights are such that no short
selling is permitted and that the portfolio needs to be fully invested. Different target risk levels
are used, which are obtained by varying δ. Proportional transaction costs are set to 10 basis
points. The specific MVO problem solved each period is then:

max
w

w>µ̂− 0.0011>Λ− δ

2
w>Σ̂w

s.t.

N∑
i=1

wi = 1

0 ≤ wi ≤ 1, ∀i = {1, 2, . . . , N}.

(4.2.1)

where Σ̂ depends on the choice of covariance matrix estimation method. Recall also that Λ is a
vector of absolute values of portfolio weight changes, see Section 3.2.2 for greater detail in how
the MVO problem has been constructed. (4.2.1) is solved using estimateFrontier in MATLAB.

4.2.2 Backtesting

To compute relative performance between the covariance matrices, the optimization problem
(4.2.1) will be solved at the beginning of each period using different target risk levels obtained
by adjusting the risk aversion parameter δ. Specifically, (4.2.1) is solved for a large range of δ,
generating the efficient frontier with corresponding weight vectors w. Then, the solutions with
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expected risk closest to the target risks are selected. If a target risk is not obtainable, the nearest
(in Euclidian distance) solution is chosen, i.e. an end point of the frontier is chosen if the target
risk lies outside the range of obtainable expected risks.

Furthermore, this means that at the beginning of each period, expected asset returns for the
period will be calculated as well as two estimates of the covariance matrix, one based on the
traditional sample covariance matrix and one based on a competing estimator, by using return
data from a specified period of lookback which is set to 24 months in this case. The competing
estimation techniques to be considered are described in Section 3.4. Then, for each target level
of risk and for both methods of covariance estimation, optimal asset weights are obtained by
solving the optimization problem. These weights are used to obtain realized portfolio values over
the next period. This is done for the full period of evaluation.

The above procedure yields several series of realized portfolio values over the full period of
evaluation (one series for each target risk level), for each method of matrix estimation. This
enables an evaluation whether the performance of MV optimized portfolios can be improved by
using a different estimation technique for the covariance matrix.

To clarify, all parameters except for the covariance matrix estimation method will be kept the
same when forming MV optimized portfolios. This is the ceteris paribus context, using CAPM for
estimating the expected return vector. The only thing that will be varied is the choice covariance
matrix estimator. The competing covariance matrix estimators are outlined in Section 3.4. A
brief description of these estimators follows below:

• The sample covariance matrix (HC). This is the base case estimator.

• The single-index model (SI). This is the covariance matrix implied by the market model
of Sharpe (1964). The market index is assumed to be a simple average over all considered
assets.

• Shrinkage towards the single-index market model (SM). This is the estimator
proposed by Ledoit and Wolf (2003b) which uses a weighted average between the sample
covariance matrix and the covariance matrix estimator implied by the single-index model.

• Random matrix filtering estimator (RMT). This is the covariance matrix estimator
proposed by Laloux et al. (2000) which attempts to clean the sample covariance matrix
from noise.

• The Gerber Statistic estimator (GS). This covariance matrix estimator is based on
the work by Gerber et al. (2015) which aims to be more robust to noise and outliers in the
data.

4.3 Covariance prediction accuracy

To further investigate the relative performance of alternative covariance matrices versus HC-
based covariance matrices, an analysis will be performed on how well the methods predict port-
folio volatility, without the need of estimating the expected return vector. As such, the covariance
matrix estimators can be compared without running the risk of diluting the relative performance
by estimation error associated with the estimated return vector. This will be studied by compar-
ing predicted volatility with realized volatility from portfolios with randomly generated weights.
The same assets and evaluation period highlighted in Section 4.1 will be employed in this eval-
uation.

The following method will be used to perform the analysis:
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1. Estimate HC- and competitor-based covariance matrices using return data of the previous
24 months. If a matrix is not positive semidefinite, repair it by finding the nearest one that
is (see Section 3.4.6).

2. Generate 1000 portfolios where the portfolio weights are random. The weights are drawn
from the standard uniform distribution which implies positive weights. Therafter, the
weights are normalized so that the total portfolio weight sum to 1 (fully-invested portfo-
lio). Now, calculate the predicted volatility using the portfolio weights and the covariance
matrices obtained in step 1. In total, this amounts to 2000 predicted volatilities, 1000 for
the HC-based covariance matrix, and 1000 for the covariance matrix based on an alternative
estimation technique.

3. Take the return data for the coming 12 months. Calculate the realized volatility over this
time period, again using the same 1000 portfolios with random weights.

4. Take the realized volatilities and divide them by the predicted volatilities. This yields 2000
ratios. If this ratio is equal to one, it means that the predicted volatility coincides with the
realized volatility. A ratio over 1 implies that the predicted volatility underestimated the
realized volatility, and a ratio under 1 implies the opposite.

5. Take a step of one month forward, and repeat the process from step 1. Continue as long
as there is data available.
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Results

In this chapter, the empirical results will be presented. First, the different sub-periods are defined.
Thereafter, the results from the out-of-sample portfolio performance evaluation are presented.
Lastly, the results from the covariance prediction analysis are presented.

5.1 Sub-periods within the full evaluation period

To offer additional information regarding portfolio performance during different market regimes,
sub-periods were defined within the full evaluation period ranging from January 1994 to Decem-
ber 2013. The results are obtained from employing the ex-ante double signal analysis presented in
Section 4.1.1 are depicted in Figure 5.1. The shaded areas represent recessionary states, whereas
the non shaded areas represent expansionary states.

Figure 5.1: Ex-ante determination of sub-periods within the full evaluation period, conditional on mon-
etary policy signals as well as stock market signals.

More specifically, the first sub-period ranges from January 1994 to January 2001, including
events such as the Asian financial crisis 1997 and the Russian financial crisis 1998. Nonetheless,
it is considered as an expansionary period, characterized with increasing stock prices and high
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interest rates with T-Bills yielding an annualized return of 5.13% on average. Moreover, the
second sub-period ranges from February 2001 to June 2004, with bearish stock markets and
low average interest rates, amounting to 1.77% per annum. This period is shaded in Figure 5.1
and thus considered as a recessionary sub-period. The third sub-period is considered to be an
expansionary state and ranges from July 2004 to February 2008. It is characterized by bullish
stock markets and relatively high US interest rates with T-Bills yielding an annualized return
of 3.63% on average. The fourth and final sub-period within the evaluation period ranges from
March 2008 to December 2013, which includes the 2008 financial crisis which put the global
banking system in serious peril. This is shown by the substantial decline in equity value. In
addition, the sub-period is characterized by low risk-free interest rates amounting to mere 0.25%
per annum, on average. This last sub-period is considered as a recessionary sub-period, as shown
by the shaded area in Figure 5.1. The equity trend, however, signals for a shift. These ex-ante
defined sub-periods within the evaluation period are presented in the below Table 5.1.

Time Period Perceived market regime

Jan 1994-Jan 2001 Expansionary
Feb 2001-June 2004 Recessionary
July 2004-Feb 2008 Expansionary
Mar 2008-Dec 2013 Recessionary

Table 5.1: Ex ante defined sub-periods within the full evaluation sample ranging from 1st January 1994
to 31st December 2013.

5.2 Portfolio out-of-sample performance

In this section, the results from using the backtesting procedure outlined in Section 4.2 are
presented. The monthly return data used is presented in Section 4.1. All estimations are based
on returns from a moving window of the past 24 months. This moving window is used to
bound the number of observations so that momentum is preserved which “offer the advantage of
being more responsive to structural breaks” (Gerber et al. 2015). In addition, all portfolios are
rebalanced on a monthly basis.

For each method of covariance matrix estimator, fifteen target risks are considered. These
correspond to a target standard deviation of 1%, 2%,. . . ,15% (yearly) respectively and are each
associated with a separate set of portfolio weights. Five investor risk profiles are investigated in
greater detail. These include an ultra-conservative investor, a conservative investor, a moderate
investor, an aggressive investor and an ultra-aggressive investor, with yearly portfolio target risks
of 3%, 6%, . . . , 15% respectively.

5.2.1 SI versus HC

The first evaluation compares the relative out-of-sample performance of MV optimized portfolios
obtained by employing the covariance matrix estimator implied by the single-index model (SI)
and the sample covariance matrix (HC).

The realized risk-reward frontiers of the obtained portfolios corresponding to respective co-
variance estimation technique are depicted in Figure 5.2.
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Figure 5.2: An illustration of realized performance in terms of annualized return and annualized volatility
of portfolios corresponding to different target levels of risk. The blue frontier corresponds to ex-post
performance of SI-based portfolios, whereas the orange one represents HC-based portfolios.

As one can observe in Figure 5.2, the relative performance between the covariance estimators
is ambiguous at this point. At lower risk levels, SI-based portfolios perform seemingly better as
they are more efficient than HC-based portfolios. In other words, they provide higher Sharpe
ratios as one is better compensated in terms of return per risk taken at these levels. However,
the HC-based portfolios perform seemingly better at all target risk levels beyond 5%. This is
further shown in Table 5.2.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method SI HC SI HC SI HC SI HC SI HC

Net mean return p.a. 6.07% 5.47% 7.48% 7.59% 9.35% 9.48% 10.91% 11.15% 11.61% 11.82%
Volatility p.a. 4.26% 4.20% 7.53% 7.49% 10.85% 10.81% 13.62% 13.39% 15.73% 15.45%
Net MDD 7.45% 10.23% 22.86% 20.56% 34.56% 30.60% 44.14% 39.39% 50.96% 47.17%
Net Sharpe ratio 0.75 0.62 0.61 0.63 0.60 0.61 0.59 0.62 0.56 0.58
Skewness -0.54 -0.65 -0.83 -0.62 -0.78 -0.63 -0.80 -0.65 -0.72 -0.62
Kurtosis 4.63 4.88 5.84 4.74 4.96 4.14 4.75 4.02 4.46 4.09
Avrg. turnover p.a. 1.31 1.80 2.46 2.66 3.14 3.17 3.51 3.38 3.60 3.37

Table 5.2: Descriptive statistics for SI- and HC-based portfolios, at five different risk target levels.

Within the full evaluation period, HC-based portfolios provide higher Sharpe ratios in four
out of five investor profiles. In addition, the maximum drawdown is lower for HC-based portfolios
for all except one investor type: the ultra-conservative one. This reflects that HC-based portfolios
are associated with less downside risk for the majority of the considered investor risk profiles.

Furthermore, the risk-adjusted returns of SI-based portfolios, adjusted to have the same risk
exposure as HC-based portfolios are shown in Table 5.3. This allows for a comparison of relative
return performance.
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Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆

Net mean RAR p.a. 6.03% 5.47% 0.56% 7.46% 7.59% -0.12% 9.33% 9.48% -0.16% 10.78% 11.15% -0.37% 11.46% 11.82% -0.36%
Volatility p.a. 4.20% 4.20% 7.49% 7.49% 10.81% 10.81% 13.39% 13.39% 15.45% 15.45%
Net Sharpe ratio 0.75 0.62 0.61 0.63 0.60 0.61 0.59 0.62 0.56 0.58

Table 5.3: Relative return performance for the full evaluation period. The returns of SI-based portfolios
are converted to risk-adjusted returns by deleveraging SI portfolio volatility to HC portfolio volatility.
∆ denotes the difference in return between SI-based portfolios and HC-based portfolios.

The only benefit of estimating the covariance matrix based on the single-index model is found
for the ultra-conservative investor profile (0.56% additional return). Using the single-index model
in lieu of the traditional covariance matrix, however, would result in less efficient portfolios in
all other considered cases.

Sub-period analysis

In an attempt to further explain the above results, the relative performance is evaluated during
the different sub-periods defined within the full evaluation period is presented in the below Table
5.4 and Table 5.5.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method SI HC SI HC SI HC SI HC SI HC

Net mean return p.a. 6.79% 5.83% 9.87% 9.73% 12.36% 12.21% 13.77% 14.10% 14.75% 15.03%
Volatility p.a. 4.40% 4.09% 7.77% 7.92% 11.11% 11.29% 13.40% 13.54% 15.32% 15.27%
Net MDD 5.18% 5.92% 9.03% 9.49% 12.56% 13.78% 15.40% 15.35% 18.73% 19.37%
Net Sharpe ratio 0.38 0.17 0.61 0.58 0.65 0.63 0.64 0.66 0.63 0.65
Avrg. turnover p.a. 1.41 2.12 1.98 2.35 2.31 2.35 2.56 2.39 2.39 2.32

Feb 2001-June 2004 (Recessionary Period)

Correlation Method SI HC SI HC SI HC SI HC SI HC

Net mean return p.a. 7.31% 7.28% 7.69% 6.43% 7.81% 6.12% 8.80% 7.56% 8.51% 7.85%
Volatility p.a. 4.76% 4.67% 6.57% 7.34% 10.77% 10.79% 12.44% 12.57% 13.51% 13.66%
Net MDD 2.95% 3.94% 6.79% 6.96% 10.69% 9.83% 12.78% 14.92% 17.03% 18.78%
Net Sharpe ratio 1.16 1.18 0.90 0.64 0.56 0.40 0.57 0.46 0.50 0.45
Avrg. turnover p.a. 0.83 1.03 2.66 2.52 3.98 3.59 4.30 3.82 4.11 3.53

July 2004-Feb 2008 (Expansionary Period)

Correlation Method SI HC SI HC SI HC SI HC SI HC

Net mean return p.a. 6.24% 6.06% 9.58% 10.13% 13.75% 13.80% 17.86% 16.59% 20.12% 19.39%
Volatility p.a. 3.33% 3.37% 6.90% 7.25% 10.45% 10.71% 14.03% 14.01% 17.07% 16.71%
Net MDD 3.23% 2.96% 5.62% 5.24% 9.88% 8.70% 13.86% 12.31% 16.61% 14.88%
Net Sharpe ratio 0.78 0.72 0.86 0.90 0.97 0.95 1.01 0.93 0.97 0.94
Avrg. turnover p.a. 1.89 2.18 3.40 3.32 3.84 3.98 4.07 3.98 3.85 4.11

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method SI HC SI HC SI HC SI HC SI HC

Net mean return p.a. 4.28% 3.62% 4.19% 4.15% 5.13% 5.53% 5.61% 6.35% 5.01% 5.62%
Volatility p.a. 4.27% 4.53% 7.73% 7.24% 10.96% 10.35% 14.13% 13.37% 16.55% 15.87%
Net MDD 7.45% 10.23% 20.98% 19.03% 30.23% 27.13% 38.26% 34.41% 44.31% 41.23%
Net Sharpe ratio 0.94 0.74 0.51 0.54 0.45 0.51 0.38 0.46 0.29 0.34
Avrg. turnover p.a. 1.07 1.62 2.33 2.73 3.22 3.40 3.88 3.97 4.64 4.12

Table 5.4: Descriptive statistics for the four sub-periods from 1994 to 2013 for SI- and HC-based port-
folios, at five different risk target levels.
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Table 5.4 suggests that HC-based portfolios, in particular, outperform SI-based portfolios
during the last sub-period. This is further shown in Table 5.5, where the risk-adjusted relative
performance of SI-based portfolios over the last sub-period is notably weak.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆

Net mean RAR p.a. 6.67% 5.83% 0.84% 9.96% 9.73% 0.23% 12.47% 12.21% 0.26% 13.86% 14.10% -0.24% 14.72% 15.03% -0.31%
Volatility p.a. 4.09% 4.09% 7.92% 7.92% 11.29% 11.29% 13.54% 13.54% 15.27% 15.27%
Net Sharpe ratio 0.38 0.17 0.61 0.58 0.65 0.63 0.64 0.66 0.63 0.65

Feb 2001-June 2004 (Recessionary Period)

Correlation Method SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆

Net mean RAR p.a. 7.31% 7.28% 0.03% 6.03% 6.43% -0.41% 5.87% 6.12% -0.25% 6.72% 7.56% -0.84% 7.60% 7.85% -0.26%
Volatility p.a. 4.67% 4.67% 7.34% 7.34% 10.79% 10.79% 12.57% 12.57% 13.66% 13.66%
Net Sharpe ratio 1.19 1.18 0.58 0.64 0.38 0.40 0.39 0.46 0.43 0.45

July 2004-Feb 2008 (Expansionary Period)

Correlation Method SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆

Net mean RAR p.a. 6.27% 6.06% 0.22% 9.88% 10.13% -0.26% 13.99% 13.80% 0.20% 17.84% 16.59% 1.25% 19.76% 19.39% 0.37%
Volatility p.a. 3.37% 3.37% 7.25% 7.25% 10.71% 10.71% 14.01% 14.01% 16.71% 16.71%
Net Sharpe ratio 0.78 0.72 0.86 0.90 0.97 0.95 1.01 0.93 0.97 0.94

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆ SI HC ∆

Net mean RAR p.a. 4.51% 3.62% 0.90% 3.95% 4.15% -0.20% 4.85% 5.53% -0.67% 5.32% 6.35% -1.03% 4.81% 5.62% -0.81%
Volatility p.a. 4.53% 4.53% 7.24% 7.24% 10.35% 10.35% 13.37% 13.37% 15.87% 15.87%
Net Sharpe ratio 0.94 0.74 0.51 0.54 0.45 0.51 0.38 0.46 0.29 0.34

Table 5.5: Relative return performance for the sub-periods that constitute the full evaluation period. The
returns of SI-based portfolios are converted to risk-adjusted returns (RAR) by deleveraging SI portfolio
volatility to HC portfolio volatility. ∆ denotes the difference in return between SI-based portfolios and
HC-based portfolios.

Although no clear pattern is shown in relative performance, the covariance matrix estimator
implied by the single-index seems to perform particularly poor during recessionary times.

5.2.2 SM versus HC

In this section, the out-of-sample performance of MV optimized portfolios implied by the shrink-
age estimator (SM) described in Section 3.4.3 is evaluated. In Figure 5.3, the realized performance
of SM- and HC-based portfolios in terms of risk-reward ratios for fifteen different target levels of
risk is depicted. By inspection, the difference between the realized efficient frontiers is marginal.
This suggests that a low shrinkage intensity has been assigned to the shrinkage target (being
the single-index estimator) when the weighted average between the sample covariance matrix
and the covariance matrix estimator implied by the single-index model has been calculated. In
other words, the shrinkage estimator has almost converged to the sample covariance matrix.
This coincides with the results presented in Section 5.2.1, where SI-based portfolios showed
poor performance, consequently indicating that the covariance matrix estimator implied by the
single-index model provided a bad out-of-sample fit. Plausible explanations for this could be
that the assumption implying that no factors beyond the market account for asset comovement
is strongly violated, or that the employed market proxy provides an inaccurate reflection of the
market portfolio, or simply a combination of these two situations.
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Figure 5.3: An illustration of realized performance in terms of annualized return and annualized volatility
of portfolios corresponding to different target levels of risk. The blue frontier corresponds to ex-post
performance of SM-based portfolios, whereas the orange one represents HC-based portfolios.

A further inspection of Table 5.6 illuminates the minuscule difference between SM- and HC-
based portfolios. The relative performance is ambiguous, neither estimator is superior for all
five investor types. However, SM-based portfolios are associated with higher Sharpe ratios on
average. On the other hand, the maximum drawdown are lower for HC-based portfolios on
average.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method SM HC SM HC SM HC SM HC SM HC

Net mean return p.a. 5.61% 5.47% 7.65% 7.59% 9.60% 9.48% 11.23% 11.15% 11.76% 11.82%
Volatility p.a. 4.27% 4.20% 7.47% 7.49% 10.84% 10.81% 13.54% 13.39% 15.66% 15.45%
Net MDD 9.78% 10.23% 21.14% 20.56% 31.76% 30.60% 40.61% 39.39% 49.05% 47.17%
Net Sharpe ratio 0.64 0.62 0.64 0.63 0.62 0.61 0.62 0.62 0.57 0.58
Skewness -0.72 -0.65 -0.66 -0.62 -0.65 -0.63 -0.66 -0.65 -0.64 -0.62
Kurtosis 5.11 4.88 4.95 4.74 4.26 4.14 4.07 4.02 4.20 4.09
Avrg. turnover p.a. 1.58 1.80 2.55 2.66 3.14 3.17 3.42 3.38 3.40 3.37

Table 5.6: Full period descriptive statistics for SM- and HC-based portfolios, at five different risk target
levels.

As for the risk-adjusted returns presented in Table 5.7, no dominating estimation method
emerges in this case too. An average outperformance of 0.016% in return across all five investor
types is noted for SM-based portfolios.
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Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆

Net mean RAR p.a. 5.57% 5.47% 0.10% 7.66% 7.59% 0.07% 9.58% 9.48% 0.10% 11.14% 11.15% -0.01% 11.63% 11.82% -0.18%
Volatility p.a. 4.20% 4.20% 7.49% 7.49% 10.81% 10.81% 13.39% 13.39% 15.45% 15.45%
Net Sharpe ratio 0.64 0.62 0.64 0.63 0.62 0.61 0.62 0.62 0.57 0.58

Table 5.7: Relative return performance for the full evaluation period. The returns of SM-based portfolios
are converted to risk-adjusted returns (RAR) by deleveraging SM portfolio volatility to HC portfolio
volatility. ∆ denotes the difference in return between SM-based portfolios and HC-based portfolios.

Sub-period analysis

An inspection of the descriptive statistics for the four tethered sub-periods that constitute the
full evaluation period provides little additional information regarding the relative performance
between SM- and HC-based portfolios. No real difference in relative performance between reces-
sionary and expansionary periods is recognized.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method SM HC SM HC SM HC SM HC SM HC

Net mean return p.a. 6.16% 5.83% 9.72% 9.73% 12.29% 12.21% 13.86% 14.10% 14.97% 15.03%
Volatility p.a. 4.33% 4.09% 7.85% 7.92% 11.26% 11.29% 13.63% 13.54% 15.43% 15.27%
Net MDD 5.57% 5.92% 9.38% 9.49% 13.28% 13.78% 15.64% 15.35% 19.66% 19.37%
Net Sharpe ratio 0.24 0.17 0.58 0.58 0.64 0.63 0.64 0.66 0.64 0.65
Avrg. turnover p.a. 1.69 2.12 2.17 2.35 2.31 2.35 2.50 2.39 2.31 2.32

Feb 2001-June 2004 (Recessionary Period)

Correlation Method SM HC SM HC SM HC SM HC SM HC

Net mean return p.a. 7.13% 7.28% 6.54% 6.43% 6.22% 6.12% 7.67% 7.56% 7.92% 7.85%
Volatility p.a. 4.71% 4.67% 7.27% 7.34% 10.75% 10.79% 12.65% 12.57% 13.62% 13.66%
Net MDD 4.05% 3.94% 7.14% 6.96% 9.53% 9.83% 14.09% 14.92% 18.51% 18.78%
Net Sharpe ratio 1.14 1.18 0.66 0.64 0.41 0.40 0.47 0.46 0.45 0.45
Avrg. turnover p.a. 1.04 1.03 2.52 2.52 3.74 3.59 3.90 3.82 3.59 3.53

July 2004-Feb 2008 (Expansionary Period)

Correlation Method SM HC SM HC SM HC SM HC SM HC

Net mean return p.a. 6.15% 6.06% 10.17% 10.13% 13.98% 13.80% 17.40% 16.59% 19.71% 19.39%
Volatility p.a. 3.32% 3.37% 7.19% 7.25% 10.65% 10.71% 14.08% 14.01% 16.91% 16.71%
Net MDD 3.03% 2.96% 5.39% 5.24% 8.96% 8.70% 12.36% 12.31% 15.03% 14.88%
Net Sharpe ratio 0.76 0.72 0.91 0.90 0.97 0.95 0.98 0.93 0.95 0.94
Avrg. turnover p.a. 1.98 2.18 3.32 3.32 3.99 3.98 3.99 3.98 4.06 4.11

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method SM HC SM HC SM HC SM HC SM HC

Net mean return p.a. 3.75% 3.62% 4.27% 4.15% 5.66% 5.53% 6.35% 6.35% 5.25% 5.62%
Volatility p.a. 4.49% 4.53% 7.33% 7.24% 10.56% 10.35% 13.67% 13.37% 16.29% 15.87%
Net MDD 9.78% 10.23% 19.52% 19.03% 28.15% 27.13% 35.71% 34.41% 43.19% 41.23%
Net Sharpe ratio 0.78 0.74 0.55 0.54 0.51 0.51 0.45 0.46 0.31 0.34
Avrg. turnover p.a. 1.49 1.62 2.55 2.73 3.28 3.40 3.88 3.97 4.23 4.12

Table 5.8: Descriptive statistics for the four sub-periods from 1994 to 2013 for SM- and HC-based
portfolios, at five different risk target levels.

Table 5.9 shows risk-adjusted returns of SM-based portfolios for the four sub-periods.
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Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆

Net mean RAR p.a. 6.10% 5.83% 0.27% 9.75% 9.73% 0.03% 12.30% 12.21% 0.09% 13.81% 14.10% -0.29% 14.87% 15.03% -0.16%
Volatility p.a. 4.09% 4.09% 7.92% 7.92% 11.29% 11.29% 13.54% 13.54% 15.27% 15.27%
Net Sharpe ratio 0.24 0.17 0.58 0.58 0.64 0.63 0.64 0.66 0.64 0.65

Feb 2001-June 2004 (Recessionary Period)

Correlation Method SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆

Net mean RAR p.a. 7.09% 7.28% -0.20% 6.58% 6.43% 0.15% 6.24% 6.12% 0.12% 7.64% 7.56% 0.08% 7.94% 7.85% 0.09%
Volatility p.a. 4.67% 4.67% 7.34% 7.34% 10.79% 10.79% 12.57% 12.57% 13.66% 13.66%
Net Sharpe ratio 1.14 1.18 0.66 0.64 0.41 0.40 0.47 0.46 0.45 0.45

July 2004-Feb 2008 (Expansionary Period)

Correlation Method SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆

Net mean RAR p.a. 6.19% 6.06% 0.14% 10.22% 10.13% 0.09% 14.03% 13.80% 0.24% 17.33% 16.59% 0.74% 19.52% 19.39% 0.13%
Volatility p.a. 3.37% 3.37% 7.25% 7.25% 10.71% 10.71% 14.01% 14.01% 16.71% 16.71%
Net Sharpe ratio 0.76 0.72 0.91 0.90 0.97 0.95 0.98 0.93 0.95 0.94

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆ SM HC ∆

Net mean RAR p.a. 3.78% 3.62% 0.16% 4.22% 4.15% 0.07% 5.56% 5.53% 0.03% 6.21% 6.35% -0.14% 5.12% 5.62% -0.50%
Volatility p.a. 4.53% 4.53% 7.24% 7.24% 10.35% 10.35% 13.37% 13.37% 15.87% 15.87%
Net Sharpe ratio 0.78 0.74 0.55 0.54 0.51 0.51 0.45 0.46 0.31 0.34

Table 5.9: Relative return performance for the sub-periods that constitute the full evaluation period.
The returns of SM-based portfolios are converted to risk-adjusted returns (RAR) by deleveraging SM
portfolio volatility to HC portfolio volatility. ∆ denotes the difference in return between SM-based
portfolios and HC-based portfolios.

5.2.3 RMT versus HC

In this section, the out-of-sample performance of MV optimized portfolios obtained through the
use of random matrix theory (RMT) in constructing the covariance matrix estimator is presented.
The realized risk-reward frontiers of RMT- and HC-based portfolios are depicted in Figure 5.10.
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Figure 5.4: An illustration of realized performance in terms of annualized return and annualized volatility
of portfolios corresponding to different target levels of risk. The blue frontier corresponds to ex-post
performance of RMT-based portfolios, whereas the orange one represents HC-based portfolios.

Figure 5.4 shows that the relative performance between the RMT method and the HC method
is, yet again, ambiguous. Note that RMT seemingly outperforms HC for volatility levels below
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approximately 6%. In contrast, HC seemingly outperforms RMT on higher risk levels. In between
these volatility levels, the relative performance is close to indifferent. Thus there is no evidence
for one method dominating the other. For higher levels of volatility, RMT-based portfolios seem
to underpredict volatility. An example of this can be observed at the target risk level of 15%,
where the realized portfolio volatility amounts to 16%.

These results are consistent with Table 5.10 which shows that RMT-based portfolios have
higher Sharpe ratios for more conservative investors, whereas HC-based portfolios are more
efficient at higher levels of target volatility. In addition, the maximum drawdown are lower for
HC-based portfolios across all investor profiles except for the ultra-conservative profile.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method RMT HC RMT HC RMT HC RMT HC RMT HC

Net mean return p.a. 5.94% 5.47% 7.78% 7.59% 9.89% 9.48% 11.11% 11.15% 11.32% 11.82%
Volatility p.a. 4.32% 4.20% 7.81% 7.49% 11.18% 10.81% 14.06% 13.39% 15.93% 15.45%
Net MDD 10.10% 10.23% 22.36% 20.56% 33.50% 30.60% 43.80% 39.39% 51.92% 47.17%
Net Sharpe ratio 0.71 0.62 0.63 0.63 0.63 0.61 0.59 0.62 0.53 0.58
Skewness -0.69 -0.65 -0.94 -0.62 -0.82 -0.63 -0.89 -0.65 -0.71 -0.62
Kurtosis 5.01 4.88 6.31 4.74 5.32 4.14 5.35 4.02 4.53 4.09
Avrg. turnover p.a. 1.36 1.80 2.38 2.66 2.96 3.17 3.38 3.38 3.49 3.37

Table 5.10: Full period descriptive statistics for RMT- and HC-based portfolios, at five different risk
target levels.

No evidence of a dominating method is found in terms of risk-adjusted returns either. How-
ever, the risk-adjusted outperformance of HC to RMT is on average 0.13%. Descriptive statistics
are presented in Table 5.11.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆

Net mean RAR p.a. 5.86% 5.47% 0.39% 7.58% 7.59% -0.01% 9.66% 9.48% 0.17% 10.72% 11.15% -0.43% 11.07% 11.82% -0.75%
Volatility p.a. 4.20% 4.20% 7.49% 7.49% 10.81% 10.81% 13.39% 13.39% 15.45% 15.45%
Net Sharpe ratio 0.71 0.62 0.63 0.63 0.63 0.61 0.59 0.62 0.53 0.58

Table 5.11: Relative return performance for the full evaluation period. The returns of RMT-based
portfolios are converted to risk-adjusted returns (RAR) by deleveraging RMT portfolio volatility to HC
portfolio volatility. ∆ denotes the difference in return between RMT-based portfolios and HC-based
portfolios.

Sub-period analysis

Table 5.12 shows that HC-based portfolios generally perform better during the first and last
sub-period, while RMT-based portfolios are characterized by stronger performance measures for
the second and third sub-period.
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Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method RMT HC RMT HC RMT HC RMT HC RMT HC

Net mean return p.a. 6.38% 5.83% 9.31% 9.73% 11.79% 12.21% 13.28% 14.10% 14.52% 15.03%
Volatility p.a. 4.28% 4.09% 7.85% 7.92% 11.19% 11.29% 13.55% 13.54% 15.36% 15.27%
Net MDD 5.51% 5.92% 9.24% 9.49% 12.82% 13.78% 15.66% 15.35% 19.05% 19.37%
Net Sharpe ratio 0.29 0.17 0.53 0.58 0.60 0.63 0.60 0.66 0.61 0.65
Avrg. turnover p.a. 1.48 2.12 2.08 2.35 2.37 2.35 2.52 2.39 2.32 2.32

Feb 2001-June 2004 (Recessionary Period)

Correlation Method RMT HC RMT HC RMT HC RMT HC RMT HC

Net mean return p.a. 7.66% 7.28% 7.09% 6.43% 7.56% 6.12% 7.68% 7.56% 8.29% 7.85%
Volatility p.a. 4.73% 4.67% 7.39% 7.34% 10.17% 10.79% 12.48% 12.57% 13.46% 13.66%
Net MDD 3.96% 3.94% 7.58% 6.96% 9.25% 9.83% 14.35% 14.92% 17.78% 18.78%
Net Sharpe ratio 1.25 1.18 0.72 0.64 0.57 0.40 0.47 0.46 0.48 0.45
Avrg. turnover p.a. 0.92 1.03 2.50 2.52 3.56 3.59 4.07 3.82 3.55 3.53

July 2004-Feb 2008 (Expansionary Period)

Correlation Method RMT HC RMT HC RMT HC RMT HC RMT HC

Net mean return p.a. 6.56% 6.06% 11.12% 10.13% 15.75% 13.80% 19.11% 16.59% 20.08% 19.39%
Volatility p.a. 3.28% 3.37% 7.28% 7.25% 11.04% 10.71% 14.39% 14.01% 16.65% 16.71%
Net MDD 2.69% 2.96% 5.46% 5.24% 8.23% 8.70% 11.41% 12.31% 12.45% 14.88%
Net Sharpe ratio 0.89 0.72 1.03 0.90 1.10 0.95 1.08 0.93 0.99 0.94
Avrg. turnover p.a. 1.69 2.18 3.09 3.32 3.49 3.98 3.90 3.98 4.20 4.11

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method RMT HC RMT HC RMT HC RMT HC RMT HC

Net mean return p.a. 4.05% 3.62% 4.29% 4.15% 5.36% 5.53% 5.56% 6.35% 3.88% 5.62%
Volatility p.a. 4.70% 4.53% 8.35% 7.24% 11.84% 10.35% 15.29% 13.37% 17.40% 15.87%
Net MDD 10.10% 10.23% 21.64% 19.03% 30.75% 27.13% 40.02% 34.41% 47.96% 41.23%
Net Sharpe ratio 0.81 0.74 0.48 0.54 0.43 0.51 0.35 0.46 0.21 0.34
Avrg. turnover p.a. 1.24 1.62 2.25 2.73 2.99 3.40 3.69 3.97 4.41 4.12

Table 5.12: Descriptive statistics for the four sub-periods from 1994 to 2013 for RMT- and HC-based
portfolios, at five different risk target levels.

Furthermore, the risk-adjusted returns in Table 5.13 show similar relative performance for the
different sub-periods. The nature of RMT and HC performing well during expansionary as well
as recessionary phases suggests that the relative performance cannot be tied to the prevailing
market regime.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆

Net mean RAR p.a. 6.32% 5.83% 0.49% 9.35% 9.73% -0.38% 11.85% 12.21% -0.36% 13.27% 14.10% -0.83% 14.46% 15.03% -0.57%
Volatility p.a. 4.09% 4.09% 7.92% 7.92% 11.29% 11.29% 13.54% 13.54% 15.27% 15.27%
Net Sharpe ratio 0.29 0.17 0.53 0.58 0.60 0.63 0.60 0.66 0.61 0.65

Feb 2001-June 2004 (Recessionary Period)

Correlation Method RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆

Net mean RAR p.a. 7.59% 7.28% 0.30% 7.06% 6.43% 0.62% 7.91% 6.12% 1.78% 7.73% 7.56% 0.17% 8.38% 7.85% 0.53%
Volatility p.a. 4.67% 4.67% 7.34% 7.34% 10.79% 10.79% 12.57% 12.57% 13.66% 13.66%
Net Sharpe ratio 1.25 1.18 0.72 0.64 0.57 0.40 0.47 0.46 0.48 0.45

July 2004-Feb 2008 (Expansionary Period)

Correlation Method RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆

Net mean RAR p.a. 6.65% 6.06% 0.59% 11.09% 10.13% 0.95% 15.38% 13.80% 1.58% 18.70% 16.59% 2.11% 20.13% 19.39% 0.74%
Volatility p.a. 3.37% 3.37% 7.25% 7.25% 10.71% 10.71% 14.01% 14.01% 16.71% 16.71%
Net Sharpe ratio 0.89 0.72 1.03 0.90 1.10 0.95 1.08 0.93 0.99 0.94

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆ RMT HC ∆

Net mean RAR p.a. 3.91% 3.62% 0.29% 3.76% 4.15% -0.40% 4.72% 5.53% -0.80% 4.89% 6.35% -1.46% 3.56% 5.62% -2.06%
Volatility p.a. 4.53% 4.53% 7.24% 7.24% 10.35% 10.35% 13.37% 13.37% 15.87% 15.87%
Net Sharpe ratio 0.81 0.74 0.48 0.54 0.43 0.51 0.35 0.46 0.21 0.34

Table 5.13: Relative return performance for the sub-periods that constitute the full evaluation period.
The returns of RMT-based portfolios are converted to risk-adjusted returns (RAR) by deleveraging RMT
portfolio volatility to HC portfolio volatility. ∆ denotes the difference in return between RMT-based
portfolios and HC-based portfolios.
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5.2.4 GS versus HC

The final evaluation compares the relative out-of-sample performance of MV optimized portfolios
obtained by employing the covariance matrix estimator implied by the Gerber Statistic (GS) and
the sample covariance matrix (HC). The realized risk-reward frontiers of the obtained portfolios
corresponding to respective covariance estimation technique are depicted in Figure 5.5.
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Figure 5.5: An illustration of realized performance in terms of annualized return and annualized volatility
of portfolios corresponding to different target levels of risk. The blue frontier corresponds to ex-post
performance of GS-based portfolios, whereas the orange one represents HC-based portfolios.

As one can observe in Figure 5.5, GS-based portfolios provide a striking out-of-sample per-
formance in relation to HC-bases portfolios. Almost the entire frontier of GS-based portfolios is
raised upwards and to the left, implying more efficient portfolios in the sense they yield higher
returns per risk taken. This is further supported in Table 5.14, where GS-based portfolios are
associated with higher Sharpe ratios, consistently across all considered risk profiles. In addition,
GS portfolios have a lower associated downside risk in terms of maximum drawdown. Thus,
GS portfolios dominate HC portfolios in this setting. However, the portfolio turnover of GS
portfolios is consistently higher, which suggests that these will be more negatively affected with
an increase in proportional transaction costs. Also, more trading is required when rebalancing
GS portfolios, which increases exposure to liquidity risks.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method GS HC GS HC GS HC GS HC GS HC

Net mean return p.a. 5.77% 5.47% 7.47% 7.59% 9.46% 9.48% 11.08% 11.15% 12.34% 11.82%
Volatility p.a. 4.15% 4.20% 6.81% 7.49% 10.09% 10.81% 12.77% 13.39% 15.14% 15.45%
Net MDD 6.85% 10.23% 16.73% 20.56% 28.85% 30.60% 38.66% 39.39% 46.26% 47.17%
Net Sharpe ratio 0.70 0.62 0.68 0.63 0.65 0.61 0.64 0.62 0.62 0.58
Skewness -0.82 -0.65 -0.68 -0.62 -0.58 -0.63 -0.57 -0.65 -0.61 -0.62
Kurtosis 6.13 4.88 5.34 4.74 4.35 4.14 3.79 4.02 3.91 4.09
Avrg. turnover p.a. 2.25 1.80 2.51 2.66 3.31 3.17 3.75 3.38 3.44 3.37

Table 5.14: Full period descriptive statistics for GS- and HC-based portfolios, at five different risk target
levels.
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Furthermore, Table 5.15 suggests an average of 0.43% additional return across the five investor
types if one uses the GS covariance matrix estimator in lieu of the traditional sample covariance
matrix. Note that the outperformance is not only on average, but consistent throughout all five
risk profiles.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Correlation Method GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆

Net mean RAR p.a. 5.80% 5.47% 0.33% 7.94% 7.59% 0.35% 9.92% 9.48% 0.44% 11.48% 11.15% 0.33% 12.52% 11.82% 0.71%
Volatility p.a. 4.20% 4.20% 7.49% 7.49% 10.81% 10.81% 13.39% 13.39% 15.45% 15.45%
Net Sharpe ratio 0.70 0.62 0.68 0.63 0.65 0.61 0.64 0.62 0.62 0.58

Table 5.15: Relative return performance for the full evaluation period. The returns of GS-based portfolios
are converted to risk-adjusted returns (RAR) by deleveraging GS portfolio volatility to HC portfolio
volatility. ∆ denotes the difference in return between GS-based portfolios and HC-based portfolios.

Sub-period analysis

In an attempt to further explain the above results, the relative performance is evaluated during
the different sub-periods defined within the full evaluation period is presented in the below Table
5.16 and Table 5.17. By first studying Table 5.16, it is apparent that relative performance of GS-
based portfolios seems to be tied to the prevailing market regime. In recessionary times, often
associated with volatile equity markets, GS-based portfolios have consistently higher Sharpe
ratios and lower maximum drawdowns. However, in expansionary periods, the contrary seems
to hold, albeit less significant in this direction.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method GS HC GS HC GS HC GS HC GS HC

Net mean return p.a. 5.61% 5.83% 8.88% 9.73% 11.67% 12.21% 14.08% 14.10% 15.40% 15.03%
Volatility p.a. 4.56% 4.09% 7.43% 7.92% 10.50% 11.29% 12.96% 13.54% 15.00% 15.27%
Net MDD 6.85% 5.92% 8.02% 9.49% 10.86% 13.78% 13.76% 15.35% 18.09% 19.37%
Net Sharpe ratio 0.11 0.17 0.51 0.58 0.62 0.63 0.69 0.66 0.68 0.65
Avrg. turnover p.a. 2.50 2.12 2.48 2.35 2.71 2.35 2.66 2.39 2.48 2.32

Feb 2001-June 2004 (Recessionary Period)

Correlation Method GS HC GS HC GS HC GS HC GS HC

Net mean return p.a. 7.00% 7.28% 7.15% 6.43% 7.68% 6.12% 8.87% 7.56% 8.83% 7.85%
Volatility p.a. 4.40% 4.67% 7.12% 7.34% 10.77% 10.79% 12.46% 12.57% 13.53% 13.66%
Net MDD 2.80% 3.94% 7.78% 6.96% 10.37% 9.83% 13.03% 14.92% 17.21% 18.78%
Net Sharpe ratio 1.19 1.18 0.76 0.64 0.55 0.40 0.57 0.46 0.52 0.45
Avrg. turnover p.a. 1.48 1.03 2.60 2.52 3.98 3.59 4.13 3.82 3.44 3.53

July 2004-Feb 2008 (Expansionary Period)

Correlation Method GS HC GS HC GS HC GS HC GS HC

Net mean return p.a. 5.89% 6.06% 9.55% 10.13% 12.30% 13.80% 13.96% 16.59% 18.67% 19.39%
Volatility p.a. 3.31% 3.37% 6.38% 7.25% 10.33% 10.71% 13.69% 14.01% 16.98% 16.71%
Net MDD 4.04% 2.96% 5.69% 5.24% 10.62% 8.70% 14.65% 12.31% 17.43% 14.88%
Net Sharpe ratio 0.68 0.72 0.93 0.90 0.84 0.95 0.75 0.93 0.89 0.94
Avrg. turnover p.a. 3.28 2.18 2.94 3.32 4.50 3.98 5.74 3.98 4.24 4.11

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method GS HC GS HC GS HC GS HC GS HC

Net mean return p.a. 5.16% 3.62% 4.71% 4.15% 6.12% 5.53% 7.03% 6.35% 6.81% 5.62%
Volatility p.a. 4.04% 4.53% 6.14% 7.24% 9.13% 10.35% 12.28% 13.37% 15.11% 15.87%
Net MDD 4.85% 10.23% 13.82% 19.03% 23.11% 27.13% 31.26% 34.41% 38.36% 41.23%
Net Sharpe ratio 1.22 0.74 0.73 0.54 0.64 0.51 0.55 0.46 0.43 0.34
Avrg. turnover p.a. 1.75 1.62 2.24 2.73 2.89 3.40 3.61 3.97 4.14 4.12

Table 5.16: Descriptive statistics for the four sub-periods from 1994 to 2013 for GS- and HC-based
portfolios, at five different risk target levels.
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Furthermore, Table 5.17 coincides with the above Table 5.16 in the sense that the relative
performance of risk-adjusted returns is seemingly connected to the market regimes. The out-
performance of GS-based portfolios during recessionary times overweigh the underperformance
shown in some instances during expansionary times. Hence why the GS-based portfolios showed
consistently higher risk-adjusted returns over the full evaluation period.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
Target Volatility 3% 6% 9% 12% 15%

Jan 1994-Jan 2001 (Expansionary Period)

Correlation Method GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆

Net mean RAR p.a. 5.56% 5.83% -0.27% 9.13% 9.73% -0.60% 12.16% 12.21% -0.05% 14.48% 14.10% 0.38% 15.59% 15.03% 0.56%
Volatility p.a. 4.09% 4.09% 7.92% 7.92% 11.29% 11.29% 13.54% 13.54% 15.27% 15.27%
Net Sharpe ratio 0.11 0.17 0.51 0.58 0.62 0.63 0.69 0.66 0.68 0.65

Feb 2001-June 2004 (Recessionary Period)

Correlation Method GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆

Net mean RAR p.a. 7.33% 7.28% 0.05% 7.31% 6.43% 0.88% 7.69% 6.12% 1.56% 8.93% 7.56% 1.37% 8.90% 7.85% 1.05%
Volatility p.a. 4.67% 4.67% 7.34% 7.34% 10.79% 10.79% 12.57% 12.57% 13.66% 13.66%
Net Sharpe ratio 1.19 1.18 0.76 0.64 0.55 0.40 0.57 0.46 0.52 0.45

July 2004-Feb 2008 (Expansionary Period)

Correlation Method GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆

Net mean RAR p.a. 5.93% 6.06% -0.13% 10.36% 10.13% 0.22% 12.61% 13.80% -1.18% 14.20% 16.59% -2.39% 18.43% 19.39% -0.97%
Volatility p.a. 3.37% 3.37% 7.25% 7.25% 10.71% 10.71% 14.01% 14.01% 16.71% 16.71%
Net Sharpe ratio 0.68 0.72 0.93 0.90 0.84 0.95 0.75 0.93 0.89 0.94

Mar 2008-Dec 2013 (Recessionary Period)

Correlation Method GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆ GS HC ∆

Net mean RAR p.a. 5.74% 3.62% 2.13% 5.51% 4.15% 1.36% 6.91% 5.53% 1.38% 7.63% 6.35% 1.28% 7.14% 5.62% 1.52%
Volatility p.a. 4.53% 4.53% 7.24% 7.24% 10.35% 10.35% 13.37% 13.37% 15.87% 15.87%
Net Sharpe ratio 1.22 0.74 0.73 0.54 0.64 0.51 0.55 0.46 0.43 0.34

Table 5.17: Relative return performance for the sub-periods that constitute the full evaluation period.
The returns of GS-based portfolios are converted to risk-adjusted returns (RAR) by deleveraging GS
portfolio volatility to HC portfolio volatility. ∆ denotes the difference in return between GS-based
portfolios and HC-based portfolios.

5.2.5 Summary of out-of-sample performance

Among the covariance estimators considered in this thesis, the Gerber Statistic (GS) based
covariance matrix was the only estimator that consistently outperformed the sample covariance
matrix in terms of out-of-sample Sharpe ratios and risk-adjusted returns of corresponding MV
optimized portfolios. In addition, with exception for the ultra-conservative risk profile, GS-based
portfolios outperformed all other competing methods in terms of risk-adjusted return. This is
shown in Figure 5.6.
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Figure 5.6: Realized risk-adjusted returns of portfolios over the full evaluation period, allocated through
employing various covariance matrix estimators in MVO.
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To further investigate the relative performance between the covariance matrix estimators, the
full period was divided into four sub-periods based on monetary policy signals as well as stock
market signals. The sub-periods could be defined as an expansionary or a recessionary period. In
expansionary periods, GS-based portfolios consistently underperformed all the other portfolios
in terms of risk-adjusted returns. This is depicted in 5.7.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
0

2

4

6

8

10

12

14

16

18

A
n

n
u

a
liz

e
d

 R
e

tu
rn

 (
%

)

Expansionary Periods

HC

SI

SM

RMT

GS

Figure 5.7: Realized risk-adjusted returns of portfolios over expansionary periods, for five different risk
profiles.

However, during recessionary times, GS-based portfolios provided a strong outperformance
in terms of risk-adjusted returns. This is illustrated in Figure 5.8.
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Figure 5.8: Realized risk-adjusted returns of portfolios over the full evaluation period, for five different
risk profiles.

Thus, the dominance of GS-based portfolios during the full evaluation period is primarily
driven by the strong relative performance in recessionary times. These results suggest that even
more efficient portfolios can be obtained by combining the GS covariance estimator with e.g.
the traditional sample covariance matrix (HC). As the sub-periods are determined on an ex-ante
basis, a procedure can be formed that uses the GS covariance estimator during recessionary
times and switches to the sample covariance matrix when a regime transition signal is triggered.
Although this would improve the performance in the data set considered in this thesis, further re-
search is warranted regarding a possible regime connection prior to delving into such procedures.
Plausible explanations for the seemingly regime dependent performance of GS in particular will
be discussed in Chapter 6.
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Furthermore, GS-based portfolios are also associated with lower maximum drawdowns which
measures the maximum loss from a peak to a nadir over the evaluation period between the
rebalancing points of the portfolio. This implies less risky portfolios in terms of downside risk.
See Figure 5.9 below.
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Figure 5.9: Maximum monthly drawdown of portfolios over the full evaluation period, for five different
risk profiles.

Finally, GS-based portfolios were generally associated with higher portfolio turnover. This
is shown in Figure 5.10. Recall that transaction costs are included in the MVO problem for
allocating portfolios in this thesis. Thus, the costs incurred by a high portfolio turnover are
already incorporated in the portfolios. However, high portfolio turnover also entails higher
exposure to liquidity risks, which is not caputed in MVO as the model assumes efficient financial
markets. In addition, portfolio turnover measures the sensitivity to changes in transaction costs.
This means that if the proportional transaction cost of trading goes beyond 10 basis points used
in this thesis, GS-based portfolios will suffer the most.

Ultra-conservative Conservative Moderate Aggressive Ultra-aggressive
0

0.5

1

1.5

2

2.5

3

3.5

4

T
u

rn
o

v
e

r 
p

.a
.

Full Period (1994-2013)

HC

SI

SM

RMT

GS

Figure 5.10: Annualized portfolio weight turnover over the full evaluation period, for five different risk
profiles.

In summary, all covariance matrix estimators considered in this thesis, other than the GS
covariance matrix estimator, showed ambiguous results in a portfolio allocation context. The
only method that consistently outperformed the traditional sample covariance matrix was the
covariance matrix estimator constructed with the Gerber Statistic comovement measure. Replac-
ing the sample covariance matrix with the GS-based covariance matrix rendered more efficient
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portfolios in terms of higher Sharpe ratios, risk-adjusted returns and lower maximum drawdowns.
This suggests that an investor that employs traditional MVO in quantitative asset allocation can
improve their asset picking abilities by changing to the, in theory, more robust GS covariance
matrix estimator. The enhancement is particularly prominent during recessionary times, often
associated with high equity volatility due to e.g. leverage effects. A plausible explanation for this
phenomenon is that noise and outliers in the data is more protruding in bearish markets, which
the structured GS-estimator seems to better account for, thus coinciding with the underlying
justification for the development of the GS-measure.

It is important here to note that the GS-based estimator lead to non-positive semidefinite
matrices in the vast majority of rebalancing points. This was unique for the GS-estimator, as
all other estimators yielded positive semidefinite matrices. As illuminated in Section 3.4.6, it is
important that the estimated covariance matrix is positive semidefinite in the context of mean-
variance optimization. If not, the definition of a covariance matrix is violated. Consequently,
unstable solutions may result in the optimizer. Clearly, this poses a problem in the optimization
process since a solution to the problem cannot be guaranteed to be a globally optimal solution.

In Gerber et al. (2015), it is recognized that in computing the Gerber Statistic, a non-positive
semidefinite correlation matrix is not an unlikely outcome, in theory. While not found to occur
in their study, it was prevalent in this study. To tackle this problem, the GS-based covariance
matrices had to be repaired in the sense that they were replaced with the nearest positive
semidefinite covariance matrix in Frobenius norm, using the algorithm suggested by Higham
(2002) (in Section 3.4.6). This raises concerns regarding the validity of the obtained results and
will be further discussed in Chaper 6.

5.3 Covariance prediction analysis

This section provides the results obtained from the covariance prediction analysis, performed
by employing the methodology outlined in Section 4.3. In short, the accuracy of predicted
portfolio volatility is evaluated for portfolios whose asset weights have been randomly selected.
Consequently, no optimization is performed when allocating these portfolios. This allows for
a further investigation regarding the relative performance between the considered covariance
estimators, without running the risk of potentially diluted results caused by estimation error in
the estimated return vector. This entails that the analysis becomes less tailored for portfolio
optimization, as no optimization is performed. Nevertheless, combined with the out-of-sample
performance analysis, the robustness of the results connected to the relative performance between
the covariance estimators is deemed to increase.

Initially, the performance of the competing covariance estimators in relation to the tradi-
tional sample covariance will be presented. Thereafter, a summary for all considered covariance
estimators is given.

5.3.1 SI versus HC

In similar fashion as in Section 5.2, we begin with the covariance matrix estimator implied by
the single-index model (SI) versus the traditional sample covariance matrix (HC). In Figure 5.11,
the mean of ratios of realized to predicted volatility is plotted. Recall that in each month, the
portfolio volatility of 1000 randomly allocated long-only portfolios (fully invested) is predicted
using monthly data from two years back, for each covariance matrix estimator. This is then
compared to the realized monthly volatility for these portfolios, looking one year forward. The
process is reiterated until the last month of the evaluation period, i.e. December 2013.
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Figure 5.11: Time series for the mean of ratios of realized to predicted volatility for HC- and SI-based
estimators.

Observing Figure 5.11, one can see that there apparently exists a time dependence. That is,
over time the difficulty of predicting volatility varies. In general, there seems to be no difference
between the methods with respect to time dependence. Both methods show peaks in the graph
at the same time. However, one can note that for the peaks in 1998 and in particular 2009,
the mean is to closer to one for SI-ratios compared to the HC-ratios. This suggests that the
structured SI-covariance estimator performed better, on average, during the subprime mortgage
crisis, albeit still being far from one which implies an under-prediction of portfolio volatility.

In Figure 5.12, histograms for all the ratios are shown. The mean for HC-factors is approx-
imately 1.10, whereas the mean for SI-factors is approximately 1.03. This corresponds to more
accurate prediction for SI (on average). In addition, the variance of HC-factors is 0.3760 and the
variance of SI-factors is 0.3182. This indicates that the the performance of SI is more consistent
than the performance of HC. However, it is worth noting that an arithmetic average can be
misleading here: the peaks can be seen as outliers that has a large impact on the average. The
high variance of both methods is shown by the wide distributions in the histograms.
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Figure 5.12: Histograms for the ratios of realized to predicted volatility for HC- and SI-based estimators.

5.3.2 SM versus HC

Similarly, for the shrinkage to market estimator (SM), Figure 5.13 shows the mean of realized
to predicted volatility ratios over the evaluation period. Once again, one can see that there
apparently exists a time dependence. That is, over time the difficulty of predicting volatility
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varies. However, in this case, minuscule differences can be noted, even at the peaks.
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Figure 5.13: Time series for the mean of ratios of realized to predicted volatility for HC- and SM-based
estimators.

As shown in Figure 5.14, the SM-based covariance estimator seems to predict better than HC,
on average. However, the difference is minuscule. In addition, the variance of the SM-factors
is 0.3718 (compared to the 0.3760 of the HC-factors), once again suggesting a very marginal
improvement in terms of consistency. A plausible explanation for the small differences could be
that the shrinkage estimator has assigned a small shrinkage intensity to the shrinkage target,
which implies a fit that is close to the sample covariance matrix.
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Figure 5.14: Histograms for the ratios of realized to predicted volatility for HC- and SM-based estimators.

5.3.3 RMT versus HC

Moreover, Figure 5.15 illustrates the time series of mean realized/predicted volatility ratios
for HC-and RMT-based covariance matrix estimators. Yet again, the difference between the
estimators is marginal. However, under close inspection, one can see that the estimator (RMT)
implied by the random matrix filtering technique notably underestimates risk for the peak period
during the recent financial crisis. Clearly, no estimator based on historical data will perform well
here as it can be considered as a black swan event. The noise filtering technique, however,
performs relatively poor in this case.
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Figure 5.15: Time series for the mean of ratios of realized to predicted volatility for HC- and SM-based
estimators.

The relatively poor performance is further noted by studying the mean of the RMT-factors.
This amounted to approximately 1.13, implying that the realized risk was 13% higher than the
predicted risk over the full period (on average). In addition, the variance of the RMT-factors
was 0.4184 (compared to 0.3760 of the HC-factors), consequently indicating lower stability of the
estimates. This is shown in Figure 5.16.
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Figure 5.16: Histograms for the ratios of realized to predicted volatility for HC- and RMT-based esti-
mators.

5.3.4 GS versus HC

Finally, the covariance estimator implied by the Gerber Statistic (GS) was evaluated in this
setting. The mean of the realized volatility to predicted volatility ratios is plotted for the HC-
method as well as the GS-method in Figure 5.17.
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Figure 5.17: Time series for the mean of ratios of realized to predicted volatility for HC- and GS-based
estimators.

Once again, we can see that there apparently exists a time dependence. That is, over time
the difficulty of predicting volatility varies. In general, there seems to be no difference between
the methods with respect to time dependence. Both methods show peaks in the graph at the
same time. However, further inspection of the peaks shows that the GS-estimator performs
much better than the HC-estimator during the subprime mortgage crisis. Although the ratios
still prevail far from one, the GS-estimator underestimates risk less than the HC-estimator in
these times. A plausible explanation for this is that recessionary times are often associated with
volatile markets, influenced by noise and outliers. The discretization process of the GS-measure
that attempts to accommodate for these events in the estimation process is seemingly working
in this case.

Furthermore, the mean of the GS-factors amounts to approximately 1.01, as opposed to
the HC-factors with a mean of approximately 1.10. This implies that the GS-based estimator
provides more accurate forecasts, on average. In addition, the performance of the GS-based
estimator is more consistent as the variance of the realized-to-predicted volatility ratios is 0.3026
(compared to 0.3760 for the HC-factors). This is shown in Figure 5.18 by the slightly wider tail
of the distribution for the HC-factors
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Figure 5.18: Histograms for the ratios of realized to predicted volatility for HC- and GS-based estimators.

5.3.5 Summary of covariance prediction analysis

To summarize, the obtained results from the covariance prediction analysis are presented in Table
5.18
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Full period (1994-2013)

Covariance matrix estimator Realized-to-predicted portfolio risk ratios (on average) Variance of the ratios

Sample covariance matrix (HC) 1.10 0.38
Single-index model (SI) 1.03 0.32
Shrinkage to market (SM) 1.10 0.37
Random matrix theory (RMT) 1.13 0.42
Gerber statistic (GS) 1.01 0.30

Table 5.18: Portfolio risk prediction accuracy for the five covariance matrix estimators considered in this
thesis. A ratio of 1 implies that the realized portfolio risk coincides with the predicted portfolio risk.

We see that all estimators tend to underestimate portfolio risk, as a ratio that exceeds one
implies that the realized risk exceeds the predicted portfolio risk. In addition, the variance of
the ratios seem to stem from a time dependence in forecasting portfolio risk. That is, over time
the difficulty of predicting volatility varies. In general, there seems to be a marginal difference
between the methods with respect to time dependence. All estimators exhibit peaks (large
deviations between forecasted and realized risk) at similar time periods. However, the GS- and
the SI-based perform relatively better during these times.

In particular, the GS-based estimator is seemingly the best in terms of prediction accuracy
amongst the considered estimators. On average, the realized portfolio risk is approximately 1%
higher than the prediction. In addition, the GS-based estimator is more consistent in this case,
as shown by the lowest variance for the ratios of realized to predicted volatility.

However, it is worth to note that an average performance may render misleading results
as outliers (peaks) may significantly skew the average. In addition, recall that the evaluated
portfolios in this empirical test have been randomly allocated. Thus, no optimization has been
performed. The underlying reason for this procedure was to evaluate the covariance matrix
estimators in an isolated manner, without having to potentially dilute the performance by errors
in the expected returns estimation.

Nevertheless, invoking the results from the out-of-sample performance results presented in
Section 5.2 for MV optimized portfolios (using the different covariance matrix estimators), coin-
ciding conclusions can be drawn. See Figure 5.19.
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Figure 5.19: Difference between realized and predicted risk for five different investor profiles, with
different target portfolio risks. Note that the y-axis is the difference in this case, and not the ratio
between realized and predicted portfolio risk. The percentage shown in the parentheses on the x-axis
correspond to the target portfolio risk for the particular investor profile. The closer the bar is to zero
on the y-axis, the better.
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Figure 5.19 shows that the estimators also underestimate portfolio risk in a portfolio opti-
mization setting (i.e. realized risks are higher than the target risks). In addition, one can observe
that the GS-based estimator performs best here too, where the ex-post volatility of the portfolios
is more aligned with the sought portfolios volatility for all five risk profiles. This further suggests
that the GS-based covariance matrix estimator provides more accurate forecasts of portfolio risk,
in comparison to the competing estimators.
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Discussion

This thesis was set forth by the purpose to investigate whether financial practitioners and in-
stitutions can allocate portfolios consisting of assets in a more efficient manner by changing the
covariance matrix input in mean-variance optimization. Indeed, the results presented in Chapter
5 are striking as one covariance matrix estimator showed a dominant performance: the estimator
implied by the Gerber Statistic relationship.

However, prior to delving into the findings in greater detail, it is important remember the
environment in which this thesis operates within. Russell (1931) once said the following:

‘Although this may seem a paradox, all exact science is dominated by the idea of
approximation. When a man tells you that he knows the exact truth about anything,
you are safe in infering that he is an inexact man.’

This quote is deemed to be highly relevant in this thesis. While financial models such as the
mean-variance framework are simple, reality is not. The mean-variance framework is merely an
illusion of the reality, and confusing these two can be devastating. In this thesis, it is assumed that
the mean-variance framework properly mirrors the utility functions of individuals. Therefore, it
is naive, and even dangerous, to think that the findings in this thesis are generalizable over all
environments. Knowing what is assumed and what is swept out of view in a model is crucial, and
this thesis takes the stance that the assumptions of the mean-variance framework hold. Thus,
this study is based on the idea of approximation in the sense that the validity of the findings is
highly dependent on how well the assumptions that underlie MVO hold in reality.

Now, having clarified that this thesis addresses investors that employ mean-variance opti-
mization in practice, the findings in this thesis will be further discussed.

6.1 Portfolio out-of-sample performance

In the quest of answering how asset managers that employ MVO may improve their asset-picking
abilities, a backtesting procedure was performed. Holding all things equal, except the covariance
matrix input, the performance of optimized portfolios for the corresponding covariance matrix
estimators was investigated.

Interestingly, the traditional sample covariance matrix performed seemingly well and on par
with the vast majority of the competing estimators. This was true for all except the covariance
estimator implied by the Gerber Statistic, which in addition to showing higher Sharpe ratios,
higher risk-adjusted returns and lower maximum drawdowns, also matched the investor risk
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profile the best. This is in agreement with the findings by Gerber et al. (2015), albeit they solely
compared the Gerber Statistic estimator with the sample covariance matrix.

The ambiguous results for the covariance matrices implied by the single-index model (SI), the
shrinkage to market model (SM) and the random matrix filtering estimator (RMT) may come
as a surprise. While Chan et al. (1999) concluded that the SI-based estimator outperformed the
sample covariance matrix in terms of portfolio performance, no such conclusion can be drawn in
this study. A plausible explanation for this result is that the restrictive assumption that there
are no other effects beyond the market factor that account for asset comovement, holds poorly
in this setting. Consequently, the SI-based estimator will be penalized by the introduction of
specification error. Another explanation may lie in how the market was defined in this thesis:
this consisted of an equally weighted index for the considered assets, as suggested by Ledoit
and Wolf (2003b). If this proxy poorly reflects the global market portfolio, the model is already
violated by construction.

Furthermore, the SM-based estimator showed a minuscule improvement over the sample
covariance matrix. As suggested by Ledoit and Wolf (2003b), the shrinkage estimator is based
on large-dimensional asymptotics. However, in this thesis, only nine assets are considered with
24 monthly observations per asset. As the ratio of the number of assets divided by the number
of observations per asset is low and far from 1, the shrinkage estimator will perceive the sample
covariance matrix to be well conditioned. This suggests that the shrinkage estimator will show
a marginal difference to the sample covariance matrix, which coincides with the results that
showed a minuscule improvement for the shrinkage estimator.

As for the RMT-based estimator, the results were ambiguous. However, this was seemingly
the worst estimator in the sense that it produced, on average, worse portfolios than the sample
covariance matrix. The aspect of large-scale asymptotics can also be discussed here: the use of
random matrix theory is mostly suitable for large-scale matrices, as suggested by Laloux et al.
(2000). However, in this thesis, the asset universe is spanned by a relatively low dimension which
might render RMT-approximations inaccurate.

The main implication of the findings is that replacing the sample covariance matrix with the
GS-based covariance matrix rendered more efficient portfolios in terms of higher Sharpe ratios,
higher risk-adjusted returns and lower maximum drawdowns. This suggests that an investor
that employs traditional MVO in quantitative asset allocation can improve their asset picking
abilities by changing to the, in theory, more robust GS covariance matrix estimator. In addition,
GS-based portfolios were better aligned with the ex-ante defined risk profiles. The enhancement
is particularly prominent during recessionary times, while in expansionary periods GS shows
no improvement. A plausible explanation for this apparent market regime dependence is that
recessionary times are often associated with high equity return volatility due to e.g. leverage
effects (debt to equity ratio rises), as exemplified in Ait-Sahalia, Fan, and Li (2013). It is further
expected that noise and outliers in return data is more protruding in bearish market, which
the structured GS-estimator seems to better account for, thus coinciding with the underlying
justification for the development of the GS-measure. The poor performance during expansionary
times could be explained by how the thresholds are defined in the Gerber Statistic measure.
In this thesis, the thresholds have been defined in the same manner as in Gerber et al. (2015).
In more stable periods, these thresholds may be far too restrictive and perceive signal data as
noise which leads to a poor fit. Gerber et al. (2015) do not discuss how the threshold when
constructing the Gerber Statistic can be differently defined. However, the obtained results in
this thesis indicate that further refinements could be made in the sense that the threshold may
be dynamically adjusted based on recent behavior of the underlying variable, or alternatively,
according to the prevailing market regime. This calls for further research regarding this measure.

Furthermore, in stark contrast to Gerber et al. (2015), the GS-based covariance matrices

70



Chapter 6. Discussion

were non-positive semidefinite and had to be adjusted by employing Higham’s (2002) method for
finding the nearest positive semidefinite covariance matrix in Frobenius norm. In Gerber et al.
(2015), this problem was not found to occur, neither in real nor simulated practice. This is quite
surprising as it was a persistent problem for the GS-estimator in this study. Ultimately, this
raises concerns regarding the validity of the results in the sense that the GS-based covariance
estimators used in the optimization is not solely based on the definition of the Gerber Statistic.
Thus, it should be clear that when referring to GS-based estimators in this thesis, Higham’s
(2002) method for finding the nearest positive semidefinite matrix is implemented to ensure a
positive semidefinite covariance matrix.

6.2 Additional validity concerns

One should be aware that the nature of the employed methodology in evaluating portfolio perfor-
mance implies variability depending on how the ceteris paribus context is defined. For instance,
the length of the in-sample period as well as the out-of-sample period are very much chosen ar-
bitrarily. There is no general consensus in the literature regarding how these parameters should
be defined in this setting. However, the relative performance between the covariance matrix
estimators may vary depending on how these are set. For instance, increasing the number of
observations (longer in-sample period) is expected to benefit the sample covariance matrix as this
is the maximum likelihood estimator (assuming that the data is to be trusted). As the sample
covariance matrix is the base case in this thesis, the main decision criteria has been to ensure
that the number of assets does not exceed the number of observations per asset. A suggestion
for further research is to investigate how the length of the in-sample estimation window affects
the performance of the estimates.

The choice of estimation regarding the expected return vector, kept equal for all methods,
may also dilute the relative performance between the covariance matrix estimators as estimation
errors contained in this vector may favor certain covariance estimators. As a result, the validity
of the results for the portfolio out-of-sample performance for various risk profiles is undermined.
This is the reason for the covariance prediction analysis for randomly allocated portfolios (no op-
timization performed). In doing so, I was enabled to perform a further investigation regarding the
relative performance between the considered covariance estimators, without running the risk of
potentially diluted results caused by estimation error in the estimated return vector. Combining
this analysis with the optimized portfolio evaluation, the robustness of the results connected to
the relative performance between the covariance estimators was deemed to increase. Indeed, the
covariance prediction analysis led to a coinciding conclusion that the GS-based estimator dom-
inated the competing estimators in terms of prediction accuracy, implying portfolios that are
better aligned with the predetermined risk profiles. Furthermore, this analysis further supported
that the dominance of the GS-based estimator seemingly stems from its striking outperformance
during bearish equity markets, often influenced by high market volatility.

Nevertheless, further research is warranted regarding the robustness of the results. The
portfolio construction is juxtaposed by many different factors. The main question is thus whether
one would obtain consistent results by changing how all other things are kept equal in the
optimization process (e.g. how the asset universe is defined and how the expected returns are
estimated). In this context, a suggestion is to investigate whether the results are consistent when
the expected return vector is estimated via the Black-Litterman model or the Fama and French
three factor model, as opposed to using the CAPM model.

71



Chapter 7

Conclusion

In the quest of challenging the traditional sample covariance matrix within the context of portfolio
optimization, the purpose of this thesis has been to investigate whether the performance of
mean-variance optimized portfolios can be improved by using an alternative covariance matrix
estimator in lieu of the sample covariance matrix.

To achieve this purpose, the relative performance of prominent challengers to the sample
covariance matrix has been evaluated in a realistic backtesting procedure, where all other factors
in the mean-variance optimizaton were kept equal. The empirical results from the investigation
pointed towards one dominant estimator: the covariance matrix estimator implied by the Gerber
Statistic (GS), which was first introduced by Gerber et al. (2015). In other words, by replacing
the sample covariance matrix with this estimator, more efficient portfolios were obtained in
terms of being associated with higher Sharpe ratios, higher risk-adjusted returns and lower
maximum drawdowns. However, these portfolios were generally connected to relatively high
turnovers. This indicate that portfolio managers can achieve monetary benefits by employing
GS in their covariance matrix estimation, given that the proportional transaction cost of trading
is not abnormally high. In addition, GS-based portfolios performed best in terms of ex-post
performance alignment with the predetermined investor risk profile.

Further investigations showed that the dominance of GS-based portfolios could be explained
by its striking forecast performance during bearish equity markets in relation to the competing
estimators considered in this thesis. Taking it for granted that financial markets are more volatile
in times of distress, this implies more noisy return observations. Hence, the GS-based estimator
is seemingly excellent in distinguishing signal from noise in historical return observations in this
setting. In other words, the empirical findings suggest that the GS-based covariance matrix
estimator provides more efficient diversification when it matters the most.

However, in this study, the GS-based estimator comes at the expense of producing non-
positive semidefinite covariance matrices. Clearly this poses a problem as it halts the optimization
process. Thus, these estimators have required correction in the sense of replacement with the
nearest positive semidefinite covariance matrices in the Frobenius norm. To a certain extent,
this challenges the validity of the empirical results.

Nevertheless, by using the GS covariance matrix estimator in lieu of the traditional sample
covariance matrix, the MV optimization rendered more efficient portfolios in terms of higher
Sharpe ratios, higher risk-adjusted returns and lower maximum drawdowns. The outperformance
was protruding during recessionary times. This suggests that an investor that employs traditional
MVO in quantitative asset allocation can improve their asset picking abilities by changing to the,
in theory, more robust GS covariance matrix estimator in times of volatile financial markets.
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