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NOTATIONS

A(X): The σ-algebra of subsets of X.
(X,A(X), µ) : The measure space on X.
B(X): The σ-algebra of Borel sets in a topological space X.
ML : The σ-algebra of Lebesgue measurable sets in R.
(R,ML, µL): The Lebesgue measure space on R.
µL: The Lebesgue measure on R.
µ∗L: The Lebesgue outer measure on R.
1E or χE: The characteristic function of the set E.

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



2

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



Contents

Contents 1

1 Measure on a σ-Algebra of Sets 5

2 Lebesgue Measure on R 21

3 Measurable Functions 33

4 Convergence a.e. and Convergence in Measure 45

5 Integration of Bounded Functions on Sets of Finite Measure 53

6 Integration of Nonnegative Functions 63

7 Integration of Measurable Functions 75

8 Signed Measures and Radon-Nikodym Theorem 97

9 Differentiation and Integration 109

10 Lp Spaces 121

11 Integration on Product Measure Space 141

12 Some More Real Analysis Problems 151

3

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



4 CONTENTS

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



Chapter 1

Measure on a σ-Algebra of Sets

1. Limits of sequences of sets

Definition 1 Let (An)n∈N be a sequence of subsets of a set X.
(a) We say that (An) is increasing if An ⊂ An+1 for all n ∈ N, and decreasing if An ⊃ An+1 for
all n ∈ N.
(b) For an increasing sequence (An), we define

lim
n→∞

An :=
∞⋃

n=1

An.

For a decreasing sequence (An), we define

lim
n→∞

An :=
∞⋂

n=1

An.

Definition 2 For any sequence (An) of subsets of a set X, we define

lim inf
n→∞

An :=
⋃

n∈N

⋂

k≥n

Ak

lim sup
n→∞

An :=
⋂

n∈N

⋃

k≥n

Ak.

Proposition 1 Let (An) be a sequence of subsets of a set X. Then

(i) lim inf
n→∞

An = {x ∈ X : x ∈ An for all but finitely many n ∈ N}.
(ii) lim sup

n→∞
An = {x ∈ X : x ∈ An for infinitely many n ∈ N}.

(iii) lim inf
n→∞

An ⊂ lim sup
n→∞

An.

2. σ-algebra of sets
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6 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Definition 3 (σ-algebra)
Let X be an arbitrary set. A collection A of subsets of X is called an algebra if it satisfies the
following conditions:

1. X ∈ A.

2. A ∈ A ⇒ Ac ∈ A.

3. A,B ∈ A ⇒ A ∪B ∈ A.
An algebra A of a set X is called a σ-algebra if it satisfies the additional condition:

4. An ∈ A, ∀n ∈ N⇒ ⋃
n∈NAn ∈ n ∈ N.

Definition 4 (Borel σ-algebra)
Let (X,O) be a topological space. We call the Borel σ-algebra B(X) the smallest σ-algebra of X
containing O.

It is evident that open sets and closed sets in X are Borel sets.

3. Measure on a σ-algebra

Definition 5 (Measure)
Let A be a σ-algebra of subsets of X. A set function µ defined on A is called a measure if it
satisfies the following conditions:

1. µ(E) ∈ [0,∞] for every E ∈ A.

2. µ(∅) = 0.

3. (En)n∈N ⊂ A, disjoint ⇒ µ
(⋃

n∈NEn

)
=

∑
n∈N µ(En).

Notice that if E ∈ A such that µ(E) = 0, then E is called a null set. If any subset E0 of a null set
E is also a null set, then the measure space (X,A, µ) is called complete.

Proposition 2 (Properties of a measure)
A measure µ on a σ-algebra A of subsets of X has the following properties:
(1) Finite additivity: (E1, E2, ..., En) ⊂ A, disjoint =⇒ µ (

⋃n
k=1 Ek) =

∑n
k=1 µ(Ek).

(2) Monotonicity: E1, E2 ∈ A, E1 ⊂ E2 =⇒ µ(E1) ≤ m(E2).
(3) E1, E2 ∈ A, E1 ⊂ E2, µ(E1) < ∞ =⇒ µ(E2 \ E1) = µ(E2)− µ(E1).
(4) Countable subadditivity: (En) ⊂ A =⇒ µ

(⋃
n∈NEn

) ≤ ∑
n∈N µ(En).

Definition 6 (Finite, σ-finite measure)
Let (X,A, µ) be a measure space.

1. µ is called finite if µ(X) < ∞.

2. µ is called σ-finite if there exists a sequence (En) of subsets of X such that

X =
⋃

n∈N
En and µ(En) < ∞, ∀n ∈ N.
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4. Outer measures

Definition 7 (Outer measure)
Let X be a set. A set function µ∗ defined on the σ-algebra P(X) of all subsets of X is called an
outer measure on X if it satisfies the following conditions:

(i) µ∗(E) ∈ [0,∞] for every E ∈ P(X).

(ii) µ∗(∅) = 0.

(iii) E,F ∈ P(X), E ⊂ F ⇒ µ∗(E) ≤ µ∗(F ).

(iv) countable subadditivity:

(En)n∈N ⊂ P(X), µ∗
( ⋃

n∈N
En

)
≤

∑

n∈N
µ∗(En).

Definition 8 (Caratheodory condition)
We say that E ∈ P(X) is µ∗-measurable if it satisfies the Caratheodory condition:

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) for every A ∈ P(X).

We write M(µ∗) for the collection of all µ∗-measurable E ∈ P(X). Then M(µ∗) is a σ-algebra.

Proposition 3 (Properties of µ∗)
(a) If E1, E2 ∈M(µ∗), then E1 ∪ E2 ∈M(µ∗).
(b) µ∗ is additive on M(µ∗), that is,

E1, E2 ∈M(µ∗), E1 ∩ E2 = ∅ =⇒ µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2).

∗ ∗ ∗∗
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8 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Problem 1
Let A be a collection of subsets of a set X with the following properties:

1. X ∈ A.

2. A,B ∈ A ⇒ A \B ∈ A.

Show that A is an algebra.

Solution
(i) X ∈ A.
(ii) A ∈ A ⇒ Ac = X \ A ∈ A (by 2).
(iii) A, B ∈ A ⇒ A ∩B = A \Bc ∈ A since Bc ∈ A (by (ii)).
Since Ac, Bc ∈ A, (A ∪B)c = Ac ∩Bc ∈ A. Thus, A ∪B ∈ A. ¥

Problem 2
(a) Show that if (An)n∈N is an increasing sequence of algebras of subsets of a set
X, then

⋃
n∈NAn is an algebra of subsets of X.

(b) Show by example that even if An in (a) is a σ-algebra for every n ∈ N, the
union still may not be a σ-algebra.

Solution
(a) Let A =

⋃
n∈NAn. We show that A is an algebra.

(i) Since X ∈ An, ∀n ∈ N, so X ∈ A.

(ii) Let A ∈ A. Then A ∈ An for some n. And so Ac ∈ An ( since An is an
algebra). Thus, Ac ∈ A.

(iii) Suppose A,B ∈ A. We shall show A ∪B ∈ A.
Since {An} is increasing, i.e., A1 ⊂ A2 ⊂ ... and A,B ∈ ⋃

n∈NAn, there is
some n0 ∈ N such that A,B ∈ A0. Thus, A ∪B ∈ A0. Hence, A ∪B ∈ A.

(b) Let X = N, An = the family of all subsets of {1, 2, ..., n} and their complements.
Clearly, An is a σ-algebra and A1 ⊂ A2 ⊂ .... However,

⋃
n∈NAn is the family of all

finite and co-finite subsets of N, which is not a σ-algebra. ¥
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Problem 3
Let X be an arbitrary infinite set. We say that a subset A of X is co-finite if its
complement Ac is a finite subset of X. Let A consists of all the finite and the
co-finite subsets of a set X.
(a) Show that A is an algebra of subsets of X.
(b) Show that A is a σ-algebra if and only if X is a finite set.

Solution
(a)

(i) X ∈ A since X is co-finite.

(ii) Let A ∈ A. If A is finite then Ac is co-finite, so Ac ∈ A. If A co-finite then Ac

is finite, so Ac ∈ A. In both cases,

A ∈ A ⇒ Ac ∈ A.

(iii) Let A,B ∈ A. We shall show A ∪B ∈ A.
If A and B are finite, then A ∪ B is finite, so A ∪ B ∈ A. Otherwise, assume
that A is co-finite, then A ∪B is co-finite, so A ∪B ∈ A. In both cases,

A,B ∈ A ⇒ A ∪B ∈ A.

(b) If X is finite then A = P(X), which is a σ-algebra.
To show the reserve, i.e., if A is a σ-algebra then X is finite, we assume that X
is infinite. So we can find an infinite sequence (a1, a2, ...) of distinct elements of X
such that X \ {a1, a2, ...} is infinite. Let An = {an}. Then An ∈ A for any n ∈ N,
while

⋃
n∈NAn is neither finite nor co-finite. So

⋃
n∈NAn /∈ A. Thus, A is not a

σ-algebra: a contradiction! ¥

Note:
For an arbitrary collection C of subsets of a set X, we write σ(C) for the smallest
σ-algebra of subsets of X containing C and call it the σ-algebra generated by C.

Problem 4
Let C be an arbitrary collection of subsets of a set X. Show that for a given
A ∈ σ(C), there exists a countable sub-collection CA of C depending on A such
that A ∈ σ(CA). (We say that every member of σ(C) is countable generated).
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10 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Solution
Denote by B the family of all subsets A of X for which there exists a countable
sub-collection CA of C such that A ∈ σ(CA). We claim that B is a σ-algebra and
that C ⊂ B.
The second claim is clear, since A ∈ σ({A}) for any A ∈ C. To prove the first one,
we have to verify that B satisfies the definition of a σ-algebra.

(i) Clearly, X ∈ B.

(ii) If A ∈ B then A ∈ σ(CA) for some countable family CA ⊂ σ(C). Then
Ac ∈ σ(CA), so Ac ∈ B.

(iii) Suppose {An}n∈N ⊂ B. Then An ∈ σ(CAn) for some countable family CAn ⊂ C.
Let E =

⋃
n∈N CAn then E is countable and E ⊂ C and An ∈ σ(E) for all n ∈ N.

By definition of σ-algebra,
⋃

n∈NAn ∈ σ(E), and so
⋃

n∈NAn ∈ B.

Thus, B is a σ-algebra of subsets of X and E ⊂ B. Hence,

σ(E) ⊂ B.

By definition of B, this implies that for every A ∈ σ(C) there exists a countable
E ⊂ C such that A ∈ σ(E). ¥

Problem 5
Let γ a set function defined on a σ-algebra A of subsets of X. Show that it γ is
additive and countably subadditive on A, then it is countably additive on A.

Solution
We first show that the additivity of γ implies its monotonicity. Indeed, let A,B ∈ A
with A ⊂ B. Then

B = A ∪ (B \ A) and A ∩ (B \ A) = ∅.

Since γ is additive, we get

γ(B) = γ(A) + γ(B \ A) ≥ γ(A).

Now let (En) be a disjoint sequence in A. For every N ∈ N, by the monotonicity
and the additivity of γ, we have

γ

(⋃

n∈N
En

)
≥ γ

(
N⋃

n=1

En

)
=

N∑
n=1

γ(En).

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



11

Since this holds for every N ∈ N, so we have

(i) γ

(⋃

n∈N
En

)
≥

∑

n∈N
γ(En).

On the other hand, by the countable subadditivity of γ, we have

(ii) γ

(⋃

n∈N
En

)
≤

∑

n∈N
γ(En).

From (i) and (ii), it follows that

γ

(⋃

n∈N
En

)
=

∑

n∈N
γ(En).

This proves the countable additivity of γ. ¥

Problem 6
Let X be an infinite set and A be the algebra consisting of the finite and co-finite
subsets of X (cf. Prob.3). Define a set function µ on A by setting for every
A ∈ A:

µ(A) =

{
0 if A is finite
1 if A is co-finite.

(a) Show that µ is additive.
(b) Show that when X is countably infinite, µ is not additive.
(c) Show that when X is countably infinite, then X is the limit of an increasing
sequence {An : n ∈ N} in A with µ(An) = 0 for every n ∈ N, but µ(X) = 1.
(d) Show that when X is uncountably, the µ is countably additive.

Solution
(a) Suppose A,B ∈ A and A ∩B = ∅ (i.e., A ⊂ Bc and B ⊂ Ac).
If A is co-finite then B is finite (since B ⊂ Ac). So A ∪ B is co-finite. We have
µ(A ∪B) = 1, µ(A) = 1 and µ(B) = 0. Hence, µ(A ∪B) = µ(A) + µ(B).
If B is co-finite then A is finite (since A ⊂ Bc). So A ∪ B is co-finite, and we have
the same result. Thus, µ is additive.
(b) Suppose X is countably infinite. We can then put X under this form: X =
{x1, x2, ...}, xi 6= xj if i 6= j. Let An = {xn}. Then the family {An}n∈N is disjoint
and µ(An) = 0 for every n ∈ N. So

∑
n∈N µ(An) = 0. On the other hand, we have
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12 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

⋃
n∈NAn = X, and µ(X) = 1. Thus,

µ

(⋃

n∈N
An

)
6=

∑

n∈N
µ(An).

Hence, µ is not additive.
(c) Suppose X is countably infinite, and X = {x1, x2, ...}, xi 6= xj if i 6= j as in
(b). Let Bn = {x1, x2, ..., xn}. Then µ(Bn) = 0 for every n ∈ N, and the sequence
(Bn)n∈N is increasing. Moreover,

lim
n→∞

Bn =
⋃

n∈N
Bn = X and µ(X) = 1.

(d) Suppose X is uncountably. Consider the family of disjoint sets {Cn}n∈N in A.
Suppose C =

⋃
n∈NCn ∈ A. We first claim: At most one of the Cn’s can be co-finite.

Indeed, assume there are two elements Cn and Cm of the family are co-finite. Since
Cm ⊂ Cc

n, so Cm must be finite: a contradiction.
Suppose Cn0 is the co-finite set. Then since C ⊃ Cn0 , C is also co-finite. Therefore,

µ(C) = µ

(⋃

n∈N
Cn

)
= 1.

On the other hand, we have

µ(Cn0) = 1 and µ(Cn) = 0 for n 6= n0.

Thus,

µ

(⋃

n∈N
Cn

)
=

∑

n∈N
µ(Cn).

If all Cn are finite then
⋃

n∈NCn is finite, so we have

0 = µ

(⋃

n∈N
Cn

)
=

∑

n∈N
µ(Cn). ¥

Problem 7
Let (X,A, µ) be a measure space. Show that for any A,B ∈ A, we have the
equality:

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).
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Solution
If µ(A) = ∞ or µ(B) = ∞, then the equality is clear. Suppose µ(A) and µ(B) are
finite. We have

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \ A),

A = (A \B) ∪ (A ∩B)

B = (B \ A) ∪ (A ∩B).

Notice that in these decompositions, sets are disjoint. So we have

µ(A ∪B) = µ(A \B) + µ(A ∩B) + µ(B \ A),(1.1)

µ(A) + µ(B) = 2µ(A ∩B) + µ(A \B) + µ(B \ A).(1.2)

From (1.1) and (1.2) we obtain

µ(A ∪B)− µ(A)− µ(B) = −µ(A ∩B).

The equality is proved. ¥

Problem 8
The symmetry difference of A,B ∈ P(X) is defined by

A4B = (A \B) ∪ (B \ A).

(a) Prove that

∀A,B, C ∈ P(X), A4B ⊂ (A4 C) ∪ (C 4B).

(b) Let (X,A, µ) be a measure space. Show that

∀A,B,C ∈ A, µ(A4B) ≤ µ(A4 C) + µ(C 4B).

Solution
(a) Let x ∈ A4 B. Suppose x ∈ A \ B. If x ∈ C then x ∈ C \ B so x ∈ C 4 B. If
x /∈ C, then x ∈ A \ C, so x ∈ A4 C. In both cases, we have

x ∈ A4B ⇒ x ∈ (A4 C) ∪ (C 4B).

The case x ∈ B \ A is dealt with the same way.
(b) Use subadditivity of µ and (a). ¥
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14 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Problem 9
Let X be an infinite set and µ the counting measure on the σ-algebra A = P(X).
Show that there exists a decreasing sequence (En)n∈N in A such that

lim
n→∞

En = ∅ with lim
n→∞

µ(En) 6= 0.

Solution
Since X is a infinite set, we can find an countably infinite set {x1, x2, ...} ⊂ X with
xi 6= xj if i 6= j. Let En = {xn, xn+1, ...}. Then (En)n∈N is a decreasing sequence in
A with

lim
n→∞

En = ∅ and lim
n→∞

µ(En) = 0. ¥

Problem 10 (Monotone sequence of measurable sets)
Let (X,A, µ) be a measure space, and (En) be a monotone sequence in A.
(a) If (En) is increasing, show that

lim
n→∞

µ(En) = µ
(

lim
n→∞

En

)
.

(b) If (En) is decreasing, show that

lim
n→∞

µ(En) = µ
(

lim
n→∞

En

)
,

provided that there is a set A ∈ A satisfying µ(A) < ∞ and A ⊃ E1.

Solution
Recall that if (En) is increasing then limn→∞ En =

⋃
n∈NEn ∈ A, and if (En) is

decreasing then limn→∞ En =
⋂

n∈NEn ∈ A. Note also that if (En) is a monotone
sequence in A, then

(
µ(En)

)
is a monotone sequence in [0,∞] by the monotonicity

of µ, so that limn→∞ µ(En) exists in [0,∞].

(a) Suppose (En) is increasing. Then the sequence
(
µ(En)

)
is also increasing.

Consider the first case where µ(En0) = ∞ for some En0 . In this case we have
limn→∞ µ(En) = ∞. On the other hand,

En0 ⊂
⋃

n∈N
En = lim

n→∞
En =⇒ µ

(
lim

n→∞
En

) ≥ µ(En0) = ∞.
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Thus
µ
(

lim
n→∞

En

)
= ∞ = lim

n→∞
µ(En).

Consider the next case where µ(En) < ∞ for all n ∈ N. Let E0 = ∅, then consider
the disjoint sequence (Fn) in A defined by Fn = En\En−1 for all n ∈ N. It is evident
that ⋃

n∈N
En =

⋃

n∈N
Fn.

Then we have

µ
(

lim
n→∞

En

)
= µ

(⋃

n∈N
En

)
= µ

(⋃

n∈N
Fn

)

=
∑

n∈N
µ(Fn) =

∑

n∈N
µ(En \ En−1)

=
∑

n∈N

[
µ(En)− µ(En−1)

]

= lim
n→∞

n∑

k=1

[
µ(Ek)− µ(Ek−1)

]

= lim
n→∞

[
µ(En)− µ(E0)

]
= lim

n→∞
µ(En). ¤

(b) Suppose (En) is decreasing and assume the existence of a containing set A with
finite measure. Define a disjoint sequence (Gn) in A by setting Gn = En \ En+1 for
all n ∈ N. We claim that

(1) E1 \
⋂

n∈N
En =

⋃

n∈N
Gn.

To show this, let x ∈ E1 \
⋂

n∈NEn. Then x ∈ E1 and x /∈ ⋂
n∈NEn. Since the

sequence (En) is decreasing, there exists the first set En0+1 in the sequence not
containing x. Then

x ∈ En0 \ En0+1 = Gn0 =⇒ x ∈
⋃

n∈N
Gn.

Conversely, if x ∈ ⋃
n∈NGn, then x ∈ Gn0 = En0 \ En0+1 for some n0 ∈ N. Now

x ∈ En0 ⊂ E1. Since x /∈ En0+1, we have x /∈ ⋂
n∈NEn. Thus x ∈ E1 \

⋂
n∈NEn.

Hence (1) is proved.
Now by (1) we have

(2) µ

(
E1 \

⋂

n∈N
En

)
= µ

(⋃

n∈N
Gn

)
.

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



16 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Since µ
(⋂

n∈NEn

) ≤ µ(E1) ≤ µ(A) < ∞, we have

(3) µ

(
E1 \

⋂

n∈N
En

)
= µ(E1)− µ

(⋂

n∈N
En

)

= µ(E1)− µ( lim
n→∞

En).

By the countable additivity of µ, we have

(4) µ

(⋃

n∈N
Gn

)
=

∑

n∈N
µ(Gn) =

∑

n∈N
µ(En \ En+1)

=
∑

n∈N

[
µ(En)− µ(En+1)

]

= lim
n→∞

n∑

k=1

[
µ(Ek)− µ(Ek+1)

]

= lim
n→∞

[
µ(E1)− µ(En+1)

]

= µ(E1)− lim
n→∞

µ(En+1).

Substituting (3) and (4) in (2), we have

µ(E1)− µ( lim
n→∞

En) = µ(E1)− lim
n→∞

µ(En+1).

Since µ(E1) < ∞, we have

µ( lim
n→∞

En) = lim
n→∞

µ(En). ¥
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Problem 11 (Fatou’s lemma for µ)
Let (X,A, µ) be a measure space, and (En) be a sequence in A.
(a) Show that

µ
(
lim inf
n→∞

En

) ≤ lim inf
n→∞

µ(En).

(b) If there exists A ∈ A with En ⊂ A and µ(A) < ∞ for every n ∈ N, then
show that

µ
(
lim sup

n→∞
En

) ≥ lim sup
n→∞

µ(En).

Solution
(a) Recall that

lim inf
n→∞

En =
⋃

n∈N

⋂

k≥n

Ek = lim
n→∞

⋂

k≥n

Ek,

by the fact that
(⋂

k≥n Ek

)
n∈N is an increasing sequence in A. Then by Problem 9a

we have

(∗) µ
(
lim inf
n→∞

En

)
= lim

n→∞
µ

(⋂

k≥n

Ek

)
= lim inf

n→∞
µ

(⋂

k≥n

Ek

)
,

since the limit of a sequence, if it exists, is equal to the limit inferior of the sequence.
Since

⋂
k≥n Ek ⊂ En, we have µ

(⋂
k≥n Ek

) ≤ µ(En) for every n ∈ N. This implies
that

lim inf
n→∞

µ

(⋂

k≥n

Ek

)
≤ lim inf

n→∞
µ(En).

Thus by (∗) we obtain

µ
(
lim inf
n→∞

En

) ≤ lim inf
n→∞

µ(En).

(b) Now

lim sup
n→∞

En =
⋂

n∈N

⋃

k≥n

Ek = lim
n→∞

⋃

k≥n

Ek,

by the fact that
(⋃

k≥n Ek

)
n∈N is an decreasing sequence in A. Since En ⊂ A for all

n ∈ N, we have
⋃

k≥n Ek ⊂ A for all n ∈ N. Thus by Problem 9b we have

µ
(
lim sup

n→∞
En

)
= µ

(
lim

n→∞

⋃

k≥n

Ek

)
= lim

n→∞
µ

(⋃

k≥n

Ek

)
.
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18 CHAPTER 1. MEASURE ON A σ-ALGEBRA OF SETS

Now

lim
n→∞

µ

(⋃

k≥n

Ek

)
= lim sup

n→∞
µ

(⋃

k≥n

Ek

)
,

since the limit of a sequence, if it exists, is equal to the limit superior of the sequence.
Then by

⋃
k≥n Ek ⊃ En we have

µ

(⋃

k≥n

Ek

)
≥ µ(En).

Thus

lim sup
n→∞

µ

(⋃

k≥n

Ek

)
≥ lim sup

n→∞
µ(En).

It follows that
µ
(
lim sup

n→∞
En

) ≥ lim sup
n→∞

µ(En). ¥

Problem 12
Let µ∗ be an outer measure on a set X. Show that the following two conditions
are equivalent:
(i) µ∗ is additive on P(X).
(ii) Every element of P(X) is µ∗-measurable, that is, M(µ∗) = P(X).

Solution
• Suppose µ∗ is additive on P(X). Let E ∈ P(X). Then for any A ∈ P(X),

A = (A ∩ E) ∪ (A ∩ Ec) and (A ∩ E) ∩ (A ∩ Ec) = ∅.

By the additivity of µ∗ on P(X), we have

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

This show that E satisfies the Carathéodory condition. Hence E ∈ M(µ∗). So
P(X) ⊂M(µ∗). But by definition, M(µ∗) ⊂ P(X). Thus

M(µ∗) = P(X).

• Conversely, suppose M(µ∗) = P(X). Since µ∗ is additive on M(µ∗) by Proposi-
tion 3, so µ∗ is additive on P(X). ¥
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Problem 13
Let µ∗ be an outer measure on a set X.
(a) Show that the restriction µ of µ∗ on the σ-algebra M(µ∗) is a measure on
M(µ∗).
(b) Show that if µ∗ is additive on P(X), then it is countably additive on P(X).

Solution
(a) By definition, µ∗ is countably subadditive on P(X). Its restriction µ on M(µ∗)
is countably subadditive on M(µ∗). By Proposition 3b, µ∗ is additive on M(µ∗).
Therefore, by Problem 5, µ∗ is countably additive on M(µ∗). Thus, µ∗ is a measure
on M(µ∗). But µ is the restriction of µ∗ on M(µ∗), so we can say that µ is a
measure on M(µ∗).

(b) If µ∗ is additive on P(X), then by Problem 11, M(µ∗) = P(X). So µ∗ is a
measure on P(X) (Problem 5). In particular, µ∗ is countably additive on P(X). ¥
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Chapter 2

Lebesgue Measure on R

1. Lebesgue outer measure on R

Definition 9 (Outer measure)
Lebesgue outer measure on R is a set function µ∗L : P(R) → [0,∞] defined by

µ∗L(A) = inf

{ ∞∑

k=1

`(Ik) : A ⊂
∞⋃

k=1

Ik, Ik is open interval in R

}
.

Proposition 4 (Properties of µ∗L)

1. µ∗L(A) = 0 if A is at most countable.

2. Monotonicity: A ⊂ B ⇒ µ∗L(A) ≤ µ∗L(B).

3. Translation invariant: µ∗L(A + x) = µ∗L(A), ∀x ∈ R.

4. Countable subadditivity: µ∗L (
⋃∞

n=1 An) ≤ ∑∞
n=1 µ∗L(An).

5. Null set: µ∗L(A) = 0 ⇒ µ∗L(A ∪B) = µ∗L(B) and µ∗L(B \A) = µ∗L(B)
for all B ∈ P(R).

6. For any interval I ⊂ R, µ∗L(I) = `(I).

7. Regularity:

∀E ∈ P(R), ε > 0, ∃O open set in R : O ⊃ E and µ∗L(E) ≤ µ∗L(O) ≤ µ∗L(E) + ε.

2. Measurable sets and Lebesgue measure on R

Definition 10 (Carathéodory condition)
A set E ⊂ R is said to be Lebesgue measurable (or µL-measurable, or measurable) if, for all A ⊂ R,
we have

µ∗L(A) = µ∗L(A ∩ E) + µ∗L(A ∩ Ec).

21
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22 CHAPTER 2. LEBESGUE MEASURE ON R

Since µ∗L is subadditive, the sufficient condition for Carathéodory condition is

µ∗L(A) ≥ µ∗L(A ∩ E) + µ∗L(A ∩ Ec).

The family of all measurable sets is denoted by ML. We can see that ML is a σ-algebra. The
restriction of µ∗L on ML is denoted by µL and is called Lebesgue measure.

Proposition 5 (Properties of µL)

1. (R,ML, µL) is a complete measure space.

2. (R,ML, µL) is σ-finite measure space.

3. BR ⊂ML, that is, every Borel set is measurable.

4. µL(O) > 0 for every nonempty open set in R.

5. (R,ML, µL) is translation invariant.

6. (R,ML, µL) is positively homogeneous, that is,

µL(αE) = |α|µL(E), ∀α ∈ R, E ∈ML.

Note on Fσ and Gδ sets:
Let (X, T ) be a topological space.
• A subset E of X is called a Fσ-set if it is the union of countably many closed sets.
• A subset E of X is called a Gδ-set if it is the intersection of countably many open sets.
• If E is a Gδ-set then Ec is a Fσ-set and vice versa. Every Gδ-set is Borel set, so is every Fσ-set.

∗ ∗ ∗∗

Problem 14
If E is a null set in (R,ML, µL), prove that Ec is dense in R.

Solution
For every open interval I in R, µL(I) > 0 (property of Lebesgue measure). If
µL(E) = 0, then by the monotonicity of µL, E cannot contain any open interval as
a subset. This implies that

Ec ∩ I = ∅

for any open interval I in R. Thus Ec is dense in R. ¥

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



23

Problem 15
Prove that for every E ⊂ R, there exists a Gδ-set G ⊂ R such that

G ⊃ E and µ∗L(G) = µ∗L(E).

Solution
We use the regularity property of µ∗L (Property 7).
For ε = 1

n
, n ∈ N, there exists an open set On ⊂ R such that

On ⊃ E and µ∗L(E) ≤ µ∗L(On) ≤ µ∗L(E) +
1

n
.

Let G =
⋂

n∈NOn. Then G is a Gδ-set and G ⊃ E. Since G ⊂ On for every n ∈ N,
we have

µ∗L(E) ≤ µ∗L(G) ≤ µ∗L(On) ≤ µ∗L(E) +
1

n
.

This holds for every n ∈ N, so we have

µ∗L(E) ≤ µ∗L(G) ≤ µ∗L(E).

Therefore
µ∗(G) = µ∗(E). ¥

Problem 16
Let E ⊂ R. Prove that the following statements are equivalent:
(i) E is (Lebesgue) measurable.
(ii) For every ε > 0, there exists an open set O ⊃ E with µ∗L(O \ E) ≤ ε.
(iii) There exists a Gδ-set G ⊃ E with µ∗L(G \ E) = 0.

Solution
• (i) ⇒ (ii) Suppose that E is measurable. Then

∀ε > 0, ∃ open set O : O ⊃ E and µ∗L(E) ≤ µ∗L(O) ≤ µ∗L(E) + ε. (1)

Since E is measurable, with O as a testing set in the Carathéodory condition satisfied
by E, we have

µ∗L(O) = µ∗L(O ∩ E) + µ∗L(O ∩ Ec) = µ∗L(E) + µ∗L(O \ E). (2)
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24 CHAPTER 2. LEBESGUE MEASURE ON R

If µ∗L(E) < ∞, then from (1) and (2) we get

µ∗L(O) ≤ µ∗L(E) + ε =⇒ µ∗L(O)− µ∗L(E) = µ∗L(O \ E) ≤ ε.

If µ∗L(E) = ∞, let En = E∩(n−1, n] for n ∈ Z. Then (En)n∈Z is a disjoint sequence
in ML with ⋃

n∈Z
En = E and µL(En) ≤ µL

(
(n− 1, n]

)
= 1.

Now, for every ε > 0, there is an open set On such that

On ⊃ En and µL(On \ En) ≤ 1

3
.

ε

2|n|
.

Let O =
⋃

n∈Z)On, then O is open and O ⊃ E, and

O \ E =

(⋃

n∈Z
On

)
\

(⋃

n∈Z
En

)
=

(⋃

n∈Z
On

)
∩

(⋃

n∈Z
En

)c

=
⋃

n∈Z

[
On ∩

(⋃

n∈Z
En

)c]
=

⋃

n∈Z

[
On \

(⋃

n∈Z
En

)]

⊂
⋃

n∈Z
(On \ En).

Then we have

µ∗L(O \ E) ≤ µ∗L

(⋃

n∈Z
(On \ En)

)
≤

∑

n∈Z
µ∗L(On \ E)

≤
∑

n∈Z

1

3
.

ε

2|n|
=

1

3
ε + 2

∑

n∈N

1

3
.
ε

2n

=
1

3
ε +

2

3
ε = ε.

This shows that (ii) satisfies.

• (ii) ⇒ (iii) Assume that E satisfies (ii). Then for ε = 1
n
, n ∈ N, there is an open

set On such that

On ⊃ En and µL(On \ En) ≤ 1

n
, ∀n ∈ N.

Let G =
⋂

n∈NOn. Then G is a Gδ-set containing E. Now

G ⊂ O =⇒ µ∗L(G \ E) ≤ µ∗L(On \ E) ≤ 1

n
, ∀n ∈ N.
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Thus µ∗L(G \ E) = 0. This shows that E satisfies (iii).

• (iii) ⇒ (i) Assume that E satisfies (iii). Then there exists a Gδ-set G such that

G ⊃ E and µ∗L(G \ E) = 0.

Now µ∗L(G \ E) = 0 implies that G \ E is (Lebesgue) measurable. Since E ⊂ G,
we can write E = G \ (G \ E). Then the fact that G and G \ E are (Lebesgue)
measurable implies that E is (Lebesgue) measurable. ¥

Problem 17(Similar problem)
Let E ⊂ R. Prove that the following statements are equivalent:
(i) E is (Lebesgue) measurable.
(ii) For every ε > 0, there exists an closed set C ⊂ E with µ∗L(E \ C) ≤ ε.
(iii) There exists a Fσ-set F ⊂ E with µ∗L(E \ F ) = 0.

Problem 18
Let Q be the set of all rational numbers in R. For any ε > 0, construct an open
set O ⊂ R such that

O ⊃ Q and µ∗L(O) ≤ ε.

Solution
Since Q is countable, we can write Q = {r1, r2, ...}. For any ε > 0, let

In =
(
rn − ε

2n+1
, rn +

ε

2n+1

)
, n ∈ N.

Then In is open and O =
⋃∞

n=1 In is also open. We have, for every n ∈ N, rn ∈ In.
Therefore O ⊃ Q.
Moreover,

µ∗L(O) = µ∗L

( ∞⋃
n=1

In

)
≤

∞∑
n=1

µ∗L(In)

=
∞∑

n=1

2ε

2n+1

= ε

∞∑
n=1

1

2n
= ε. ¥
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26 CHAPTER 2. LEBESGUE MEASURE ON R

Problem 19
Let Q be the set of all rational numbers in R.
(a) Show that Q is a null set in (R,BR, µL).
(b) Show that Q is a Fσ-set.
(c) Show that there exists a Gδ-set G such that G ⊃ Q and µL(G) = 0.
(d) Show that the set of all irrational numbers in R is a Gδ-set.

Solution
(a) Since Q is countable, we can write Q = {r1, r2, ...}. Each {rn}, n ∈ N is closed,
so {rn} ∈ BR. Since BR is a σ-algebra,

Q =
∞⋃

n=1

{rn} ∈ BR.

Since µL({rn}) = 0, we have

µL(Q) =
∞∑

n=1

µL({rn}) = 0.

Thus, Q is a null set in (R,BR, µL).

(b) Since {rn} is closed and Q =
⋃∞

n=1{rn}, Q is a Fσ-set.

(c) By (a), µL(Q) = 0. This implies that, for every n ∈ N, there exists an open set
Gn such that

Gn ⊃ Q and µL(Gn) <
1

n
.

If G =
⋂∞

n=1 Gn then G is a Gδ-set and G ⊃ Q. Furthermore,

µL(G) ≤ µL(Gn) <
1

n
, ∀n ∈ N.

This implies that µL(G) = 0.

(d) By (b), Q is a Fσ-set, so R \ Q, the set of all irrational numbers in R, is a
Gδ-set. ¥

Problem 20
Let E ∈ ML with µL(E) > 0. Prove that for every α ∈ (0, 1), there exists a
finite open interval I such that

αµL(I) ≤ µL(E ∩ I) ≤ µL(I).
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Solution
• Consider first the case where 0 < µL(E) < ∞. For any α ∈ (0, 1), set 1

α
= 1 + a.

Since a > 0, 0 < ε = aµL(E) < ∞. By the regularity property of µ∗L (Property 7),
there exists an open set O ⊃ E such that1

µL(O) ≤ µL(E) + aµL(E) = (1 + a)µL(E) =
1

α
µL(E) < ∞. (i)

Now since O is an open set in R, it is union of a disjoint sequence (In) of open
intervals in R:

O =
⋃

n∈N
In =⇒ µL(O) =

∑

n∈N
µL(In). (ii)

Since E ⊂ O, we have

µL(E) = µL(E ∩O) = µL

(
E ∩

⋃

n∈N
In

)
=

∑

n∈N
µL(E ∩ In). (iii)

From (i), (ii) and (iii) it follows that

∑

n∈N
µL(In) ≤ 1

α

∑

n∈N
µL(E ∩ In).

Note that all terms in this inequality are positive, so that there exists at least one
n0 ∈ N such that

µL(In0) ≤
1

α
µL(E ∩ In0).

Since µL(O) is finite, all intervals In are finite intervals in R. Let I := In0 , then I is
a finite open interval satisfying conditions:

αµL(I) ≤ µL(E ∩ I) ≤ µL(I).

• Now consider that case µL(E) = ∞. By the σ-finiteness of the Lebesgue measure
space, there exists a measurable subset E0 of E such that 0 < µL(E0) < ∞. Then
using the first part of the solution, we obtain

αµL(I) ≤ µL(E0 ∩ I) ≤ µL(E ∩ I) ≤ µL(I). ¥

1Recall that for (Lebesgue) measurable set A, µ∗L(A) = µL(A).
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Problem 21
Let f be a real-valued function on (a, b) such that f ′ exists and satisfies

|f ′(x)| ≤ M for all x ∈ (a, b) and for some M ≥ 0.

Show that for every E ⊂ (a, b) we have

µ∗L(f(E)) ≤ Mµ∗L(E).

Solution
If M = 0 then f ′(x) = 0, ∀x ∈ (a, b). Hence, f(x) = y0, ∀x ∈ (a, b). Thus, for any
E ⊂ (a, b) we have

µ∗L(f(E)) = 0.

The inequality holds. Suppose M > 0. For all x, y ∈ (a, b), by the Mean Value
Theorem, we have

|f(x)− f(y)| = |x− y||f ′(c)|, for some c ∈ (a, b)

≤ M |x− y|. (∗)
By definition of the outer measure, for any E ⊂ (a, b) we have

µ∗L(E) = inf
∞∑

n=1

(bn − an),

where {In = (an, bn), n ∈ N} is a covering class of E. By (*) we have

∞∑
n=1

|f(bn)− f(an)| ≤ M

∞∑
n=1

|bn − an|

≤ M inf
∞∑

n=1

|bn − an|

≤ Mµ∗L(E).

Infimum takes over all covering classes of E. Thus,

µ∗L(f(E)) = inf
∞∑

n=1

|f(bn)− f(an)| ≤ Mµ∗L(E). ¥
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Problem 22
(a) Let E ⊂ R. Show that F = {∅, E,Ec,R} is the σ-algebra of subsets of R
generated by {E}
(b) If S and T are collections of subsets of R, then

σ(S ∪ T ) = σ(S) ∪ σ(T ).

Is the statement true? Why?

Solution
(a)It is easy to check that F is a σ-algebra.
Note first that {E} ⊂ F . Hence

σ({E}) ⊂ F . (i)

On the other hand, since σ({E}) is a σ-algebra, so ∅,R ∈ σ({E}). Also, since
E ∈ σ({E}), so Ec ∈ σ({E}). Hence

F ⊂ σ({E}). (ii)

From (i) and (ii) it follows that

F = σ({E}).
(b) No. Here is why.
Take S = {(, 1]} and T = {(1, 2]}. Then, by part (a),

σ(S) = {∅, (0, 1], (0, 1]c,R} and σ(T ) = {∅, (1, 2], (1, 2]c,R}.
Therefore

σ(S) ∪ σ(T ) = {∅, (0, 1], (0, 1]c, (1, 2], (1, 2]c,R}.
We have

(0, 1] ∪ (1, 2] = (0, 2] /∈ σ(S) ∪ σ(T ).

Hence σ(S) ∪ σ(T ) is not a σ-algebra. But, by definition, σ(S ∪ T ) is a σ-algebra.
And hence it cannot be equal to σ(S) ∪ σ(T ). ¥

Problem 23
Consider F = {E ∈ R : either E is countable or Ec is countable}.
(a) Show that F is a σ-algebra and F is a proper sub-σ-algebra of the σ-algebra
BR.
(b) Show that F is the σ-algebra generated by

{{x} : x ∈ R}
.

(c) Find a measure λ : F → [0,∞] such that the only λ-null set is ∅.
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30 CHAPTER 2. LEBESGUE MEASURE ON R

Solution
(a) We check conditions of a σ-algebra:
• It is clear that ∅ is countable, so ∅ ∈ F .
• Suppose E ∈ F . Then E ⊂ R and E is countable or Ec is countable. This is
equivalent to Ec ⊂ R and Ec is countable or E is countable. Thus,

E ∈ F ⇒ Ec ∈ F .

• Suppose E1, E2, ... ∈ F . Either all En’s are countable, so
⋃∞

n=1 En is countable.
Hence

⋃∞
n=1 En ∈ F . Or there exists some En0 ∈ F which is not countable. By

definition, Ec
n0

must be countable. Now

( ∞⋃
n=1

En

)c

=
∞⋂

n=1

Ec
n ⊂ En0 .

This implies that (
⋃∞

n=1 En)
c

is countable. Thus

∞⋃
n=1

En ∈ F .

Finally, F is a σ-algebra. ¤
Recall that BR is the σ-algebra generated by the family of open sets in R. It is also
generated by the family of closed sets in R. Now suppose E ∈ F . If E is countable
then we can write

E = {x1, x2, ...} =
∞⋃

n=1

{xn}.

Each {xn} is a closed set in R, so belongs to BR. Hence E ∈ BR. Therefore,

F ⊂ BR.
F is a proper subset of BR. Indeed, [0, 1] ∈ BR and [0, 1] /∈ F . ¤
(b) Let S =

{{x} : x ∈ R}
. Clearly, S ⊂ F , and so

σ(S) ⊂ F .

Now take E ∈ F and E 6= ∅. If E is countable then we can write

E =
∞⋃

n=1

{xn}︸︷︷︸
∈S

∈ σ(S).

Hence
F ⊂ σ(S).
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Thus
σ(S) = F .

(c) Define the set function λ : F → [0,∞] by

λ(E) =

{
|E| if E is finite

∞ otherwise.

We can check that λ is a measure. If E 6= ∅ then λ(E) > 0 for every E ∈ F . ¥

Problem 24
For E ∈ ML with µL(E) < ∞, define a real-valued function ϕE on R by setting

ϕE(x) := µL(E ∩ (−∞, x]) for x ∈ R.

(a) Show that ϕE is an increasing function on R.
(b) Show that ϕE satisfies the Lipschitz condition on R, that is,

|ϕE(x′)− ϕE(x′′)| ≤ |x′ − x′′| for x′, x′′ ∈ R.

Solution
(a) Let x, y ∈ R. Suppose x < y. It is clear that (−∞, x] ⊂ (−∞, y]. Hence,
E ∩ (−∞, x] ⊂ E ∩ (−∞, y] for E ∈ ML. By the monoticity of µL we have

ϕE(x) = µL(E ∩ (−∞, x]) ≤ µL(E ∩ (−∞, y]) = ϕE(y).

Thus ϕE is increasing on R.

(b) Suppose x′ < x′′ we have

E ∩ (x′, x′′] = (E ∩ (−∞, x′′]) \ (E ∩ (−∞, x′]).

It follows that

ϕE(x′′)− ϕE(x′) = µL(E ∩ (−∞, x′′])− µL(E ∩ (−∞, x′])

= µL(E ∩ (x′, x′′])

≤ µL

(
(x′, x′′]

)
= x′′ − x′. ¥
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Problem 25
Let E be a Lebesgue measurable subset of R with µL(E) = 1. Show that there
exists a Lebesgue measurable set A ⊂ E such that µL(A) = 1

2
.

Solution
Define the function f : R→ [0, 1] by

f(x) = µL

(
E ∩ (−∞, x]

)
, x ∈ R.

By Problem 23, we have

|f(x)− f(y)| ≤ |x− y|, ∀x, y ∈ R.

Hence f is (uniformly) continuous on R. Since

lim
x→−∞

f(x) = 0 and lim
x→∞

f(x) = 1,

by the Mean Value Theorem, we have

∃x0 ∈ R such that f(x0) =
1

2
.

Set A = E ∩ (−∞, x0]. Then we have

A ⊂ E and µL(A) =
1

2
. ¥
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Chapter 3

Measurable Functions

Remark:
From now on, measurable means Lebesgue measurable. Also measure means Lebesgue measure,
and we write µ instead of µL for Lebesgue measure.

1. Definition, basic properties

Proposition 6 (Equivalent conditions)
Let f be an extended real-valued function whose domain D is measurable. Then the following
statements are equivalent:

1. For each real number a, the set {x ∈ D : f(x) > a} is measurable.

2. For each real number a, the set {x ∈ D : f(x) ≥ a} is measurable.

3. For each real number a, the set {x ∈ D : f(x) < a} is measurable.

4. For each real number a, the set {x ∈ D : f(x) ≤ a} is measurable.

Definition 11 (Measurable function)
An extended real-valued function f is said to be measurable if its domain is measurable and if it
satisfies one of the four statements of Proposition 6.

Proposition 7 (Operations)
Let f, g be two measurable real-valued functions defined on the same domain and c a constant.
Then the functions f + c, cf, f + g, and fg are also measurable.

Note:
A function f is said to be Borel measurable if for each α ∈ R the set {x : f(x) > α} is a Borel set.
Every Borel measurable function is Lebesgue measurable.

2. Equality almost everywhere
• A property is said to hold almost everywhere (abbreviated a.e.) if the set of points where it fails
to hold is a set of measure zero.
• We say that f = g a.e. if f and g have the same domain and µ

({x ∈ D : f(x) 6= g(x)}) = 0.
Also we say that the sequence (fn) converges to f a.e. if the set {x : fn(x) 9 f(x)} is a null set.

33
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34 CHAPTER 3. MEASURABLE FUNCTIONS

Proposition 8 (Measurable functions)
If a function f is measurable and f = g a.e., then g is measurable.

3. Sequence of measurable functions

Proposition 9 (Monotone sequence)
Let (fn) be a monotone sequence of extended real-valued measurable functions on the same mea-
surable domain D. Then limn→∞ fn exists on D and is measurable.

Proposition 10 Let (fn) be a sequence of extended real-valued measurable functions on the same
measurable domain D. Then max{f1, ..., fn}, min{f1, ..., fn}, lim supn→∞ fn, lim infn→∞ fn, supn∈N, infn∈N
are all measurable.

Proposition 11 If f is continuous a.e. on a measurable set D, then f is measurable.

∗ ∗ ∗∗

Problem 26
Let D be a dense set in R. Let f be an extended real-valued function on R such
that {x : f(x) > α} is measurable for each α ∈ D. Show that f is measurable.

Solution
Let β be an arbitrary real number. For each n ∈ N, there exists αn ∈ D such that
β < αn < β + 1

n
by the density of D. Now

{x : f(x) > β} =
∞⋃

n=1

{
x : f(x) ≥ β +

1

n

}
=

∞⋃
n=1

{x : f(x) > αn}.

Since
⋃∞

n=1{x : f(x) > αn} is measurable (as countable union of measurable sets),
{x : f(x) > β} is measurable. Thus, f is measurable. ¥

Problem 27
Let f be an extended real-valued measurable function on R. Prove that {x :
f(x) = α} is measurable for any α ∈ R.
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Solution
• For α ∈ R, we have

{x : f(x) = α} = {x : f(x) ≤ α}︸ ︷︷ ︸
measurable

\ {x : f(x) < α}︸ ︷︷ ︸
measurable

.

Thus {x : f(x) = α} is measurable.

• For α = ∞, we have

{x : f(x) = ∞} = R \ {x : f(x) < ∞} = R \
⋃

n∈N
{x : f(x) ≤ n}︸ ︷︷ ︸

measurable

.

Thus {x : f(x) = ∞} is measurable.

• For α = −∞, we have

{x : f(x) = −∞} = R \ {x : f(x) > −∞} = R \
⋃

n∈N
{x : f(x) ≥ −n}︸ ︷︷ ︸

measurable

.

Thus {x : f(x) = ∞} is measurable. ¥

Problem 28
(a). Let D and E be measurable sets and f a function with domain D∪E. Show
that f is measurable if and only if its restriction to D and E are measurable.
(b). Let f be a function with measurable domain D. Show that f is measurable
if and only if the function g defined by

g(x) =

{
f(x) for x ∈ D

0 for x /∈ D

is measurable.

Solution
(a) Suppose that f is measurable. Since D and E are measurable subsets of D ∪E,
the restrictions f |D and f |E are measurable.
Conversely, suppose f |D and f |E are measurable. For any α ∈ R, we have

{x : f(x) > α} = {x ∈ D : f |D(x) > α} ∪ {x ∈ E : f |E(x) > α}.

Each set on the right hand side is measurable, so {x : f(x) > α} is measurable.
Thus, f is measurable.
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36 CHAPTER 3. MEASURABLE FUNCTIONS

(b) Suppose that f is measurable. If α ≥ 0, then {x : g(x) > α} = {x : f(x) > α},
which is measurable. If α < 0, then {x : g(x) > α} = {x : f(x) > α} ∪Dc, which
is measurable. Hence, g is measurable.
Conversely, suppose that g is measurable. Since f = g|D and D is measurable, f is
measurable. ¥

Problem 29
Let f be measurable and B a Borel set. Then f−1(B) is a measurable set.

Solution
Let C be the collection of all sets E such that f−1(E) is measurable. We show that
C is a σ-algebra. Suppose E ∈ C. Since

f−1(Ec) =
(
f−1(E)

)c
,

which is measurable, so Ec ∈ C. Suppose (En) is a sequence of sets in C. Since

f−1

(⋃
n

En

)
=

⋃
n

f−1(En),

which is measurable, so
⋃

n En ∈ C. Thus, C is a σ-algebra.
Next, we show that all intervals (a, b), for any extended real numbers a, b with
a < b, belong to C. Since f is measurable, {x : f(x) > a} and {x : f(x) < b} are
measurable. It follows that (a,∞) and (−∞, b) ∈ C. Furtheremore, we have

(a, b) = (−∞, b) ∩ (a,∞),

so (a, b) ∈ C. Thus, C is a σ-algebra containing all open intervals, so it contains all
Borel sets. Hence f−1(B) is measurable. ¥

Problem 30
Show that if f is measurable real-valued function and g a continuous function
defined on R, then g ◦ f is measurable.

Solution
For any α ∈ R,

{x : (g ◦ f)(x) > α} = (g ◦ f)−1((α,∞)) = f−1
(
g−1

(
(α,∞)

))
.
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By the continuity of g, g−1
(
(α,∞)

)
is an open set, so a Borel set. By Problem 24,

the last set is measurable. Thus, g ◦ f is measurable. ¤

Problem 31
Let f be an extended real-valued function defined on a measurable set D ⊂ R.
(a) Show that if {x ∈ D : f(x) < r} is measurable in R for every r ∈ Q, then
f is measurable on D.
(b) What subsets of R other than Q have this property?
(c) Show that if f is measurable on D, then there exists a countable sub-collection
C ⊂ML, depending on f , such that f is σ(C)-measurable on D.
(Note: σ(C) is the σ-algebra generated by C.)

Solution
(a) To show that f is measurable on D, we show that {x ∈ D : f(x) < a} is
measurable for every a ∈ R. Let I = {r ∈ Q : r < a}. Then I is countable , and
we have

{x ∈ D : f(x) < a} =
⋃
r∈I

{x ∈ D : f(x) < r}.

Since {x ∈ D : f(x) < r} is measurable,
⋃

r∈I{x ∈ D : f(x) < r} is measurable.
Thus, {x ∈ D : f(x) < a} is measurable.

(b) Here is the answer to the question:

Claim 1 : If E ⊂ R is dense in R, then E has the property in (a), that is, if
{x ∈ D : f(x) < r} is measurable for every r ∈ E then f is measurable on D.
Proof.
Given any a ∈ R, the interval (a − 1, a) intersects E since E is dense. Pick some
r1 ∈ E ∩ (a− 1, a). Now the interval (r1, a) intersects E for the same reason. Pick
some r2 ∈ E ∩ (r1, a). Repeating this process, we obtain an increasing sequence (rn)
in E which converges to a.
By assumption, {x ∈ D : f(x) < rn} is measurable, so we have

{x ∈ D : f(x) < a} =
⋃

n∈N
{x ∈ D : f(x) < rn} is measurable .

Thus, f is measurable on D.

Claim 2 : If E ⊂ R is not dense in R, then E does not have the property in (a).
Proof.
Since E is not dense in R, there exists an interval [a, b] ⊂ E. Let F be a non
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38 CHAPTER 3. MEASURABLE FUNCTIONS

measurable set in R. We define a function f as follows:

f(x) =

{
a if x ∈ F c

b if x ∈ F.

For r ∈ E, by definition of F , we observe that

• If r < a then f−1([−∞, r)) = ∅.
• If r > b then f−1([−∞, r)) = R.

• If r = a+b
2

then f−1([−∞, r)) = F c.

Since F is non measurable, F c is also non measurable. Through the above observa-
tion, we see that

{
x ∈ D : f(x) <

a + b

2

}
non measurable.

Thus, f is not measurable.

Conclusion : Only subsets of R which are dense in R have the property in (a).

(c) Let C = {Cr}r∈Q where Cr = {x ∈ D : f(x) < r} for every r ∈ Q. Clearly, C is
a countable family of subsets of R. Since f is measurable, Cr is measurable. Hence,
C ⊂ ML. Since ML is a σ-algebra, by definition, we must have σ(C) ⊂ ML. Let
a ∈ R. Then

{x ∈ D : f(x) < a} =
⋃
r<a

{x ∈ D : f(x) < r} =
⋃
r<a

Cr.

It follows that {x ∈ D : f(x) < a} ∈ σ(C).

Thus, f is σ(C)-measurable on D. ¥

Problem 32
Show that the following functions defined on R are all Borel measurable, and
hence Lebesgue measurable also on R:

(a) f(x) =

{
0 if x is rational

1 if x is irrational.
(b) g(x) =

{
x if x is rational

−x if x is irrational.

(c) h(x) =

{
sin x if x is rational

cos x if x is irrational.
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Solution
(a) For any a ∈ R, let E = {x ∈ D : f(x) < a}.

• If a > 1 then E = R, so E ∈ BR (Borel measurable).

• If 0 < a ≤ 1 then E = Q, so E ∈ BR (Borel measurable).

• If a ≤ 0 then E = ∅, so E ∈ BR (Borel measurable).

Thus, f is Borel measurable.

(b) Consider g1 defined on Q by g1(x) = x, then g|Q = g1. Consider g2 defined on
R\Q by g(x) = −x, then g|R\Q = g2. Notice that R, R\Q ∈ BR (Borel measurable).
For any a ∈ R, we have

{x ∈ D : f1(x) < a} = [−∞, a) ∩Q ∈ BR (Borel measurable),

and

{x ∈ D : f2(x) < a} = [−∞, a) ∩ (R \Q) ∈ BR (Borel measurable).

Thus, g is Borel measurable.

(c) Use the same way as in (b). ¥

Problem 33
Let f be a real-valued increasing function on R. Show that f is Borel measurable,
and hence Lebesgue measurable also on R.

Solution
For any a ∈ R, let E = {x ∈ D : f(x) ≥ a}. Let α = inf E. Since f is increasing,

• if Im(f) ⊂ (−∞, a) then E = ∅.

• if Im(f) * (−∞, a) then E is either (α,∞) or [α,∞).

Since ∅, (α,∞), [α,∞) are Borel sets, so f is Borel measurable. ¥

Problem 34
If (fn) is a sequence of measurable functions on D ⊂ R, then show that

{x ∈ D : lim
n→∞

fn(x) exists} is measurable.
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Solution
Recall that if fn’s are measurable, then lim supn→∞ fn, lim infn→∞ fn and g(x) =
lim supn→∞ fn − lim infn→∞ fn are also measurable, and if h is measurable then
{x ∈ D : h(x) = α} is measurable (Problem 22).
Now we have

E = {x ∈ D : lim
n→∞

fn(x) exists} = {x ∈ D : g(x) = 0}.
Thus, E is measurable. ¥

Problem 35
(a) If g : R → R is continuous and f : R → R is measurable then g ◦ f is
measurable.
(b) If f is measurable then |f | is measurable. Does the converse hold?

Solution
(a) For any a ∈ R, then

E = {x : (g ◦ f)(x) < a} = (g ◦ f)−1(−∞, a)

= f−1
(
g−1(−∞, a)

)
.

Since g is continuous, g−1(−∞, a) is open. Then there is a family of open disjoint
intervals {In}n∈N such that g−1(−∞, a) =

⋃
n∈N In. Hence,

E = f−1

(⋃

n∈N
In

)
=

⋃

n∈N
f−1(In).

Since f is measurable, f−1(In) is measurable. Hence E is measurable. This tells us
that g ◦ f is measurable.

(b) If g(u) = |u| then g is continuous. We have

(g ◦ f)(x) = g(f(x)) = |f(x)|.
By part (a), g ◦ f = |f | is measurable.
The converse is not true.
Let E be a non-measurable subset of R. Consider the function:

f(x) =

{
1 if x ∈ E

−1 if x /∈ E.

Then f−1(1
2
,∞) = E, which is not measurable. Since (1

2
,∞) is open, so f is not

measurable, while |f | = 1 is measurable. ¥
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Problem 36
Let (fn : n ∈ N) and f be an extended real-valued measurable functions on a
measurable set D ⊂ R such that limn→∞ fn = f on D. Then for every α ∈ R
prove that:

(i) µ{x ∈ D : f(x) > α} ≤ lim inf
n→∞

µ{x ∈ D : fn(x) ≥ α}
(ii) µ{x ∈ D : f(x) < α} ≤ lim inf

n→∞
µ{x ∈ D : fn(x) ≤ α}.

Solution
Recall that, for any sequence (En)n∈N of measurable sets,

µ(lim inf
n→∞

En) ≤ lim inf
n→∞

µ(En), (∗)
lim inf
n→∞

En =
⋃

n∈N

⋂

k≥n

Ek = lim
n→∞

⋂

k≥n

Ek.

Now for every α ∈ R, let Ek = {x ∈ D : fk(x) ≥ α} for each k ∈ N. Then

lim inf
n→∞

En = lim
n→∞

⋂

k≥n

Ek

= lim
n→∞

⋂

k≥n

{x ∈ D : fk(x) ≥ α}

= {x ∈ D : f(x) > α} since fk(x) → f(x) on D.

Using (*) we get

µ{x ∈ D : f(x) > α} ≤ lim inf
n→∞

µ{x ∈ D : fn ≥ α}.

For the second inequality, we use the similar argument.
Let Fk = {x ∈ D : fk(x) ≤ α} for each k ∈ N. Then

lim inf
n→∞

En = lim
n→∞

⋂

k≥n

Fk

= lim
n→∞

⋂

k≥n

{x ∈ D : fk(x) ≤ α}

= {x ∈ D : f(x) < α} since fk(x) → f(x) on D.

Using (*) we get

µ{x ∈ D : f(x) < α} ≤ lim inf
n→∞

µ{x ∈ D : fn ≤ α}. ¥
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Simple functions

Definition 12 (Simple function)
A function ϕ : X → R is simple if it takes only a finite number of different values.

Definition 13 (Canonical representation )
Let ϕ be a simple function on X. Let {a1, ..., an} the set of distinct valued assumed
by ϕ on D. Let Di = {x ∈ X : ϕ(x) = ai} for i = 1, ..., n. Then the expression

ϕ =
n∑

i=1

aiχDi

is called the canonical representation of ϕ.

It is evident that Di ∩Dj = ∅ for i 6= j and
⋃n

i=1 Di = X.

∗ ∗ ∗∗

Problem 37
(a). Show that

χA∩B = χA · χB

χA∪B = χA + χB − χA · χB

χAc = 1− χA.

(b). Show that the sum and product of two simple functions are simple functions.

Solution
(a). We have

χA∩B(x) = 1 ⇐⇒ x ∈ A and x ∈ B

⇐⇒ χA(x) = 1 = χB(x).

Thus,
χA∩B = χA · χB.

We have
χA∪B(x) = 1 ⇐⇒ x ∈ A ∪B.
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If x ∈ A ∩B then χA(x) + χB(x)− χA(x) · χB(x) = 1 + 1− 1 = 1.
If x /∈ A ∩ B, then x ∈ A \ B or x ∈ B \ A. Then χA(x) + χB(x) = 1 and
χA · χBχA(x) + χB(x) = 0.
Also,

χA∪B(x) = 0 ⇐⇒ x /∈ A ∪B.

Then
χA(x) = χB(x) = χA(x) · χB(x) = 0.

Thus,
χA∪B = χA + χB − χA · χB.

If χAc(x) = 1, then x /∈ A, so χA(x) = 0.
If χAc(x) = 0, then x ∈ A, so χA(x) = 1. Thus,

χAc = 1− χA. ¤

(b). Let ϕ be a simple function having values a1, ..., an. Then

ϕ =
n∑

i=1

aiχAi
where Ai = {x : ϕ(x) = ai}.

Similarly, if ψ is a simple function having values b1, ..., bm. Then

ψ =
m∑

j=1

bjχBj
where Bj = {x : ψ(x) = bj}.

Define Cij := Ai ∩Bj. Then

Ai ⊂ X =
m⋃

j=1

Bj and so Ai = Ai ∩
m⋃

j=1

Bj =
m⋃

j=1

Cij.

Similarly, we have

Bj =
n⋃

i=1

Cij.

Since the Cij’s are disjoint, this means that (see part (a))

χAi
=

m∑
j=1

χCij
and χBj

=
n∑

i=1

χCij
.

Thus

ϕ =
n∑

i=1

m∑
j=1

aiχCij
and ψ =

n∑
i=1

m∑
j=1

bjχCij
.
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Hence

ϕ + ψ =
n∑

i=1

m∑
j=1

(ai + bj)χCij
and ϕψ =

n∑
i=1

m∑
j=1

aibjχCij
.

They are simple function. ¥

Problem 38
Let ϕ : R→ R be a simple function defined by

n∑
i=1

aiχAi
where Ai = {x ∈ R : ϕ(x) = ai}.

Prove that ϕ is measurable if and only if all the Ai’s are measurable.

Solution
Assume that Ai is measurable for all i = 1, ..., n. Then for any c ∈ R, we have

{x : ϕ(x) > c} =
⋃
ai>c

Ai.

Since every Ai is measurable,
⋃

ai>c Ai is measurable. Thus {x : ϕ(x) > c} is
measurable. By definition, ϕ is measurable.
Conversely, suppose ϕ is measurable. We can suppose a1 < a2 < ... < an. Given
j ∈ {1, 2, ..., n}, choose c1 and c2 such that aj−1 < c1 < aj < c2 < aj+1. (If j = 1 or
j = n, part of this requirement is empty.) Then

Aj =

( ⋃
ai>c1

Ai

)
\

( ⋃
ai>c2

Ai

)

= {x : ϕ(x) > c1}︸ ︷︷ ︸
measurable

\ {x : ϕ(x) > c2}︸ ︷︷ ︸
measurable

.

Thus, Aj is measurable for all j ∈ {1, 2, ..., n}. ¥
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Chapter 4

Convergence a.e. and Convergence
in Measure

1. Convergence almost everywhere

Definition 14 Let (fn) be a sequence extended real-valued measurable functions on a measurable
set D ⊂ R.
1. We say that limn→∞ fn exists a.e. on D if there exists a null set N such that N ⊂ D and
limn→∞ fn(x) exists for every x ∈ D \N .
2. We say that (fn) converges a.e. on D if limn→∞ fn(x) exists and limn→∞ fn(x) ∈ R for every
x ∈ D \N .

Proposition 12 (Uniqueness)
Let (fn) be a sequence extended real-valued measurable functions on a measurable set D ⊂ R. Let
g1 and g2 be two extended real-valued measurable functions on D. Then

[
lim

n→∞
fn = g1 a.e. on D and lim

n→∞
fn = g2 a.e. on D

]
=⇒ g1 = g2 a.e. on D.

Theorem 1 (Borel-Cantelli Lemma)
For any sequence (An) of measurable subsets in R, we have

∑

n∈N
µ(An) < ∞ =⇒ µ

(
lim sup

n→∞
An

)
= 0.

Definition 15 (Almost uniform convergence)
Let (fn) be a sequence extended real-valued measurable functions on a measurable set D ⊂ R and
f a real-valued measurable functions on D. We say that (fn) converges a.u. on D to f if for every
η > 0 there exists a measurable set E ⊂ D such that µ(E) < η and (fn) converges uniformly to f
on D \ E.

Theorem 2 (Egoroff)
Let D be a measurable set with µ(D) < ∞. Let (fn) be a sequence extended real-valued measurable
functions on D and f a real-valued measurable functions on D. If (fn) converges to f a.e. on D,
then (fn) converges to f a.u. on D.

45
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2. Convergence in measure

Definition 16 Let (fn) be a sequence extended real-valued measurable functions on a measurable
set D ⊂ R. We say that (fn) converges in measure µ on D if there exists a real-valued measurable
function f on D such that for every ε > 0 we have

lim
n→∞

µ{D : |fn − f | ≥ ε} := lim
n→∞

µ{x ∈ D : |fn(x)− f(x)| ≥ ε} = 0.

That is,

∀ε > 0, ∀η > 0, ∃N(ε, η) ∈ N : µ{D : |fn − f | ≥ ε} < η for n ≥ N(ε, η).

We write fn
µ−→ f on D for this convergence.

Proposition 13 (Uniqueness)
Let (fn) be a sequence extended real-valued measurable functions on a measurable set D ⊂ R. Let
f and g be two real-valued measurable functions on D. Then

[fn
µ−→ f on D and fn

µ−→ g on D] =⇒ f = g a.e. on D.

Proposition 14 (Equivalent conditions)

(1) [fn
µ−→ f on D] ⇐⇒ ∀ε > 0, ∃N(ε) ∈ N : µ{D : |fn − f | ≥ ε} < ε for n ≥ N(ε).

(2) [fn
µ−→ f on D] ⇐⇒ ∀m ∈ N, ∃N(m) : µ

{
D : |fn − f | ≥ 1

m

}
<

1
m

for m ≥ N(m).

3. Convergence a.e. and convergence in measure

Theorem 3 (Lebesgue)
Let (fn) be a sequence extended real-valued measurable functions on a measurable set D ⊂ R. Let
f be a real-valued measurable functions on D. Suppose
1. fn → f a.e. on D,
2. µ(D) < ∞.

Then fn
µ−→ f on D.

Theorem 4 (Riesz)
Let (fn) be a sequence extended real-valued measurable functions on a measurable set D ⊂ R. Let
f be a real-valued measurable functions on D. If fn

µ−→ f on D, then there exists a subsequence
(fnk

) which converges to f a.e. on D.

∗ ∗ ∗∗
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Problem 39(An exercise to warn up.)
1. Consider the sequence (fn) defined on R by fn = χ[n,n+1], n ∈ N and the
function f ≡ 0. Does (fn) converge to f a.e.? a.u.? in measure?
2. Same questions with fn = nχ[0, 1

n
].

(Note: χA is the characteristic function of the set A. Try to write your solution.)

Problem 40
Let (fn) be a sequence of extended real-valued measurable functions on X and
let f be an extended real-valued function which is finite a.e. on X. Suppose
limn→∞ fn = f a.e. on X. Let α ∈ [0, µ(X)) be arbitrarily chosen. Show that
for every ε > 0 there exists N ∈ N such that µ{X : |fn − f | < ε} ≥ α for
n ≥ N .

Solution
Let Z be a null set such that f is finite on X \ Z. Since fn → f a.e. on X, fn → f
a.e. on X \ Z. For every ε > 0 we have1

µ(lim sup
n→∞

{X \ Z : |fn − f | ≥ ε}) = 0

⇒ lim sup
n→∞

µ{X \ Z : |fn − f | ≥ ε} = 0

⇒ lim
n→∞

µ{X \ Z : |fn − f | ≥ ε} = 0

The last condition is equivalent to

lim
n→∞

µ{X \ Z : |fn − f | < ε} = µ(X \ Z) = µ(X)

⇔ ∀η > 0, ∃N ∈ N : µ(X)− µ{X \ Z : |fn − f | < ε} ≤ η for all n ≥ N.

Let us take η = µ(X)− α > 0. Then we have

∃N ∈ N : µ{X \ Z : |fn − f | < ε} ≥ α for all n ≥ N.

Since {X : |fn − f | < ε} ⊃ {X \ Z : |fn − f | < ε}, so we have

∀ε > 0,∃N ∈ N : n ≥ N ⇒ µ({X : |fn − f | < ε}) ≥ α. ¥
1See Problem 11b. We have

µ
(
lim sup

n→∞
En

) ≥ lim sup
n→∞

µ(En).
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48 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

Problem 41
(a) Show that the condition

lim
n→∞

µ{x ∈ D : |fn(x)− f(x)| > 0} = 0

implies that fn
µ−→ f on D.

(b) Show that the converse is not true.
(c) Show that the condition in (a) implies that for a.e. x ∈ D we have fn(x) =
f(x) for infinitely many n ∈ N.

Solution
(a) Given any ε > 0, for every n ∈ N, let

En = {x ∈ D : |fn(x)− f(x)| > ε}; Fn = {x ∈ D : |fn(x)− f(x)| > 0}.
Then we have for all n ∈ N

x ∈ En ⇒ |fn(x)− f(x)| > ε

⇒ |fn(x)− f(x)| > 0

⇒ x ∈ Fn.

Consequently, En ⊂ Fn and µ(En) ≤ µ(Fn) for all n ∈ N. By hypothesis, we have

that limn→∞ µ(Fn) = 0. This implies that limn→∞ µ(En) = 0. Thus, fn
µ−→ f.

(b) The converse of (a) is false.
Consider functions:

fn(x) =
1

n
, x ∈ [0, 1] n ∈ N.

f(x) = 0, x ∈ [0, 1].

Then fn → f (pointwise) on [0, 1]. By Lebesgue Theorem fn
µ−→ f on [0, 1]. But for

every n ∈ N
|fn(x)− f(x)| = 1

n
> 0, ∀x ∈ [0, 1].

In other words,
{x ∈ D : |fn(x)− f(x)| > 0} = [0, 1].

Thus,
lim

n→∞
µ{x ∈ D : |fn(x)− f(x)| > 0} = 1 6= 0.

(c) Recall that (Problem 11a)

µ(lim inf
n→∞

En) ≤ lim inf
n→∞

µ(En). (∗)
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Let En = {x ∈ D : fn(x) 6= f(x)} and E = lim infn→∞ En. By (a),

lim inf
n→∞

µ(En) = lim
n→∞

µ(En) = 0.

Therefore, by (∗), µ(E) = 0. By definition, we have

E =
⋃

n∈N

⋂

k≥n

Ek.

Hence, x /∈ E whenever x ∈ Ec
n for infinitely many n’s, that is fn(x) = f(x) a.e. in

D for infinitely many n’s. ¥

Problem 42
Suppose fn(x) ≤ fn+1(x) for all n ∈ N and x ∈ D \Z with µ(Z) = 0. If fn

µ−→ f
on D , then prove that fn → f a.e. on D.

Solution
Let B = D \Z. Since fn

µ−→ f on D, fn
µ−→ f on B. Then, By Riesz theorem, there

exists a sub-sequence (fnk
) of (fn) such that fnk

→ f a.e. on B.
Let C = {x ∈ B : fnk

9 f}. Then µ(C) = 0 and fnk
→ f on B \ C.

From fn(x) ≤ fn+1(x) for all n ∈ N, and since nk ≥ k, we get fk ≤ fnk
for all k ∈ N.

Therefore
|fk − f | ≤ |fnk

− f |.
This implies that fk → f on B \ C. Since B \ C = D \ (Z ∪ C) and µ(Z ∪ C) = 0,
it follows that fn → f a.e. on D ¥.

Problem 43
Show that if fn

µ−→ f on D and gn
µ−→ g on D then fn + gn

µ−→ f + g on D.

Solution
Since fn

µ−→ f and gn
µ−→ g on D, for every ε > 0,

lim
n→∞

µ{D : |fn − f | ≥ ε

2
} = 0(4.1)

lim
n→∞

µ{D : |gn − g| ≥ ε

2
} = 0.(4.2)

Now
|(fn + gn)− (f + g)| ≤ |fn − f |+ |gn − g|.
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50 CHAPTER 4. CONVERGENCE A.E. AND CONVERGENCE IN MEASURE

By the triangle inequality above, if |(fn + gn) − (f + g)| ≥ ε is true, then at least
one of the two following inequalities must be true:

|fn − f | ≥ ε

2
or |gn − g| ≥ ε

2
.

Hence

{D : |(fn + gn)− (f + g)| ≥ ε} ⊂
{

D : |fn − f | ≥ ε

2

}
∪

{
D : |gn − g| ≥ ε

2

}
.

Therefore,

µ{D : |(fn + gn)− (f + g)| ≥ ε} ≤ µ
{

D : |fn − f | ≥ ε

2

}
+ µ

{
D : |gn − g| ≥ ε

2

}
.

From (4.1) and (4.2) we obtain

lim
n→∞

µ{D : |(fn + gn)− (f + g)| ≥ ε} = 0.

That is, by definition, fn + gn
µ−→ f + g on D. ¥

Problem 44
Show that if fn

µ−→ f on D and gn
µ−→ g on D and µ(D) < ∞, then fngn

µ−→ fg
on D.
(Assume that both fn and gn are real-valued for every n ∈ N so that the multiplication fngn

is possible.)

Solution
For every ε > 0 and δ > 0, we want µ{|fngn − fg| ≥ ε} < δ for n large enough.
Notice that

(∗) |fngn − fg| ≤ |fngn − fgn|+ |fgn − fg| ≤ |fn − f ||gn|+ |f ||gn − g|.

For any N ∈ N, let

EN = {D : |f | > N} ∪ {D : |g| > N}.

It is clear that EN ⊃ EN+1 for every N ∈ N. Since µ(D) < ∞, we have

lim
N→∞

µ(EN) = µ

( ⋂

N∈N
EN

)
= µ(∅) = 0.
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It follows that, we can take N large enough to get, for every δ > 0,

(∗∗) ε

2N
< 1 and µ(EN) <

δ

3
.

Observe that

{D : |gn| > N + 1} ⊂
{

D : |gn − g| ≥ ε

2N

}
∪ EN

(since |gn| ≤ |gn − g|+ |g|). Now if we have

|fn − f | ≥ ε

2(N + 1)
; |gn| > N + 1; |gn − g| ≥ ε

2N
, and |f | > N,

then (*) implies

{D : |fngn − fg| ≥ ε} ⊂
{

D : |fn − f | ≥ ε

2(N + 1)

}
∪ EN

∪
{

D : |gn − g| ≥ ε

2N

}
∪ {D : |gn| > N + 1}.

By assumption, given ε > 0, δ > 0, for n > N , we have

µ
{

D : |fn − f | ≥ ε

2(N + 1)

}
<

δ

3

µ
{

D : |gn − g| ≥ ε

2N

}
<

δ

3
.

From these results, from (*), and (**) we get

µ{D : |fngn − fg| ≥ ε} <
δ

3
+

δ

3
+

δ

3
= δ. ¥

Problem 45
(a) Definition of ”Almost uniform convergence” (a.u).

(b) Show that if fn → f a.u on D then fn
µ−→ f on D.

(c) Show that if fn → f a.u on D then fn → f a.e. on D.

Solution
(a) ∀ε > 0, ∃E ⊂ D such that µ(E) < ε and fn → f uniformly on D \ E.

(b) Suppose that fn → f a.u on D and fn does not converges to f in measure on
D. Then there exists an ε0 > 0 such that

µ{x ∈ D : |fn(x)− f(x)| > ε0}9 0 as n →∞.
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We can choose n1 < n2 < ... such that

µ{x ∈ D : |fnk
(x)− f(x)| > ε0} ≥ r for some r > 0 and ∀k ∈ N.

Now since fn → f a.u on D,

∃E ⊂ D such that µ(E) <
r

2
and fn → f uniformly on D \ E.

Let C = {x ∈ D : |fnk
(x) − f(x)| > ε0} ∀k ∈ N. Then µ(C) ≥ r. Since

fn → f uniformly on D \ E,

∃N : n ≥ N ⇒ |fn(x)− f(x)| ≤ ε0, ∀x ∈ D \ E.

Thus,
C ⊂ (D \ E)c = E.

Hence,

0 < r ≤ µ(C) ≤ µ(E) <
r

2
.

This is a contradiction.

(c) Since fn → f a.u. on D, for every n ∈ N, there exists En ⊂ D such that
µ(En) < 1

n
and fn → f uniformly on D \ En. Let E =

⋂
n∈NEn, then µ(E) = 0.

Since fn → f on D \ En for every n ∈ N, fn → f on

⋃

n∈N
(D \ En) = D \

⋂

n∈N
En = D \ E.

Since µ(E) = 0, fn → f a.e. on D ¥
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Chapter 5

Integration of Bounded Functions
on Sets of Finite Measure

In this chapter we suppose µ(D) < ∞.

1. Integration of simple functions

Definition 17 (Lebesgue integral of simple functions)
Let ϕ be a simple function on D and ϕ =

∑n
i=1 aiχDi be its canonical representation. The Lebesgue

integral of ϕ on D is defined by
∫

D

ϕ(x)µ(dx) =
n∑

i=1

aiµ(Di).

We usually use simple notations for the integral of ϕ:
∫

D

ϕdµ,

∫

D

ϕ(x)dx or
∫

D

ϕ.

If
∫

D
ϕdµ < ∞, then we say that ϕ is integrable on D.

Proposition 15 (properties of integral of simple functions)

1. µ(D) = 0 ⇒ ∫
D

ϕdµ = 0.

2. ϕ ≥ 0, E ⊂ D ⇒ ∫
E

ϕdµ ≤ ∫
D

ϕdµ.

3.
∫

D
cϕdµ = c

∫
D

ϕdµ.

4.
∫

D
ϕdµ =

∑n
i=1

∫
Di

ϕdµ.

5.
∫

D
cϕdµ = c

∫
D

ϕdµ (c is a constant).

6.
∫

D
(ϕ1 + ϕ2)dµ =

∫
D

ϕ1dµ +
∫

D
ϕ2dµ.

7. ϕ1 = ϕ2 a.e. on D ⇒ ∫
D

ϕ1dµ =
∫

D
ϕ2dµ.

53
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2. Integration of bounded functions

Definition 18 (Lebesgue integral of bounded functions)
Let f be a bounded real-valued measurable function on D. Let Φ be the collection of all simple
functions on D. We define the Lebesgue integral of f on D by

∫

D

fdµ = inf
ψ≥f

∫

D

ψdµ = sup
ϕ≤f

∫

D

ϕdµ where ϕ,ψ ∈ Φ.

If
∫

D
fdµ < ∞, then we say that f is integrable on D.

Proposition 16 (properties of integral of bounded functions)

1.
∫

D
cfdµ = c

∫
D

fdµ.

2.
∫

D
(f + g)dµ =

∫
D

fdµ +
∫

D
gdµ.

3. f = g a.e. on D ⇒ ∫
D

fdµ =
∫

D
gdµ.

4. f ≤ g on D ⇒ ∫
D

fdµ ≤ ∫
D

gdµ.

5. |f | ≤ M on D ⇒
∣∣∫

D
fdµ

∣∣ ≤ ∫
D
|f |dµ ≤ Mµ(D).

6. f ≥ 0 a.e. on D and
∫

D
fdµ = 0 ⇒ f = 0 a.e. on D.

7. If (Dn) be a disjoint sequence of measurable subset Dn ⊂ D with
⋃

n∈NDn = D then

∫

D

fd = µ
∑

n∈N

∫

Dn

fdµ.

Theorem 5 (Bounded convergence theorem)
Suppose that (fn) is a uniformly bounded sequence of real-valued measurable functions on D, and
f is a bounded real-valued measurable function on D. If fn → f a.e. on D, then

lim
n→∞

∫

D

|fn − f |dµ = 0.

In particular,

lim
n→∞

∫

D

fndµ =
∫

D

fdµ.

∗ ∗ ∗∗
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Problem 46
Let f be an extended real-valued measurable function on a measurable set D. For
M1,M2 ∈ R, M1 < M2, let the truncation of f at M1 and M2 be defined by

g(x) =





M1 if f(x) < M1

f(x) if M1 ≤ f(x) ≤ M2

M2 if f(x) > M2.

Show that g is measurable on D.

Solution
Let a ∈ R. We need to show that the set E = {x ∈ D : g(x) > a} is measurable.
There are three cases to consider:

1. If a ≥ M2 then E = ∅ which is measurable.

2. If a < M1 then E = D which is measurable.

3. If M1 ≤ a < M2 then E = {x ∈ D : f(x) > a} which is measurable.

Thus, in all three cases E is measurable, so g is measurable. ¥

Problem 47
Given a measure space (X,A, µ). Let f be a bounded real-valued A-measurable
function on D ∈ A with µ(D) < ∞. Suppose |f(x)| ≤ M, ∀x ∈ D for some
constant M > 0.
(a) Show that if

∫
D

fdµ = Mµ(D), then f = M a.e. on D.
(b) Show that if f < M a.e. on D and if µ(D) > 0, then

∫
D

fdµ < Mµ(D).

Solution
(a) For every n ∈ N, let En = {x ∈ D : f(x) < M − 1

n
}. Then, since f ≤ M on

D \ En, we have

∫

D

fdµ =

∫

En

fdµ +

∫

D\En

fdµ

≤
(

M − 1

n

)
µ(En) + Mµ(D \ En).
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Since En ⊂ D, we have

µ(D \ En) = µ(D)− µ(En).

Therefore,
∫

D

fdµ ≤
(

M − 1

n

)
µ(En) + Mµ(D)−Mµ(En)

= Mµ(D)− 1

n
µ(En).

By assumption
∫

D
fdµ = Mµ(D), it follows that

0 ≤ − 1

n
µ(En) ≤ 0, ∀n ∈ N,

which implies µ(En) = 0, ∀n ∈ N.
Now let E =

⋃∞
n=1 En then E = {x ∈ D : f(x) < M}. We want to show that

µ(E) = 0. We have

0 ≤ µ(E) ≤
∞∑

n=1

µ(En) = 0.

Thus, µ(E) = 0. Since |f | ≤ M , the last result implies f = M a.e. on D.

(b) First we note that |f | ≤ M on D implies that
∫

D
fdµ ≤ Mµ(D). Assume that∫

D
fdµ = Mµ(D). By part (a) we have f = M a.e. on D. This contradicts the fact

that f < M a.e. on D. Thus
∫

D
fdµ < Mµ(D). ¥

Problem 48
Consider a sequence of functions (fn)n∈N defined on [0, 1] by

fn(x) =
nx

1 + n2x2
for x ∈ [0, 1].

(a) Show that (fn) is uniformly bounded on [0, 1] and evaluate

lim
n→∞

∫

[0,1]

nx

1 + n2x2
dµ.

(b) Show that (fn) does not converge uniformly on [0, 1].

Solution
(a) For all n ∈ N, for all x ∈ [0, 1], we have 1 + n2x2 ≥ 2nx ≥ 0 and 1 + n2x2 > 0,
hence

0 ≤ fn(x) =
nx

1 + n2x2
≤ 1

2
.
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Thus, (fn) is uniformly bounded on [0, 1].
Since each fn is continuous on [0, 1], f is Riemann integrable on [0, 1]. In this case,
Lebesgue integral and Riemann integral on [0, 1] coincide:

∫

[0,1]

nx

1 + n2x2
dµ =

∫ 1

0

nx

1 + n2x2
dx

=
1

2n

∫ 1+n2

1

1

t
dt (with t = 1 + n2x2)

=
1

2n
ln(1 + n2) =

ln(1 + n2)

2n
.

Using L’Hospital rule we get limx→∞
ln(1+x2)

2x
= 0. Hence,

lim
n→∞

∫

[0,1]

nx

1 + n2x2
dµ = 0.

(b) For each x ∈ [0, 1],

lim
n→∞

nx

1 + n2x2
= 0.

Hence, fn → f ≡ 0 pointwise on [0, 1]. To show fn does not converge to f ≡ 0
uniformly on [0, 1], we find a sequence (xn) in [0, 1] such that xn → 0 and fn(xn) 9
f(0) = 0 as n →∞. Indeed, take xn = 1

n
. Then fn(x) = 1

2
. Thus,

lim
n→∞

fn(xn) =
1

2
6= f(0) = 0. ¥

Problem 49
Let (fn)n∈N and f be extended real-valued measurable functions on D ∈ML with

µ(D) < ∞ and assume that f is real-valued a.e. on D. Show that fn
µ−→ f on D

if and only if

lim
n→∞

∫

D

|fn − f |
1 + |fn − f |dµ = 0.

Solution
• Suppose fn

µ−→ f on D. By definition of convergence in measure, for any ε > 0,
there exists an N ∈ N such that for n ≥ N ,

∃En ⊂ D : µ(En) <
ε

2
and |fn − f | < ε

2µ(D)
on D \ En.
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For n ≥ N we have

(∗)
∫

D

|fn − f |
1 + |fn − f | dµ =

∫

En

|fn − f |
1 + |fn − f | dµ +

∫

D\En

|fn − f |
1 + |fn − f | dµ.

Note that for all n ∈ N, we have 0 ≤ |fn−f |
1+|fn−f | ≤ 1 on En and

0 ≤ |fn − f |
1 + |fn − f | = |fn − f | 1

1 + |fn − f | ≤ |fn − f | ≤ ε

2µ(D)
on D \ En.

So for n ≥ N , we can write (*) as

0 ≤
∫

D

|fn − f |
1 + |fn − f | dµ ≤

∫

En

1 dµ +

∫

D\En

ε

2µ(D)
dµ

= µ(En) +
ε

2µ(D)
µ(D \ En)

≤ µ(En) +
ε

2
<

ε

2
+

ε

2
= ε.

Thus, limn→∞
∫

D
|fn−f |

1+|fn−f | µ(dx) = 0.

• Conversely, suppose limn→∞
∫

D
|fn−f |

1+|fn−f |dµ = 0. We show fn
µ−→ f on D. For any

ε > 0, for n ∈ N, let En = {x ∈ D : |fn − f | ≥ ε}. We have

|fn − f | ≥ ε ⇒ |fn − f |
1 + |fn − f | ≥

ε

1 + ε

( since the function ϕ(x) = x
1+x

, x > 0 is increasing).
It follows that

0 ≤
∫

En

ε

1 + ε
dµ ≤

∫

En

|fn − f |
1 + |fn − f |dµ ≤

∫

D

|fn − f |
1 + |fn − f |dµ.

Hence,

0 ≤ ε

1 + ε
µ(En) ≤

∫

D

|fn − f |
1 + |fn − f |dµ.

Since limn→∞
∫

D
|fn−f |

1+|fn−f |dµ = 0, limn→∞ µ(En) = 0. Thus, fn
µ−→ f on D. ¥

Problem 50
Let (X,A, µ) be a finite measure space. Let Φ be the set of all extended real-
valued A-measurable function on X where we identify functions that are equal
a.e. on X. Let

ρ(f, g) =

∫

X

|f − g|
1 + |f − g| dµ for f, g ∈ Φ.
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(a) Show that ρ is a metric on Φ.
(b) Show that Φ is complete w.r.t. the metric ρ.

Solution
(a) Note that µ(X) is finite and 0 ≤ |f−g|

1+|f−g| < 1, so 0 ≤ ρ < ∞ .

• ρ(f, g) = 0 ⇔ ∫
X

|f−g|
1+|f−g| dµ = 0 ⇔ f − g = 0 ⇔ f = g. (We identify

functions that are equal a.e. on X.)

• It is clear that ρ(f, g) = ρ(g, f).

• We make use the fact that the function ϕ(x) = x
1+x

, x > 0 is increasing. For
f, g, h ∈ Φ,

|f − h|
1 + |f − h| ≤ |f − g|+ |g − h|

1 + |f − g|+ |g − h|
=

|f − g|
1 + |f − g|+ |g − h| +

|g − h|
1 + |f − g|+ |g − h|

≤ |f − g|
1 + |f − g| +

|g − h|
1 + |g − h| .

Integrating over X we get

∫

X

|f − h|
1 + |f − h| dµ ≤

∫

X

|f − g|
1 + |f − g| dµ +

∫

X

|g − h|
1 + |g − h| dµ.

That is

ρ(f, g) ≤ ρ(f, h) + ρ(h, g).

Thus, ρ is a metric on Φ.

(b) Let (fn) be a Cauchy sequence in Φ. We show that there exists an f ∈ Φ such
that ρ(fn, f) → 0 as n →∞.
First we claim that (fn) is a Cauchy sequence w.r.t. convergence in measure. Let
η > 0. For n,m ∈ N, define Am,n = {X : |fn − fm| ≥ η}. For every ε > 0, there
exists an N ∈ N such that

(∗) n,m ≥ N ⇒ ρ(fn, fm) < ε
η

1 + η
.
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While we have that

ρ(fn, fm) =

∫

X

|fn − fm|
1 + |fn − fm| dµ ≥

∫

Am,n

|fn − fm|
1 + |fn − fm| dµ

≥ η

1 + η
µ(Am,n).

For n, m ≥ N , from (*) we get

ε
η

1 + η
>

η

1 + η
µ(Am,n).

This implies that µ(Am,n) < ε. Thus, (fn) is Cauchy in measure. We know that if
(fn) is Cauchy in measure then (fn) converges in measure to some f ∈ Φ.

Next we prove that ρ(fn, f) → 0. Since fn
µ−→ f , for any ε > 0 there exists E ∈ A

and an N ∈ N such that

µ(E) <
ε

2
and |fn − f | < ε

2µ(X)
on X \ E whenever n ≥ N.

On X \ E, for n ≥ N , we have

∫

X\E

|fn − f |
1 + |fn − f | dµ ≤

∫

X\E
|fn − f |dµ <

ε

2µ(X)
µ(X \ E) ≤ ε

2
.

On E, for all n, we have
∫

E

|fn − f |
1 + |fn − f | dµ ≤

∫

E

1 dµ = µ(E) <
ε

2
.

Hence, for n ≥ N , we have

ρ(fn, f) =

∫

X

|fn − f |
1 + |fn − f | dµ =

∫

E

|fn − f |
1 + |fn − f | dµ +

∫

X\E

|fn − f |
1 + |fn − f | dµ < ε.

Thus, (fn) converges to f ∈ Φ. And hence, (Φ, ρ) is complete ¥

Problem 51(Bounded convergence theorem under convergence in measure)
Suppose that (fn) is a uniformly bounded sequence of real-valued measurable func-
tions on D, and f is a bounded real-valued measurable function on D. If fn

w−→ f
on D, then

lim
n→∞

∫

D

|fn − f |dµ = 0.
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Solution
We will use this fact:
Let (an) be a sequence of real numbers. If there exists a real number a such that
every subsequence (ank

) has a subsequence (ankl
) converging to a, then the sequence

(an) converges to a.
Consider the sequence of real numbers

an =

∫

D

|fn − f |dµ, n ∈ N.

Take an arbitrary subsequence (ank
). Consider the sequence (fnk

). Since (fn) con-
verges to f in measure on D, the subsequence (fnk

) converges to f in measure on
D too. By Riesz theorem, there exists a subsequence (fnkl

) converging to f a.e. on
D. Thus by the bounded convergence theorem, we have

lim
n→∞

∫

D

|fnkl
− f |dµ = 0.

That is, the subsequence (ankl
) of the arbitrary subsequence (ank

) of (an) converges
to 0. Therefore the sequence (an) converges to 0. Thus

lim
n→∞

∫

D

|fn − f |dµ = 0. ¥
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Chapter 6

Integration of Nonnegative
Functions

Definition 19 Let f be a nonnegative extended real-valued measurable function on a measurable
D ⊂ R. We define the Lebesgue integral of f on D by

∫

D

fdµ = sup
0≤ϕ≤f

ϕdµ,

where the supremum is on the collection of all nonnegative simple function ϕ on D.
If the integral is finite, we say that f is integrable on D.

Proposition 17 (Properties)
Let f, f1 and f2 be nonnegative extended real-valued measurable functions on D. Then

1.
∫

D
fdµ < ∞⇒ f < ∞ a.e. on D.

2.
∫

D
fdµ = 0 ⇒ f = 0 a.e. on D.

3. D0 ⊂ D ⇒ ∫
D0

fdµ ≤ ∫
D

fdµ.

4. f > 0 a.e. on D and
∫

D
fdµ = 0 ⇒ µ(D) = 0.

5. f1 ≤ f2 on D ⇒ ∫
D

f1dµ ≤ ∫
D

f2dµ.

6. f1 = f2 a.e. on D ⇒ ∫
D

f1dµ ≤ ∫
D

f2dµ.

Theorem 6 (Monotone convergence theorem)
Let (fn) be an increasing sequence of nonnegative extended real-valued measurable functions on D.
If fn → f on D then

lim
n→∞

∫

D

fndµ =
∫

D

fdµ.

Remark: The conclusion is not true for a decreasing sequence.
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Proposition 18 Let (fn) be an increasing sequence of nonnegative extended real-valued measur-
able functions on D. Then we have

∫

D

(∑

n∈N
fn

)
dµ =

∑

n∈N

∫

D

fndµ.

Theorem 7 (Fatou’s Lemma)
Let (fn) be a sequence of nonnegative extended real-valued measurable functions on D. Then we
have ∫

D

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫

D

fndµ.

In particular, if limn→∞ fn = f exists a.e. on D, then
∫

D

fdµ ≤ lim inf
n→∞

∫

D

fndµ.

Proposition 19 (Uniform absolute continuity of the integral)
Let f be an integrable nonnegative extended real-valued measurable functions on D. Then for every
ε > 0, there exists δ > 0 such that ∫

E

fdµ < ε

for every measurable E ⊂ D with µ(E) < δ.

∗ ∗ ∗∗

Problem 52
Let f1 and f2 be nonnegative extended real-valued measurable functions on a
measurable set D ⊂ R. Suppose f1 ≤ f2 and f1 is integrable on D. Prove that
f2 − f1 is defined a.e. on D and

∫

D

(f2 − f1)dµ =

∫

D

f2dµ−
∫

D

f1dµ.

Solution
Since f1 is integrable on D, f1 is real-valued a.e. on D. Thus there exists a null set
N ⊂ D such that 0 ≤ f1(x) < ∞, ∀x ∈ D \N . Then f2 − f1 is defined on D \N .
That is f2 − f1 is defined a.e. on D. On the other hand, since f2 = f1 + (f2 − f1),
we have

∫

D

f2dµ =

∫

D

[
f1 + (f2 − f1)

]
dµ =

∫

D

f1dµ +

∫

D

(f2 − f1)dµ.
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Since
∫

D
f1dµ < ∞, we have

∫

D

(f2 − f1)dµ =

∫

D

f2dµ−
∫

D

f1dµ. ¥

Remark: If
∫

D
f1dµ = ∞,

∫
D

f2dµ− ∫
D

f1dµ may have the form ∞−∞.

Problem 53
Let f be a non-negative real-valued measurable function on a measure space
(X,A, µ). Suppose that

∫
E

fdµ = 0 for every E ∈ A. Show that f = 0 a.e.

Solution
Since f ≥ 0, A = {x ∈ X : f(x) > 0} = {x ∈ X : f(x) 6= 0}. We shall show that
µ(A) = 0.
Let An = {x ∈ X : f(x) ≥ 1

n
} for every n ∈ N. Then A =

⋃
n∈NAn. Now on An we

have

f ≥ 1

n
⇒

∫

An

fdµ ≥ 1

n
µ(An)

⇒ µ(An) ≤ n

∫

An

fdµ = 0 (by assumption)

⇒ µ(An) = 0 for every n ∈ N.

Thus, 0 ≤ µ(A) ≤ ∑
n∈N µ(An) = 0. Hence, µ(A) = 0. This tells us that f = 0

a.e. ¥

Problem 54
Let (fn : n ∈ N) be a sequence of non-negative real-valued measurable functions
on R such that fn → f a.e. on R.
Suppose limn→∞

∫
R fndµ =

∫
R fdµ < ∞. Show that for each measurable set

E ⊂ R we have

lim
n→∞

∫

E

fndµ =

∫

E

fdµ.

Solution
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Since gn = fn − fnχE ≥ 0, n ∈ N and fn → f a.e., we have, by Fatou’s lemma,
∫

R
lim

n→∞
gndµ ≤ lim inf

n→∞

∫

R
gndµ

∫

R
(f − fχE)dµ ≤ lim inf

n→∞

∫

R
(fn − fnχE)dµ

∫

R
fdµ−

∫

E

fdµ ≤ lim
n→∞

∫

R
fndµ− lim sup

n→∞

∫

E

fndµ.

From the last inequation and assumption we get

(6.1)

∫

E

fdµ ≥ lim sup
n→∞

∫

E

fndµ.

Let hn = fn − fnχE ≥ 0. Using the similar calculation, we obtain

(6.2)

∫

E

fdµ ≤ lim inf
n→∞

∫

E

fndµ.

From (6.1) and (6.2) we have

lim
n→∞

∫

E

fndµ =

∫

E

fdµ. ¥

Problem 55
Given a measure space (X,A, µ). Let (fn) and f be extended real-valued A-
measurable functions on D ∈ A and assume that f is real-valued a.e. on D.
Suppose there exists a sequence of positive numbers (εn) such that

1.
∑

n∈N εn < ∞.

2.
∫

D
|fn − f |pdµ < εn for every n ∈ N for some fixed p ∈ (0,∞).

Show that the sequence (fn) converges to f a.e. on D. (Note that no integrability
of fn, f, |f |p on D is assumed).

Solution
Since |fn−f |p is non-negative measurable for every n ∈ N, the sequence

(∑N
n=1 |fn − f |p

)
N∈N

is an increasing sequence of non-negative measurable functions. By the Monotone
Convergence Theorem, we have

∫

D

lim
N→∞

(
N∑

n=1

|fn − f |p
)

dµ = lim
N→∞

∫

D

N∑
n=1

|fn − f |pdµ.
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Using assumptions we get

∫

D

∞∑
n=1

|fn − f |pdµ = lim
N→∞

N∑
n=1

∫

D

|fn − f |pdµ

=
∞∑

n=1

∫

D

|fn − f |pdµ

≤
∞∑

n=1

εn < ∞.

This means that the function under the integral symbol in the left hand side is finite
a.e. on D. We have

∞∑
n=1

|fn − f |p < ∞ a.e. on D ⇒ lim
n→∞

|fn − f |p = 0 a.e. on D

⇒ lim
n→∞

|fn − f | = 0 a.e. on D

⇒ fn → f a.e. on D. ¥.

Problem 56
Given a measure space (X,A, µ). Let (fn) and f be extended real-valued mea-
surable functions on D ∈ A and assume that f is real-valued a.e. on D. Suppose
limn→∞

∫
D
|fn − f |pdµ = 0 for some fixed p ∈ (0,∞). Show that

fn
µ−→ f on D.

Solution
Given any ε > 0. For every n ∈ N, let An = {D : |fn − f | ≥ ε}. Then

∫

D

|fn − f |pdµ =

∫

An

|fn − f |pdµ +

∫

D\An

|fn − f |pdµ

≥
∫

An

|fn − f |pdµ

≥ εpµ(An).

Since limn→∞
∫

D
|fn − f |pdµ = 0, limn→∞ µ(An) = 0. This means that

fn
µ−→ f on D. ¥
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Problem 57
Let (X,A, µ) be a measure space and let f be an extended real-valued A-
measurable function on X such that

∫
X
|f |pdµ < ∞ for some fixed p ∈ (0,∞).

Show that
lim

λ→∞
λpµ{X : |f | ≥ λ} = 0.

Solution
For n = 0, 1, 2, ..., let En = {D : n ≤ |f | < n + 1}. Then En ∈ A and the En’s are
disjoint. Moreover, X =

⋃∞
n=0 En. We have

∞ >

∫

X

|f |pdµ =
∞∑

n=0

∫

En

|f |pdµ ≥
∞∑

n=0

npµ(En).

Since
∑∞

n=0 npµ(En) < ∞, for any ε > 0, there exists N ∈ N such that for n ≥ N
we have ∞∑

n=N

npµ(En) < ε.

Note that np ≥ Np since p > 0. So we have

Np

∞∑
n=N

µ(En) < ε.

But
⋃∞

n=N En = {X : |f | ≥ N}. So with the above N , we have

Npµ

( ∞⋃
n=N

En

)
= Npµ{X : |f | ≥ N} < ε.

Thus,
lim

λ→∞
λpµ{X : |f | ≥ λ} = 0. ¥

Problem 58
Let (X,A, µ) be a σ-finite measure space. Let f be an extended real-valued A-
measurable function on X. Show that for every p ∈ (0,∞) we have

∫

X

|f |pdµ =

∫

[0,∞)

pλp−1µ{X : |f | > λ}µL(dλ). (∗)
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Solution
We may suppose f ≥ 0 (otherwise we set g = |f | ≥ 0).
1. If f = χE, E ∈ A, then

∫

X

fpdµ =

∫

X

(χE)pdµ = µ(E).

∫

[0,∞)

pλp−1µ{X : χE > λ}µL(dλ) =

∫ 1

0

pλp−1µ(E)dλ = µ(E).

Thus, the equality (∗) holds.

2. If f =
∑n

i=1 aiχEi
(simple function), with ai ≥ 0, Ei ∈ A, i = 1, ..., n., then the

equality (∗) holds because of the linearity of the integral.

3. If f ≥ 0 measurable, then there is a sequence (ϕn) of non-negative measurable
simple functions such that ϕn ↑ f . By the Monotone Convergence Theorem we have

∫

X

f pdµ = lim
n→∞

∫

X

ϕp
ndµ

= lim
n→∞

∫

[0,∞)

pλp−1µ{X : ϕn > λ}µL(dλ)

=

∫

[0,∞)

pλp−1µ{X : f > λ}µL(dλ). ¥

Notes:

1. A = {X : χE > λ} = {x ∈ X : χE(x) > λ}.
• If 0 ≤ λ < 1 then A = E.

• If λ ≥ 1 then A = ∅.
2. Why σ-finite measure?

Problem 59
Given a measure space (X,A, µ). Let f be a non-negative extended real-valued
A-measurable function on D ∈ A with µ(D) < ∞.
Let Dn = {x ∈ D : f(x) ≥ n} for n ∈ N. Show that

∫

D

fdµ < ∞ ⇔
∑

n∈N
µ(Dn) < ∞.
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Solution
From the expression Dn = {x ∈ D : f(x) ≥ n} with f A-measurable, we deduce
that Dn ∈ A and

D := D0 ⊃ D1 ⊃ D2 ⊃ ... ⊃ Dn ⊃ Dn+1 ⊃ ...

Moreover, all the sets Dn \Dn+1 = {D : n ≤ f < n + 1, n ∈ N} are disjoint and

D =
⋃

n∈N
(Dn \Dn+1).

It follows that

nµ(Dn \Dn+1) ≤
∫

Dn\Dn+1

fdµ ≤ (n + 1)µ(Dn \Dn+1)

∞∑
n=0

nµ(Dn \Dn+1) ≤
∫

⋃
n∈N(Dn\Dn+1)

fdµ ≤
∞∑

n=0

(n + 1)µ(Dn \Dn+1)

∞∑
n=0

nµ[(Dn)− µ(Dn+1)] ≤
∫

D

fdµ ≤
∞∑

n=0

(n + 1)[µ(Dn)− µ(Dn+1)]. (i)

Some more calculations:
∞∑

n=0

nµ[(Dn)− µ(Dn+1)] = 1[µ(D1)− µ(D2)] + 2[µ(D2)− µ(D3)] + ...

=
∞∑

n=1

µ(Dn),

and
∞∑

n=0

(n + 1)[µ(Dn)− µ(Dn+1)] = 1[µ(D0)− µ(D1)] + 2[µ(D1)− µ(D2)] + ...

= µ(D) +
∞∑

n=1

µ(Dn).

With these, we rewrite (i) as follows

∞∑
n=1

µ(Dn) ≤
∫

D

fdµ ≤ µ(D) +
∞∑

n=1

µ(Dn).

Since µ(D) < ∞, we have
∫

D

fdµ < ∞ ⇔
∑

n∈N
µ(Dn) < ∞. ¥
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Problem 60
Given a measure space (X,A, µ) with µ(X) < ∞. Let f be a non-negative
extended real-valued A-measurable function on X. Show that f is µ-integrable
on X if and only if

∞∑
n=0

2nµ{x ∈ X : f(x) > 2n} < ∞.

Solution
Let En = {X : f > 2n} for each n = 0, 1, 2, ... Then it is clear that

E0 ⊃ E1 ⊃ ... ⊃ En ⊃ En+1 ⊃ ...

En \ En+1 = {X : 2n < f ≤ 2n+1} and are disjoint

X \ E0 = {X : 0 ≤ f ≤ 1}

X = (X \ E0) ∪
∞⋃

n=0

(En \ En+1).

Now we have
∫

X

fdµ =

∫

X\E0

fdµ +

∫
⋃∞

n=0(En\En+1)

fdµ

=

∫

X\E0

fdµ +
∞∑

n=0

∫

En\En+1

fdµ.

This implies that

(6.3)
∞∑

n=0

∫

En\En+1

fdµ =

∫

X

fdµ−
∫

X\E0

fdµ.

On the other hand, for n = 0, 1, 2, ..., we have

2nµ(En \ En+1) ≤
∫

En\En+1

fdµ ≤ 2n+1µ(En \ En+1).

Therefore,

∞∑
n=0

2nµ(En \ En+1) ≤
∞∑

n=0

∫

En\En+1

fdµ ≤
∞∑

n=0

2n+1µ(En \ En+1).
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From (6.3) we obtain

∞∑
n=0

2nµ(En \ En+1) +

∫

X\E0

fdµ ≤
∫

X

fdµ ≤
∞∑

n=0

2n+1µ(En \ En+1) +

∫

X\E0

fdµ.

Since

0 ≤
∫

X\E0

fdµ ≤ µ(X \ E0) ≤ µ(X) < ∞,

we get

(6.4)
∞∑

n=0

2nµ(En \ En+1) ≤
∫

X

fdµ ≤
∞∑

n=0

2n+1µ(En \ En+1) + µ(X).

Some more calculations:

∞∑
n=0

2nµ(En \ En+1) =
∞∑

n=0

2n[µ(En)− µ(En+1)]

= µ(E0)− µ(E1) + 2[µ(E1)− µ(E2)] + 4[µ(E2)− µ(E3)] + ...

= µ(E0) + µ(E1) + 2µ(E2) + 4µ(E3) + ...

=
1

2
µ(E0) +

1

2

∞∑
n=0

2nµ(En),

and

∞∑
n=0

2n+1µ(En \ En+1) =
∞∑

n=0

2n+1[µ(En)− µ(En+1)]

= 2[µ(E0)− µ(E1)] + 4[µ(E1)− µ(E2)] + 8[µ(E2)− µ(E3)] + ...

= µ(E0) + [µ(E0) + 2µ(E1) + 4µ(E2) + 8µ(E3) + ...]

= µ(E0) +
∞∑

n=0

2nµ(En).

With these, we rewrite (6.4) as follows

1

2
µ(E0) +

1

2

∞∑
n=0

2nµ(En) ≤
∫

X

fdµ ≤ µ(E0) +
∞∑

n=0

2nµ(En) + µ(X).

This implies that

1

2

∞∑
n=0

2nµ(En) ≤
∫

X

fdµ ≤
∞∑

n=0

2nµ(En) + 2µ(X).
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Since µ(X) < ∞, we have

∫

X

fdµ < ∞ ⇔
∞∑

n=0

2nµ{x ∈ X : f(x) > 2n} < ∞. ¥

Problem 61
(a) Let {cn,i : n, i ∈ N} be an array of non-negative extended real numbers.
Show that

lim inf
n→∞

∑

i∈N
cn,i ≥

∑

i∈N
lim inf
n→∞

cn,i.

(b) Show that if (cn,i : n ∈ N) is an increasing sequence for each i ∈ N, then

lim
n→∞

∑

i∈N
cn,i =

∑

i∈N
lim

n→∞
cn,i.

Solution
(a) Let ν : N→ [0,∞] denote the counting measure. Consider the space (N,P(N), ν).
It is a measure space in which every A ⊂ N is measurable. Let i 7→ b(i) be any
function on N. Then ∫

N
bdν =

∑

i∈N
b(i).

For the array {cn,i}, for each i ∈ N, we can write cn,i = cn(i), n ∈ N. Then cn is a
non-negative ν-measurable function defined on N. By Fatou’s lemma,

∫

N
lim inf
n→∞

cndν ≤ lim inf
n→∞

∫

N
cndν,

that is ∑

i∈N
lim inf
n→∞

cn,i ≤ lim inf
n→∞

∑

i∈N
cn,i.

(b) If (cn,i : n ∈ N) is an increasing sequence for each i ∈ N, then the sequence of
functions (cn) is non-negative increasing. By the Monotone Convergence Theorem
we have

lim
n→∞

∫

N
cn(i)dν =

∫

N
lim

n→∞
cn(i)dν,

that is
lim

n→∞

∑

i∈N
cn,i =

∑

i∈N
lim

n→∞
cn,i. ¥

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



74 CHAPTER 6. INTEGRATION OF NONNEGATIVE FUNCTIONS

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



Chapter 7

Integration of Measurable
Functions

Given a measure space (X,A, µ). Let f be a measurable function on a set D ∈ A. We define the
positive and negative parts of f by

f+ := max{f, 0} and f− := max{−f, 0}.
Then we have

f = f+ − f− and |f | = f+ + f−.

Definition 20 Let f be an extended real-valued measurable function on D. The function f is said
to be integrable on D if f+ and f− are both integrable on D. In this case we define

∫

D

fdµ =
∫

D

f+dµ−
∫

D

f−dµ.

Proposition 20 (Properties)

1. f is integrable on D if and only if |f | is integrable on D.

2. If f is integrable on D then cf is integrable on D, and we have
∫

D
cfdµ = c

∫
D

fdµ, where
c is a constant in R.

3. If f and g are integrable on D then f + g are integrable on D, and we have
∫

D
(f + g)dµ =∫

D
fdµ +

∫
D

gdµ.

4. f ≤ g ⇒ ∫
D

fdµ ≤ ∫
D

gdµ.

5. If f is integrable on D then |f | < ∞ a.e. on D, that is, f is real-valued a.e. on D.

6. If {D1, ..., Dn} is a disjoint collection in A, then
∫

⋃n
i=1 Di

fdµ =
n∑

i=1

∫

Di

fdµ.

75
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Theorem 8 (generalized monotone convergence theorem)
Let (fn) be a sequence of integrable extended real-valued functions on D.
1. If (fn) is increasing and there is a extended real-valued measurable function g such that fn ≥ g
for every n ∈ N, then

lim
n→∞

fndµ =
∫

D

gdµ.

2. If (fn) is decreasing and there is a extended real-valued measurable function g such that fn ≤ g
for every n ∈ N, then

lim
n→∞

fndµ =
∫

D

gdµ.

Theorem 9 (Lebesgue dominated convergence theorem theorem - D.C.T)
Let (fn) be a sequence of integrable extended real-valued functions on D and g be an integrable
nonnegative extended real-valued function on D such that |fn| ≤ g on D for every n ∈ N. If
limn→∞ fn = f exists a.e. on D, then f is integrable on D and

lim
n→∞

∫

D

fndµ =
∫

D

fdµ and lim
n→∞

∫

D

|fn − f |dµ = 0.

∗ ∗ ∗∗

Problem 62
Prove this statement:
Let f be extended real-valued measurable function on a measurable set D. If f
is integrable on D, then the set {D : f 6= 0} is a σ-finite set.

Solution
For every n ∈ N set

Dn =
{

x ∈ D : |f(x)| ≥ 1

n

}
.

Then we have

{x ∈ D : f(x) 6= 0} = {x ∈ D : |f(x)| > 0} =
⋃

n∈N
Dn.

Now for each n ∈ N we have

1

n
µ(Dn) ≤

∫

Dn

|f |dµ ≤
∫

D

|f |dµ < ∞.

Thus
µ(Dn) = µ < ∞, ∀n ∈ N,

that is, the set {x ∈ D : f(x) 6= 0} is σ-finite. ¥
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Problem 63
Let f be extended real-valued measurable function on a measurable set D. If (En)
is an increasing sequence of measurable sets such that limn→∞ En = D, then

∫

D

fdµ = lim
n→∞

∫

En

fdµ.

Solution
Since (En) is an increasing sequence with limit D, so by definition, we have

D =
∞⋃

n=1

En.

Let
D1 = E1 and Dn = En \ En+1, n ≥ 2.

Then {D1, D2, ...} is a disjoint collection of measurable sets, and we have

n⋃
i=1

Di = En and
∞⋃

n=1

Dn =
∞⋃

n=1

En = D.

Hence

∫

D

fdµ =
∞∑

n=1

∫

Dn

fdµ = lim
n→∞

n∑
i=1

∫

Di

fdµ

= lim
n→∞

∫
⋃n

i=1 Di

fdµ = lim
n→∞

∫

En

fdµ. ¥

Problem 64
Let (X,A, µ) be a measure space. Let f and g be extended real-valued measurable
functions on X. Suppose that f and g are integrable on X and

∫
E

fdµ =
∫

E
gdµ

for every E ∈ A. Show that f = g a.e. on X.

Solution
• Case 1: f and g are two real-valued integrable functions on X.
Assume that the statement f = g a.e. on X is false. Then at least one of the two
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sets E = {X : f < g} and F = {X : f > g} has a positive measure. Consider the
case µ(E) > 0. Now since both f and g are real-valued, we have

E =
⋃

k∈N
Ek where Ek = E =

{
X : g − f ≥ 1

k

}
.

Then 0 < µ(E) ≤ ∑
k∈N µ(Ek). Thus there exists k0 ∈ N such that µ(Ek0) > 0, so

that ∫

Ek0

(g − f)dµ ≥ 1

k0

µ(Ek0) > 0.

Therefore ∫

Ek0

gdµ ≥
∫

Ek0

fdµ +
1

k0

µ(Ek0) >

∫

Ek0

fdµ.

This is a contradiction. Thus µ(E) = 0. Similarly, µ(F ) = 0. This shows that f = g
a.e. on X.

• Case 2: General case, where f and g are two extended real-valued integrable
functions on X. The integrability of f and g implies that f and g are real-valued
a.e. on X. Thus there exists a null set N ⊂ X such that f and g are real-valued on
X \N . Set

f̄ =

{
f on X \N,

0 on N.
and ḡ =

{
g on X \N,

0 on N.

Then f̄ and ḡ are real-valued on X, and so on every E ∈ A we have

∫

E

f̄dµ =

∫

E

fdµ =

∫

E

ḡdµ =

∫

E

gdµ.

By the first part of the proof, we have f̄ = ḡ a.e. on X. Since f̄ = f a.e. on X
and ḡ = g a.e. on X, we deduce that

f = g a.e. on X. ¥

Problem 65
Let (X,A, µ) be a σ-finite measure space and let f, g be extended real-valued
measurable functions on X. Show that if

∫
E

fdµ =
∫

E
gdµ for every E ∈ A then

f = g a.e. on X. (Note that the integrability of f and g is not assumed.)
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Solution
The space (X,A, µ) is σ-finite :

X =
⋃

n∈N
Xn, µ(Xn) < ∞, ∀n ∈ N and {Xn : n ∈ N} are disjoint.

To show f = g a.e. on X it suffices to show f = g a.e. on each Xn (since countable
union of null sets is a null set).
Assume that the conclusion is false, that is if E = {Xn : f < g} and F = {Xn :
f > g} then at least one of the two sets has a positive measure. Without lost of
generality, we may assume µ(E) > 0.
Now, E is composed of three disjoint sets:

E(1) = {Xn : −∞ < f < g < ∞},
E(2) = {Xn : −∞ < f < g = ∞},
E(3) = {Xn : −∞ = f < g < ∞}.

Since µ(E) > 0, at least one of these sets has a positive measure.

1. µ(E(1)) > 0. Let

E
(1)
m,k,l = {Xn : −m ≤ f ; f +

1

k
≤ g ; g ≤ l}.

Then

E(1) =
⋃

n∈N

⋃

k∈N

⋃

l∈N
E

(1)
m,k,l.

By assumption and the subadditivity of µ we have

0 < µ(E(1) ≤
∑

m,k,l∈N
µ(E

(1)
m,k,l).

This implies that there are some m0, k0, l0 ∈ N such that

µ(Em0,k0,l0) > 0.

Let E∗ = Em0,k0,l0 then we have

∫

E∗
(g − f)dµ ≥ 1

k0

µ(E∗) > 0 so

∫

E∗
gdµ >

∫

E∗
fdµ.

This is a contradiction.
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2. µ(E(2)) > 0. Let

E
(2)
l = {Xn : −∞ < f ≤ l; g = ∞}.

Then
E(2) =

⋃

l∈N
E

(2)
l .

By assumption and the subadditivity of µ we have

0 < µ(E(2)) ≤
∑

l∈N
µ(E

(2)
l ).

This implies that there is some l0 ∈ N such that

µ(E
(2)
l0

) > 0.

Let E∗∗ = E
(2)
l0

. Then
∫

E∗∗
gdµ = ∞ >

∫

E∗∗
fdµ.

This contradicts the assumption that
∫

E
fdµ =

∫
E

gdµ for every E ∈ A.

3. µ(E(3)) > 0. Let

E(2)
m = {Xn : −∞ = f ; −m ≤ g < ∞}.

Then
E(3) =

⋃

m∈N
E(3)

m .

By assumption and the subadditivity of µ we have

0 < µ(E(3)) ≤
∑

m∈N
µ(E(3)

m ).

This implies that there is some m0 ∈ N such that

µ(E(3)
m0

) > 0.

Let E∗∗∗ = E
(3)
m0 . Then

∫

E∗∗∗
gdµ ≥ −mµ(E∗∗∗) > −∞ =

∫

E∗∗∗
fdµ :

This contradicts the assumption.

Thus, µ(E) = 0. Similarly, we get µ(F ) = 0. That is f = g a.e. on X. ¥.
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Problem 66
Given a measure space (X,A, µ). Let f be extended real-valued measurable and
integrable function on X.
1. Show that for any ε > 0 there exists δ > 0 such that if A ∈ A with µ(A) < δ
then ∣∣∣∣

∫

A

fdµ

∣∣∣∣ < ε.

2. Let (En) be a sequence in A such that limn→∞ µ(En) = 0. Show that
limn→∞

∫
En

fdµ = 0.

Solution
1. For every n ∈ N, set

fn(x) =

{
f(x) if f(x) ≤ n

n otherwise.

Then the sequence (fn) is increasing. Each fn is bounded and fn → f pointwise.
By the Monotone Convergence Theorem,

∀ε > 0, ∃N ∈ N such that

∣∣∣∣
∫

X

fNdµ−
∫

X

fdµ

∣∣∣∣ <
ε

2
.

Take δ = ε
2N

. If µ(A) < δ, we have

∣∣∣∣
∫

A

fdµ

∣∣∣∣ ≤
∣∣∣∣
∫

A

(fN − f)dµ

∣∣∣∣ +

∣∣∣∣
∫

A

fNdµ

∣∣∣∣

≤
∣∣∣∣
∫

X

(fN − f)dµ

∣∣∣∣ + Nµ(A)

<
ε

2
+

ε

2δ
δ = ε.

2. Since limn→∞ µ(En) = 0, with ε and δ as above, there exists n0 ∈ N such that
for n ≥ n0, µ(En) < δ. Then we have

∣∣∣∣
∫

En

fdµ

∣∣∣∣ < ε.

This shows that limn→∞
∫

En
fdµ = 0. ¥
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Problem 67
Given a measure space (X,A, µ). Let f be extended real-valued A-measurable
and integrable function on X. Let En = {x ∈ X : |f(x)| ≥ n} for n ∈ N. Show
that limn→∞ µ(En) = 0.

Solution
First we note that X = E0. For each n ∈ N, we have

En \ En+1 = {X : n ≤ |f | < n + 1}.
Moreover, the collection {En \ En+1 : n ∈ N} ⊂ A consists of measurable disjoint
sets and ∞⋃

n=0

(En \ En+1) = X.

By the integrability of f we have

∞ >

∫

X

|f |dµ =
∞∑

n=0

∫

En\En+1

|f |dµ ≥
∞∑

n=0

nµ(En \ En+1).

Some more calculations for the last summation:

∞∑
n=0

nµ(En \ En+1) =
∞∑

n=0

n[µ(En)− µ(En+1)]

= µ(E1)− µ(E2) + 2[µ(E2)− µ(E3)] + 3[µ(E3)− µ(E4)] + ...

=
∞∑

n=1

µ(En) < ∞.

Since the series
∑∞

n=1 µ(En) converges, limn→∞ µ(En) = 0. ¥

Problem 68
Let (X,A, µ) be a measure space.
(a) Let {En : n ∈ N} be a disjoint collection in A. Let f be an extended real-
valued A-measurable function defined on

⋃
n∈NEn. If f is integrable on En for

every n ∈ N, does
∫

⋃
n∈N En

fdµ exist?

(b) Let (Fn : n ∈ N) be an increasing sequence in A. Let f be an extended real-
valued A-measurable function defined on

⋃
n∈N Fn. Suppose f is integrable on En

for every n ∈ N and moreover limn→∞
∫

Fn
fdµ exists in R. Does

∫
⋃

n∈N Fn
fdµ

exist?
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Solution
(a) NO.

X = [1,∞), En = [n, n + 1), n = 1, 2, ..., {En} disjoint.

A = ML, µL.

X =
⋃

n∈N
En, f(x) = 1, ∀x ∈ X.

∫

En

fdµ = 1, ∀n ∈ N,

∫
⋃

n∈N En

fdµ =

∫

[1,∞)

1dµ = ∞.

(b) NO.

X = R, Fn = (−n, n), n = 1, 2, ..., (Fn : n ∈ N) increasing

A = ML, µL.

X =
⋃

n∈N
Fn, f(x) = 1 for x ≥ 0, f(x) = −1 for x < 0

∫

Fn

fdµ =

∫

(−n,0)

(−1)dµ +

∫

[0,n)

1dµ = 0 ⇒ lim
n→∞

∫

Fn

fdµ = 0

∫
⋃

n∈N Fn

fdµ =

∫

R
fdµ =

∫

(−∞,0)

(−1)dµ +

∫

(0,∞)

1dµ does not exist. ¥

Problem 69
Let f is a real-valued uniformly continuous function on [0,∞). Show that if f
is Lebesgue integrable on [0,∞), then

lim
x→∞

f(x) = 0.

Solution
Suppose NOT. Then there exists ε > 0 such that for each n ∈ N, there is xn > n
such that |f(xn)| ≥ ε. W.L.O.G. we may choose (xn) such that

xn+1 > xn + 1 for all n ∈ N.

Since f is uniformly continuous on [0,∞), with the above ε,

∃δ ∈ (0,
1

2
) : |x− y| < δ ⇒ |f(x)− f(y)| < ε

2
.
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In particular, for x ∈ In = (xn − δ, xn + δ), we have

|f(xn)− f(x)| < ε

2
, ∀n ∈ N.

This implies

|f(xn)| − |f(x)| < ε

2
⇒ |f(x)| > |f(xn)| − ε

2
≥ ε− ε

2
=

ε

2
.

Since xn+1 − xn > 1 and 0 < δ < 1
2
, In ∩ In+1 = ∅. Moreover,

⋃∞
n=1 In ⊂ [0,∞).

By assumption, f is integrable on [0,∞), so we have

∞ >

∫

[0,∞)

fdµ ≥
∞∑

n=1

∫

In

fdµ >

∞∑
n=1

∫

In

ε

2
dµ = ∞.

This is a contradiction. Thus,

lim
x→∞

f(x) = 0. ¥

Problem 70
Let (X,A, µ) be a measure space and let (fn)n∈N, and f, g be extended real-valued
A-measurable and integrable functions on D ∈ A. Suppose that

1. limn→∞ fn = f a.e. on D.

2. limn→∞
∫

D
fndµ =

∫
D

fdµ.

3. either fn ≥ g on D for all n ∈ N or fn ≤ g on D for all n ∈ N.

Show that, for every E ∈ A and E ⊂ D, we have

lim
n→∞

∫

E

fndµ =

∫

E

fdµ.

Solution
(a) First we solve the problem in the case the condition 3. is replaced by fn ≥ 0 on
D for all n ∈ N.
Let hn = fn − fnχE for every E ∈ A and E ⊂ D. Then hn ≥ 0 and A-measurable
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and integrable on D. Applying Fatou’s lemma to hn and using assumptions, we get

∫

D

fdµ−
∫

E

fdµ =

∫

D

(f − fχE)dµ ≤ lim inf
n→∞

∫

D

(fn − fnχE)dµ

= lim
n→∞

∫

D

fndµ− lim sup
n→∞

∫

D

fnχEdµ

=

∫

D

fdµ− lim sup
n→∞

∫

E

fndµ.

Since f is integrable on D,
∫

D
fdµ < ∞. From the last inequality we obtain,

(∗) lim sup
n→∞

∫

E

fndµ ≤
∫

E

fdµ.

Let kn = fn + fnχE for every E ∈ A and E ⊂ D. Using the same way as in the
previous paragraph, we get

(∗∗)
∫

E

fdµ ≤ lim inf
n→∞

∫

E

fndµ.

From (*) and (**) we get

lim
n→∞

∫

E

fndµ =

∫

E

fdµ. ¥

Next we are coming back to the problem. Assume fn ≥ g on D for all n ∈ N. Let
ϕn = fn − g. Using the above result for ϕn ≥ 0 we get

lim
n→∞

∫

E

ϕndµ =

∫

E

ϕdµ.

That is

lim
n→∞

∫

E

(fn − g)dµ =

∫

E

(f − g)dµ

lim
n→∞

∫

E

fndµ−
∫

E

gdµ =

∫

E

fdµ−
∫

E

gdµ.

Since g is integrable on E,
∫

E
gdµ < ∞. Thus, we have

lim
n→∞

∫

E

fndµ =

∫

E

fdµ. ¥
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Problem 71(An extension of the Dominated Convergence Theorem)
Let (X,A, µ) be a measure space and let (fn)n∈N, (gn)n∈N, and f, g be extended
real-valued A-measurable functions on D ∈ A. Suppose that

1. limn→∞ fn = f and limn→∞ gn = g a.e. on D.

2. (gn) and g are all integrable on D and limn→∞
∫

D
gndµ =

∫
D

gdµ.

3. |fn| ≤ gn on D for every n ∈ N.

Prove that f is integrable on D and limn→∞
∫

D
fndµ =

∫
D

fdµ.

Solution
Consider the sequence (gn − fn). Since |fn| ≤ gn, and (fn) and (gn) are sequences
of measurable functions, the sequence (gn− fn) consists of non-negative measurable
functions. Using the Fatou’s lemma we have

∫

D

lim inf
n→∞

(gn − fn)dµ ≤ lim inf
n→∞

∫

D

(gn − fn)dµ
∫

D

lim
n→∞

(gn − fn)dµ ≤ lim
n→∞

∫

D

gndµ− lim sup
n→∞

∫

D

fndµ
∫

D

gdµ−
∫

D

fdµ ≤
∫

D

gdµ− lim sup
n→∞

∫

D

fndµ
∫

D

fdµ ≥ lim sup
n→∞

∫

D

fndµ. (∗) (since

∫

D

gdµ < ∞).

Using the same process for the sequence (gn + fn), we have
∫

D

fdµ ≤ lim inf
n→∞

∫

D

fndµ. (∗∗).

From (*) and (**) we obtain

lim
n→∞

∫

D

fndµ =

∫

D

fdµ.

The fact that f is integrable comes from gn is integrable:

|fn| ≤ gn ⇒
∫

D

fndµ ≤
∫

D

gndµ < ∞

⇒
∫

D

fdµ < ∞. ¥
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Problem 72
Given a measure space (X,A, µ). Let (fn)n∈N and f be extended real-valued
A-measurable and integrabe functions on D ∈ A. Suppose that

lim
n→∞

fn = f a.e. on D.

(a) Show that if limn→∞
∫

D
|fn|dµ =

∫
D
|f |dµ, then limn→∞

∫
D

fndµ =
∫

D
fdµ.

(b) Show that the converse of (a) is false by constructing a counter example.

Solution
(a) We will use Problem 71 for

gn = 2(|fn|+ |gn|) and hn = |fn − f |+ |fn| − |f |, n ∈ N.

We have

hn → 0 a.e. on D,

gn → 4|f | a.e. on D,

|hn| = hn ≤ 2|fn| ≤ gn,

lim
n→∞

∫

D

gndµ = 2 lim
n→∞

∫

D

|fn|dµ + 2

∫

D

|f |dµ =

∫

D

4|f |dµ.

So all conditions of Problem 71 are satisfied. Therefore,

lim
n→∞

∫

D

hndµ =

∫

D

hdµ = 0 (h = 0).

lim
n→∞

∫

D

|fn − f |dµ + lim
n→∞

∫

D

|fn|dµ−
∫

D

|f |dµ = 0.

Since limn→∞
∫

D
|fn|dµ− ∫

D
|f |dµ = 0 by assumption, we have

lim
n→∞

∫

D

|fn − f |dµ = 0.

This implies that

lim
n→∞

∣∣∣∣
∫

D

fndµ−
∫

D

fdµ

∣∣∣∣ = 0.

Hence, limn→∞
∫

D
fndµ =

∫
D

fdµ.

(b) We will give an example showing that it is not true that

lim
n→∞

∫

D

fndµ =

∫

D

fdµ ⇒ lim
n→∞

∫

D

|fn|dµ =

∫

D

|f |dµ.
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fn(x) =





n if 0 ≤ x < 1
n

0 if 1
n
≤ x ≤ 1− 1

n

−n if 1− 1
n

< x ≤ 1.

And so

|fn|(x) =

{
n if 0 ≤ x < 1

n
or 1− 1

n
< x ≤ 1

0 if 1
n
≤ x ≤ 1− 1

n
.

Then we have

fn → 0 ≡ 0 and

∫

[0,1]

fndµ = 0 → 0 =

∫

[0,1]

0dµ

while ∫

[0,1]

|fn|dµ = 2 → 2 6= 0. ¥

Problem 73
Given a measure space (X,A, µ).
(a) Show that an extended real-valued integrable function is finite a.e. on X.
(b) If (fn)n∈N is a sequence of measurable functions defined on X such that∑

n∈N
∫

X
|fn|dµ < ∞, then show that

∑
n∈N fn converges a.e. to an integrable

function f and ∫

X

∑

n∈N
fndµ =

∫

X

fdµ =
∑

n∈N

∫

X

fndµ.

Solution
(a) Let E = {X : |f | = ∞}. We want to show that µ(E) = 0. Assume that
µ(E) > 0. Since f is integrable

∞ >

∫

X

|f |dµ ≥
∫

E

|f |dµ = ∞.

This is a contradiction. Thus, µ(E) = 0.

(b) First we note that
∑N

n=1 |fn| is measurable since fn is measurable for n ∈ N.
Hence,

lim
N→∞

N∑
n=1

|fn| =
∞∑

n=1

|fn|
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is measurable. Recall that (for nonnegative measurable functions)

∫

X

∞∑
n=1

|fn|dµ =
∞∑

n=1

∫

X

|fn|dµ.

By assumption,
∞∑

n=1

∫

X

|fn|dµ < ∞,

hence, ∫

X

∞∑
n=1

|fn|dµ < ∞.

Since
∑∞

n=1 |fn| is integrable on X, by part (a), it is finite a.e. on X. Define a
function f as follows:

f(x) =

{∑∞
n=1 fn where

∑∞
n=1 |fn| < ∞

0 otherwise.

So f is everywhere defined and f = limN→∞
∑N

n=1 fn a.e. Hence, f is measurable
on X. Moreover,

∣∣∣∣
∫

X

fdµ

∣∣∣∣ ≤
∫

X

|f |dµ =

∫

X

∣∣∣∣∣
∞∑

n=1

fn

∣∣∣∣∣ dµ ≤
∫

X

∞∑
n=1

|fn|dµ < ∞.

Thus, f is integrable and hN =
∑N

n=1 fn converges to f a.e. and

|hN | ≤
N∑

n=1

|fn| ≤
∞∑

n=1

|fn|

which is integrable. By the D.C.T. we have

∫

X

fdµ =

∫

X

lim
N→∞

hNdµ = lim
N→∞

∫

X

hN

= lim
N→∞

∫

X

N∑
n=1

fndµ = lim
N→∞

N∑
n=1

∫

X

fndµ

=
∞∑

n=1

∫

X

fndµ. ¥
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Problem 74
Let f be a real-valued Lebesgue measurable function on [0,∞) such that

1. f is Lebesgue integrable on every finite subinterval of [0,∞).

2. limx→∞ f(x) = c ∈ R.

Show that

lim
a→∞

1

a

∫

[0,a]

fdµL = c.

Solution
By assumption 2. we can write

(∗) ∀ε > 0,∃N : x > N ⇒ |f(x)− c| < ε.

Now, for a > N we have
∣∣∣∣
1

a

∫

[0,a]

fdµL − c

∣∣∣∣ =

∣∣∣∣
1

a

∫

[0,a]

(f − c)dµL

∣∣∣∣

≤ 1

a

∫

[0,a]

|f − c|dµL

=
1

a

(∫

[0,N ]

|f − c|dµL +

∫

[N,a]

|f − c|dµL

)
.

By (*) we have
x ∈ [N, a] ⇒ |f(x)− c| < ε.

Therefore,

(∗∗)
∣∣∣∣
1

a

∫

[0,a]

fdµL − c

∣∣∣∣ ≤
1

a

∫

[0,N ]

|f − c|dµL +
(a−N)

a
ε.

It is evident that

lim
a→∞

(a−N)

a
ε = ε.

By assumption 1., |f − c| is integrable on [0, N ], so
∫
[0,N ]

|f − c|dµL is finite and does

not depend on a. Hence

lim
a→∞

1

a

∫

[0,N ]

|f − c|dµL = 0.
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Thus, we can rewrite (**) as

lim
a→∞

∣∣∣∣
1

a

∫

[0,a]

fdµL − c

∣∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, this implies that

lim
a→∞

∣∣∣∣
1

a

∫

[0,a]

fdµL − c

∣∣∣∣ = 0. ¥

Problem 75
Let f be a non-negative real-valued Lebesgue measurable on R. Show that if∑∞

n=1 f(x + n) is Lebesgue integrable on R, then f = 0 a.e. on R.

Solution
Recall these two facts:

1. If fn ≥ 0 is measurable on D then
∫

D
(
∑∞

n=1 fn) dµ =
∑∞

n=1

∫
D

fndµ.

2. If f is defined and measurable on R then
∫
R f(x + h)dµ =

∫
R f(x)dµ.

From these two facts we have

∫

R

( ∞∑
n=1

f(x + n)

)
dµL =

∞∑
n=1

∫

R
f(x + n)dµL

=
∞∑

n=1

∫

R
f(x)dµL.

Since
∑∞

n=1 f(x + n) is Lebesgue integrable on R,

∫

R

( ∞∑
n=1

f(x + n)

)
dµL < ∞.

Therefore,

(∗)
∞∑

n=1

∫

R
f(x)dµL < ∞.

Since
∫
R f(x)dµL ≥ 0, (*) implies that

∫
R f(x)dµL = 0. Thus, f = 0 a.e. on R. ¥
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Problem 76
Show that the Lebesgue Dominated Convergence Theorem holds if
a.e. convergence is replaced by convergence in measure.

Solution
We state the theorem:
Given a measure space (X,A, µ). Let (fn : n ∈ N) be a sequence of extended real-
valued A-measurable functions on D ∈ A such that |fn| ≤ g on D for every n ∈ N
for some integrable non-negative extended real-valued A-measurable function g on
D. If fn

µ−→ f on D, then f is integrable on D and

lim
n→∞

∫

D

fndµ =

∫

D

fdµ.

Proof:
Let (fnk

) be any subsequence of (fn). Then fnk

µ−→ f since fn
µ−→ f . By Riesz

theorem, there exists a subsequence (fnkl
) of (fnk

) such that fnkl
→ f a.e. on D.

And we have also |fnkl
| ≤ g on D. By the Lebesgue D.C.T. we have

(∗)
∫

D

fdµ = lim
l→∞

∫

D

fnkl
dµ.

Let an =
∫

D
fndµ and a =

∫
D

fdµ. Then (*) can be written as

lim
l→∞

ankl
= a.

Hence we can say that any subsequence (ank
) of (an) has a subsequence (ankl

)
converging to a. Thus, the original sequence, namely (an), converges to the same
limit (See Problem 51): limn→∞ an = a. That is,

lim
n→∞

∫

D

fndµ =

∫

D

fdµ. ¥

Problem 77
Given a measure space (X,A, µ). Let (fn)n∈N and f be extended real-valued
measurable and integrable functions on D ∈ A.
Suppose that limn→∞

∫
D
|fn − f |dµ = 0. Show that

(a) fn
µ−→ f on D.

(b) limn→∞
∫

D
|fn|dµ =

∫
D
|f |dµ.
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Solution
(a) Given any ε > 0, for each n ∈ N, let En = {D : |fn − f | ≥ ε}. Then

∫

D

|fn − f |dµ ≥
∫

En

|fn − f |dµ ≥ εµ(En).

Since limn→∞
∫

D
|fn − f |dµ = 0, limn→∞ µ(En) = 0. That is fn

µ−→ f on D.

(b) Since fn and f are integrable

∫

D

(|fn| − |f |)dµ =

∫

D

|fn|dµ−
∫

D

|f |dµ ≤
∫

D

|fn − f |dµ.

By this and the assumption, we get

lim
n→∞

(∫

D

|fn|dµ−
∫

D

|f |dµ

)
≤ lim

n→∞

∫

D

|fn − f |dµ = 0.

This implies

lim
n→∞

∫

D

|fn|dµ =

∫

D

|f |dµ. ¥

Problem 78
Given a measure space (X,A, µ). Let (fn)n∈N and f be extended real-valued
measurable and integrable functions on D ∈ A. Assume that fn → f a.e. on D
and limn→∞

∫
D
|fn|dµ =

∫
D
|f |dµ. Show that

lim
n→∞

∫

D

|fn − f |dµ = 0.

Solution
For each n ∈ N, let hn = |fn|+ |f | − |fn − f |. Then hn ≥ 0 for all n ∈ N.
Since fn → f a.e. on D, hn → 2|f | a.e on D. By Fatou’s lemma,

2

∫

D

|f |dµ ≤ lim inf
n→∞

∫

D

(|fn|+ |f |)dµ− lim sup
n→∞

∫

D

|fn − f |dµ

= lim
n→∞

∫

D

|fn|dµ + lim
n→∞

∫

D

|f |dµ− lim sup
n→∞

∫

D

|fn − f |dµ

= 2

∫

D

|f |dµ− lim sup
n→∞

∫

D

|fn − f |dµ.
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Since |f | is integrable, we have

lim sup
n→∞

∫

D

|fn − f |dµ ≤ 0. (i)

Now for each n ∈ N, let gn = |fn − f | − (|fn| − |f |). Then hn ≥ 0 for all n ∈ N.
Since fn → f a.e. on D, gn → 0 a.e on D. By Fatou’s lemma,

0 = lim
n→∞

∫

D

gndµ ≤ lim inf
n→∞

∫

D

|fn − f |dµ− lim sup
n→∞

∫

D

(|fn| − |f |)dµ

≤ lim inf
n→∞

∫

D

|fn − f |dµ− lim
n→∞

∫

D

|fn|dµ + lim
n→∞

∫

D

|f |dµ)

︸ ︷︷ ︸
=0

.

Hence

lim inf
n→∞

∫

D

|fn − f |dµ ≥ 0. (ii)

From (i) and (ii) it follows that

lim
n→∞

∫

D

|fn − f |dµ = 0. ¥

Problem 79
Let (R,ML, µL) be the Lebesgue space. Let f be an extended real-valued Lebesgue
measurable function on R. Show that if f is integrable on R then

lim
h→0

∫

R
|f(x + h)− f(x)|dx = 0.

Solution
Since f is integrable,

lim
M→∞

(∫ −M

−∞
|f |dx +

∫ ∞

M

|f |dx

)
= 0 for M ∈ R.

Given any ε > 0, we can pick an M > 0 such that

∫ −M

−∞
|f |dx +

∫ ∞

M

|f |dx <
ε

4
.
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Since Cc(R) is dense in L1(R), we can find a continuous function ϕ vanishing outside
[−M, M ] such that ∫ M

−M

|f − ϕ|dx <
ε

4
.

Then we have

‖f − ϕ‖1 :=

∫

R
|f − ϕ|dx

=

∫ M

−M

|f − ϕ|dx +

∫ −M

−∞
|f |dx +

∫ ∞

M

|f |dx

<
ε

4
+

ε

4
=

ε

2
.

(Recall: ϕ = 0 outside [−M,M ] ). Now for any h ∈ R we have

‖f(x+h)− f(x)‖1 ≤ ‖f(x)−ϕ(x)‖1 +‖ϕ(x)−ϕ(x+h)‖1 +‖ϕ(x+h)− f(x+h)‖1.

Because of ϕ ∈ Cc(R) and translation invariance, we have

lim
h→0

‖ϕ(x)− ϕ(x + h)‖1 = 0 and ‖ϕ(x + h)− f(x + h)‖1 = ‖f(x)− ϕ(x)‖1.

It follows that

lim
h→0

‖f(x + h)− f(x)‖1 ≤ ‖f − ϕ‖1 + lim
h→0

‖ϕ(x)− ϕ(x + h)‖1 + ‖f − ϕ‖1

≤ 2
ε

2
+ 0 = ε.

Since ε > 0 is arbitrary, we have

lim
h→0

‖f(x + h)− f(x)‖1 = lim
h→0

∫

R
|f(x + h)− f(x)|dx = 0. ¥
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Chapter 8

Signed Measures and
Radon-Nikodym Theorem

1. Signed measure

Definition 21 (Signed measure)
A signed measure on a measurable space (X,A) is a function λ : A → [−∞,∞] such that:
(1) λ(∅) = 0.
(2) λ assumes at most one of the values ±∞.
(3) λ is countably additive. That is, if {En}n∈N ⊂ A is disjoint, then

λ

( ⋃

n∈N
En

)
=

∑

n∈N
λ(En).

Definition 22 (Positive, negative, null sets)
Let (X,A, λ) be a signed measure space. A set E ∈ A is said to be positive (negative, null) for the
signed measure λ if

F ∈ A, F ⊂ E =⇒ λ(F ) ≥ 0 (≤ 0, = 0).

Proposition 21 (Continuity)
Let (X,A, λ) be a signed measure space.
1. If (En)n∈N ⊂ A is an increasing sequence then

lim
n→∞

λ(En) = lim
n→∞

λ

( ⋃

n∈N
En

)
= λ

(
lim

n→∞
En

)
.

2. If (En)n∈N ⊂ A is an decreasing sequence and λ(E1) < ∞, then

lim
n→∞

λ(En) = lim
n→∞

λ

( ⋂

n∈N
En

)
= λ

(
lim

n→∞
En

)
.
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Proposition 22 (Some more properties)
Let (X,A, λ) be a signed measure space.
1. Every measurable subset of a positive (negative, null) set is a positive (negative, null) set.
2. If E is a positive set and F is a negative set, then E ∩ F is a null set.
3. Union of positive (negative, null) sets is a positive (negative, null) set.

Theorem 10 (Hahn decomposition theorem)
Let (X,A, λ) be a signed measure space. Then there is a positive set A and a negative set B such
that

A ∩B = ∅ and A ∪B = X.

Moreover, if A′ and B′ are another pair, then A4A′ and B 4B′ are null sets.
{A,B} is called a Hahn decomposition of (X,A, λ).

Definition 23 (Singularity)
Two signed measure λ1 and λ2 on a measurable space (X,A) are said to be mutually singular and
we write λ1⊥λ2 if there exist two set E,F ∈ A such that E ∩ F = ∅, E ∪ F = X, E is a null set
for λ1 and F is a null set for λ2.

Definition 24 (Jordan decomposition)
Given a signed measure space (X,A, λ). If there exist two positive measures µ and ν, at least one
of which is finite, on the measurable (X,A) such that

µ⊥ν and λ = µ− ν,

then {µ, ν} is called a Jordan decomposition of λ.

Theorem 11 (Jordan decomposition of signed measures)
Given a signed measure space (X,A, λ). A Jordan decomposition for (X,A, λ) exists and unique,
that is, there exist a unique pair {µ, ν} of positive measures on (X,A), at least one of which is
finite, such that µ⊥ν and λ = µ− ν.
Moreover, with any arbitrary Hahn decomposition {A,B} of (X,A, λ), if we define two set functions
µ and ν by setting

µ(E) = λ(E ∩A) and ν(E) = −λ(E ∩B) for E ∈ A,

then {µ, ν} is a Jordan decomposition for (X,A, λ).

2. Lebesgue decomposition, Radon-Nikodym Theorm

Definition 25 (Radon-Nikodym derivative)
Let µ be a positive measure and λ be a signed measure on a measurable space (X,A). If there exists
an extended real-valued A-measurable function f on X such that

λ(E) =
∫

E

fdµ for every E ∈ A,

then f is called a Radon-Nikodym derivative of λ with respect to µ, and we write dλ
dµ for it.
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Proposition 23 (Uniqueness)
Let µ be a σ-finite positive measure and λ be a signed measure on a measurable space (X,A). If
two extended real-valued A-measurable functions f and g are Radon-Nikodym derivatives of λ with
respect to µ, then f = g µ-a.e. on X.

Definition 26 (Absolute continuity)
Let µ be a positive measure and λ be a signed measure on a measurable space (X,A). We say that
λ is absolutely continuous with respect to µ and write λ ¿ µ if

∀E ∈ A), µ(E) = 0 =⇒ λ(E) = 0.

Definition 27 (Lebesgue decomposition)
Let µ be a positive measure and λ be a signed measure on a measurable space (X,A). If there exist
two signed measures λa and λs on (X,A) such that

λa ¿ µ, λs⊥µ and λ = λa + λs,

then we call {λa, λs} a Lebesgue decomposition of λ with respect to µ. We call λa and λs the
absolutely continuous part and the singular part of λ with respect to µ.

Theorem 12 (Existence of Lebesgue decomposition)
Let µ be a σ-finite positive measure and λ be a σ-finite signed measure on a measurable space
(X,A). Then there exist two signed measures λa and λs on (X,A) such that

λa ¿ µ, λs⊥µ, λ = λa + λs and λa is defined by λa(E) =
∫

E

fdµ, ∀E ∈ A,

where f is an extended real-valued measurable function on X.

Theorem 13 (Radon-Nikodym theorem)
Let µ be a σ-finite positive measure and λ be a σ-finite signed measure on a measurable space
(X,A). If λ ¿ µ, then the Radon-Nikodym derivative of λ with respect to µ exists, that is, there
exists an extended real-valued measurable function on X such that

λ(E) =
∫

E

fdµ, ∀E ∈ A.

∗ ∗ ∗∗

Problem 80
Given a signed measure space (X,A, λ). Suppose that {µ, ν} is a Jordan de-
composition of λ, and E and F are two measurable subsets of X such that
E ∩ F = ∅, E ∪ F = X, E is a null set for ν and F is a null set for ν.Show
that {E, F} is a Hahn decomposition for (X,A, λ).
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Solution
We show that E is a positive set for λ and F is a negative set for λ. Since {µ, ν} is
a Jordan decomposition of λ, we have

λ(E) = µ(E)− ν(E), ∀E ∈ A.

Let E0 ∈ A, E0 ⊂ E. Since E is a null set for ν, E0 is also a null set for ν. Thus
ν(E0) = 0. Consequently, λ(E0) = µ(E0) ≥ 0. This shows that E is a positive set
for λ.
Similarly, let F0 ∈ A, F0 ⊂ E. Since F is a null set for µ, F0 is also a null set for
µ. Thus µ(F0) = 0. Consequently, λ(F0) = −ν(F0) ≤ 0. This shows that F is a
negative set for λ.
We conclude that {E, F} is a Hahn decomposition for (X,A, λ). ¥

Problem 81
Consider a measure space ([0, 2π],ML ∩ [0, 2π], µL). Define a signed measure λ
on this space by setting

λ(E) =

∫

E

sin xdµL, for E ∈ ML ∩ [0, 2π].

Let C = [4
3
π, 5

3
π]. Let ε > 0 be arbitrary given. Find a measurable set C ′ ⊂ C

such that λ(C ′) ≥ λ(C) and λ(E) > −ε for every measurable subset E of C ′.

Solution
Let X = [0, 2π], f(x) = sin x. Then f is continuous on X, so f is Lebesgue
(=Riemann) integrable on X. Given ε > 0, let δ = min{ ε

2
, π

3
}. Let C ′ = [4

3
π, 4

3
π+δ],

then
C ′ ⊂ C and f(x) = sin x < 0, x ∈ C ′.

We have

λ(C ′) =

∫

C′
sin xdµL ≥

∫

C

sin xdµL = λ(C).

Now for any E ⊂ C ′ and E ∈ ML ∩ [0, 2π], since µ(E) ≤ µ(C ′) and f(x) ≤ 0 on
C ′, we have

λ(E) =

∫

E

sin xdµL ≥
∫

C′
sin xdµL ≥

∫

C′
(−1)dµL = −µ(C ′) = −δ.

By the choice of δ, we have

δ <
ε

2
⇒ −δ > −ε

2
> −ε.
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Thus, for any E ∈ML ∩ [0, 2π] with E ⊂ C ′ we have λ(E) > −ε. ¥

Problem 82
Given a signed measure space (X,A, λ).
(a) Show that if E ∈ A and λ(E) > 0, then there exists a subset E0 ⊂ E which
is a positive set for λ with λ(E0) ≥ λ(E).
(b) Show that if E ∈ A and λ(E) < 0, then there exists a subset E0 ⊂ E which
is a negative set for λ with λ(E0) ≤ λ(E).

Solution
(a) If E is a positive set for λ then we’re done (just take E0 = E).
Suppose E is a not positive set for λ. Let {A,B} be a Hahn decomposition of
(X,A, λ). Let E0 = E ∩A. Since A is a positive set, so E0 is also a positive set (for
E0 ⊂ A). Moreover,

λ(E) = λ(E ∩ A) + λ(E ∩B) = λ(E0) + λ(E ∩B).

Since λ(E ∩B) ≤ 0, 0 < λ(E) ≤ λ(E0). Thus, E0 = E ∩ A is the desired set.

(b) Similar argument. Answer: E0 = E ∩B. ¥

Problem 83
Let µ and ν two positive measures on a measurable space (X,A). Suppose for
every ε > 0, there exists E ∈ A such that µ(E) < ε and ν(Ec) < ε. Show that
µ⊥ν.

Solution
Recall: For positive measures µ and ν

µ⊥ν ⇔ ∃A ∈ A : µ(A) = 0 and ν(Ac) = 0.

By hypothesis, for every n ∈ N, there exists En ∈ A such that

µ(En) <
1

n2
and ν(Ec

n) <
1

n2
.

Hence, ∑

n∈N
µ(En) ≤

∑

n∈N

1

n2
< ∞ and

∑

n∈N
ν(Ec

n) ≤
∑

n∈N

1

n2
< ∞.
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By Borel-Cantelli’s lemma we get

µ

(
lim sup

n→∞
En

)
= 0 and ν

(
lim sup

n→∞
Ec

n

)
= 0.

Let A = lim supn→∞ En. Then µ(A) = 0. (*)
We claim: Ac = lim infn→∞ Ec

n. Recall:

lim inf
n→∞

An = {x ∈ X : x ∈ An for all but finitely many n ∈ N}.

For every x ∈ X, for each n ∈ N, we have either x ∈ En or x ∈ Ec
n. If x ∈ En for

infinitely many n, then x ∈ lim supn→∞ En and vice versa. Otherwise, x ∈ En for
a finite numbers of n. But this is equivalent to x ∈ Ec

n for all but finitely many n.
That is x ∈ lim infn→∞ Ec

n. Hence,

lim sup
n→∞

En ∪ lim inf
n→∞

Ec
n = X.

Now, if x ∈ lim supn→∞ En then x ∈ En for infinitely many n, so x /∈ lim infn→∞ Ec
n.

This shows that
lim sup

n→∞
En ∩ lim inf

n→∞
Ec

n = ∅.

Thus, Ac = lim infn→∞ Ec
n as required.

Last, we show that ν(Ac) = 0. Since lim infn→∞ Ec
n ⊂ lim supn→∞ Ec

n and ν (lim supn→∞ Ec
n) =

0 (by the first paragraph), we get

ν(lim inf
n→∞

Ec
n) = ν(Ac) = 0. (∗∗)

From (*) and (**) we obtain µ⊥ν. ¥

Problem 84
Consider the Lebesgue measure space (R,ML, µL). Let ν be the counting measure
onML, that is, ν is defined by setting ν(E) to be equal to the numbers of elements
in E ∈ML if E is a finite set and ν(E) = ∞ if E is infinite set.
(a) Show that µL ¿ ν but dµL

dν
does not exist.

(b) Show that ν does not have a Lebesgue decomposition with respect to µL.

Solution
(a) Let E ⊂ R with ν(E) = 0. Since ν be the counting measure, E = ∅. Then
µL(E) = µL(∅) = 0. Thus,

E ⊂ R, ν(E) = 0 ⇒ µL(E) = 0.

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



103

Hence, µL ¿ ν.
Suppose there exists a measurable function f such that

mL(E) =

∫

E

fdν for every E ∈ML.

Take E = {x}, x ∈ R then we have

E ∈ML, µL(E) = 0, and ν(E) = 1.

This implies that f ≡ 0. Then for every A ∈ML we have

µL(A) =

∫

A

0dν = 0.

This is impossible.
(b) Assume that ν have a Lebesgue decomposition with respect to µL. Then, for
every E ⊂ R and some measurable function f ,

ν = νa + νs, νa ¿ µL, νs⊥µL, and νa(E) =

∫

E

fdµL.

Since νs⊥µL, there exists A ∈ ML such that µL(Ac) = 0 and A is a null set for νs.
Pick a ∈ A then νs({a}) = 0. On the other hand,

νa({a}) =

∫

{a}
fdµL and µL({a}) = 0.

It follows that νa({a}) = 0. Since ν = νa + νs, we get

1 = ν({a}) = νa({a}) + νs({a}) = 0 + 0 = 0.

This is a contradiction. Thus, ν does not have a Lebesgue decomposition with
respect to µL. ¥

Problem 85
Let µ and ν be two positive measures on a measurable space (X,A).
(a) Show that if for every ε > 0 there exists δ > 0 such that ν(E) < ε for every
E ∈ A with µ(E) < δ, then ν ¿ µ.
(b) Show that if ν is a finite positive measure, then the converse of (a) holds.

Solution
(a) Suppose this statement is true: (*):= for every ε > 0 there exists δ > 0 such
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that ν(E) < ε for every E ∈ A with µ(E) < δ .
Take E ∈ A with µ(E) = 0. Then

∀ε > 0, ν(E) < ε.

It follows that ν(E) = 0. Hence ν ¿ µ.
(b) Suppose ν is a finite positive measure and µ is a positive measure such that
ν ¿ µ. We want to show (*) is true. Assume that (*) is false. that is

∃ε > 0 st
[∀δ > 0, ∃E ∈ A st {µ(E) < δ and ν(E) ≥ ε}].

In particular,

∃ε > 0 st
[
∀n ∈ N, ∃En ∈ A st {µ(En) <

1

n2
and ν(En) ≥ ε}

]

Since
∑

n∈N µ(En) ≤ ∑
n∈N

1
n2 < ∞, by Borel-Catelli lemma, we have

µ(lim sup
n→∞

En) = 0.

Set E = lim supn→∞ En, then µ(E) = 0. Since ν ¿ µ, ν(E) = 0. Note that
ν(X) < ∞, we have

ν(E) = ν(lim sup
n→∞

En) ≥ lim sup
n→∞

ν(En) ≥ ν(En) ≥ ε.

This is a contradiction. Thus, (*) must be true. ¥

Problem 86
Let µ and ν be two positive measures on a measurable space (X,A). Suppose dν

dµ

exists so that ν ¿ µ.
(a) Show that if dν

dµ
> 0, µ-a.e. on X, then µ ¿ ν and thus, µ ∼ ν.

(b) Show that if dν
dµ

> 0, µ-a.e. on X and if µ and ν are σ-finite, then dµ
dν

exists
and

dµ

dν
=

(
dν

dµ

)−1

, µ− a.e. and ν − a.e. on X.

Solution
(a) For every E ∈ A, by definition, we have

ν(E) =

∫

E

dν

dµ
dµ.
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Suppose ν(E) = 0. Since dν
dµ

> 0, µ-a.e. on X, we have

∫

E

dν

dµ
dµ = 0.

Hence, µ(E) = 0. This implies that µ ¿ ν and so µ ∼ ν (since ν ¿ µ is given).

(b) Suppose dν
dµ

> 0, µ-a.e. on X and if µ and ν are σ-finite. The existence of dµ
dν

is

guaranteed by the Radon-Nikodym theorem (since µ ∼ ν by part a). Moreover,

dµ

dν
> 0, ν − a.e. on X.

By the chain rule,

dµ

dν
.
dν

dµ
=

dµ

dµ
= 1, µ− a.e. on X.

dν

dµ
.
dµ

dν
=

dν

dν
= 1, ν − a.e. on X.

Thus,

dµ

dν
=

(
dν

dµ

)−1

, µ− a.e. and ν − a.e. on X. ¥

Problem 87
Let (X,A, µ) be a measure space. Assume that there exists a measurable function
f : X → (0,∞) satisfying the condition that µ{x ∈ X : f(x) ≤ n} < ∞ for
every n ∈ N.
(a) Show that the existence of such a function f implies that µ is a σ-finite
measure.
(b) Define a positive measure ν on A by setting

ν(E) =

∫

E

fdµ for E ∈ A.

Show that ν is a σ-finite measure.
(c) Show that dµ

dν
exists and

dµ

dν
=

1

f
, µ− a.e. and ν − a.e. on X.
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Solution
(a)By assumption, µ{x ∈ X : f(x) ≤ n} < ∞ for every n ∈ N. Since 0 < f < ∞,
so

⋃∞
n=1{X : f ≤ n} = X. Hence µ is a σ-finite measure.

(b) Let ν(E) =
∫

E
fdµ for E ∈ A.

Since f > 0, ν is a positive measure and if µ(E) = 0 then ν(E) = 0. Hence ν ¿ µ.
Conversely, if ν(E) = 0, since f > 0, µ(E) = 0. So µ ¿ ν. Thus, µ ∼ ν. Since µ is
σ-finite ( by (a)), ν is also σ-finite.

(c) Since ν is σ-finite, dµ
dν

exists. By part (b), f = dν
dµ

. By chain rule,

dµ

dν
.
dν

dµ
= 1, µ− a.e. and ν − a.e. on X.

Thus,
dµ

dν
=

1

f
, µ− a.e. and ν − a.e. on X. ¥

Problem 88
Let µ and ν be σ-finite positive measures on (X,A). Show that there exist A,B ∈
A such that

A ∩B = ∅, A ∩B = X, µ ∼ ν on (A,A ∩ A) and µ⊥ν on (B,A ∩B).

Solution
Define a σ-finite measure λ = µ + ν. Then µ ¿ λ and ν ¿ λ. By the Radon-
Nikodym theorem there exist non-negative A-measurable functions f and g such
that for every E ∈ A,

µ(E) =

∫

E

fdλ and ν(E) =

∫

E

gdλ.

Let A = {x ∈ X : f(x)g(x) > 0} and B = Ac. Then µ ∼ ν. Indeed, f > 0 in A.
Thus, if µ(E) = 0, then λ(E) = 0, and therefore, ν(E) = 0. This implies ν ¿ µ.
We can prove µ ¿ ν in the same manner. Hence, µ ∼ ν.
Let C = {x ∈ B : f(x) = 0}, D = B \ C. For any measurable sets E ⊂ C and
F ⊂ D, µ(E) = ν(F ) = 0. Thus, µ⊥ν on (B,A ∩B). ¥
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Problem 89
Let µ and ν be σ-finite positive measures on (X,A). Show that there exists
a non-negative extended real-valued A-measurable function ϕ on X and a set
A0 ∈ A with µ(A0) = 0 such that

ν(E) =

∫

E

ϕdµ + ν(E ∩ A0) for every E ∈ A.

Solution
By the Lebesgue decomposition theorem,

ν = νa + νs, νa ¿ µ, νs⊥µ and νa(E) =

∫

E

ϕdµ for any E ∈ A,

where ϕ is a non-negative extended real-valued A-measurable function on X.
Now since νs⊥µ, there exists A0 ∈ A such that

µ(A0) = 0 and νs(A
c
0) = 0.

Hence [
νa ¿ µ and µ(A0) = 0

]
=⇒ νa(A0) = 0. (∗)

On the other hand, since νs(E) = νs(E ∩ A0) for every E ∈ A, so we have

ν(E ∩ A0) = νa(E ∩ A0)︸ ︷︷ ︸
=0 by (∗)

+νs(E ∩ A0) = νs(E ∩ A0) = νs(E).

Finally,

ν(E) = νa(E) + νs(E) =

∫

E

ϕdµ + ν(E ∩ A0) for every E ∈ A. ¥
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Chapter 9

Differentiation and Integration

The measure space in this chapter is the space (R,ML, µL). Therefore, we write
µ instead of µL for the Lebesgue measure. Also, we say f is integrable (derivable)
instead of f is µL-integrable (derivable).

1. BV functions and absolutely continuous functions

Definition 28 (Variation of f)
Let [a, b] ⊂ R with a < b. A partition of [a, b] is a finite ordered set P = {a = x0 < x1 < ... < xn =
b}. For a real-valued function f on [a, b] we define the variation of f corresponding to a partition
P by

V b
a (f,P) :=

n∑

k=1

|f(xk)− f(xk−1)| ∈ [0,∞).

We define the total variation of f on [a, b] by

V b
a (f) := sup

P
V b

a (f,P) ∈ [0,∞],

where the supremum is taken over all partitions of [a, b]. We say that f is a function of bounded
variation on [a, b], or simply a BV function, if V b

a (f) < ∞.
We write BV ([a, b]) for the collection of all BV functions on [a, b].

Theorem 14 (Jordan decomposition of a BV function)
1. A function f is a BV function on [a, b] if and only if there are two real-valued increasing
functions g1 and g2 on [a, b] such that f = g1 − g2 on [a, b].
{g1, g2} is called a Jordan decomposition of f .
2. If a BV function on [a, b] is continuous on [a, b], then g1 and g2 can be chosen to be continuous
on [a, b].

Theorem 15 (Derivability and integrability)
If f is a BV function on [a, b], then f ′ exists a.e. on [a, b] and integrable on [a, b].

109
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Definition 29 (Absolutely continuous functions)
A real-valued function f on [a, b] is said to be absolutely continuous on [a, b] if, given any ε > 0,
there exists a δ > 0 such that

n∑

k=1

|f(bk)− f(ak)| < ε

for every finite collection {[ak, bk]}1≤k≤n of non-overlapping intervals contained in [a, b] with

n∑

k=1

|bk − ak| < δ.

Theorem 16 (Properties)
If f is an absolutely continuous on [a, b] then
1. f is uniformly continuous on [a, b],
2. f is a BV function on [a, b],
3. f ′ exists a.e. on [a, b],
4. f is integrable on [a, b].

Definition 30 (Condition (N))
Let f be a real-valued function on [a, b]. We say that f satisfies Lusin’s Condition (N) on [a, b] if
for every E ⊂ [a, b] with µL(E) = 0, we have µ

(
f(E)

)
= 0.

Theorem 17 (Banach-Zarecki criterion for absolute continuity)
Let f be a real-valued function on [a, b]. Then f is absolutely continuous on [a, b] if and only if it
satisfies the following three conditions:
1. f is continuous on [a, b].
2. f is of BV on [a, b].
3. f satisfies condition (N) on [a, b].

2. Indefinite integrals and absolutely continuous functions

Definition 31 (Indefinite integrals)
Let f be a extended real-valued function on [a, b]. Suppose that f is measurable and integrable on
[a, b]. By indefinite integral of f on [a, b] we mean a real-valued function F on [a, b] defined by

F (x) =
∫

[a,x]

fdµ + c, x ∈ [a, b] and c ∈ R is a constant.

Theorem 18 (Lebesgue differentiation theorem)
Let f be a extended real-valued, measurable and integrable function on [a, b]. Let F be an indefinite
integral of f on [a, b]. Then
1. F is absolutely continuous on [a, b],
2. F ′ exists a.e. on [a, b] and F ′ = f a.e. on [a, b],
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Theorem 19 Let f be a real-valued absolutely continuous on [a, b]. Then
∫

[a,x]

f ′dµ = f(x)− f(a), ∀x ∈ [a, b].

Thus, an absolutely continuous function is an indefinite integral of its derivative.

Theorem 20 (A characterization of an absolutely continuous function)
A real-valued function f on [a, b] is absolutely continuous on [a, b] if and only if it satisfies the
following conditions:
(i) f ′ exists a.e. on [a, b]
(ii) f ′ is measurable and integrable on [a, b].
(iii)

∫
[a,x]

f ′dµ = f(x)− f(a), ∀x ∈ [a, b].

3. Indefinite integrals and BV functions

Theorem 21 (Total variation of F )
Let f be a extended real-valued measurable and integrable function on [a, b]. Let F be an indefinite
integral of f on [a, b] defined by

F (x) =
∫

[a,x]

fdµ + c, x ∈ [a, b].

Then the total variation of F is given by

V b
a (F ) =

∫

[a,b]

|f |dµ.

∗ ∗ ∗∗

Problem 90
Let f ∈ BV ([a, b]). Show that if f ≥ c on [a, b] for some constant c > 0, then
1
f
∈ BV ([a, b]).

Solution
Let P = {a = x0 < x1 < ... < xn = b} be a partition of [a, b]. Then

V b
a

( 1

f
,P

)
=

n∑

k=1

∣∣∣∣
1

f(xk)
− 1

f(xk−1)

∣∣∣∣ =
n∑

k=1

|f(xk)− f(xk−1)|
|f(xk)f(xk−1)| .

Since f ≥ c > 0,
|f(xk)− f(xk−1)|
|f(xk)f(xk−1|) ≤ |f(xk)− f(xk−1)|

c2
.
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It follows that

V b
a

( 1

f
,P

)
≤ 1

c2

n∑

k=1

|f(xk)− f(xk−1)| = 1

c2
V b

a (f,P) ≤ 1

c2
V b

a (f).

Since V b
a (f) < ∞, V b

a

(
1
f

)
< ∞. ¥

Problem 91
Let f, g ∈ BV ([a, b]). Show that fg ∈ BV ([a, b]) and

V b
a (fg) ≤ sup

[a,b]

|f |.V b
a (g) + sup

[a,b]

|g|.V b
a (f).

Solution
Note first that f, g ∈ BV ([a, b]) implies that f and g are bounded on [a, b]. There
are some 0 < M < ∞ and 0 < N < ∞ such that

M = sup
[a,b]

|f | and N = sup
[a,b]

|g|.

For any x, y ∈ [a, b] we have

|f(x)g(x)− f(y)g(y)| ≤ |f(x)− f(y)||g(x)|+ |g(x)− g(y)||f(y)|
≤ N |f(x)− f(y)|+ M |g(x)− g(y)| (∗).

Now, let P = {a = x0 < x1 < ... < xn = b} be any partition of [a, b]. Then we have

V b
a (fg,P) =

n∑

k=1

|f(xk)g(xk)− f(xk−1)g(xk−1)|

≤ M

n∑

k=1

|g(xk)− g(xk−1)|+ N

n∑

k=1

|f(xk)− f(xk−1)|

≤ MV b
a (g,P) + NV b

a (f,P).

Since P is arbitrary,

sup
P

V b
a (fg,P) ≤ M sup

P
V b

a (g,P) + N sup
P

V b
a (f,P),

where the supremum is taken over all partitions of [a, b]. Thus,

V b
a (fg) ≤ sup

[a,b]

|f |.V b
a (g) + sup

[a,b]

|g|.V b
a (f). ¥
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Problem 92
Let f be a real-valued function on [a, b]. Suppose f is continuous on [a, b] and
satisfying the Lipschitz condition, that is, there exists a constant M > 0 such
that

|f(x′)− f(x′′)| ≤ M |x′ − x′′|, ∀x′, x′′ ∈ [a, b].

Show that f ∈ BV ([a, b]) and V b
a (f) ≤ M(b− a).

Solution
Let P = {a = x0 < x1 < ... < xn = b} be any partition of [a, b]. Then

V b
a (f,P) =

n∑

k=1

|f(xk)− f(xk−1)|

≤ M

n∑

k=1

(xk − xk−1)

≤ M(xn − x0) = M(b− a).

This implies that

V b
a (f) = sup

P
V b

a (f,P) ≤ M(b− a) < ∞. ¥

Problem 93
Let f be a real-valued function on [a, b]. Suppose f is continuous on [a, b] and
is differentiable on (a, b) with |f ′| ≤ M for some constant M > 0. Show that
f ∈ BV ([a, b]) and V b

a (f) ≤ M(b− a).

Hint:
Show that f satisfies the Lipschitz condition.

Problem 94
Let f be a real-valued function on [0, 2

π
] defined by

f(x) =

{
sin 1

x
for x ∈ (0, 2

π
]

0 for x = 0.

Show that f /∈ BV ([0, 2
π
]).
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Solution
Let us choose a particular partition of [0, 2

π
]:

x1 =
2

π
> x2 =

2

π + 2π
> ... > x2n−1 =

2

π + 2n.2π
> x2n = 0.

Then we have

V
2
π

0 (f,P) = |f(x1)− f(x2)|+ |f(x2)− f(x3)|+ ... + |f(x2n−1)− f(x2n)|
= 2 + 2 + ... + 2︸ ︷︷ ︸

2n−1

+1 = (2n− 1)2 + 1.

Therefore,

sup
P

V
2
π

0 (f,P) = ∞,

where the supremum is taken over all partitions of [0, 2
π
]. Thus, f is not a BV

function. ¥

Problem 95
Let f be a real-valued continuous and BV function on [0, 1]. Show that

lim
n→∞

n∑
i=1

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣
2

= 0.

Solution
Since f is continuous on [0, 1], which is compact, f is uniformly continuous on [0, 1].
Hence,

∀ε > 0, ∃N > 0 : |x− y| ≤ 1

N
⇒ |f(x)− f(y)| ≤ ε, ∀x, y ∈ [0, 1].

Partition of [0, 1]:

x0 = 0 < x1 =
1

n
< x2 =

2

n
< ... < xn =

n

n
= 1.

For n ≥ N we have
∣∣ i
n
− i−1

n

∣∣ = 1
n
≤ 1

N
. Hence,

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣ ≤ ε, i = 1, 2, ...
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Now we can write, for n ≥ N ,

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣
2

=

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣ .

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣

≤ ε

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣ ,

and so

n∑
i=1

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣
2

≤ ε

n∑
i=1

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣ ≤ εV 1
0 (f).

Since V 1
0 (f) < ∞, we can conclude that

lim
n→∞

n∑
i=1

∣∣∣∣f
(

i

n

)
− f

(
i− 1

n

)∣∣∣∣
2

= 0. ¥

Problem 96
Let (fi : i ∈ N) and f be real-valued functions on an interval [a, b] such that
limi→∞ fi(x) = f(x) for x ∈ [a, b]. Show that

V b
a (f) ≤ lim inf

i→∞
V b

a (fi).

Solution
Let Pn = {a = x0 < x1 < ... < xn = b} be a partition of [a, b]. Then

V b
a (f, Pn) =

n∑

k=1

|f(xk)− f(xk−1)|,

V b
a (fi, Pn) =

n∑

k=1

|fi(xk)− fi(xk−1)| for each i ∈ N.

Consider the counting measure space (N,P(N), ν) where ν is the counting measure.
Let D = {1, 2, ..., n}. Then D ∈ P(N). Define

gi(k) = |fi(xk)− fi(xk−1)| ≥ 0,

g(k) = |f(xk)− f(xk−1)| for k ∈ D.

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



116 CHAPTER 9. DIFFERENTIATION AND INTEGRATION

Since limi→∞ fi(x) = f(x) for x ∈ [a, b], we have

lim
i→∞

gi(k) = g(k) for every k ∈ D.

By Fatou’s lemma,
∫

D

g(k)dν =

∫

D

lim
i→∞

gi(k)dν ≤ lim inf
i→∞

∫

D

gi(k)dν. (∗)

Since D =
⊔n

k=1{k} (union of disjoint sets), we have

∫

D

g(k)dν =
n∑

k=1

∫

{k}
g(k)dν

=
n∑

k=1

g(k)

=
n∑

k=1

|f(xk)− f(xk−1)|

= V b
a (f, Pn).

Similarly, we get ∫

D

gi(k)dν = V b
a (fi, Pn) for each i ∈ N.

With these, we can rewrite (*) as follows:

V b
a (f, Pn) ≤ lim inf

i→∞
V b

a (fi, Pn).

By taking all partitions Pn, we obtain

V b
a (f) ≤ lim inf

i→∞
V b

a (fi). ¥

Problem 97
Let f be a real-valued absolutely continuous function on [a, b]. If f is never zero,
show that 1

f
is also absolutely continuous on [a, b].

Solution
The function f is continuous on [a, b], which is compact, so f has a minimum on it.
Since f is non-zero, there is some m ∈ (0,∞) such that

min
x∈[a,b]

|f(x)| = m.
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Given any ε > 0 there exists δ > 0 such that for any finite family of non-overlapping
closed intervals {[ai, bi] : i = 1, ..., n} in [a, b] such that∑n

i=1(bi − ai) < δ we have
∑n

i=1 |f(ai)− f(bi)| < ε. Now,

n∑
i=1

∣∣∣∣
1

f(ai)
− 1

f(bi)

∣∣∣∣ =
n∑

i=1

|f(ai)− f(bi)|
|f(ai)f(bi)|

≤ 1

m2

n∑
i=1

|f(ai)− f(bi)|

≤ ε

m2
. ¥

Problem 98
Let f be a real-valued function on [a, b] satisfying the Lipschitz condition on [a, b].
Show that f is absolutely continuous on [a, b].

Solution
The Lipschitz condition on [a, b]:

∃K > 0 : ∀x, y ∈ [a, b], |f(x)− f(y)| ≤ K|x− y|.
Given any ε > 0, let δ = ε

K
. Let {[ci, di] : i = 1, ..., n} be a family of non-

overlapping subintervals of [a, b] with
∑n

i=1(di − ci) < δ, then, by the Lipschitz
condition, we have

n∑
i=1

|f(ck)− f(dk)| ≤
n∑

i=1

K(dk − ck)

≤ K

n∑
i=1

(dk − ck)

< K
ε

K
= ε.

Thus f is absolutely continuous on [a, b]. ¥

Problem 99
Show that if f is continuous on [a, b] and f ′ exists on (a, b) and satisfies
|f ′(x)| ≤ M for x ∈ (a, b) with some M > 0, then f satisfies the Lipschitz
condition and thus absolutely continuous on [a, b].
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(Hint: Just use the Intermediate Value Theorem.)

Problem 100
Let f be a continuous function on [a, b]. Suppose f ′ exists on (a, b) and satisfies
|f ′(x)| ≤ M for x ∈ (a, b) with some M > 0. Show that for every E ⊂ [a, b] we
have

µ∗L
(
f(E)

) ≤ Mµ∗L(E).

Solution
Recall:

µ∗L(E) = inf

{ ∞∑
n=1

`(In) : In are open intervals and
∞⋃

n=1

In ⊃ E

}
.

Let E ⊂ [a, b]. Let {In = (a′n, b
′
n)} be a covering of E, where each (a′n, b

′
n) ⊂ [a, b].

Then

E ⊂
⋃
n

(a′n, b
′
n) ⇒ f(E) ⊂

⋃
n

f
(
(a′n, b

′
n)

)
.

Since f is continuous, f
(
(a′n, b

′
n)

)
must be an interval. So

f
(
(a′n, b

′
n)

)
=

(
f(an), f(bn)

)
for an, bn ∈ (a′n, b

′
n).

Hence,

f(E) ⊂
⋃
n

(
f(an), f(bn)

)
.

Therefore {(f(an), f(bn)
)} is a covering of f(E). By the Mean Value Theorem,

`
((

f(an), f(bn)
))

= |f(bn)− f(an)|
= |f ′(x)||bn − an|, x ∈ (an, bn)

≤ M |bn − an|.

It follows that

∑
n

`
((

f(an), f(bn)
)) ≤ M

∑
n

|bn − an| ≤ M
∑

n

|b′n − a′n|

≤ M
∑

n

`
(
(a′n, b

′
n)

)
.
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Thus,

inf
∑

n

`
((

f(an), f(bn)
)) ≤ M inf

∑
n

`
(
(a′n, b

′
n)

)
.

The infimum is taken over coverings of f(E) and E respectively. By definition (at
the very first of the proof) we have

µ∗L
(
f(E)

) ≤ Mµ∗L(E). ¥

Problem 101
Let f be a real-valued function on [a, b] such that f is absolutely continuous on
[a + η, b] for every η ∈ (0, b − a). Show that if f is continuous and of bounded
variation on [a, b], then f is absolutely continuous on [a, b].

Solution
Using the Banach-Zaracki theorem, to show that f is absolutely continuous on [a, b],
we need to show that f has property (N) on [a, b]. Suppose E ⊂ [a, b] such that
µL(E) = 0. Given any ε > 0, since f is continuous at a+, there exists δ ∈ (0, b− a)
such that

a ≤ x ≤ a + δ ⇒ |f(x)− f(a)| < ε

2
. (∗)

Let E1 = E ∩ [a, a + δ] and E2 = E \ E1. Then E = E1 ∪ E2 and so f(E) =
f(E1)∪f(E2). But E2 ⊂ [a+ δ, b) and f is absolutely continuous on [a+ δ, b], so f
has property (N) on this interval. Since E2 ⊂ E, we have µL(E2) = 0. Therefore,

µL(f(E2)) = 0 = µ∗L(f(E2)).

On the other hand,

x ∈ E1 ⇒ x ∈ [a, a + δ)

⇒ f(a)− ε

2
≤ f(x) ≤ f(a) +

ε

2
by (∗)

⇒ f(E1) ⊂ [ f(a)− ε

2
, f(a) +

ε

2
]

⇒ µ∗L(f(E1)) ≤ ε.

Thus,
µ∗L(f(E)) ≤ µ∗L(f(E1)) + µ∗L(f(E2)) ≤ ε.

Since ε > 0 is arbitrary, µ∗L(f(E)) = 0 and so µL(f(E)) = 0. ¥
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Problem 102
Let f be a real-valued integrable function on [a, b]. Let

F (x) =

∫

[a,x]

fdµL, x ∈ [a, b].

Show that F is continuous and of bounded variation on [a, b].

Solution
The continuity follows from Theorem 18 (absolute continuity implies continuity).
To show that F is of BV on [a, b], let a = x0 < x1 < ... < xn = b be any partition
of [a, b]. Then

n∑
i=1

|F (xi − xi−1| =
n∑

i=1

∣∣∣∣
∫

[xi−1,xi]

fdµL

∣∣∣∣

≤
n∑

i=1

∫

[xi−1,xi]

|f |dµL

=

∫

[a,b]

|f |dµL.

Thus, since |f | is integrable,

V b
a (F ) ≤

∫

[a,b]

|f |dµL < ∞. ¥
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Chapter 10

Lp Spaces

1. Norms
For 0 < p < ∞ :

‖f‖p =
(∫

X

|f |pdµ

)1/p

.

For p = ∞ :
‖f‖∞ = inf

{
M ∈ [0,∞) : µ{x ∈ X : |f(x)| > M} = 0

}
.

Theorem 22 Let (X,A, µ) be a measure space. Then the linear space Lp(X) is a Banach space
with respect to the norm ‖.‖p for 1 ≤ p < ∞ or the norm ‖.‖∞ for p = ∞.

2. Inequalities for 1 ≤ p < ∞
1. Hölder’s inequality: If p and q satisfy the condition 1

p + 1
q = 1, then for f ∈ Lp(X), g ∈ Lq(X),

we have ∫

X

|fg|dµ =
(∫

X

|f |pdµ

)1/p (∫

X

|g|qdµ

)1/q

,

or
‖fg‖1 ≤ ‖f‖p‖g‖q.

In particular,
‖fg‖1 ≤ ‖f‖2‖g‖2 (Schwarz’s inequality).

2. Minkowski’s inequality: For f, g ∈ Lp(X), we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

3. Convergence

Theorem 23 Let (fn) be a sequence in Lp(X) and f an element in Lp(X) with 1 ≤ p < ∞. If
fn → f in Lp(X), i.e., ‖fn − f‖p → 0, then
(1) ‖fn‖p → ‖f‖p,
(2) fn

µ−→ f on X,
(3) There exists a subsequence (fnk

) such that fnk
→ f a.e. on X.

121

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



122 CHAPTER 10. LP SPACES

Theorem 24 Let (fn) be a sequence in Lp(X) and f an element in Lp(X) with 1 ≤ p < ∞. If
fn → f a.e. on X and ‖fn‖p → ‖f‖p, then ‖fn − f‖p → 0.

Theorem 25 Let (fn) be a sequence in Lp(X) and f an element in Lp(X) with 1 ≤ p < ∞. If
fn

µ−→ f on X and ‖fn‖p → ‖f‖p, then ‖fn − f‖p → 0.

Theorem 26 Let (fn) be a sequence in Lp(X) and f an element in Lp(X) with 1 ≤ p < ∞. If
‖fn − f‖∞ → 0, then
(1) ‖fn‖∞ → ‖f‖∞,
(2) fn → f uniformly on X \ E where E is a null set.
(3) fn

µ−→ f on X.

Problem 103
Let f be a Lebesgue measurable function on [0, 1]. Suppose 0 < f(x) < ∞ for all
x ∈ [0, 1]. Show that

(∫

[0,1]

fdµ

)(∫

[0,1]

1

f
dµ

)
≥ 1.

Solution
The functions

√
f and 1√

f
are Lebesgue measurable since f is Lebesgue measurable

and 0 < f < ∞. By Schwarz’s inequality, we have

1 =

∫

[0,1]

1dµ =

∫

[0,1]

√
f

1√
f

dµ ≤
(∫

[0,1]

(√
f
)2

dµ

)1/2
(∫

[0,1]

(
1√
f

)2

dµ

)1/2

≤
(∫

[0,1]

fdµ

)1/2 (∫

[0,1]

1

f
dµ

)1/2

.

Squaring both sides we get

(∫

[0,1]

fdµ

)(∫

[0,1]

1

f
dµ

)
≥ 1. ¥
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Problem 104
Let (X,A, µ) be a finite measure space. Let f ∈ Lp(X) with p ∈ (1,∞) and q its
conjugate. Show that

∫

X

|f |dµ ≤ µ(X)
1
q

(∫

X

|f |pdµ

) 1
p

.

Hint:
Write

f = f1X

where 1X is the characteristic function of X, then apply the Hölder’s inequality.

Problem 105
Let (X,A, µ) be a finite measure space.
(1) If 1 ≤ p < ∞ show that L∞(X) ⊂ Lp(X).
(2) If 1 ≤ p1 < p2 < ∞ show that Lp2(X) ⊂ Lp1(X).

Solution
(1) Take any f ∈ L∞(X). Then ‖f‖∞ < ∞. By definition, we have |f | ≤ ‖f‖∞ a.e.
on X. So we have

∫

X

|f |pdµ ≤
∫

X

‖f‖p
∞dµ = µ(X)‖f‖p

∞.

By assumption, µ(X) < ∞. Thus
∫

X
|f |pdµ < ∞. That is f ∈ Lp(X).

(2) Consider the case 1 ≤ p1 < p2 < ∞. Take any f ∈ Lp2(X). Let α := p2

p1
. Then

1 < α < ∞. Let β ∈ (1,∞) be the conjugate of α, that is, 1
α

+ 1
β

= 1. By the
Hölder’s inequality, we have

∫

X

|f |p1dµ =

∫

X

(|f |p2
)1/α

1Xdµ

≤
(∫

X

|f |p2dµ

)1/α (∫

X

|1X |βdµ

)1/β

= ‖f‖p2/α
p2

µ(X) < ∞,

since ‖f‖p2 < ∞ and µ(X) < ∞. Thus f ∈ Lp1(X). ¥
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Problem 106 (Extension of Hölder’s inequality)
Let (X,A, µ) be an arbitrary measure space. Let f1, ..., fn be extended complex-
valued measurable functions on X such that |f1|, ..., |fn| < ∞ a.e. on X. Let
p1, ..., pn be real numbers such that

p1, ..., pn ∈ (1,∞) and
1

p1

+ ... +
1

pn

= 1.

Prove that
‖f1...fn‖1 ≤ ‖f1‖p1 ...‖fn‖pn . (∗)

Hint:
Proof by induction. For n = 2 we have already the Hölder’s inequality.
Assume that (∗) holds for n ≥ 2. Let

q =
(

1
p1

+ ... +
1
pn

)−1

.

Then
q, pn+1 ∈ (0,∞) and

1
q

+
1

pn+1
= 1.

Keep going this way.

Problem 107
Let (X,A, µ) be an arbitrary measure space. Let f1, ..., fn be extended complex-
valued measurable functions on X such that |f1|, ..., |fn| < ∞ a.e. on X. Let
p1, ..., pn and r be real numbers such that

p1, ..., pn, r ∈ (1,∞) and
1

p1

+ ... +
1

pn

=
1

r
. (i)

Prove that
‖f1...fn‖r ≤ ‖f1‖p1 ...‖fn‖pn .

Solution
We can write (i) as follows:

1

p1/r
+ ... +

1

pn/r
= 1.
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From the extension of Hölder’s inequality (Problem 105) we have

∥∥|f1...fn|r
∥∥

1
≤

∥∥|f1|r
∥∥

p1/r
...

∥∥|fn|r
∥∥

pn/r
. (ii)

Now we have ∥∥|f1...fn|r
∥∥

1
=

∫

X

|f1...fn|rdµ = ‖f1...fn‖r
r,

and for i = 1, ..., n we have

∥∥|fi|r
∥∥

pi/r
=

(∫

X

|fi|r
pi
r dµ

)r/pi

=

(∫

X

|fi|pidµ

)r/pi

= ‖fi‖r
pi
.

By substituting these expressions into (ii), we have

‖f1...fn‖r
r ≤ ‖f1‖r

p1
...‖fn‖r

pn
.

Taking the r-th roots both sides of the above inequality we obtain (i). ¥

Problem 108
Let (X,A, µ) be a measure space. Let θ ∈ (0, 1) and let p, q, r ≥ 1 with p, q ≥ r
be related by

1

r
=

θ

p
+

1− θ

q
.

Show that for every extended complex-valued measurable function on X we have

‖f‖r ≤ ‖f‖θ
p‖f‖1−θ

q .

Solution
Recall: (Extension of Holder’s inequality)

1

r
=

1

p1

+ ... +
1

pn

⇒ ‖f1...fn‖r ≤ ‖f‖p1 ...‖fn‖pn .

For n = 2 we have
1

r
=

1

p
+

1

q
⇒ ‖fg‖r ≤ ‖f‖p‖g‖q.

Now, we have
1

r
=

θ

p
+

1− θ

q
=

1

p/θ
+

1

q/(1− θ)
.

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



126 CHAPTER 10. LP SPACES

Applying the above formula we get

‖f‖r =
∥∥|f |θ.|f |1−θ

∥∥ ≤
∥∥|f |θ

∥∥
p/θ

.
∥∥|f |1−θ

∥∥
q/(1−θ)

. (∗)
Some more calculations:

∥∥|f |θ
∥∥

p/θ
=

(∫

X

(|f |θ)p/θ
)θ/p

=

(∫

X

|f |p
)θ/p

= ‖f‖θ
p.

And

∥∥|f |1−θ
∥∥

q/(1−θ)
=

(∫

X

(|f |1−θ
)q/1−θ

)1−θ/q

=

(∫

X

|f |q
)1−θ/q

= ‖f‖1−θ
q .

Plugging into (*) we obtain

‖f‖r ≤ ‖f‖θ
p.‖f‖1−θ

q . ¥

Problem 109
Let (X,A, µ) be a measure space. Let p, q ∈ [1,∞] be conjugate. Let (fn)n∈N ⊂
Lp(X) and f ∈ Lp(X) and similarly (gn)n∈N ⊂ Lq(X) and g ∈ Lq(X). Show
that

[
lim

n→∞
‖fn − f‖p = 0 and lim

n→∞
‖gn − g‖q = 0

]
⇒ lim

n→∞
‖fngn − fg‖1 = 0.

Solution
We use Hölder’s inequality:

‖fngn − fg‖1 =

∫

X

|fngn − fg|dµ

≤
∫

X

(|fngn − fng|+ |fng − fg|)dµ

≤
∫

X

|fn||gn − g|dµ +

∫

X

|g||fn − f |dµ

≤ ‖fn‖p.‖gn − g‖q + ‖g‖q.‖fn − f‖p. (∗)
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By Minkowski’s inequality, we have

‖fn‖p ≤ ‖f‖p + ‖fn − f‖p.

Since ‖f‖p and ‖fn − f‖p are bounded (why?), ‖fn‖p is bounded for every n ∈ N.
From assumptions we deduce that limn→∞ ‖fn‖p.‖gn − g‖q = 0.
Since ‖g‖q is bounded, from assumptions we get limn→∞ ‖g‖q.‖fn−f‖p = 0. There-
fore, from (*) we obtain

lim
n→∞

‖fngn − fg‖1 = 0. ¥

Problem 110
Let (X,A, µ) be a measure space and let p ∈ [1,∞). Let (fn)n∈N ⊂ Lp(X) and
f ∈ Lp(X) be such that limn→∞ ‖fn − f‖p = 0. Let (gn)n∈N be a sequence of
complex-valued measurable functions on X such that |gn| ≤ M for every n ∈ N
and let g be a complex-valued measurable function on X such that limn→∞ gn = g
a.e. on X. Show that

lim
n→∞

‖fngn − fg‖p = 0.

Solution
We first note that |g| ≤ M a.e. on X. Indeed, we have for all n ∈ N,

|g| ≤ |gn − g|+ |gn|.
Since |gn| ≤ M for every n ∈ N and |gn − g| → 0 a.e. on X by assumption. Hence
|g| ≤ M a.e. on X.
Now, by Minkowski’s inequality, we have

‖fngn − fg‖p ≤ ‖fngn − fgn‖p + ‖fgn − fg‖p

≤ ‖gn(fn − f)‖p + ‖f(gn − g)‖p (∗)

Some more calculations:

‖gn(fn − f)‖p
p =

∫

X

|gn(fn − f)|pdµ

≤
∫

X

|gn|p.|fn − f |pdµ

≤ Mp‖fn − f‖p
p.
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Since ‖fn − f‖p → 0 by assumption, we have that ‖gn(fn − f)‖p → 0.
Let hn = fgn − fg for every n ∈ N. Then

|hn| ≤ |f |.|gn − g| ≤ |f |(|gn|+ |g|) ≤ 2M |f |
|hn|p ≤ 2pMp|f |p < ∞.

Now, |hn|p is bounded and |hn|p ≤ |f |p.|gn − g|p ⇒ |hn|p → 0 (since gn → g a.e.).
By the Dominated Convergence Theorem, we have

0 =

∫

X

lim
n→∞

|hn|pdµ = lim
n→∞

∫

X

|hn|pdµ

= lim
n→∞

∫

X

|fgn − fg|pdµ

= lim
n→∞

‖f(gn − g)‖p
p.

From these results, (*) gives that

lim
n→∞

‖fngn − fg‖p = 0. ¥

Problem 111
Let f be an extended real-valued Lebesgue measurable function on [0, 1] such that∫

[0,1]
|f |pdµ < ∞ for some p ∈ [1,∞). Let q ∈ (1,∞] be the conjugate of p. Let

a ∈ (0, 1]. Show that

lim
a→0

1

a1/q

∫

[0,a]

|f |dµ = 0.

Solution
• p = 1
Since q = ∞, we have to show

lim
a→0

∫ a

0

|f(s)|ds = 0 (Lebesgue integral = Riemann integral).

This is true since f is integrable so
∫ a

0
|f(s)|ds is continuous with respect to a.

• 1 < p < ∞
Then 1 < q < ∞. We have∫ a

0

|f(s)|ds =

∫ a

0

|f(s)|.1 ds

≤ µ([0, a])1/q

(∫ a

0

|f(s)|ds

)1/p

(Problem 104)

= a1/q

(∫ a

0

|f(s)|ds

)1/p

.
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Hence,

1

a1/q

∫ a

0

|f(s)|ds ≤
(∫ a

0

|f(s)|ds

)1/p

(∗)

Since |f | is integrable, we have1 (Problem 66)

∀ε > 0, ∃δ > 0 : µ([0, a]) < δ ⇒
∫

[0,a]

|f |dµ < εp.

Equivalently,

∀ε > 0, ∃δ > 0 : 0 < a < δ ⇒
(∫ a

0

|f(s)|ds

)1/p

< ε. (∗∗)

From (*) and (**) we obtain

∀ε > 0, ∃δ > 0 : 0 < a < δ ⇒ 1

a1/q

∫ a

0

|f(s)|ds < ε.

That is,

lim
a→0

1

a1/q

∫ a

0

|f(s)|ds = 0. ¥

Problem 112
Let (X,A, µ) be a finite measure space. Let fn, f ∈ L2(X) for all n ∈ N such
that limn→∞ fn = f a.e. on X and ‖fn‖2 ≤ M for all n ∈ N.
Show that limn→∞ ‖fn − f‖1 = 0.

Solution
We first claim: ‖f‖2 ≤ M . Indeed, y Fatous’ lemma, we have

‖f‖2
2 =

∫

X

|f |2dµ ≤ lim inf
n→∞

∫

X

|fn|2dµ ≤ M2.

Since µ(X) < ∞, we can use Egoroff’s theorem:

∀ε > 0, ∃A ∈ A with µ(A) < ε2 and fn → f uniformly on X \ A.

Now we can write

‖fn − f‖1 =

∫

X

|fn − f |dµ =

∫

A

|fn − f |dµ +

∫

X\A
|fn − f |dµ.

1This is called the uniform continuity of the integral with respect to the measure µ.
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On X \A, fn → f uniformly, so for large n, we have
∫

X\A |fn− f |dµ < ε. On A we

have
∫

A

|fn − f |dµ =

∫

X

|fn − f |χA dµ ≤ µ(A)1/2.‖fn − f‖2

≤ µ(A)1/2(‖fn‖2 + ‖f‖2)

≤ 2Mε (since µ(A) < ε2).

Thus, for any ε > 0, for large n, we have

‖fn − f‖1 ≤ (2M + 1)ε.

This tells us that limn→∞ ‖fn − f‖1 = 0. ¥

Problem 113
Let (X,A, µ) be a finite measure space and let p, q ∈ (1,∞) be conjugates. Let
fn, f ∈ Lp(X) for all n ∈ N such that limn→∞ fn = f a.e. on X and ‖fn‖p ≤ M
for all n ∈ N. Show that
(a) ‖f‖p ≤ M .
(b) limn→∞ ‖fn − f‖p = 0.
(c) limn→∞

∫
X

fngdµ =
∫

X
fgdµ for every g ∈ Lq(X).

(d) limn→∞
∫

E
fndµ =

∫
E

fdµ for every E ∈ A.

Hint:
(a) and (b): See Problem 112.
(c) Show ‖fng − fg‖1 ≤ ‖fn − f‖p‖g‖q. Then use (b).
(d) Write ∫

E

fng =
∫

X

fng1E =
∫

X

fn(g1E).

Then use (c).

Problem 114
Let (X,A, µ) be a measure space. Let f be a real-valued measurable function on
X such that f ∈ L1(X) ∩ L∞(X). Show that f ∈ Lp(X) for every p ∈ [1,∞].

Hint:
If p = 1 or p = ∞, there is nothing to prove.
Suppose p ∈ (1,∞). Let f ∈ L1(X) ∩ L∞(X). Write

|f |p = |f |1|f |p−1 ≤ |f |.‖f‖p−1
∞ .

Integrate over X, then use the fact that ‖f‖1 and ‖f‖∞ are finite.
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Problem 115
Let (X,A, µ) be a measure space and let 0 < p1 < p < p2 ≤ ∞. Show that

Lp(X) ⊂ Lp1(X) + Lp2(X),

that is, if f ∈ Lp(X) then f = g+h for some g ∈ Lp1(X) and some h ∈ Lp2(X).

Solution
For any f ∈ Lp(X), let D = {X : |f | ≥ 1}. Let g = f1D and h = f1Dc . Then

g + h = f1D + f1Dc = f(1D + 1Dc︸ ︷︷ ︸
=1D∪Dc

) = f (See Problem 37).

We want to show g ∈ Lp1(X) and h ∈ Lp2(X).
On D we have : 1 ≤ |f |p1 ≤ |f |p ≤ |f |p2 . It follows that

∫

X

|g|p1dµ =

∫

D

|f |p1dµ ≤
∫

X

|f |pdµ < ∞ since f ∈ Lp(X).

Hence, g ∈ Lp1(X).
On Dc we have : |f |p1 ≥ |f |p ≥ |f |p2 . It follows that

∫

X

|h|p2dµ =

∫

Dc

|f |p2dµ ≤
∫

X

|f |pdµ < ∞.

Hence, h ∈ Lp2(X). This completes the proof. ¥

Problem 116
Given a measure space (X, A, µ). For 0 < p < r < q ≤ ∞, show that

Lp(X) ∩ Lq(X) ⊂ Lr(X).

Hint:
Let D = {X : |f | ≥ 1}. On D we have |f |r ≤ |f |q, and on X \D we have |f |r ≤ |f |p.
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Problem 117
Suppose f ∈ L4([0, 1]), ‖f‖4 = C ≥ 1 and ‖f‖2 = 1. Show that

1

C
≤ ‖f‖4/3 ≤ 1.

Solution
First we note that 4 and 4/3 are conjugate. By assumption and by Hölder’s inequal-
ity we have

1 = ‖f‖2
2 =

∫

[0,1]

|f |2dµ =

∫

[0,1]

|f |.|f |dµ

≤ ‖f‖4.‖f‖4/3

≤ C.‖f‖4/3.

This implies that ‖f‖4/3 ≥ 1
C
. (∗).

By Schwrarz’s inequality we have

‖f‖4/3
4/3 =

∫

[0,1]

|f |4/3dµ =

∫

[0,1]

|f |.|f |1/3dµ

≤ ‖f‖2.‖f‖1/3
2 = 1 since ‖f‖2 = 1.

Hence, ‖f‖4/3 ≤ 1. (∗∗)
From (*) and (**) we obtain

1

C
≤ ‖f‖4/3 ≤ 1. ¥

Problem 118
Let (X,A, µ) be a measure space with µ(X) ∈ (0,∞). Let f ∈ L∞(X) and let
αn =

∫
X
|f |ndµ for n ∈ N. Show that

lim
n→∞

αn+1

αn

= ‖f‖∞.

Solution
We first note that if ‖f‖∞ = 0, the problem does not make sense. Indeed,

‖f‖∞ = 0 ⇒ f ≡ 0 a.e. on X

⇒ αn = 0, ∀n ∈ N.
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Suppose that 0 < ‖f‖∞ < ∞. Then αn > 0, ∀n ∈ N. We have

αn+1 =

∫

X

|f |n+1dµ =

∫

X

|f |n|f |dµ

≤ ‖f‖∞.

∫

X

|f |ndµ = ‖f‖∞αn.

This implies that

αn+1

αn

≤ ‖f‖∞, ∀n ∈ N.

⇒ lim sup
n→∞

αn+1

αn

≤ ‖f‖∞. (∗)

Notice that n+1
n

and n + 1 are conjugate. Using again Hölder’s inequality, we get

αn =

∫

X

|f |n.1 dµ ≤
(∫

X

(|f |n)
n+1

n dµ

) n
n+1

(∫

X

1n+1

) 1
n+1

=

(∫

X

(|f |n+1)dµ

) n
n+1

.µ(X)
1

n+1

= α
n

n+1

n+1.µ(X)
1

n+1 .

With a simple calculation we get

αn+1

αn

≥ α
1

n+1

n+1.µ(X)−
1

n+1 , ∀n ∈ N.

Given any ε > 0, let E = {X : |f | > ‖f‖∞ − ε}, then, by definition of ‖f‖∞, we
have µ(E) > 0. Now,

α
1

n+1

n+1 =

(∫

X

(|f |n+1)dµ

) 1
n+1

≥
(∫

E

(|f |n+1)dµ

) 1
n+1

> µ(E)
1

n+1 .(‖f‖∞ − ε).

It follows that

αn+1

αn

≥ (‖f‖∞ − ε).

[
µ(E)

µ(X)

] 1
n+1

.

⇒ lim inf
n→∞

αn+1

αn

≥ ‖f‖∞ − ε, ∀ε > 0

⇒ lim inf
n→∞

αn+1

αn

≥ ‖f‖∞. (∗∗)
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From (*) and (**) we obtain

lim
n→∞

αn+1

αn

= ‖f‖∞. ¥

Problem 119
Let (X,A, µ) be a measure space and p ∈ [1,∞).
Let f ∈ Lp(X) and (fn : n ∈ N) ⊂ Lp(X). Suppose limn→∞ ‖fn − f‖p = 0.
Show that for every ε > 0, there exists δ > 0 such that for all n ∈ N we have

∫

E

|fn|pdµ < ε for every E ∈ A such that µ(E) < δ.

Solution
By assumption we have limn→∞ ‖fn − f‖p

p = 0. Equivalently,

∀ε > 0, ∃N ∈ N : n ≥ N ⇒ ‖fn − f‖p
p <

ε

2p+1
. (1)

From triangle inequality we have2

|fn| ≤ |fn − f |+ |f |,
|fn|p ≤ (|fn − f |+ |f |)p ≤ 2p|fn − f |p + 2p|f |p.

Integrating over E ∈ A and using (1), we get for n ≥ N ,

∫

E

|fn|pdµ ≤ 2p

∫

E

|fn − f |pdµ + 2p

∫

E

|f |pdµ

≤ 2p‖fn − f‖p
p + 2p

∫

E

|f |pdµ

≤ 2p.
ε

2p+1
+ 2p

∫

E

|f |pdµ

=
ε

2
+ 2p

∫

E

|f |pdµ. (2)

2In fact, for a, b ≥ 0 and 1 ≤ p < ∞ we have

(a + b)p ≤ 2p−1(ap + bp).
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Since |f |p is integrable, by the uniform absolute continuity of integral (Problem 66)
we have

∃δ0 > 0 : µ(E) < δ0 ⇒
∫

E

|f |pdµ <
ε

2p+1
.

So, for n ≥ N , from (2) we get

∃δ0 > 0 : µ(E) < δ0 ⇒
∫

E

|fn|pdµ ≤ ε

2
+ 2p.

ε

2p+1
= ε. (3)

Similarly, all |f1|p, ..., |fN−1|p are integrable, so we have

∃δj > 0 : µ(E) < δj ⇒
∫

E

|fj|pdµ < ε, j = 1, ..., N − 1. (4)

Let δ = min{δ0, δ1, .., δN−1}. From (3) and (4) we get for every n ∈ N,

∃δ > 0 : µ(E) < δ ⇒
∫

E

|fn|pdµ < ε. ¥

Problem 120
Let f be a bounded real-valued integrable function on [0, 1]. Suppose∫
[0,1]

xnfdµ = 0 for n = 0, 1, 2, .... Show that f = 0 a.e. on [0, 1].

Solution
Fix an arbitrary function ϕ ∈ C[0, 1]. By the Stone-Weierstrass theorem, there is a
sequence (pn) of polynomials such that ‖ϕ− pn‖∞ → 0 as n →∞. Then

∣∣∣∣
∫

[0,1]

fϕdµ

∣∣∣∣ =

∣∣∣∣
∫

[0,1]

f(ϕ− pn + pn)dµ

∣∣∣∣

≤
∫

[0,1]

|f | |ϕ− pn|dµ +

∣∣∣∣
∫

[0,1]

fpndµ

∣∣∣∣

≤ ‖f‖1‖ϕ− pn‖∞ +

∣∣∣∣
∫

[0,1]

fpndµ

∣∣∣∣
︸ ︷︷ ︸
=0 by hypothesis

= ‖f‖1‖ϕ− pn‖∞.

Since ‖f‖1 < ∞ and ‖ϕ− pn‖∞ → 0, we have
∫

[0,1]

fϕdµ = 0, ∀ϕ ∈ C[0, 1]. (∗)

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



136 CHAPTER 10. LP SPACES

Now, since C[0, 1] is dense in L1[0, 1], there exists a sequence (ϕn) ⊂ C[0, 1] such
that ‖ϕn − f‖1 → 0 as n →∞. Then

0 ≤
∫

[0,1]

f 2dµ =

∣∣∣∣
∫

[0,1]

f(f − ϕn + ϕn)dµ

∣∣∣∣

≤
∫

[0,1]

|f | |f − ϕn|dµ +
∣∣∣
∫

[0,1]

fϕndµ

︸ ︷︷ ︸
=0 by (*)

∣∣∣

≤ ‖f‖∞‖f − ϕn‖1.

Since ‖f‖∞ < ∞ and ‖f − ϕn‖1 → 0, we have

∫

[0,1]

f 2dµ = 0.

Thus f = 0 a.e. on [0, 1]. ¥

Problem 121
Let (X,A, µ) be a σ-finite measure space with µ(X) = ∞.
(a) Show that there exists a disjoint sequence (En : n ∈ N) in A such that⋃

n∈NEn = X and µ(En) ∈ [1,∞) for every n ∈ N.
(b) Show that there exists an extended real-valued measurable function f on X
such that f /∈ L1(X) and f ∈ Lp(X) for all p ∈ (1,∞].

Solution
(a) Since (X,A, µ) is a σ-finite measure space, there exists a sequence (An : n ∈ N)
of disjoint sets in A such that

X =
⋃

n∈N
An and µ(An) < ∞,∀n ∈ N.

By the countable additivity and by assumption, we have

µ(X) =
∑

n∈N
µ(An) = ∞.

It follows that

∃k1 ∈ N : 1 ≤
k1∑

n=1

µ(An) = µ(A1 ∪ ... ∪ Ak1) < ∞.
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Let E1 = A1 ∪ ... ∪ Ak1 then we have

1 ≤ µ(E1) < ∞ and µ(Ak1+1 ∪ Ak1+2 ∪ ...) = µ(X \ E1) = ∞.

Then there exists k2 ≥ k1 + 1 such that

1 ≤ µ(Ak1+1 ∪ ... ∪ Ak2) < ∞.

Let E1 = Ak1+1 ∪ ... ∪ Ak2 then we have

1 ≤ µ(E2) < ∞ and E1 ∩ E1 = ∅.
And continuing this process we are building a sequence (En : n ∈ N) of disjoint
subsets in A satisfying

⋃

n∈N
En =

⋃

n∈N
An = X and µ(En) ∈ [1,∞), ∀n ∈ N.

(b) Define a real-valued function f on X =
⋃

n∈NAn by

f =
∞∑

n=1

χAn

nµ(An)
.

Then

f |A1 =
1

1µ(A1)
, ..., f |An =

1

nµ(An)
, ...

Hence, ∫

X

fdµ =
∞∑

n=1

∫

An

fdµ =
∞∑

n=1

1

n
= ∞.

That is f /∈ L1(X).
We also have

f p|A1 =
1

1pµ(A1)p
, ..., f p|An =

1

npµ(An)p
, ...(1 < p < ∞)

By integrating
∫

X

fpdµ =
∞∑

n=1

∫

An

f pdµ

=
∞∑

n=1

1

npµ(An)p−1

≤
∞∑

n=1

1

np
< ∞. since µ(An)p−1 ≥ 1.

Thus, f ∈ Lp(X). ¥
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Problem 122
Consider the space Lp([0, 1]) where p ∈ (1,∞].
(a) Prove that ‖f‖p is increasing in p for any bounded measurable function f .
(b) Prove that ‖f‖p → ‖f‖∞ when p →∞.

Solution
(a)
• Suppose 1 < p < ∞. We want to show ‖f‖p ≤ ‖f‖∞.
By definition, we have

|f | ≤ ‖f‖∞ a.e. on [0, 1].

Therefore,

|f |p ≤ ‖f‖p
∞ a.e. on [0, 1].

⇒
∫

[0,1]

|f |pdµ ≤
∫

[0,1]

‖f‖p
∞dµ

⇒ ‖f‖p
p ≤ ‖f‖p

∞ µ([0, 1])

⇒ ‖f‖p ≤ ‖f‖∞.

• Suppose 1 < p1 < p2 < ∞. We want to show ‖f‖p1 ≤ ‖f‖p2 .
Notice that

p1

p2

+
p2 − p1

p2

= 1 or
1

p2/p1

+
1

p2/(p2 − p1)
= 1.

By Hölder’s inequality we have

‖f‖p1
p1

=

∫

[0,1]

|f |p1dµ =

∫

[0,1]

|f |p1 .1.dµ

≤ ‖|f |p1‖p2/p1 .‖1‖p2/(p2−p1)

= ‖f‖p1

p2/p1
. (∗)

Now,

‖f‖p1

p2/p1
=

(∫

[0,1]

|f |p1.
p2
p1 dµ

)p1/p2

=

(∫

[0,1]

|f |p2dµ

)p1. 1
p2

= ‖f‖p1
p2

.

Finally, (*) implies that ‖f‖p1 ≤ ‖f‖p2 .
In both cases we have

1 < p1 < p2 =⇒ ‖f‖p1 ≤ ‖f‖p2 .
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That is ‖f‖p is increasing in p.

(b) By part (a) we get ‖f‖p ≤ ‖f‖∞. Then

lim sup
p→∞

‖f‖p ≤ ‖f‖∞. (i)

Given any ε > 0, let E = {X : |f | > ‖f‖∞ − ε}. Then µ(E) > 0 and

‖f‖p
p ≥

∫

E

|f |pdµ > (‖f‖∞ − ε)pµ(E).

⇒ ‖f‖p ≥ (‖f‖∞ − ε)µ(E)1/p

⇒ lim inf
p→∞

‖f‖p ≥ ‖f‖∞ − ε, ∀ε > 0 (since lim
p→∞

µ(E)1/p = 1).

⇒ lim inf
p→∞

‖f‖p ≥ ‖f‖∞. (ii)

From (i) and (ii) we obtain

lim
p→∞

‖f‖p = ‖f‖∞. ¥

∗ ∗ ∗∗

APPENDIX

The Lp Spaces for 0 < p < 1

Let (X,A, µ) be a measure space and p ∈ (0, 1). It is easy to check that Lp(X) is a linear space.

Exercise 1. If ‖f‖p :=
(∫

X
|f |pdµ

)1/p and 0 < p < 1, then ‖.‖p is not a norm on X.
Hint:
Show that ‖.‖p does not satisfy the triangle inequality:
Take X = [0, 1] with the Lebesgue measure on it. Let f = 1[0, 1

2 ) and g = 1[ 12 ,1). Then show that

‖f + g‖p = 1.

and that
‖f‖p = 2−

1
p and ‖g‖p = 2−

1
p .

It follows that
‖f + g‖p > ‖f‖p + ‖g‖p.

Exercise 2. If α, β ∈ C and 0 < p < 1, then

|α + β|p ≤ |α|p + |α|p.
Hint:

Consider the real-valued function ϕ(t) = (1 + t)p − 1 − tp, t ∈ [0,∞). Show that it is strictly
decreasing on [0,∞). Then take t = |β|

|α| > 0.
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Exercise 3. For 0 < p < 1, ‖.‖p is not a norm. However

ρp(f, g) :=
∫

X

|f − g|pdµ, f, g ∈ Lp(X)

is a metric on Lp(X).
Proof.
We prove only the triangle inequality. For f, g, h ∈ Lp(X), we have

ρp(f, g) =
∫

X

|f − g|pdµ

=
∫

X

|(f − h) + (h− g)|pdµ

≤
∫

X

(|f − h|+ |h− g|)pdµ

≤
∫

X

|f − h|pdµ +
∫

X

|h− g|pdµ (by Exercise 2)

= ρp(f, h) + ρp(h, g). ¥

∗ ∗ ∗∗
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Chapter 11

Integration on Product Measure
Space

1. Product measure spaces

Definition 32 (Product measure)
Given n measure spaces (X1,A1, µ1), ..., (Xn,An, µn). Consider the product measurable space(
X1 × ...×Xn, σ(A1 × ...×An)

)
. A measure µ on σ(A1 × ...×An) such that

µ(E) = µ1(A1)...µn(An) for E = A1 × ...×An ∈ A1 × ...×An

with the convention ∞.0 = 0 is called a product measure of µ1, ..., µn and we write

µ = µ1 × ...× µn.

Theorem 27 (Existence and uniqueness)
For n arbitrary measure spaces (X1,A1, µ1), ..., (Xn,An, µn), a product measure space

(
X1 × ...×

Xn, σ(A1 × ...×An), µ1 × ...× µn

)
exists. Moreover, if the n measure spaces are all σ-finite, then

the product measure space is unique.

2. Integration

Definition 33 (Sections and section functions)
Let

(
X × Y, σ(A×B), µ× ν

)
be the product of two σ-finite measure spaces (X,A, µ) and (Y,B, ν).

Let E ⊂ X × Y , and f be an extended real-valued function on E.
(a) For x ∈ X, the set E(x, .) := {y ∈ Y : (x, y) ∈ E} is called the x-section of E.
For y ∈ Y , the set E(., y) := {x ∈ X : (x, y) ∈ E} is called the y-section of E.
(b) For x ∈ X, the function f(x, .) defined on E(x, .) is called the x-section of f .
For y ∈ Y , the function f(., y) defined on E(., y) is called the y-section of f .

Proposition 24 Let
(
X×Y, σ(A×B), µ×ν

)
be the product of two σ-finite measure spaces (X,A, µ)

and (Y,B, ν). For every E ∈ σ(A × B), ν
(
E(x, .)

)
is a A-measurable function of x ∈ X and

µ
(
E(., y)

)
is a B-measurable function of y ∈ Y . Furthermore, we have

(µ× ν)(E) =
∫

X

ν
(
E(x, .)

)
µ(dx) =

∫

Y

µ
(
E(., y)

)
ν(dy).

141
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Theorem 28 (Tonelli’s Theorem)
Let (X × Y, σ(A× B), µ× ν) be product measure space of two σ-finite measure spaces. Let f be a
non-negative extended real-valued measurable on X × Y . Then

(a) F 1(x) :=
∫

Y
f(x, .)dν is a A-measurable function of x ∈ X.

(b) F 2(y) :=
∫

X
f(., y)dµ is a B-measurable function of y ∈ Y .

(c)
∫

X×Y
fd(µ× ν) =

∫
X

F 1dµ =
∫

Y
F 2dν, that is,

∫

X×Y

fd(µ× ν) =
∫

X

[∫

Y

f(x, .)dν

]
dµ =

∫

Y

[∫

X

f(., y)dµ

]
dν.

Theorem 29 (Fubini’s Theorem)
Let (X × Y, σ(A× B), µ× ν) be product measure space of two σ-finite measure spaces. Let f be a
µ× ν-integrable extended real-valued measurable function on X × Y . Then

(a) The B-measurable function f(x, .) is ν-integrable on Y for µ-a.e. x ∈ X and the A-
measurable function f(., y) is µ-integrable on X for ν-a.e. y ∈ Y .

(b) The function F 1(x) :=
∫

Y
f(x, .)dν is defined for µ-a.e. x ∈ X, A-measurable and µ-

integrable on X.
The function F 2(y) :=

∫
X

f(., y)dν is defined for ν-a.e. y ∈ X, B-measurable and ν-
integrable on Y .

(c) We have the equalities:
∫

X×Y
fd(µ× ν) =

∫
X

F 1dµ =
∫

Y
F 2dν, that is,

∫

X×Y

fd(µ× ν) =
∫

X

[∫

Y

f(x, .)dν

]
dµ =

∫

Y

[∫

X

f(., y)dµ

]
dν.

∗ ∗ ∗∗

Problem 123
Consider the product measure space

(
R× R, σ(BR × BR), µL × µL

)
.

Let D = {(x, y) ∈ R× R : x = y}. Show that

D ∈ σ(BR × BR) and (µL × µL)(D) = 0.

Solution
Let λ = µL × µL. Let D0 = {(x, y) ∈ [0, 1] × [0, 1] : x = y}. For each n ∈ Z let
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Dn = {(x, y) ∈ [n, n + 1] × [n, n + 1] : x = y}. Then, by translation invariance of
Lebesgue measure, we have

λ(D0) = λ(Dn), ∀n ∈ N.

and D =
⋃

n∈Z
Dn.

To solve the problem, it suffices to prove D0 ∈ σ(BR × BR) and λ(D0) = 0.
For each n ∈ N, divide [0, 1] into 2n equal subintervals as follows:

In,1 =

[
0,

1

2n

]
, In,2 =

[
1

2n
,

2

2n

]
, ..., In,2n =

[
2n − 1

2n
, 1

]
.

Let Sn =
⋃2n

k=1(In,k × In,k), then D0 = limn→∞ Sn.
Now, for each n ∈ N and for k = 1, 2, ..., 2n, In,k ∈ BR. Therefore,

In,k × In,k ∈ σ(BR × BR) and so Sn ∈ σ(BR × BR).
Hence, D0 ∈ σ(BR × BR).
It is clear that (Sn) is decreasing (make a picture yourself), so

D0 = lim
n→∞

Sn =
∞⋂

n=1

Sn.

And we have

λ(Sn) =
2n∑

k=1

λ(In,k × In,k)

=
2n∑

k=1

1

2n
.
1

2n
= 2n.

1

22n
=

1

2n
.

It follows that

λ(D0) ≤ λ(Sn) =
1

2n
, ∀n ∈ N.

Thus, λ(D0) = 0. ¥

Problem 124
Consider the product measure space (R × R, σ(BR × BR), µL × µL). Let f be a
real-valued function of bounded variation on [a, b]. Consider the graph of f :

G = {(x, y) ∈ R× R : y = f(x) for x ∈ R}.

Show that G ∈ σ(BR × BR) and (µL × µL)(G) = 0.
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Hint:
Partition of [a, b]:

P = {a = x0 < x1 < ... < xn = b}.
Elementary rectangles:

Rn,k = [xk−1, xk]× [mk,Mk], k = 1, ..., n,

where
mk = inf

x∈[xk−1,xk]
f(x) and Mk = sup

x∈[xk−1,xk]

f(x).

Let

Rn =
n⋃

k=1

Rn,k and ‖P‖ = max
1≤k≤n

(xk − xk−1).

Let λ = µL × µL. Show that

λ(Rn) ≤ ‖P‖
n∑

k=1

(Mk −mk) ≤ ‖P‖V b
a (f),

Problem 125
Let (X,A, µ) and (Y,B, ν) be the measure spaces given

X = Y = [0, 1]

A = B = B[0,1], the σ-algebra of the Borel sets in [0, 1],

µ = µL and ν is the counting measure.

Consider the product measurable space
(
X × Y, σ(A × B)

)
and a subset in it

defined by E = {(x, y) ∈ X × Y : x = y}. Show that

(a) E ∈ σ(A× B),

(b)

∫

X

(∫

Y

χEdν

)
dµ 6=

∫

Y

(∫

X

χEdµ

)
dν.

Why is Tonelli’s theorem not applicable?

Solution
(a) For each n ∈ N, divide [0, 1] into 2n equal subintervals as follows:

In,1 =

[
0,

1

2n

]
, In,2 =

[
1

2n
,

2

2n

]
, ..., In,2n =

[
2n − 1

2n
, 1

]
.

Let Sn =
⋃2n

k=1(In,k × In,k). It is clear that (Sn) is decreasing, so

E = lim
n→∞

Sn =
∞⋂

n=1

Sn.
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Now, for each n ∈ N and for k = 1, 2, ..., 2n, In,k ∈ B[0,1]. Therefore,

In,k × In,k ∈ σ(B[0,1] × B[0,1]) and so Sn ∈ σ(B[0,1] × B[0,1]).

Hence, E ∈ σ(B[0,1] × B[0,1]).

(b) For any x ∈ X, 1E(x, .) = 1{x}(.). Therefore,

∫

Y

1Edν =

∫

[0,1]

1{x}dν = ν{x} = 1.

Hence, ∫

X

(∫

Y

1Edν

)
dµ =

∫

[0,1]

1dµ = 1. (∗)

On the other hand, for every y ∈ Y, 1E(., y) = 1{y}(.). Therefore,

∫

X

1Edµ =

∫

[0,1]

1{y}dµ = µ{y} = 0.

Hence, ∫

Y

(∫

X

1Edµ

)
dν =

∫

[0,1]

0dµ = 0. (∗∗)

Thus, from (*) and (**) we get

∫

X

(∫

Y

1Edν

)
dµ 6=

∫

Y

(∫

X

1Edµ

)
dν.

Tonelli’s theorem requires that the two measures must be σ-finite. Here, the counting
measure ν is not σ-finite, so Tonelli’s theorem is not applicable. ¥

Question: Why the counting measure on [0, 1] is not σ-finite?

Problem 126
Suppose g is a Lebesgue measurable real-valued function on [0, 1] such that the
function f(x, y) = 2g(x)− 3g(y) is Lebesgue integrable over [0, 1]× [0, 1]. Show
that g is Lebesgue integrable over [0, 1].
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Solution
By Fubini’s theorem we have
∫

[0,1]×[0,1]

f(x, y)d(µL(x)× µL(y)) =

∫ 1

0

∫ 1

0

f(x, y)dxdy

=

∫ 1

0

∫ 1

0

[2g(x)− 3g(y)]dxdy

=

∫ 1

0

∫ 1

0

2g(x)dxdy −
∫ 1

0

∫ 1

0

3g(y)dxdy

= 2

∫ 1

0

g(x)

(∫ 1

0

1.dy

)
dx− 3

∫ 1

0

g(y)

(∫ 1

0

1.dx

)
dy

= 2

∫ 1

0

g(x).1.dx− 3

∫ 1

0

g(y).1.dy

= 2

∫ 1

0

g(x)dx− 3

∫ 1

0

g(y)dy

= −
∫ 1

0

g(x)dx.

Since f(x, y) is Lebesgue integrable over [0, 1]× [0, 1]:∣∣∣∣
∫

[0,1]×[0,1]

f(x, y)d(µL(x)× µL(y))

∣∣∣∣ < ∞.

Therefore, ∣∣∣∣
∫ 1

0

g(x)dx

∣∣∣∣ < ∞.

That is g is Lebesgue (Riemann) integrable over [0, 1]. ¥

Problem 127
Let (X, M, µ) be a complete measure space and let f be a non-negative integrable
function on X. Let b(t) = µ{x ∈ X : f(x) ≥ t}. Show that

∫

X

fdµ =

∫ ∞

0

b(t)dt.

Solution
Define F : [0,∞)×X → R by

F (t, x) =

{
1 if 0 ≤ t ≤ f(x)

0 if t > f(x).

www.MATHVN.com - Anh Quang Le, PhD

www.MathVn.com - Math Vietnam



147

If Et = {x ∈ X : f(x) ≥ t}, then F (t, x) = 1Et(x). We have

∫ ∞

0

F (t, x)dt =

∫ f(x)

0

F (t, x)dt +

∫ ∞

f(x)

F (t, x)dt = f(x) + 0 = f(x).

By Fubini’s theorem we have

∫

X

fdµ =

∫

X

(∫ f(x)

0

dt

)
dx

=

∫

X

(∫ ∞

0

F (t, x)dt

)
dx

=

∫ ∞

0

(∫

X

F (t, x)dx

)
dt

=

∫ ∞

0

(∫

X

1Et(x)dx

)
dt

=

∫ ∞

0

b(t)dt. (since µ(Et) = b(t) ). ¥

Problem 128
Consider the function u : [0, 1]× [0, 1] → R defined by

u(x, y) =

{
x2−y2

(x2+y2)2
for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

(a) Calculate

∫ 1

0

(∫ 1

0

u(x, y)dy

)
dx and

∫ 1

0

(∫ 1

0

u(x, y)dx

)
dy.

Observation?
(b) Check your observation by using polar coordinates to show that

∫∫

D

|u(x, y)|dxdy = ∞,

that is, u is not integrable. Here D is the unit disk.

Answer.
(a) π

4
and −π

4
.
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Problem 129
Let

I[0, 1], R+ = [0,∞),

f(u, v) =
1

1 + u2v2
,

g(x, y, t) = f(x, t)f(y, t), (x, y, t) ∈ I × I × R+ := J.

(a) Show that g is integrable on J (equipped with Lebesgue measure). Using
Tonelli’s theorem on R+ × I × I show that

A =:

∫

J

gdtdxdy =

∫

R+

(
arctan t

t

)2

dt.

(b) Using Tonelli’s theorem on I × I × R+ show that

A =
π

2

∫

I×I

1

x + y
dxdy.

(c) Using Tonelli’s theorem again show that A = π ln 2.

Solution
(a) It is clear that g is continuous on R3, so measurable. Using Tonelli’s theorem on
R+ × I × I we have

A =

∫

R+

(∫

I×I

f(x, t)f(y, t)dxdy

)
dt

=

∫

R+

(∫

I

f(x, t)

(∫

I

f(y, t)dy

)
dx

)
dt

=

∫

R+

((∫

I

1

1 + x2t2
dx

)(∫

I

1

1 + y2t2
dy

))
dt

=

∫

R+

(∫

I

1

1 + x2t2
dx

)2

dt

=

∫

R+

(
arctan t

t

)2

dt.

Note that for all t ∈ R+, 0 < arctan t < π
2

and arctan t ∼ t as t → 0, so

A =

∫

R+

(
arctan t

t

)2

dt < ∞.
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Thus g is integrable on J .

(b) We first decompose g(x, y, t) = f(x, t)f(y, t) into simple elements:

g(x, y, t) = f(x, t)f(y, t) =
1

1 + x2t2
.

1

1 + y2t2

=
1

x2 − y2

[
x2

1 + x2t2
− y2

1 + y2t2

]
.

Using Tonelli’s theorem on I × I × R+ we have

A =

∫

I×I

(∫

R+

1

x2 − y2

[
x2

1 + x2t2
− y2

1 + y2t2

]
dt

)
dxdy

=

∫

I×I

1

x2 − y2

(∫

R+

[
x

1 + s2
− y

1 + s2

]
ds

)
dxdy

=

∫

I×I

1

x + y

(∫ ∞

0

ds

1 + s2

)
dxdy

=
π

2

∫

I×I

1

x + y
dxdy.

(c) Using (b) and using Tonelli’s theorem again we get

A =
π

2

∫ 1

0

(∫ 1

0

1

x + y
dy

)
dx

=
π

2

∫ 1

0

[ln(x + 1)− ln x]dx

=
π

2
[(x + 1) ln(x + 1)− x ln x]x=1

x=0 = π ln 2. ¥
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Chapter 12

Some More Real Analysis
Problems

Problem 130
Let (X,M, µ) be a measure space where the measure µ is positive. Consider a
sequence (An)n∈N in M such that

∞∑
n=1

µ(An) < ∞.

Prove that

µ

( ∞⋂
n=1

⋃

k≥n

Ak

)
= 0.

Hint:
Let Bn =

⋃
k≥n Ak. Then (Bn) is a decreasing sequence in M with

µ(B1) =
∞∑

n=1

µ(An) < ∞.

Problem 131
Let (X,M, µ) be a measure space where the measure µ is positive.
Prove that (X,M, µ) is σ-finite if and only if there exists a function f ∈ L1(X)
and f(x) > 0, ∀x ∈ X.

151
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Hint:
• Consider the function

f(x) =
∞∑

n=1

1Xn
(x)

2n
[
µ(Xn) + 1

] .

It is clear that f(x) > 0, ∀x ∈ X. Just show that f is integrable on X.

• Conversely, suppose that there exists f ∈ L1(X) and f(x) > 0, ∀x ∈ X. For every n ∈ N set

Xn =
{

x ∈ X : f(x) >
1

n + 1

}
.

Show that ∞⋃
n=1

Xn = X and µ(Xn) ≤ (n + 1)
∫

X

fdµ.

Problem 132
Let (X,M, µ) be a measure space where the measure µ is positive. Let f : X →
R+ be a measurable function such that

∫
X

fdµ < ∞.
(a) Let N = {x ∈ X : f(x) = ∞}. Show that N ∈M and µ(N) = 0.
(b) Given any ε > 0, show that there exists α > 0 such that

∫

E

fdµ < ε for any E ∈M with µ(E) ≤ α.

Hint:
(a) N = f−1({∞}) and {∞} is closed.
For every n ∈ N, n1N ≤ f .

(b) Write

0 ≤
∫

E

fdµ =
∫

E∩Nc

fdµ.

For every n ∈ N set gn := f1f>nf1Nc . Show that gn(x) → 0 for all x ∈ X.

Problem 133
Let ε > 0 be arbitrary. Construct an open set Ω ⊂ R which is dense in R and
such that µL(Ω) < ε.

Hint:
Write Q = {x1, x2, ...}. For each n ∈ N let

In :=
(
xn − ε

2n+2
, xn +

ε

2n+2

)
.
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Then the In’s are open and Ω :=
⋃∞

n=1 In ⊃ Q.

Problem 134
Let (X,M, µ) be a measure space. Suppose µ is positive and µ(X) = 1 (so
(X,M, µ) is a probability space). Consider the family

T := {A ∈M : µ(A) = 0 or µ(A) = 1}.

Show that T is a σ-algebra.

Hint:
Let (An)n∈N ⊂M. Let A =

⋃
n∈NAn.

If µ(A) = 0, then A ∈ T .
If µ(An0) = 1 for some n0 ∈ N, then

1 = µ(An0) ≤ µ(A) ≤ µ(X) = 1.

Problem 135
For every n ∈ N, consider the functions fn and gn defined on R by

fn(x) =
nα

(|x|+ n)β
where α, β ∈ R and β > 1

gn(x) = nγe−n|x| where γ ∈ R.

(a) Show that fn ∈ Lp(R) and compute ‖fn‖p for 1 ≤ p ≤ ∞.
(b) Show that gn ∈ Lp(R) and compute ‖gn‖p for 1 ≤ p ≤ ∞.
(c) Use (a) and (b) to show that, for 1 ≤ p < q ≤ ∞, the topologies induced on
Lp ∩ Lq by Lp and Lq are not comparable.

Hint:
(a)
• For 1 ≤ p < ∞ we have

‖fn‖p = 2
1
p (βp− 1)−

1
p nα−β+ 1

p .

• For p = ∞ we have
‖fn‖∞ = lim

p→∞
‖fn‖p = nα−β .

(b)
• For p = ∞ we have

‖gn‖∞ = nγ .
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• For 1 ≤ p < ∞ we have
‖gn‖p = 2

1
p nγ− 1

p p−
1
p .

(c) If the topologies induced on Lp ∩Lq by Lp and Lq are comparable, then, for ϕn ∈ Lp ∩Lq, we
must have

(∗) lim
n→∞

‖ϕn‖p = 0 =⇒ lim
n→∞

‖ϕn‖q = 0.

Find an example which shows that the above assumption is not true. For example:

ϕn = n−γ+ 1
q gn.

Problem 136
(a) Show that any non-empty open set in Rn has strictly positive Lebesgue mea-
sure.
(b) Is the assertion in (a) true for closed sets in Rn?

Hint:
(a) For any ε > 0, consider the open ball in Rn

B2ε(0) =
{
x = (x1, .., xn) : x2

1 + ... + x2
n < 4ε2

}
.

For each n ∈ R, let In(0) :=
[
− ε√

n
, ε√

k

)
. Show that

Iε(0) := In(0)× ...× In(0)︸ ︷︷ ︸
n

⊂ B2ε(0).

(b) No.

Problem 137
(a) Construct an open and unbounded set in R with finite and strictly positive Lebesgue mea-
sure.
(b) Construct an open, unbounded and connected set in R2 with finite and strictly positive
Lebesgue measure.
(c) Can we find an open, unbounded and connected set in R with finite and strictly positive
Lebesgue measure?

Hint:
(a) For each k = 0, 1, 2, ... let

Ik =
(

k − 1
2k

, k +
1
2k

)
.
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Then show that I =
⋃∞

k=0 Ik satisfies the question.
(b) For each k = 1, 2, ... let

Bk =
(
− 1

2k
,

1
2k

)
× (−k, k).

Then show that B =
⋃∞

k=0 Bk satisfies the question.
(c) No. Why?

Problem 138
Given a measure space (X,A, µ). A sequence (fn) of real-valued measurable
functions on a set D ∈ A is said to be a Cauchy sequence in measure if given
any ε > 0, there is an N such that for all n,m ≥ N we have

µ{x : |fn(x)− fm(x)| ≥ ε} < ε.

(a) Show that if fn
µ−→ f on D, then (fn) is a Cauchy sequence in measure on D.

(b) Show that if (fn) is a Cauchy sequence in measure, then there is a function
f to which the sequence (fn) converges in measure.

Hint:
(a) For any ε > 0, there exists N > 0 such that for n,m ≥ N we have

µ{D : |fm − fn| ≥ ε} ≤ µ
{
D : |fm − f | ≥ ε

2
}

+ µ
{
D : |fn − f | ≥ ε

2
}
.

(b) By definition,

for δ =
1
2
, ∃n1 ∈ N : µ

{
D : |fn1+p − fn1 | ≥

1
2

}
<

1
2

for all p ∈ N.

In general,

for δ =
1
2k

, ∃nk ∈ N, nk > nk−1 : µ
{

D : |fnk+p − fnk
| ≥ 1

2k

}
<

1
2k

for all p ∈ N.

Since nk+1 = nk + p for some p ∈ N, so we have

µ
{

D : |fnk+1 − fnk
| ≥ 1

2k

}
<

1
2k

for k ∈ N.

Let gk = fnk
. Show that (gk) converges a.e. on D. Let Dc := {x ∈ D : limk→∞ gk(x) ∈ R}.

Define f by f(x) = limk→∞ gk(x) for x ∈ Dc and f(x) = 0 for x ∈ D\Dc. Then show that gk
µ−→ f

on D. Finally show that fn
µ−→ f on D.
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Problem 139
Check whether the following functions are Lebesgue integrable :
(a) u(x) = 1

x
, x ∈ [1,∞).

(b) v(x) = 1√
x
, x ∈ (0, 1].

Hint:
(a) u(x) is NOT Lebesgue integrable on [1,∞).

∫

[1,∞)

u(x)dµL(x) = lim
n→∞

∫
1
x

1[1,n)(x)dµL(x) = lim
n→∞

∫ n

1

1
x

dx.

(b) v(x) is Lebesgue integrable on (0, 1].
We can write

v(x) =
1√
x

, x ∈ (0, 1] =
1√
x

1(0,1](x) = sup
n

1√
x

1[ 1
n ,1](x).

Use the Monotone Convergence Theorem for the sequence
(

1√
x

1[ 1
n ,1]

)
n∈N.
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