
Parallel Computing 108 (2021) 102837

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Measurement and analysis of GPU-accelerated applications with HPCToolkit
Keren Zhou, Laksono Adhianto, Jonathon Anderson, Aaron Cherian, Dejan Grubisic,
Mark Krentel, Yumeng Liu, Xiaozhu Meng, John Mellor-Crummey ∗

Department of Computer Science, Rice University, Houston, TX, United States of America

A R T I C L E I N F O

Keywords:
Supercomputers
High performance computing
Software performance
Performance analysis

A B S T R A C T

To address the challenge of performance analysis on the US DOE’s forthcoming exascale supercomputers,
Rice University has been extending its HPCToolkit performance tools to support measurement and analysis of
GPU-accelerated applications. To help developers understand the performance of accelerated applications as a
whole, HPCToolkit’s measurement and analysis tools attribute metrics to calling contexts that span both CPUs
and GPUs. To measure GPU-accelerated applications efficiently, HPCToolkit employs a novel wait-free data
structure to coordinate monitoring and attribution of GPU performance. To help developers understand the
performance of complex GPU code generated from high-level programming models, HPCToolkit constructs
sophisticated approximations of call path profiles for GPU computations. To support fine-grained analysis
and tuning, HPCToolkit uses PC sampling and instrumentation to measure and attribute GPU performance
metrics to source lines, loops, and inlined code. To supplement fine-grained measurements, HPCToolkit can
measure GPU kernel executions using hardware performance counters. To provide a view of how an execution
evolves over time, HPCToolkit can collect, analyze, and visualize call path traces within and across nodes.
Finally, on NVIDIA GPUs, HPCToolkit can derive and attribute a collection of useful performance metrics
based on measurements using GPU PC samples. We illustrate HPCToolkit’s new capabilities for analyzing
GPU-accelerated applications with several codes developed as part of the Exascale Computing Project.
1. Introduction

In recent years, compute nodes accelerated with Graphics Process-
ing Units (GPUs) have become increasingly common in supercomput-
ers. In June 2020, six of the world’s ten most powerful supercomputers
employ GPUs [1]. Each of the US DOE’s forthcoming exascale systems
Aurora, Frontier, and El Capitan are based on GPU-accelerated compute
nodes.

While GPUs can provide high performance, without careful design
GPU-accelerated applications may underutilize GPU resources by idling
compute units, employing insufficient thread parallelism, or exhibiting
poor data locality. Moreover, while higher-level programming models
such as RAJA [2], Kokkos [3], OpenMP [4], and DPC++ [5] can sim-
plify development of HPC applications, they can increase the difficulty
of tuning GPU kernels (routines compiled for offloading to a GPU) for
high performance by separating developers from many key details, such
as what GPU code is generated and how it will be executed.

To harness the full power of GPU-accelerated nodes, application
developers need tools to identify performance problems. Performance
tools for GPU-accelerated programs employ trace and profile views. A
trace view presents events that happen over time on each process,
thread, and GPU stream. A profile view aggregates performance metrics

∗ Corresponding author.
E-mail address: johnmc@rice.edu (J. Mellor-Crummey).

over the time dimension. Most performance tools that support GPUs [6–
14] only provide trace and profile views with the name of each GPU
kernel. For large-scale GPU-accelerated applications, it is often difficult
to understand how performance problems arise without associating
the cost of GPU kernels with their CPU calling contexts. Manually
associating the performance of GPU kernels with their CPU calling
contexts is difficult when a kernel is called from many contexts or when
the name of a kernel is the result of a C++ template instantiation.

Since 2015, NVIDIA GPUs support fine-grained measurement of
GPU performance using Program Counter (PC) sampling [15]. Intel’s
GT-Pin [16] and NVIDIA’s NVBit [17] provide APIs to instrument
GPU machine code to collect fine-grained metrics. While tools such as
MAP [8], nvprof [14], Nsight-compute [13], TAU [7], and VTune [11]
use PC sampling or instrumentation to associate fine-grained metrics
with individual source lines for GPU code, they do not associate metrics
with loop nests or calling contexts for GPU device functions, which
are important to understand the performance of complex GPU kernels.
For example, a template-based dot product kernel in the RAJA perfor-
mance suite [18] yields 25 different GPU functions that implement the
computation.
vailable online 11 September 2021
167-8191/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2021.102837
Received 30 October 2020; Received in revised form 4 August 2021; Accepted 1 Se
ptember 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:johnmc@rice.edu
https://doi.org/10.1016/j.parco.2021.102837
https://doi.org/10.1016/j.parco.2021.102837
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102837&domain=pdf


Parallel Computing 108 (2021) 102837K. Zhou et al.

C
m
f
h

r
H
d
l
b
g
S
m
H
C
o

2

b
t
a
e
t
t
a
t
k
t
K
m
c
a
e
G
i

s
p
p

a
b
t
i
o

m
l
a
i
a

a
t

To address these challenges, we are extending Rice University’s
HPCToolkit performance tools [19] to support scalable measurement
and analysis of GPU-accelerated applications running on NVIDIA, AMD,
and Intel GPUs. HPCToolkit collects call path profiles and presents
them with a graphical user interface that provides both profile and
trace views. After our initial extensions to support GPU-accelerated
programs, HPCToolkit has the following capabilities:

• It uses a GPU-independent measurement framework to monitor
and attribute performance of GPU code.

• It employs wait-free queues for efficient coordination between
application, runtime, and tool threads.

• It supports measurement and attribution of fine-grained metrics
using PC sampling and instrumentation.

• It employs compact sparse representations of performance metrics
to support efficient collection, storage, and inspection of perfor-
mance metrics within and across processes, threads, and GPU
streams.

• It employs a combination of distributed-memory parallelism and
multithreading to aggregate global performance metrics across a
large number of profiles.

• It provides useful information to guide performance optimization,
including heterogeneous calling contexts, derived metrics, and
idleness analysis.

We present some early experiences with codes from the Exascale
omputing Project to illustrate HPCToolkit’s attribution of fine-grained
easurements to heterogeneous calling contexts on multiple GPU plat-

orms and its capability to measure and analyze executions across
undreds of GPUs.

This rest of the paper is organized as follows. Section 2 reviews
elated work and highlights HPCToolkit’s features. Section 3 describes
PCToolkit’s workflow for GPU-accelerated applications. Section 4
escribes the design of HPCToolkit’s measurement framework for col-
ecting GPU performance metrics. Section 5 discusses analysis of GPU
inaries for performance attribution. Section 6 presents scalable al-
orithms for aggregating performance data from parallel programs.
ection 7 describes HPCToolkit’s profile and trace views for analyzing
easurements of GPU-accelerated applications. Section 8 illustrates
PCToolkit’s capabilities with views of several codes from the Exascale
omputing Project. Section 9 reflects on our experiences and briefly
utlines some future plans.

. Related work

Developing performance tools for GPU-accelerated applications has
een the focus of considerable past and ongoing work. NVIDIA provides
ools [12–14] to present a trace view of GPU kernel invocations and

profile view for individual kernels. Intel’s VTune [11] monitors
xecutions on both CPUs and GPUs. AMD provides ROCProfiler [20]
o monitor GPU-accelerated applications. In addition, a collection of
hird-party performance tools have been developed for GPU-accelerated
pplications. Malony et al. [21] describe early tools for collecting kernel
imings and hardware counter measurements for CUDA and OpenCL
ernels. Welton and Miller [22] investigated hidden performance issues
hat impact several HPC applications but are not reported by tool APIs.
ousha et al. [23] developed a tool for monitoring communications on
ultiple GPUs. Unlike the aforementioned tools, HPCToolkit collects

all path profiles and shows calling context information in both trace
nd profile views. Early work on HPCToolkit [24] describes using GPU
vents and hardware counters for kernel-level monitoring on NVIDIA
PUs to compute profiles that blame CPU code for associated GPU

dleness.
With the increased complexity of GPU kernels, fine-grained mea-

urement of performance metrics within GPU kernels are critical for
roviding optimization insights. At present, only NVIDIA GPUs sup-
2

ort using PC sampling [15] to collect fine-grained instruction stall f
information. NVIDIA’s nsight-compute collects data using PC sampling
and provides performance information at the GPU kernel level. CUDA-
Blamer [25] was a proof-of-concept prototype that collects PC samples
and reconstructs static call paths on GPUs with information from LLVM-
IR. Unlike CUDABlamer, HPCToolkit reconstructs GPU calling context
trees by analyzing GPU binaries and distributes costs of GPU functions
based on PC sample counts.

Several vendor tools support instrumentation of GPU kernels.
NVIDIA’s NVBit [17] and Sanitizer API [26], as well as Intel’s GT-
Pin [16] provide callback APIs to inject instrumentation into GPU
machine code. Tools can use these APIs to collect fine-grained metrics.
For example, Goroshov et al. [27] use instrumentation to measure basic
block latency and detect hot code regions. GVProf [28] instruments
GPU memory instructions to profile value redundancies. In HPCToolkit,
we use GT-Pin to measure instruction counts within GPU kernels.

Scalable analysis of performance measurements will be critical for
gaining insight into executions on forthcoming exascale platforms.
NVIDIA’s NVProf [14] and Intel’s VTune [11] record measurements
as traces. To our knowledge, these tools lack support for scalable
analysis of measurement data. Scalasca, TAU [7], and Vampir [6]
present data gathered by the Score-P measurement infrastructure [29].
At execution finalization, Score-P aggregates profile data in parallel
into the CUBE storage format. To date, there has only been a pre-
liminary study exploring the addition of sparsity to CUBE [30]; for
GPU-accelerated applications, sparsity is essential. MAP [8] selects a
user-defined subset of collected samples at runtime to limit the amount
of measurement data collected per thread. This is effective for scalable
overview analysis, however this does not retain sufficient data for
in-depth analyses.

Past research has used trace analysis to identify performance bot-
tlenecks within and across compute nodes. Wei et al. [31] describe a
framework that diagnoses scalability losses in programs using multiple
MPI processes and CPU threads. Choi et al. [32] analyze traces from
simulators to estimate performance on GPU clusters. Schmitt et al. [33]
use Vampir [6]’s instrumentation of MPI primitives to gather com-
munication traces. From these traces, they construct a dependency
graph and explore dependencies between communication events and
GPU computations. Unlike other tracing tools, HPCToolkit gathers CPU
traces using sampling rather than instrumentation, which has much
lower overhead.

3. Overview

Fig. 1 shows HPCToolkit’s workflow to analyze programs running
on GPUs. HPCToolkit’s hpcrun measurement tool collects GPU perfor-
mance metrics using profiling APIs from GPU vendors or custom hooks
with LD_PRELOAD. hpcrun can measure programs that employ one or
more GPU programming models, including OpenMP, OpenACC, CUDA,
HIP, OpenCL, and DPC++. As GPU binaries are loaded into memory,
hpcrun records them for later analysis. For GPUs that provide APIs
for fine-grained measurement, hpcrun can collect instruction-level char-
cterizations of GPU kernels using hardware support for sampling or
inary instrumentation. hpcrun’s output includes profiles and optionally
races. Each profile contains a calling context tree in which each node
s associated with a set of metrics. Each trace file contains a sequence
f events on a CPU thread or a GPU stream with their timestamps.
hpcstruct analyzes CPU and GPU binaries to recover static infor-

ation about procedures, inlined functions, loop nests, and source
ines. There are two aspects to this analysis: (1) recovering information
bout line mappings and inlining from compiler-recorded information
n binaries, and (2) analyzing machine code to recover information
bout loops.
hpcprof and hpcprof-mpi correlate performance metrics for GPU-

ccelerated code with program structure. hpcprof employs a multi-
hreaded streaming aggregation algorithm to quickly aggregate pro-

iles, reconstruct a global calling context tree, and relate measurements



Parallel Computing 108 (2021) 102837K. Zhou et al.

a
c
e
l

s
m
I
a
s
t
c

4

c
t
a
t
h
d
c
m
H
d
s
p
c

4

a
t
p

o
t
p

a
c
a
t
m

o
q

t
i
f
a
t
c

t
t
A
p
n
o
a
m
i
p
m
q
t

o
e
a

i

r
b
e
i
n
b
u

4

i
T
g
s
m

o
i
t
i
c
r

Fig. 1. HPCToolkit’s workflow for analysis of GPU-accelerated applications.

ssociated with machine instructions back to CPU and GPU source
ode. To accelerate analysis of performance data from extreme-scale
xecutions, hpcprof-mpi additionally employs distributed-memory paral-
elism for greater scalability. Both hpcprof and hpcprof-mpi write sparse

representations of their analysis results in a database.
Finally, hpcviewer interprets and visualizes the database. In its pro-

file view, hpcviewer presents a heterogeneous calling context tree that
pans both CPU and GPU contexts, annotated with measured or derived
etrics to help users assess code performance and identify bottlenecks.

n its trace view, hpcviewer identifies each CPU or GPU trace line with
tuple of metadata about the hardware (e.g., node, core, GPU) and

oftware constructs (e.g., rank, thread, GPU stream) associated with the
race. Automated analysis of traces can attribute GPU idleness to CPU
ode.

. Performance measurement on GPUs

HPCToolkit’s hpcrun collects GPU performance metrics and asso-
iates them with calling context at every GPU API invocation. Sec-
ion 4.1 describes HPCToolkit’s unified infrastructure for collecting and
ttributing performance metrics on AMD, Intel, and NVIDIA GPUs. Sec-
ion 4.2 describes how HPCToolkit collects fine-grained metrics using
ardware instruction sampling or binary instrumentation. Section 4.3
escribes support for measuring GPU kernel executions with hardware
ounters. Section 4.4 describes how HPCToolkit employs performance
easurement substrates from GPU vendors. Section 4.5 describes how
PCToolkit collects metrics at runtime and computes derived metrics
uring post-mortem analysis. Section 4.6 describes HPCToolkit’s use of
parse representations of performance metrics at runtime and as the
roducts of post-mortem analysis. Section 4.7 explains the utility of
ombining measurements from multiple runs.

.1. Infrastructure

Fig. 2 illustrates how hpcrun monitors the execution of GPU-
ccelerated applications. As application threads offload computations
o GPUs, HPCToolkit employs a GPU monitor thread to asynchronously
rocess measurement data from the GPUs. If tracing is enabled, hpcrun

creates one or more tracing threads to record an activity trace for each
GPU stream.

When an application thread performs an invocation  of a GPU
peration (e.g., a kernel or a data copy), hpcrun unwinds the application
hread’s call stack to determine the CPU calling context of , inserts a
laceholder  representing the operation in that context, communicates
and  it to the monitor thread, and initiates the GPU operation

fter tagging it with . The monitor thread collects measurements
onsisting of one or more GPU activities 1,… ,𝑛 associated with 
nd sends them back to the application thread for attribution below 
o form a heterogeneous calling context. When tracing is enabled, the
onitor thread separates GPU activities by their associated stream and
3

sends each stream of activities to a tracing thread. Each tracing thread
records one or more GPU streams of activities and their timestamps
into trace files. For efficient inter-thread communication, HPCToolkit
uses bidirectional channels, each consisting of a pair of wait-free single-
producer and single-consumer queues [34]. The precise instantiation of
HPCToolkit’s monitoring infrastructure is tailored to each GPU vendor’s
software for monitoring GPU computations.

When using NVIDIA’s CUPTI [35] and AMD’s ROCTracer [36] li-
braries for monitoring GPU activities, a monitor thread created by
these libraries receives measurements of GPU activities via a buffer
completion callback. Each application thread  shares two channels
with the GPU monitor thread, including an activity channel , from
which  receives information about GPU activities associated with
perations it invoked, and an operation channel  on which  en-
ueues GPU operation tuples of (, ,), representing an invocation
, its associated placeholder  , and its activity channel . Every

ime the GPU monitor thread receives a buffer completion callback,
t drains its incident operation channels prior to processing a buffer
ull of GPU activities. The GPU monitor thread matches each GPU
ctivity , tagged with its invocation , with its associated operation
uple (, ,). The monitor thread enqueues a pair (,) into activity
hannel  to attribute the GPU activity back to  .

When using OpenCL [37] and Level Zero [38], depending upon
he GPU operation invoked, either an application thread or a runtime
hread will receive a completion callback providing measurement data.
t each GPU API invocation  by an application thread  , hpcrun
rovides a user_data parameter [39], which includes a placeholder
ode  for the invocation ) and  ’s activity channel . The OpenCL
r Level Zero runtime will pass user_data to the completion callback
ssociated with . At each completion callback, some thread receives
easurement data about a GPU activity . Using information from

ts user_data argument, the completion callback correlates  with
laceholder  and then enqueues an operation of (, ,) for the
onitor thread in its operation channel . The monitor thread en-

ueues an (,) pair in  ’s activity channel . If the thread receiving
he callback enqueued (,) pairs directly into  ’s activity channel
,  would need to be a multi-producer queue since more than
ne thread may receive completion callbacks for  . Our design, which
mploys a GPU monitor thread created by hpcrun, replaces the need for
multi-producer queue with several wait-free single producer queues.

When tracing is enabled, the monitor thread checks the GPU stream
d  of each GPU activity and enqueues the activity and its placeholder

into a trace channel for . One or more tracing threads handle the
ecording of traces. Each tracing thread handles a set of trace channels
y polling each channel periodically and processing its activities. For
ach activity in a trace channel for stream , the tracing thread records
ts timestamp and placeholder in a trace file for . Depending on the
umber of application threads used, the number of tracing threads can
e adjusted by users to balance tracing efficiency with tool resource
tilization.

.2. Fine-grained performance measurement

On NVIDIA GPUs, HPCToolkit uses PC sampling to monitor both
nstruction execution and stalls in GPU kernels. On Intel GPUs, HPC-
oolkit uses Intel’s GT-Pin to instrument GPU kernels to collect fine-
rain, instruction-level measurements. AMD GPUs currently do not
upport either instrumentation-based or hardware-based fine-grained
easurement.

If PC sampling is used, the monitor thread receives a buffer full
f PC samples in a completion callback. Each PC sample for a kernel
ncludes an instruction address, a stall reason, and a count of the
imes the instruction was observed. The monitor thread enqueues an
nstruction measurement record into the activity channel of the appli-
ation thread that launched the kernel. When an application thread
eceives an instruction measurement record, it creates a node in its



Parallel Computing 108 (2021) 102837K. Zhou et al.
Fig. 2. HPCToolkit’s infrastructure for coordinating application threads, monitor thread, and tracing threads.
calling context tree representing the GPU instruction as a child of the
placeholder node for the corresponding kernel invocation.

If instrumentation is used, when a GPU binary is loaded, HPCToolkit
injects code into each GPU kernel to collect measurements. Measure-
ment data is collected on a GPU and provided to HPCToolkit in a
completion callback. On Intel GPUs, HPCToolkit instruments a GPU
kernel to count the execution frequency of each basic block. In a com-
pletion callback following kernel execution, HPCToolkit iterates over
each basic block and propagates its execution count to each instruction
in the block. Information about each instruction and its count is sent
to the monitor thread in an operation channel. The monitor thread
passes the information back to the application thread that launched the
kernel using an activity channel. The application thread processes the
instruction measurement like a PC sample.

4.3. Measuring performance with hardware counters

HPCToolkit uses hardware performance counters to observe how
an application interacts with an accelerated compute node. CPUs and
GPUs each provide a collection of programmable hardware counters
that can be configured to measure device metrics (e.g., temperature
and power), functional unit utilization, memory hierarchy activity,
inefficiency, and more.

On CPUs, HPCToolkit uses the Linux perf_event interface [40]
to configure hardware counters with events and thresholds. HPCToolkit
unwinds the call stack to attribute a metric to a call path each time a
counter reaches a specified threshold. With appropriately chosen event
thresholds, such measurement has low overhead.

On GPUs, HPCToolkit uses the University of Tennessee’s PAPI [41]
as a vendor-independent interface to measure GPU activity using hard-
ware counters. PAPI supports hardware counter-based measurement
on NVIDIA, AMD, and Intel GPUs. At present, the only way tools can
associate hardware counter measurements with individual GPU kernels
using existing vendor APIs is to serialize kernels and read data from
counters before and after kernel execution. Serializing kernels may both
slow execution and alter execution behavior.

4.4. Interaction with measurement substrates

While developing HPCToolkit’s GPU measurement infrastructure,
we encountered a few problems using each vendor’s measurement
substrate(s). This section describes some the difficulties encountered
and how they were handled.

Each GPU vendor and/or runtime system provides different levels
of monitoring support. NVIDIA’s CUPTI [35] supports both coarse-
grained and fine-grained measurements for CUDA programs. AMD’s
ROCTracer [36] only supports coarse-grained measurements for HIP
4

programs. Both of these monitoring frameworks enable a tool to reg-
ister a callback function that will be invoked at every GPU API in-
vocation. These callbacks can be used to gather information about
an invocation, such as its calling context. Intel’s GT-Pin enables tools
to add instrumentation for fine-grained measurement of GPU kernels;
however, neither its OpenCL [37] or Level Zero [38] runtimes provide
APIs for collecting coarse-grained metrics. As a result, HPCToolkit
wraps Intel’s OpenCL and Level Zero APIs using LD_PRELOAD to
collect custom information in each API wrapper. Wrapping APIs is
sensitive to changes in APIs as the runtimes evolve (interfaces in Level
Zero have changed over the last few months) and may not provide
access to all information of interest, e.g., implicit data movement
associated with kernel arguments in OpenCL.

As a GPU program executes, vendor runtime and/or tool APIs
typically create helper threads. For example, if PC sampling is used,
CUPTI creates a short-lived helper thread each time the application
launches a kernel. Thus, in a large-scale execution that launches kernels
millions of times, CUPTI will create millions of short-lived threads.
Similarly, several components in AMD’s software stack create threads,
including the HIP runtime, ROCm debug library, and ROCTracer. To
reduce monitoring overhead, HPCToolkit wraps pthread_create to
check if a thread is created by a GPU runtime or its tool library. If yes,
HPCToolkit avoids monitoring the thread.

In CUPTI and ROCTracer, a single helper thread in each process
handles GPU measurement data using the buffer completion callback.
However, for OpenCL and Level Zero, an event completion callback
may be asynchronous, as described for OpenCL [39]. Hence, it is
hpcrun’s responsibility to ensure that callbacks gather and report in-
formation in a thread-safe fashion. To avoid races reporting data back
to an application thread, hpcrun first delivers measurement data from
the thread that receives the callback, which might be the application
thread, to a monitoring thread using a point-to-point operation channel
between the threads. The monitoring thread then delivers measure-
ment data back to the proper application thread using a point-to-point
activity channel.

While CUPTI and ROCTracer typically order activities within each
stream, the order in which GPU activities are reported is undefined for
OpenCL [39]. On Power9 CPUs, we have even observed overlapping
intervals on a stream using CUPTI. Rather than taking extreme mea-
sures to order each stream’s activities in hpcrun, we simply record each
stream into a trace file and note if any activity is added out of order.
If so, HPCToolkit sorts the trace stream to correct the order during

post-mortem analysis.



Parallel Computing 108 (2021) 102837K. Zhou et al.

i
c
h
t

s
r
v
m
t
c
A
c
r

4

o
o
o
m
w
G
m
a
w

i
C
a
e
n
i
t

a
a
a
C

w
T

4.5. Measuring and computing metrics

As a GPU-accelerated program executes, HPCToolkit collects per-
formance metrics and associates them with heterogeneous calling con-
texts. HPCToolkit supports several strategies for measuring and com-
puting metrics. A raw CPU or GPU metric for a heterogeneous calling
context in an application thread is simply the sum of all measured
values of a specific kind associated with that context. For instance,
raw metrics for GPU data copies associated with a context include the
operation count, total bytes copied, and total copy time.

To facilitate analysis, HPCToolkit also computes two types of de-
rived metrics. The first type of derived metrics is computed during post-
mortem analysis by HPCToolkit’s hpcprof. Built-in derived metrics for
combining metrics from different thread profiles during post-mortem
analysis include sum, min, mean, max, std. deviation, and coefficient of
variation. With the exception of sum, these metrics can provide insight
nto imbalances across threads. The second type of derived metrics is
omputed in HPCToolkit’s hpcviewer user interface. HPCToolkit uses
pcviewer to compute GPU metrics including GPU utilization and GPU
heoretical occupancy.

Computing some GPU metrics requires a bit of creativity. For in-
tance, NVIDIA’s CUPTI reports static information about a kernel’s
esource consumption (e.g., registers used) each time a kernel is in-
oked. To avoid the need for a special mechanism for collecting such
etrics, HCToolkit simply records raw metrics such as the sum of

he count of registers used over all kernel invocations in a particular
alling context and the count of kernel invocations in that context.
fter summing these raw metrics over threads and MPI ranks, hpcviewer
omputes the ratio of these two values to recover the number of
egisters used.

.6. Sparse representation of metrics

hpcrun maintains a Calling Context Tree (CCT) for each CPU thread
r GPU stream it measures. In a CCT, each node represents the address
f a machine instruction in a CPU or GPU binary as a (load module,
ffset) pair. When a CCT node is allocated, it receives a companion
etrics array to store associated performance metrics. In HPCToolkit,
ell over 100 metrics can be measured; some for CPUs and some for
PUs. When measuring the performance of GPU-accelerated programs,
any CCT nodes have CPU metrics only; all of their many GPU metrics

re zero. Storing zero values for all unused metrics at a CCT node would
aste considerable memory.

To reduce storage during measurement, hpcrun partitions metrics
nto kinds, such as GPU kernel info kind, GPU instruction stall kind, and
PU time kind. Each CCT node is associated with a metric kind list,
nd each metric kind represents an array of one or more metrics. For
xample, when measuring an execution with PC sampling, the CCT
ode representing a GPU kernel has GPU kernel info kind and GPU
nstruction sampling info kind. The kernel kind includes kernel running
ime, register usage, and shared memory usage, among others.

Fig. 3(a) illustrates the sparse representation of metrics associ-
ted with CCT nodes as hpcrun measures the performance of a GPU-
ccelerated application. In the figure, each CCT node is categorized as
CPU node, a GPU API node, or GPU instruction node. Each type of
CT node is associated with different metric kinds.

In addition to representing metrics sparsely in memory, hpcrun also
rites profiles to the file system using a sparse format to save space.
he output format of each profile file has the following sections.

• A Load Modules section that contains all the libraries loaded in
execution.

• A CCT section that depicts the structure of a CCT, including each
node’s module id, offset, and parent fields.

• A Metrics section that contains the index and name of each
5

performance metric, as well as some properties.
Fig. 3. hpcrun’s sparse representation of a CCT and its metrics in memory and on the
disk.

• A Metric Values section and a CCT Metric Values section that
indicates the metric values associated with each CCT node.

To generate the Metric Values, hpcrun iterates through the metrics
kind list of each CCT node, counts the number of non-zero metrics 𝑁 ,
and records their values. In the CCT Metric Values section, a CCT node
with an index range [𝐼,𝑁) indicates that it has metrics in the Metric
Value section at positions from 𝐼 to 𝐼 + 𝑁 − 1. Profiles produced by
hpcrun employ this scheme to represent only non-zero metrics.

Fig. 3(b) illustrates the sparse representation of metrics in hpcrun’s
output files. In the CCT Metric Values section of the figure, node 7 has
three metrics—metric index 5, metric index 6, and metric index 7. We
locate metric index 5’s value (2) by at index (5) in the CCT Metric
Values section. Further, we can retrive the metrics’s name (Total Stall)
by looking up its metric id (0) in the Metrics section.

4.7. Minimizing measurement errors

There are many ways that HPCToolkit can measure the performance
of a GPU-accelerated application: sampling on the CPU using timers or
hardware counters, reading GPU hardware counters before and after
GPU operations, profiling and/or tracing timings of GPU operations,
and using PC sampling or instrumentation to collect fine-grained mea-
surements of GPU kernels. Performing all of these measurements in a
single execution is unwise. For instance, fine-grained instrumentation
of GPU kernels can distort GPU profiles and traces recorded in the same
execution. To minimize the distortion in measurements, it is best to
collect each kind of measurements in a separate run, if one can afford



Parallel Computing 108 (2021) 102837K. Zhou et al.

d
l

a
N
e
r
d

i
s
a
a
p
n
f
m
b

s
d
h
t
d

l
U
R
W
G
h
i
c
i

a
w
b
a
a

a

h

6

o
G
b

s
e
f
a
a
c

6

f
s
s
t
e
m
i
t
g

m
t
c
T
t
s
g
t
‘
d
i

o
l
m
m
p
r
s

a
p
o
s
r

a
c
e
(
i
l
a
t
m
o
c
v
p
w
M

e
c
c

multiple runs. HPCToolkit’s post-mortem analysis can combine perfor-
mance measurements from multiple runs to produce a comprehensive
representation of an application’s performance.

5. Program structure recovery

Relating performance metrics associated with a node in a calling
context tree to source code requires understanding the mapping from
machine instructions to source lines, loops, functions, and inlined
code. HPCToolkit’s hpcstruct analyzes both CPU and GPU binaries to
etermine this mapping. This strategy works for any statically-compiled
anguage, including C, C++, and Fortran.

Binaries for GPU-accelerated applications are rather unusual. A host
pplication typically has GPU binaries embedded within. Furthermore,
VIDIA and Intel GPU binaries are unlike any CPU binaries we have
ver seen. While each of the GPU vendors rely in part on ELF rep-
esentations for GPU code, their formats for GPU binaries are quite
ifferent.

NVIDIA’s GPU binaries sometimes have device functions embedded
nside a global GPU function. Each function is in a separate text
egment and all functions start with offset 0 in its symbol table. To
id measurement and analysis, we relocate each function to a unique
ddress—its offset in the binary’s section table. We split any overlap-
ing GPU functions into disjoint address ranges. Then we use NVIDIA’s
vdisasm binary tool to analyze GPU machine code and dump a control
low graph for each function in a binary. Because nvdisasm renders
erged basic blocks in control flow graphs, we split superblocks into

asic blocks to fit analysis.
Intel’s GPU binaries are embedded in a ‘‘fat’’ binary in which each

ection contains information about a single GPU kernel. At runtime, we
ump the fat binary to the file system. During post-mortem analysis,
pcstruct reads a fat binary, iterates through all kernels, and processes
he ELF binary for each kernel separately. It uses Intel’s IGA API to
ecode each kernel binary to obtain its control flow graph.

AMD’s GPU binaries are also embedded in a ‘‘fat’’ binary. The
ocations of AMD’s GPU binaries inside the fat binary are specified by
niform Resource Identifiers (URIs) reported by ROCm debug API and
OCTracer. AMD’s GPU binary uses a conventional ELF representation.
e use the Dyninst [42] binary analysis framework to decode AMD
PU instructions and construct control flow graphs. The Dyninst team
as developed preliminary support for analyzing AMD GPU binaries,
ncluding support for decoding scalar instructions and resolving direct
ontrol flow; support for decoding vector instructions and resolving
ndirect control flow is a work in progress.

Control flow graphs extracted from Intel and NVIDIA GPU binaries
re converted to a uniform representation and injected into Dyninst,
hich analyzes loop nests they contain. We classify GPU instructions
y their operation types, instruction length, and kind of memory they
ccess. As Dyninst can analyze AMD GPU binaries, the aforementioned
nalyses are performed directly in Dyninst.
hpcstruct uses Dyninst to read DWARF sections in a GPU binary

to attribute instructions to source lines and recover inlined functions.
For AMD, Intel and NVIDIA GPU binaries, it is worth noting their
information about inlined code is not perfect. None of the GPU binaries
provides information about the call site of an inlined function, even
when they are compiled with debug information (e.g.,-lineinfo)
nd optimization (e.g., -O3).

If hpcrun records many GPU binaries at for a complex execution,
pcstruct analyzes GPU binaries in parallel.

. Scalable performance analysis

This section describes our approach to improve the scalability of
ur performance analysis, to handle the additional data gathered from
PU-accelerated applications running at the extreme scales supported
6

y forthcoming systems. Section 6.1 describes our new approach for o
calable performance analysis of measurement data from extreme-scale
xecutions. Section 6.2 presents the structure of the new sparse data
ormat HPCToolkit uses to address the sparsity in measurements and
nalysis results for heterogeneous applications. Section 6.3 describes
n algorithm to reconstruct approximate GPU calling context trees for
omplex GPU kernels.

.1. Streaming aggregation

Forthcoming exascale compute platforms pose significant challenges
or performance tools. Performance issues in applications or system
oftware may only become apparent during executions at very large
cales, requiring performance tools to support measurement of applica-
ions executing on systems with tens of thousands of compute nodes
quipped with multicore processors and GPUs. The aggregation of
easurement data into statistics suitable for human inspection becomes

ncreasingly expensive as the scale of executions increases, requiring
ools to employ well-designed algorithms for data aggregation with
ood scaling to large inputs.

To address these issues, we developed a novel algorithm for perfor-
ance analysis that exploits both process-based (via MPI ranks) and

hread-based parallelism. Exploiting thread-level parallelism reduces
ommunication overheads and the memory footprint during analysis.
he key to our algorithm is to process profiles of individual application
hreads or GPU streams as concurrent parallel tasks, sharing a limited
et of data structures between profiles containing the resulting aggre-
ated values. In effect, we ‘‘stream’’ the input profile data in parallel to
he appropriate destination, retaining only values required for the final
‘aggregation’’ of all inputs, hence the name. Our algorithm then can be
escribed as a sequence of operations applied in parallel on the profile
nputs, as follows:
Input Acquisition: Before any other processing is performed, the set

f input profiles is acquired and initial offsets are prepared to facilitate
ater data reads. A profile contains a tree of call paths and measure-
ents attributed to nodes in call paths as described in Section 4.6, and
ay additionally include an execution trace referencing individual call
aths. These profiles are then distributed evenly across the available
anks, where they continue to be processed in parallel using a dynamic
cheduling algorithm.
Call Path Profile Unification: Once the profiles have been distributed

cross the available ranks, we unify the tree of call paths from each
rofile into a single tree available at the root of a collective reduction
peration. This can be done optimally utilizing a reduction tree of the
ame arity as the number of threads available in each rank 𝑡, as the
ank has sufficient capacity to handle data from 𝑡 children at once.
Calling Context Expansion: As call path nodes are received in parallel

t the root rank, both from allocated profiles and child ranks, calling
ontext nodes are created based on program structure information for
ach instruction in a call path. Basic program structure information
lines and inlined code) can be generated from line map and inlining
nformation recorded in a binary by a compiler. If information about
oops is of interest, then program structure files generated by hpcstruct,
s descried in Section 5, can be imported. Once the unified calling con-
ext tree is fully constructed on the root rank, the complete conversion
apping from call paths nodes to calling contexts is broadcast to all

ther ranks, which use it to construct compatible subsets of the calling
ontext tree represented by their contributions. Compared to our pre-
ious implementation of post-mortem analysis using MPI-everywhere
arallelism, our new implementation has a smaller memory footprint
hen using the same number of cores because multiple threads in each
PI rank share a single copy of the unified calling context tree.
Statistic Generation: At this stage, the measurements present within

ach profile are read in parallel, propagating values up the calling
ontext tree to generate per-thread metrics for every referenced calling
ontext. On each rank these metrics are then composed into a set

f accumulators present on each calling context, which are used to



Parallel Computing 108 (2021) 102837K. Zhou et al.

w
n
t
C
m
c

m
a
t
n
t
e

m
t
t
f
t
h
t
t

t
c
m
r
b
d
a
c
m
m

6

f
c
w
c
f

m
m
a
c

f

Fig. 4. Visualization of Profile Major Sparse format (left) and CCT Major Sparse format
(right). Each plane uses a modified CSR. Gray cells represent non-zeros on each plane.

generate metric statistics global to all threads in the application’s
execution. At this point the per-thread metrics can be written to the
output database immediately, while the accumulators are aggregated
by a second reduction operation similar to the first.

Trace and Final Outputs: If a profile has a companion execution trace,
at this stage its trace sequence is converted one sample at a time to
reference calling contexts instead of the call paths present at runtime
and then written directly into the output database. After all profiles
have been processed, the final unified calling context tree and global
statistics are written to the database by the root rank.

6.2. Sparse representations of analysis results

Inspired by Compressed Sparse Row (CSR) format [43] for storing a
sparse matrix, we designed and implemented a pair of compact sparse
formats to store HPCToolkit’s performance metrics for threads and GPU
streams. These sparse formats can save storage and ensure efficient
access of values needed for presentation and inspection.

Fig. 4 shows a high-level visualization of our design: Profile Major
Sparse (PMS) format and CCT Major Sparse (CMS) format. As mentioned
earlier, one of our goals is to access the data efficiently, which means
accessing the data both within one profile and between profiles. There-
fore, we designed PMS and CMS to compare performance within and
across threads or GPU streams, respectively, so we only need to open
one file for all comparisons as long as they belong to the same type.

Unlike CSR, we need to locate a value with three indices: a metric
ID, a context ID, and a profile ID. If we consider the matrix represented
by CSR a sparse plane, then our formats represent sparse cubes. The
filled cells represent non-zero values and the three arrays show how to
represent each plane. PMS consists of a vector of profile offsets, one
per profile, that indicate the start of each plane of (profile, context,
metric) triples. CMS consists of a vector of context offsets, one per
calling context, that indicate the start of each plane of (context, metric,
profile) triples. For brevity, in the rest of Section 6.2, we only discuss
the design details of CMS.

As Fig. 4, each plane can be seen as a CSR. 𝑟𝑜𝑤 in CSR is a dense
array, however, after some experiments, we found many repeating
values in 𝑚𝑖𝑑𝑥𝑠 for CMS, which means there are no non-zero values for
these metrics for the specific context, and we call them empty metrics.
As discussed previously, we expect many empty metrics in calling
context trees for heterogeneous programs. To exploit this sparsity, we
make 𝑚𝑖𝑑𝑥𝑠 a sparse array: each entry is a pair of metric ID and this
metric’s starting index (𝑚𝑖𝑑𝑥) in 𝑝𝑖𝑑𝑠 and 𝑣𝑎𝑙𝑠.

With 𝑥 non-zeros, 𝑚 non-empty metrics in an average profile, and
𝑐 contexts, then CMS uses (𝑐 × (2𝑥 + 𝑚 + 1)) space. This saves space

hen (2𝑥+𝑚+1) < 𝑀𝑃 , where 𝑀 is the number of metrics and 𝑃 is the
umber of profiles. (2𝑥+𝑚+1) can even be slightly larger than 𝑀𝑃 since
he dense version uses a consistent number of bytes for each data, but
MS can use fewer for some data whenever appropriate, for instance,
etric ID. To access a specific value, it takes constant time to locate a
7

ontext plane and (log𝑚) time to binary search for the metric index
idx. To compare performance between profiles for a specific context
nd metric, go to 𝑝𝑖𝑑𝑠[𝑚𝑖𝑑𝑥] and then compare all of the values until
he start of the next metric. To access one specific value, let 𝑝 be the
umber of profiles associated with the context and the metric, then it
akes (log𝑚+log 𝑝) time in total. Therefore, CMS can save storage and
nsure efficient access to values.

To construct our sparse formats using both distributed-memory and
ultithreaded parallelism, hpcprof-mpi uses MPI for communication be-

ween ranks and shared memory for communication between OpenMP
hreads. Both CMS and PMS use the same general idea to generate the
ile: find the right offset of each plane, collect the related bytes, write
he bytes to the offset, and record the location in the offsets section.
pcprof-mpi uses exscan operations within and between ranks to find
he right offsets, and then all threads can mostly finish the remaining
hree steps concurrently without communication.

For PMS, hpcprof-mpi splits work within and between ranks based on
he number of profiles to ensure load balance. However, since different
alling contexts may have huge differences in the number of associated
etrics, for CMS, hpcprof-mpi partitions the work within and between

anks based on the number of non-zeros for contexts to ensure load
alance. As a performance tool for exascale applications, hpcprof-mpi
oes not assume it has enough memory to store all contexts or profiles
t the same time. For that reason, it processes the data in an out-of-
ore fashion. For example, for CMS, hpcprof-mpi has a pre-set maximum
emory that it can use for one round, and it processes the data in
ultiple rounds if necessary.

.3. GPU calling context tree

To analyze the performance of complex GPU kernels that call device
unctions, it is useful to organize performance data into GPU calling
ontext trees. Using binary instrumentation to collect instruction traces,
e could reconstruct a GPU calling context tree on the CPU as an appli-

ation executes. However, this method would have high overhead with
requent communication between CPUs and GPUs to copy traces [28].

To address this, we designed a method to reconstruct approxi-
ate GPU calling context trees offline from fine-grain instruction-level
easurements gathered using instrumentation or PC samples. This

pproach can be applied in any environment where collecting precise
all stacks is expensive.

Our method reconstructs an approximate GPU calling context tree
or each GPU kernel invocation with the following four steps.

1. Construct a GPU static call graph based on function symbols
and call instructions. Initialize weights on call edges using exact
counts of call instructions or call instruction sample counts.

2. For call graphs based on samples: if a function has samples and
none of its incoming call edges has a non-zero weight, we assign
each of its incoming call edges a weight of one; we repeat this
propagation through callers until at least one call edge of a
function has a non-zero weight.

3. Identify strongly connected components (SCCs) using Tarjan’s
algorithm [44]. In the call graph, add an SCC node to represent
the set of nodes in each SCC. Link external calls to functions
inside an SCC to the SCC node and remove call edges between
functions in the SCC.

4. Finally, build a calling context tree by splitting the call graph.
Like Gprof [45], assume that every invocation of a function takes
the same time. Apportion the number of samples or instructions
in each function among its call sites using ratios of calls from
each call site to the total number of calls from all call sites.

Fig. 5 shows the reconstruction process for a small synthetic exam-
ple. We first construct a static call graph in Step 1. In Step 2, we assign
the edge between A to B one call sample because B does not have
a sampled call site. If executed instructions are collected, each edge
representing a call that executed should have a non-zero weight. In Step



Parallel Computing 108 (2021) 102837K. Zhou et al.
Fig. 5. An example of splitting a call graph into a calling context tree. A–D denote
functions. Each subscript denotes the number of samples associated with the function.
Each edge is annotated with its number of call samples.

3, we identify an SCC that contains D and E. Finally, we apportion the
number of samples of the SCC using ratios of weights of calls from each
call site to the total weight of calls from all call sites.

7. User interfaces

hpcviewer is HPCToolkit’s graphical user interface (GUI), built on
top of the Eclipse Rich Client Platform (RCP), which enables us to
support multiple platforms including Windows, macOS, Linux x86/64,
and Linux ppcle64. We plan to support Linux Arm in the near fu-
ture; at present, we are awaiting a forthcoming release of Eclipse for
Arm. hpcviewer is designed to support huge application performance
databases by using sparse data representations, loading GUI compo-
nents lazily, and employing multiple threads to read and load data
dynamically, as needed.

The database generated by hpcprof consists of 4 dimensions: profile,
time, context, and metric. We employ the term profile to include any
logical threads (such as OpenMP, pthread and C++ threads), and also
MPI processes and GPU streams. The time dimension represents the
8

timeline of the program’s execution, context depicts the path in calling-
context tree, and metric constitutes program measurements performed
by hpcrun such as cycles, number of instructions, stall percentages and
ratio of idleness.

To simplify performance data visualization, hpcviewer displays only
two dimensions at a time: the profile viewer displays pairs of ⟨context,
metric⟩ or ⟨profile, metric⟩ dimensions; and the trace viewer visualizes
the behavior of threads or streams over time. Section 7.1 describes
HPCToolkit’s profile viewer and Section 7.2 describes it trace viewer.

7.1. Profile viewer

HPCToolkit’s profile viewer provides a code-centric user interface
for interactive examination of performance databases. As shown in
Fig. 6, it displays pairs of ⟨context, metric⟩ dimensions, which enables
users to view context-sensitive performance metrics correlated to pro-
gram structure and mapped to a program’s source code, if available.
It can also present an arbitrary collection of performance metrics
gathered during one or more runs or compute derived metrics.

Measurements can be analyzed in a variety of ways: top-down in
a calling context tree, which associates costs with the full calling
context in which they are incurred; bottom-up in a view that apportions
costs associated with a function to each of the contexts in which the
function is called; and in a flat view that aggregates all costs associated
with a function independent of calling context. This multiplicity of
code-centric perspectives is essential to understanding a program’s
performance for tuning under various circumstances. hpcviewer also
supports a thread-centric perspective, which enables one to see how
a performance metric for a calling context differs across threads. The
viewer can plot a graph of metric values associated with the selected
node in CCT for all processes or threads. This functionality enables
users to display pairs of ⟨profile, metric⟩ dimensions.

To collect all necessary metrics, GPU performance tools often em-
ploy multiple runs and merge all metrics together. For example, Nsight-
compute runs nine passes to collect all of its default metrics for a small
GPU kernel; this approach is infeasible for a large-scale application. As
mentioned in Section 4.5, hpcviewer lets users compute derived metrics
based on measurements gathered using a single pass to identify opti-
mization opportunities. A derived metric is a spreadsheet-like formula
composed from existing metrics, operators, functions, and numerical
constants. For example, for each GPU kernel, based on the number of
total PC samples (𝑆) and stalled PC samples (𝑆𝑠𝑡𝑎𝑙𝑙), we can estimate
the Warp Issue Rate (𝑊 ) of schedulers as 𝑊 = 𝑆−𝑆𝑠𝑡𝑎𝑙𝑙 .
𝑆
Fig. 6. Performance measurements of an optimized, GPU-accelerated execution of LLNL’s Quicksilver proxy application on a Power9 and an NVIDIA GPU. Fine-grained measurements
on the GPU were collected using PC sampling.



Parallel Computing 108 (2021) 102837K. Zhou et al.

t
s
i
r
o
a

t
o
t
i
G
a
s
C
a
B
f
h

8

p
I
s
T
s
t

s
a

2
r
a
c
I
c
r
a
n
m

8

f
w
c
T
w
r

Table 1
Experimental platforms.

Node Hardware Software

OLCF Summit 2 × IBM POWER9 CPUs GCC-6.4.0
6 × NVDIA V100 GPUs CUDA-11.0.3

Argonne JLSE Iris 1 × Intel E3-1585Lv5 CPU GCC-8.3.1
1 × Intel Iris Pro P580 GPU DPC++, oneAPI beta 10

Local AMD 2 × AMD EPYC 7402 CPUs GCC-8.3.1
2 × AMD MI50 GPUs Rocm-3.8

7.2. Trace viewer

HPCToolkit’s trace viewer provides a time-centric user interface for
the interactive examination of a sample-based time series (hereafter
referred to as a trace) view of program execution. It is designed to
interactively present traces of large-scale execution across both CPUs
and GPUs, relating activity to both hardware contexts (e.g., nodes,
GPUs, cores) and software contexts (e.g., MPI ranks, threads, GPU
contexts, and streams).

As shown in Fig. 9, the trace viewer’s main pane shows ⟨profile,
ime⟩ dimensions, for each available call-stack depth. By changing call-
tack depth, a user can change the granularity of trace lines, and gain
nsight into an execution at different levels of abstraction. For the
outine pointed by the cursor, functions from the call stack are listed
n the right to the main pane. Each routine is uniquely identified with
specific color, while idle activity is assigned the color white.

The trace viewer’s Statistics and GPU Idleness Blame tabs analyze
he information in traces and offer some high-level characterizations
f what the traces show. The Statistics tab calculates the percentage of
he area occupied by each routine in the main pane and lists routines
n descending order according to their percentage of the area. The
PU Idleness Blame tab employs blame analysis in an attempt to help
pplication developers understand the causes of GPU idleness. To do
o, it identifies times when all GPU streams are idle and at least one
PU thread is active. In such cases, it partitions the cost of GPU idleness
mong routines being executed by active CPU threads. The GPU Idleness
lame tab then presents normalized blame associated with each CPU
unction in sorted in descending order. CPU routines associated with
igh GPU idleness may be candidates for optimization.

. Case studies

We tested HPCToolkit’s support for analyzing GPU-accelerated ap-
lications on the Summit supercomputer with NVIDIA GPUs, the JLSE
ris testbed which consists of nodes equipped with Intel Skylake proces-
ors that have integrated GPUs, and a local machine with AMD GPUs.
he hardware and software specification of the three platforms are
hown in Table 1. We evaluated HPCToolkit with three HPC applica-
ions described below:

• Quicksilver [46] is an ECP proxy application that solves a sim-
plified dynamic Monte Carlo particle transport problem, repre-
senting some elements of the workload of LLNL’s Mercury [47]
radiation transport code.

• PeleC [48] is an application using adaptive-mesh compressible
hydrodynamics for reacting flows. We studied its Premixed Flame
(PMF) and Taylor–Green Vortex (TG) examples.

• Nyx [49] is a massively parallel code computes compressible
hydrodynamic equations on a grid with particles of dark matter.
We ran Nyx using up to 128 GPUs on Summit.

All three applications were compiled with -O3. In the remaining
ection, we describe insights based on the analysis result of HPCToolkit
nd its overhead on a single GPU and multi-GPU execution.
9

8.1. Measurement overhead

On NVIDIA GPUs, HPCToolkit and nvprof introduce 2.24× and
.20× profiling overhead for PeleC’s TG example. To trace Nyx on 128
anks and 640 GPU streams, HPCToolkit and nvprof introduce 1.85×
nd 1.42× overhead. It is worth noting that unlike nvprof, HPCToolkit
ollects CPU call stack information for every GPU API invocation. On
ntel GPUs, HPCToolkit’s overhead for PeleC’s TG application with
oarse-grained and fine-grained measurements is 1.81× and 2.23×
espectively. AMD’s ROCm software stack is evolving rapidly, and
s a result, we have not assessed measurement overhead. We have
ot yet invested much effort in analyzing and tuning HPCToolkit’s
easurement overhead for any of the GPU-accelerated platforms.

.2. Analysis overhead

We compared the size of measurement data and analysis results
or a GPU-accelerated version of Nyx using our original dense formats
ith that of our new sparse formats. The data in sparse formats is

onsistently much smaller than that using the original dense formats.
he size of the measurement results in the sparse format is 167.1 MB,
hich is 22× smaller than the dense format. The size of the analysis

esults in sparse format is 153.3 MB, which is 3701× smaller than the
dense format.

To measure analysis overhead, we used hpcprof-mpi to aggregate and
analyze measurements of a GPU-accelerated execution of LAMMPS [50]
on 167 nodes and 1002 GPUs. Using thread-level parallelism and
streaming aggregation, hpcprof-mpi analyzed the 85 GB of measure-
ment data in 91 s on 48 nodes of Summit using 48 MPI ranks with 42
threads per rank (one thread per Power9 core). This is over 3.6× faster
than using the original hpcprof-mpi, which employs only inter-process
parallelism, to analyze the data using the same resources.

8.3. Quicksilver

Fig. 6 shows the profile view for Quicksilver, an ECP proxy applica-
tion for LLNL’s Mercury radiation transport code. The bottom left pane
shows a detailed heterogeneous calling context that spans both CPU
and GPU. The GPU calling context inside the CycleTrackingKer-
nel kernel is reconstructed from flat PC samples using the algorithm
described in Section 6.3. The bottom right pane shows two measured
metrics (GPU instructions and GPU kernel time), and a derived metric
(GPU utilization). Note that the code was compiled with -O3. Although
many device functions are inlined, others are not due to function size
or register limitations. With HPCToolkit’s approximate GPU calling
context tree reconstruction, an application developer can readily un-
derstand where GPU code is costly and/or inefficient. (Understanding
where a GPU code is inefficient requires fine-grained stall metrics,
which were collected for Quicksilver although they are not shown in
Fig. 6.)

8.4. PeleC

We studied PeleC’s PMF problem on NVIDIA’s GPUs only because
there are not yet stable HIP or DPC++ implementations. We ran PeleC’s
TG problem on the three platforms shown in Table 1 and compared
the performance characteristics to understand relative performance of

different GPUs and how efficiently the software maps to each.



Parallel Computing 108 (2021) 102837K. Zhou et al.
Fig. 7. An unnecessary synchronization calling context in PeleC.

8.4.1. NVIDIA GPU
We profiled PeleC’s PMF example with its default input using PC

sampling. Using HPCToolkit’s heterogeneous calling context, we were
able to identify the hot kernel quickly. We noted that the GPU uti-
lization for kernel pc_expl_reactions was only 2.5% on average,
indicating low SM utilization. By reducing the number of threads per
block from 256 to 128, we increased the number of blocks for this
kernel from 16 to 32 and improved its performance by 1.14×.

Next, we profiled PeleC’s TG example with its default input.
hpcviewer shows that the time spent on GPU synchronization is close to
GPU kernel execution time. We found an unusual phenomenon: in some
cases, the number of GPU synchronization API invocations exceeds the
number of GPU kernel launches. We computed a derived metric: diff
= 𝑠𝑦𝑛𝑐_𝑐𝑜𝑢𝑛𝑡−𝑘𝑒𝑟𝑛𝑒𝑙_𝑐𝑜𝑢𝑛𝑡 in hpcviewer to find where synchronizations
are unnecessary. Fig. 7 shows three calling contexts where diff is
high. In the first calling context, no kernel launch occurs in the loop
while there are synchronization invocations. We found that an MFIter
object is created for the loop, and the synchronization is called in the
object’s deconstructor to synchronize computations in the loop. We
optimized the code by not invoking synchronization if no computation
is performed in the loop. In the second calling context, the synchroniza-
tion is needed only when there are multiple MPI ranks. Thus, we can
conditionally invoke synchronization by checking the number of MPI
ranks. In the third calling context, the synchronization is redundant
because a copy function immediately before always synchronizes all
GPU streams. These three code changes reduced the number of synchro-
nization invocations by 38% and improved end-to-end performance by
1.05×.

8.4.2. Intel and AMD GPUs
We compiled the DPC++ code of PeleC’s TG example and ran it

on an Intel Gen9 GPU using Intel’s OpenCL backend. We captured
four coarse-grained metrics, including kernel execution time, memory
transfer time, memory transfer bytes, and memory allocation bytes.
For fine-grained measurement, HPCToolkit collected GPU instruction
counts using instrumentation added to GPU kernels using Intel’s GT-Pin
library.

The profile view in Fig. 8 enables one to quickly identify the most
costly GPU kernels with respect to GPU instruction count: pc_compu-
te_hyp_mol_flux and pc_compute_diffusion_flux, which
execute 37.6% and 29.6% of the GPU instructions respectively. Mea-
surement and attribution of instruction counts within each kernel re-
vealed an interesting detail: roughly one third of the instructions in
each kernel are for array index calculation. It is worth noting that
the fraction of kernel execution time measured for this kernel while
collecting instruction level measurements may not be accurate since
kernel instrumentation inflates kernel execution time.

In addition, we noted 28.8𝐸6 bytes of GPU memory was allocated,
but no memory transfers were measured. In this case, the memory
transfers are implicit; thus, wrapping public OpenCL APIs may miss
observing internal memory transfers performed by a vendor’s imple-
mentation. To observe implicit memory transfers, we either need either
10
Fig. 8. Fine-grained measurements of PeleC’s TG benchmark collected with binary
instrumentation on an Intel Gen9 GPU. PeleC is implemented using DPC++ and
executing GPU atop Intel’s OpenCL runtime.

vendors to use only public APIs for data transfers or we need a better
OpenCL tool API.

In experiments with PeleC on AMD GPUs, HPCToolkit can collect
heterogeneous call stacks that attribute costs to GPU operations, includ-
ing kernel launches and data copies. Without support for fine-grained
measurements, we are unable to measure or analyze performance inside
GPU kernels.

8.5. Nyx

Fig. 9 shows a trace view of Nyx executing on Summit using 640
streams across 128 GPUs. The trace view shows that this execution
consists of five phases. By inspecting the call stacks in the trace view,
we can determine what the phases do, e.g., initializing particle and
dark matter data, performing hydrodynamic calculations, calculating
gravity, etcetera.

For each phase, we employed blame analysis to understand why
GPUs are idle. In the first phase, 58.01% of idleness is caused by a call
to cuCtxSynchronize, which synchronizes all streams on the GPU.
Because only a single stream is used in this phase and a synchronized
memory copy always follows the call to cuCtxSynchronize, we can
safely remove the synchronization call and reduce the running time by
0.6 s.

In the second phase, we easily identified that the major cause of
idleness is JIT compilation at runtime. By providing the specific GPU
architecture flag to the compiler and recompiling the program, we
reduced the running time by 0.2 s with this single optimization.

In the following three phases, we identified that idleness is caused
by calls to MPI_Waitall, which suggests that there may be opportu-
nities for improving performance by optimizing communication.

The insights provided by blame shifting analysis reduced the GPU
running time of Nyx from 10.6 s to 9.8 s, achieving a 1.08× speedup
with 640 GPU streams. While the problems and improvements that we
describe here are small, the important part is that HPCToolkit provides
developers insights to identify even small problems.

9. Conclusions and future work

Based on our experiences extending Rice University’s HPCToolkit
performance tools for GPU-accelerated platforms, we offer some obser-
vations about our perceptions of the hardware and software challenges
faced by performance tools.

Measurement. To understand in detail the performance of complex GPU
kernels, hardware support for measuring GPU performance is essential.



Parallel Computing 108 (2021) 102837K. Zhou et al.
Fig. 9. Nyx’ trace view running across 22 nodes using 640 GPU streams and 128 processes.
Today, NVIDIA is the only vendor whose GPUs provide support for fine-
grained measurement using PC sampling. Without hardware support for
fine-grained performance measurement, application developers must
use the ‘‘guess and check’’ strategy for performance optimization, which
significantly complicates the process of analysis and optimization of
large-scale applications.

Today, NVIDIA’s PC sampling measurement serializes execution of
GPU kernels to simplify performance measurement. This approach both
slows the execution of applications when under observation by perfor-
mance tools and distorts the performance of applications available for
tools to observe.

Another problem tools face is that not all GPU activities are readily
observable. As described in 8.4.2, there is no portable mechanism
that a tool can use to monitor implicit buffer transfers in OpenCL.
In addition, NVIDIA purposefully avoids having CUPTI monitor im-
plicit synchronization invoked by primitives such as cudaMemcpy as
well as driver calls and other operations called by NVIDIA libraries
such as cuBlas [22]. The inability to monitor all data transfers and
synchronization gives tools an incomplete picture of an application’s
behavior. For tools to be maximally effective, all GPU operations must
be observable.

Attribution. To help application developers understand the performance
of optimized GPU kernels that are generated from or employ inlined
templates or functions, tools need compilers to generate high-quality
DWARF information that describes the provenance of every machine
instruction in each GPU kernel. While line mappings generated by to-
day’s compilers relate most machine instructions back to an associated
source line, they often fail to relate machine instructions back to any
inlined call chain that caused it to be included. In our experience, even
the latest compilers for AMD, Intel, or NVIDIA GPUs do not generate
sufficiently precise DWARF for attributing the performance of each GPU
instruction to its full calling context in the presence of inlined functions
and templates.

Analysis. Measuring and attributing the performance of GPU kernels
with hardware support for fine-grained measurement is only the first
step towards understanding the performance of complex applications.
Within GPU kernels, understanding the causes of performance problems
and opportunities for improvement requires understanding the inter-
play between a wide range of factors, including block-level parallelism,
thread-level parallelism within blocks, data sizes, data alignment and
how it maps into the memory hierarchy, details of generated code
(e.g., resource consumption, use of type conversions, use of special
functional units, and instruction sequencing), and reasons for stalls that
result in uncovered latency.

While our work developing a framework for scalable analysis of
performance data for extreme-scale executions is an important building
11
block, it is clear that our tool could use further development to better
exploit the capabilities of parallel file systems found on supercomput-
ers. Also, it would be beneficial if we could exploit accelerators in our
analysis.

Presentation. The most common performance problem we have observed
in emerging ECP applications and libraries is that GPUs are idle too
much of the time. Understanding the root causes of idleness in large-
scale applications composed of many layers of software is difficult for
application developers using existing user interfaces. Our initial pro-
totype support for automated analysis of GPU traces offers some help
in this regard, but our early experiences have shown that attributing
performance at the proper level to generate insight will require new
design insights and implementation.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential
conflict of interest with this work. For full disclosure statements refer
to https://doi.org/10.1016/j.parco.2021.102837.

The work was funded in part by Advanced Micro Devices, though
software support for their GPUs is only briefly mentioned in the paper.

We are expecting to receive some modest funding from Intel to
support continued work with Intel GPUs, but funds have not been
received yet.

Acknowledgments

This research was supported in part by the Exascale Computing
Project (17-SC-20-SC)—a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Admin-
istration, United States Argonne National Laboratory, United States
(DE-AC02-06CH11357), DOE Tri-labs (Lawrence Livermore National
Laboratory (LLNL), United States Subcontract B639429), and Advanced
Micro Devices, Inc., United States

This research used resources of the Oak Ridge Leadership Comput-
ing Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under Con-
tract No. DE-AC05-00OR22725, and Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

https://doi.org/10.1016/j.parco.2021.102837


Parallel Computing 108 (2021) 102837K. Zhou et al.
References

[1] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, June 2020 | Top500 super-
computer sites, 2020, [Accessed Oct. 4, 2020], https://www.top500.org/lists/
top500/2020/06/.

[2] R.D. Hornung, J.A. Keasler, The RAJA Portability Layer: Overview and Status,
Tech. rep., Lawrence Livermore National Lab. (LLNL), Livermore, CA (United
States), 2014.

[3] H.C. Edwards, C.R. Trott, D. Sunderland, Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns, J. Parallel
Distrib. Comput. 74 (12) (2014) 3202–3216.

[4] C. Bertolli, S.F. Antao, A.E. Eichenberger, K. O’Brien, Z. Sura, A.C. Jacob, T.
Chen, O. Sallenave, Coordinating GPU threads for OpenMP 4.0 in LLVM, in:
2014 LLVM Compiler Infrastructure in HPC, IEEE, 2014, pp. 12–21.

[5] Intel Corporation, DPC++, 2020, [Accessed Oct. 24, 2020], https://spec.oneapi.
com/versions/latest/elements/dpcpp/source/index.html.

[6] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M.S.
Müller, W.E. Nagel, The Vampir performance analysis tool-set, in: Tools for High
Performance Computing, Springer, 2008, pp. 139–155.

[7] S.S. Shende, A.D. Malony, The TAU parallel performance system, Int. J. High
Perf. Comput. Appl. 20 (2) (2006) 287–311.

[8] C. January, J. Byrd, X. Oró, M. O’Connor, Allinea MAP: Adding energy and
OpenMP profiling without increasing overhead, in: Tools for High Performance
Computing 2014, Springer, 2015, pp. 25–35.

[9] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, S. Cranford,
Open|SpeedShop: An open source infrastructure for parallel performance analysis,
Sci. Program. 16 (2–3) (2008) 105–121.

[10] Lawrence Berkeley National Laboratory, Cray Reveal, 2020, [Accessed
Oct. 4, 2020], https://docs.nersc.gov/development/performance-debugging-
tools/reveal.

[11] J. Reinders, VTune Performance Analyzer Essentials, Intel Press, 2005.
[12] NVIDIA Corporation, NVIDIA Nsight systems, 2020, [Accessed Oct. 4, 2020],

https://developer.nvidia.com/nsight-systems.
[13] NVIDIA Corporation, NVIDIA Nsight compute, 2020, [Accessed Oct. 4, 2020],

https://developer.nvidia.com/nsight-compute.
[14] NVIDIA Corporation, The user manual for NVIDIA profiling tools for optimizing

performance of CUDA applications, 2020, [Accessed Oct. 4, 2020], https://docs.
nvidia.com/cuda/profiler-users-guide.

[15] NVIDIA Corporation, PC sampling, 2020, [Accessed Oct. 4, 2020], https://docs.
nvidia.com/cupti/Cupti/r_main.html#r_pc_sampling.

[16] M. Kambadur, S. Hong, J. Cabral, H. Patil, C.-K. Luk, S. Sajid, M.A. Kim, Fast
computational GPU design with GT-Pin, in: 2015 IEEE International Symposium
on Workload Characterization, IEEE, 2015, pp. 76–86.

[17] O. Villa, M. Stephenson, D. Nellans, S.W. Keckler, NVBit: A dynamic binary
instrumentation framework for NVIDIA GPUs, in: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ACM, 2019,
pp. 372–383.

[18] Lawrence Livermore National Laboratory, RAJA performance suite, 2020,
[Accessed Oct. 4, 2020], https://github.com/LLNL/RAJAPerf.

[19] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
N.R. Tallent, HPCToolkit: Tools for performance analysis of optimized parallel
programs, Concurr. Comput.: Pract. Exper. 22 (6) (2010) 685–701.

[20] Advanced Micro Devices Corporation, AMD ROCm Profiler, 2020, [Accessed Oct.
4, 2020], https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html.

[21] A.D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R.
Dietrich, D. Poole, C. Lamb, Parallel performance measurement of heterogeneous
parallel systems with GPUs, in: 2011 International Conference on Parallel
Processing, IEEE, 2011, pp. 176–185.

[22] B. Welton, B.P. Miller, Diogenes: looking for an honest CPU/GPU performance
measurement tool, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp. 1–20.

[23] P. Kousha, B. Ramesh, K.K. Suresh, C.-H. Chu, A. Jain, N. Sarkauskas, H.
Subramoni, D.K. Panda, Designing a profiling and visualization tool for scalable
and in-depth analysis of high-performance GPU clusters, in: 2019 IEEE 26th
International Conference on High Performance Computing, Data, and Analytics
(HiPC), IEEE, 2019, pp. 93–102.

[24] M. Chabbi, K. Murthy, M. Fagan, J. Mellor-Crummey, Effective sampling-driven
performance tools for GPU-accelerated supercomputers, in: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, ACM, 2013, p. 43.
12
[25] H. Zhang, J. Hollingsworth, Understanding the performance of GPGPU applica-
tions from a data-centric view, in: 2019 IEEE/ACM International Workshop on
Programming and Performance Visualization Tools (ProTools), 2019, pp. 1–8,
http://dx.doi.org/10.1109/ProTools49597.2019.00006.

[26] NVIDIA Corporation, NVIDIA Compute Sanitizer, 2020, [Accessed Oct. 5, 2020],
https://docs.nvidia.com/cuda/compute-sanitizer/index.html.

[27] A.V. Gorshkov, M. Berezalsky, J. Fedorova, K. Levit-Gurevich, N. Itzhaki, GPU
instruction hotspots detection based on binary instrumentation approach, IEEE
Trans. Comput. 68 (8) (2019) 1213–1224.

[28] K. Zhou, et al., GVProf: A value profiler for GPU-based clusters, 2020, [Accessed
Oct. 4, 2020], https://github.com/Jokeren/GVProf.

[29] A. Knüpfer, et al., Score-p: A joint performance measurement run-time infrastruc-
ture for periscope,scalasca, TAU, and vampir, in: Tools for High Performance
Computing 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.
79–91.

[30] B.U. Wuppertal, Parallel MPI I/O in Cube: Design & Implementation, Jüich
Forschungszentrum, 2018.

[31] L. Wei, J. Mellor-Crummey, Using sample-based time series data for automated
diagnosis of scalability losses in parallel programs, in: Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2020, pp. 144–159.

[32] J. Choi, D.F. Richards, L.V. Kale, A. Bhatele, End-to-end performance modeling
of distributed GPU applications, in: Proceedings of the 34th ACM International
Conference on Supercomputing, 2020, pp. 1–12.

[33] F. Schmitt, R. Dietrich, G. Juckeland, Scalable critical-path analysis and optimiza-
tion guidance for hybrid MPI-CUDA applications, Int. J. High Perform. Comput.
Appl. 31 (6) (2017) 485–498.

[34] K. Zhou, M.W. Krentel, J. Mellor-Crummey, Tools for top-down performance
analysis of GPU-accelerated applications, in: Proceedings of the 34th ACM
International Conference on Supercomputing, in: ICS ’20, Association for Comput-
ing Machinery, New York, NY, USA, 2020, http://dx.doi.org/10.1145/3392717.
3392752.

[35] NVIDIA Corporation, CUPTI User’s guide DA-05679-001_v10.1, 2020, [Accessed
Oct. 5, 2020], https://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf.

[36] Advanced Micro Devices Corporation, ROC-Tracer, 2020, [Accessed Oct. 5,
2020], https://github.com/ROCm-Developer-Tools/roctracer.

[37] J.E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming standard for
heterogeneous computing systems, Comput. Sci. Eng. 12 (3) (2010) 66–73.

[38] Intel Corporation, oneAPI Level Zero: 1.0.4.46, 2020, [Accessed Oct. 24, 2020],
https://spec.oneapi.com/level-zero/index.html.

[39] Khronos Group, clSetEventCallback(3) Manual Page, https://www.khronos.org/
registry/OpenCL/sdk/2.2/docs/man/html/clSetEventCallback.html.

[40] V.M. Weaver, Linux perf_event features and overhead, in: The 2nd International
Workshop on Performance Analysis of Workload Optimized Systems, FastPath,
Vol. 13, 2013, p. 5.

[41] D. Terpstra, H. Jagode, H. You, J. Dongarra, Collecting performance data with
PAPI-C, in: Tools for High Performance Computing 2009, Springer, 2010, pp.
157–173.

[42] University of Wisconsin-Madison, Dyninst, 2020, [Accessed Oct. 4, 2020], https:
//github.com/dyninst/dyninst.

[43] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, A.H. Sherman, Yale sparse matrix
package I: The symmetric codes, Internat. J. Numer. Methods Engrg. 18 (8)
(1982) 1145–1151, http://dx.doi.org/10.1002/nme.1620180804.

[44] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2)
(1972) 146–160.

[45] S.L. Graham, P.B. Kessler, M.K. Mckusick, Gprof: A call graph execution profiler,
in: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, in:
SIGPLAN ’82, ACM, New York, NY, USA, 1982, pp. 120–126, http://dx.doi.org/
10.1145/800230.806987.

[46] Lawrence Livermore National Laboratory, Quicksilver, 2020, [Accessed Oct. 28,
2020], https://github.com/LLNL/Quicksilver.

[47] Lawrence Livermore National Laboratory, Mercury, 2020, [Accessed Oct. 28,
2020], https://wci.llnl.gov/simulation/computer-codes/mercury.

[48] PeleC, 2020, [Accessed Oct. 6, 2020], https://github.com/AMReX-Combustion/
PeleC.

[49] Nyx, 2020, [Accessed Oct. 6, 2020], https://github.com/AMReX-Astro/Nyx.
[50] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J.

Comput. Phys. 117 (1) (1995) 1–19.

https://www.top500.org/lists/top500/2020/06/
https://www.top500.org/lists/top500/2020/06/
https://www.top500.org/lists/top500/2020/06/
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb2
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb2
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb2
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb2
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb2
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb3
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb3
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb3
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb3
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb3
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb4
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb4
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb4
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb4
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb4
https://spec.oneapi.com/versions/latest/elements/dpcpp/source/index.html
https://spec.oneapi.com/versions/latest/elements/dpcpp/source/index.html
https://spec.oneapi.com/versions/latest/elements/dpcpp/source/index.html
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb6
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb6
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb6
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb6
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb6
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb7
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb7
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb7
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb8
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb8
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb8
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb8
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb8
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb9
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb9
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb9
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb9
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb9
https://docs.nersc.gov/development/performance-debugging-tools/reveal
https://docs.nersc.gov/development/performance-debugging-tools/reveal
https://docs.nersc.gov/development/performance-debugging-tools/reveal
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb11
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cupti/Cupti/r_main.html#r_pc_sampling
https://docs.nvidia.com/cupti/Cupti/r_main.html#r_pc_sampling
https://docs.nvidia.com/cupti/Cupti/r_main.html#r_pc_sampling
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb17
https://github.com/LLNL/RAJAPerf
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb19
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb19
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb19
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb19
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb19
https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb21
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb23
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb24
http://dx.doi.org/10.1109/ProTools49597.2019.00006
https://docs.nvidia.com/cuda/compute-sanitizer/index.html
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb27
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb27
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb27
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb27
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb27
https://github.com/Jokeren/GVProf
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb29
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb30
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb30
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb30
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb33
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb33
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb33
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb33
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb33
http://dx.doi.org/10.1145/3392717.3392752
http://dx.doi.org/10.1145/3392717.3392752
http://dx.doi.org/10.1145/3392717.3392752
https://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
https://github.com/ROCm-Developer-Tools/roctracer
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb37
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb37
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb37
https://spec.oneapi.com/level-zero/index.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clSetEventCallback.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clSetEventCallback.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clSetEventCallback.html
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb41
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb41
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb41
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb41
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb41
https://github.com/dyninst/dyninst
https://github.com/dyninst/dyninst
https://github.com/dyninst/dyninst
http://dx.doi.org/10.1002/nme.1620180804
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb44
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb44
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb44
http://dx.doi.org/10.1145/800230.806987
http://dx.doi.org/10.1145/800230.806987
http://dx.doi.org/10.1145/800230.806987
https://github.com/LLNL/Quicksilver
https://wci.llnl.gov/simulation/computer-codes/mercury
https://github.com/AMReX-Combustion/PeleC
https://github.com/AMReX-Combustion/PeleC
https://github.com/AMReX-Combustion/PeleC
https://github.com/AMReX-Astro/Nyx
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb50
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb50
http://refhub.elsevier.com/S0167-8191(21)00084-3/sb50

	Measurement and analysis of GPU-accelerated applications with HPCToolkit
	Introduction
	Related work
	Overview
	Performance measurement on GPUs
	Infrastructure
	Fine-grained performance measurement
	Measuring performance with hardware counters
	Interaction with measurement substrates
	Measuring and computing metrics
	Sparse representation of metrics
	Minimizing measurement errors

	Program structure recovery
	Scalable performance analysis
	Streaming aggregation
	Sparse representations of analysis results
	GPU calling context tree

	User interfaces
	Profile viewer
	Trace viewer

	Case studies
	Measurement overhead
	Analysis overhead
	Quicksilver
	PeleC
	NVIDIA GPU
	Intel and AMD GPUs

	Nyx

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


