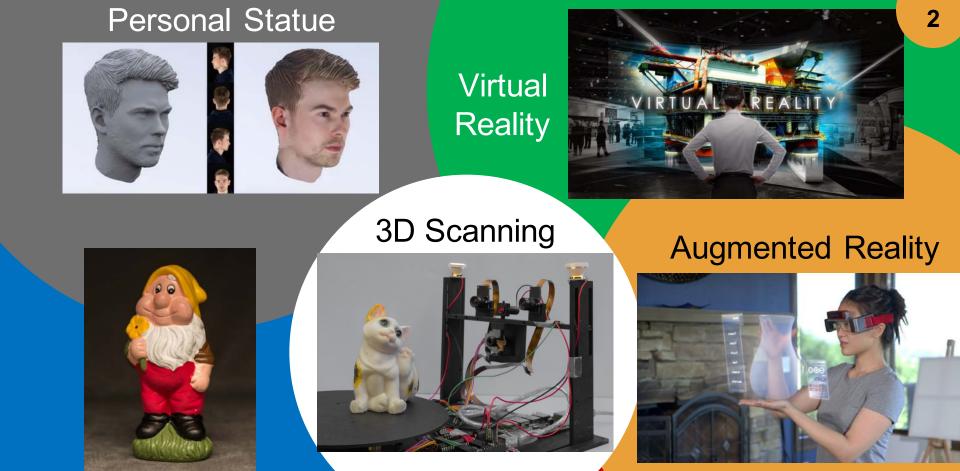
MEASUREMENT-BASED COLOR CORRECTION METHOD FOR 3D SCANNING SYSTEM

SPEAKER: KAI-LIN CHAN ADVISOR: TZUNG-HAN LIN, HUNG-SHING CHEN Graduate Institute of Color and Illumination Technology, NTUST CIT

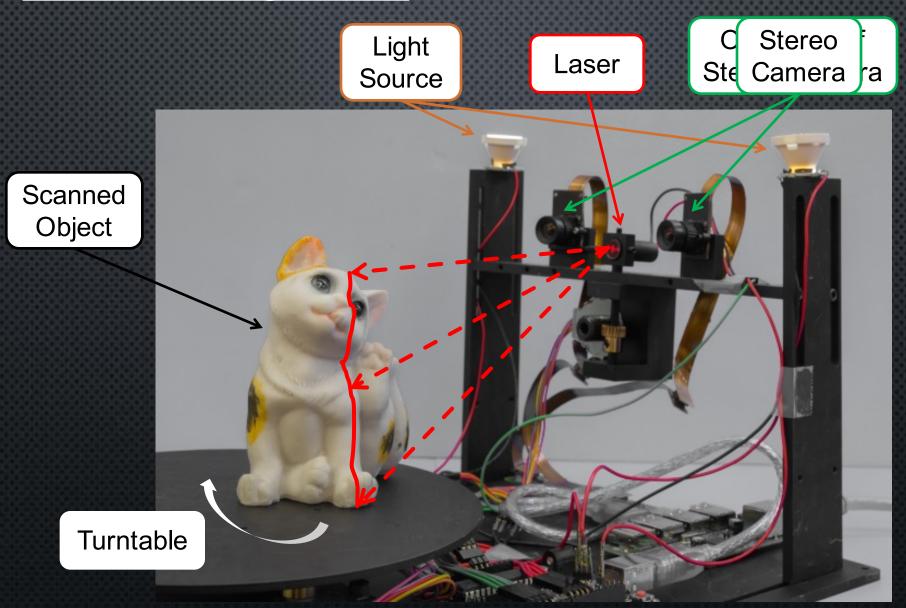


WHY DO WE NEED 3D SCANNING? How does 3D scanner work? Color Corrections & Evaluations 2D Color Correction

• 3D COLOR CORRECTION

Something Memorable

Fetus


Specific Application

HOW

Watch CI3D Scanner Video

3D Scanning Steps

3D Scanning Result

Color Texture Images

COLOR CORRECTION

Experiment Route

X-rite

ColorChecker

Calibration

Ball

One Lens of Stereo Camera

Color Texture Images (Raw)

2D Colorimeter (Topcon UA-1000A)

2D Color Correction

2D Colorimeter (Topcon UA-1000A)

3D Color Correction

Corrected

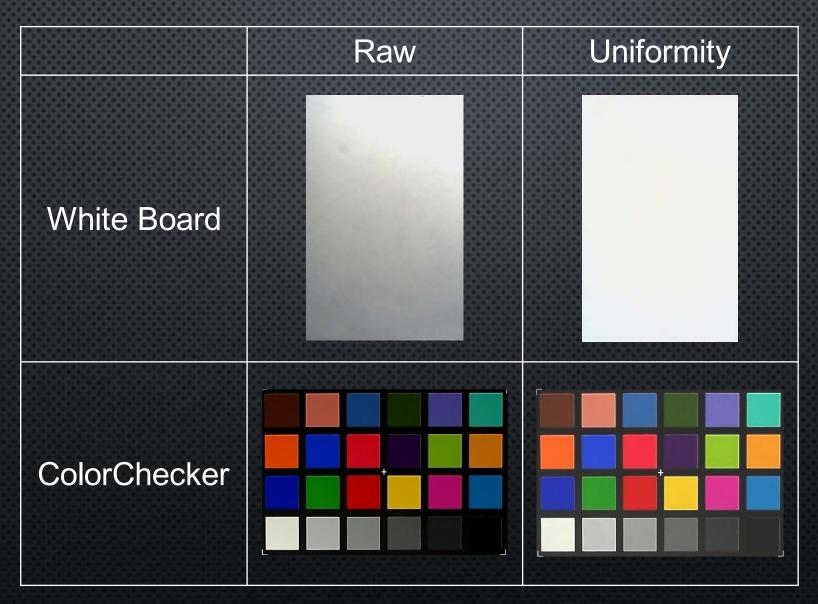
3D Model

2D Color Correction

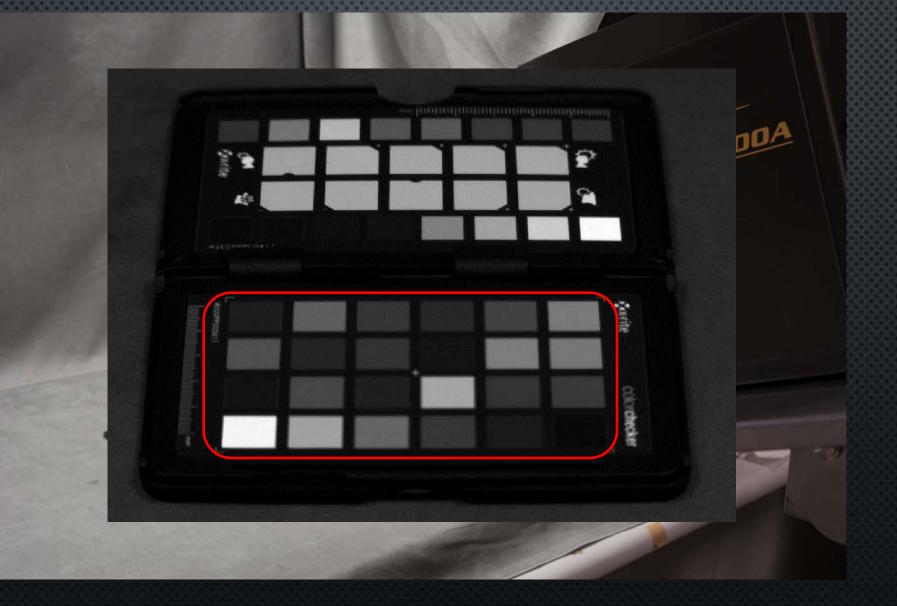
3D Color Correction

2D COLOR CORRECTION

Uniformity Correction

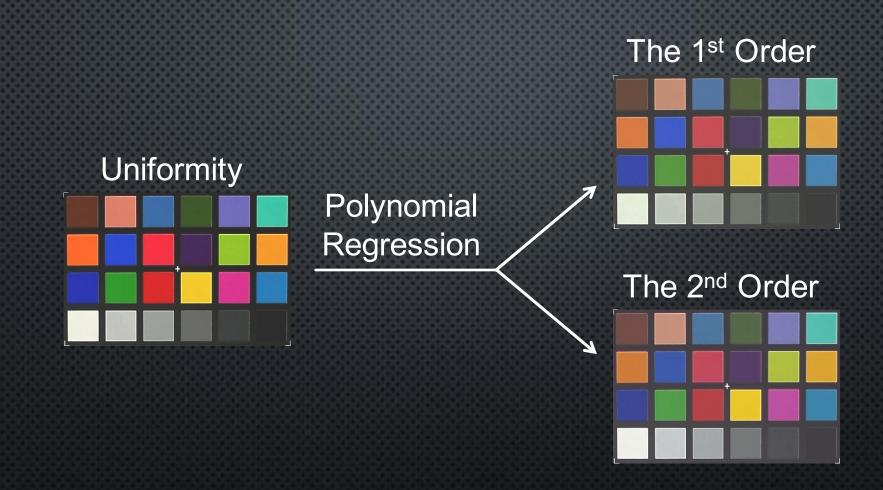

Camera Color Correction

7


Uniformity Correction

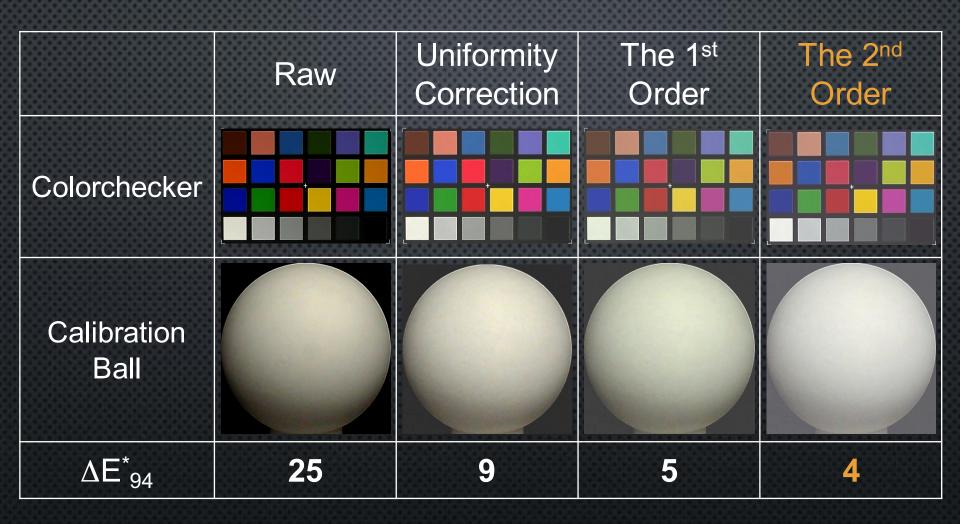
Uniformity Correction

Reference Values of ColorChecker



Polynomial Regression

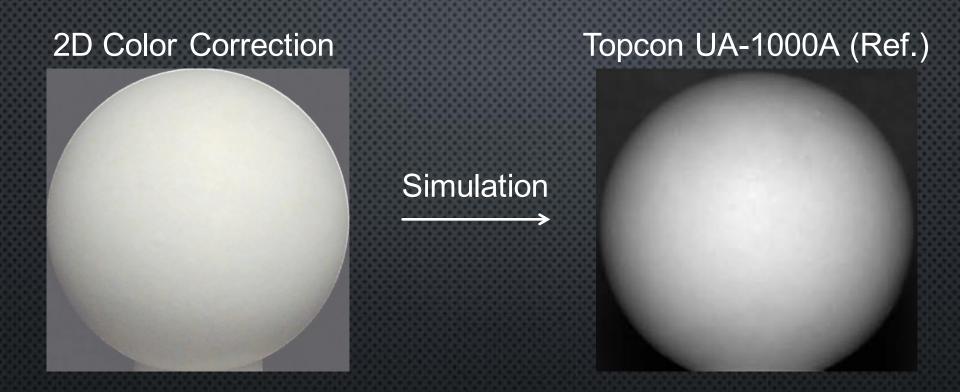
Uniformity Correction Topcon UA-1000A (Ref.) Unknown $[A]_{24xN} \quad \bigstar \quad [M]_{Nx3}$ $\left\lceil B \right
vert_{24x3}$


• [A] and [B] are normalized RGB, which is normalized to 0~1.

Camera Color Correction

- The 1st Order: [A] = [R, G, B, K], K is constant
- The 2nd Order: [A] = [R², G², B², RG, GB, RB, R, G, B, K], K is constant

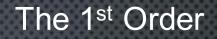
2D Color Correction – Color Difference Comparison



• ΔE_{94}^* is calculated according to ColorChecker.

3D COLOR CORRECTION

What is Final Target?

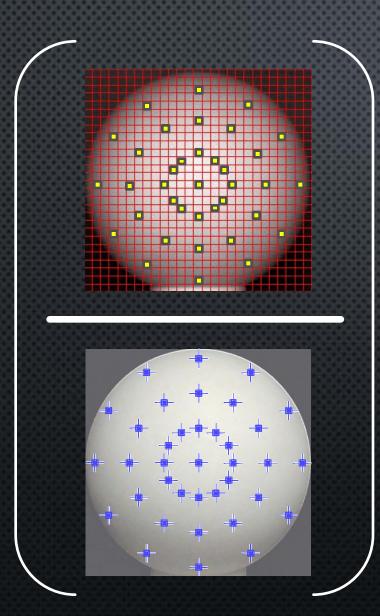

Polynomial RegressionLook-up Table

Polynomial Regression

2D Color Correction Topcon UA-1000A (Ref.) Unknown $[A]_{37xN} \quad \bigstar \quad [M]_{Nx1}$ $[B]_{37x1}$

• [A] and [B] are stimulus values, Y.

Polynomial Regression


2D Color Correction

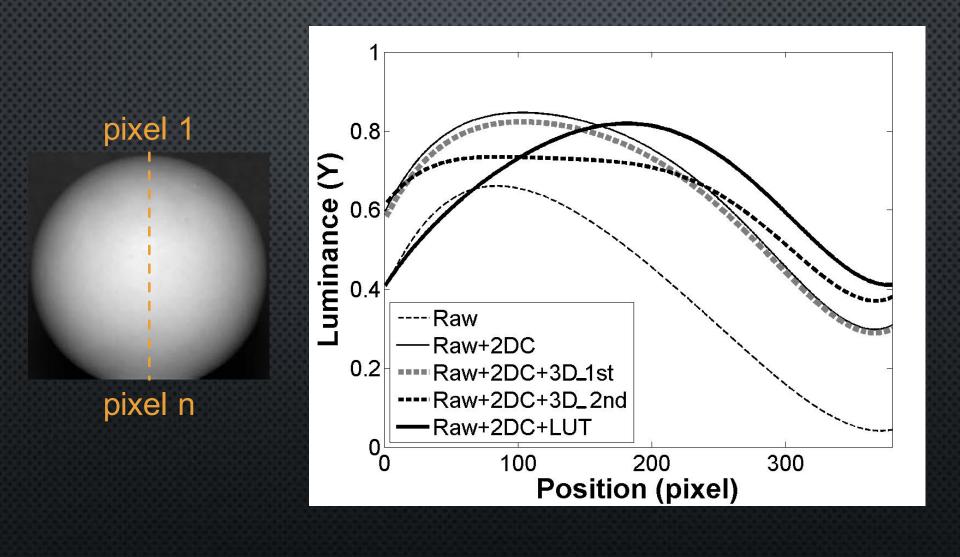
Polynomial Regression

The 2nd Order

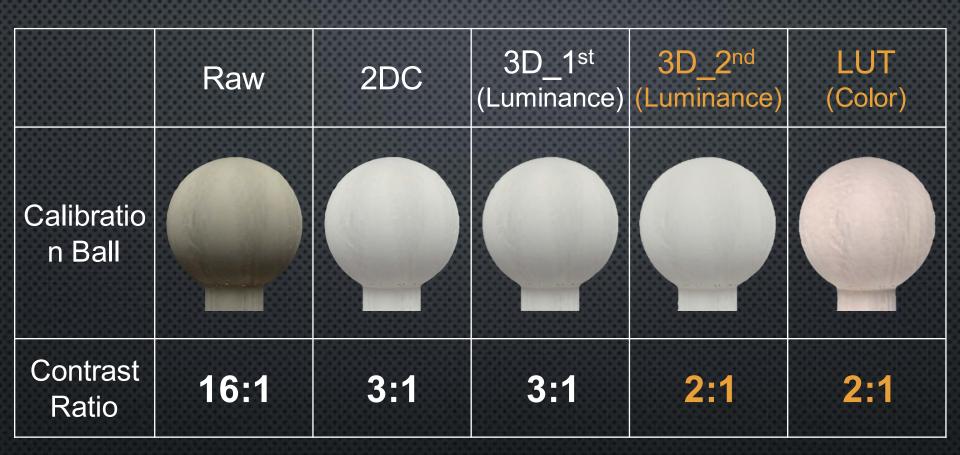
- The 1st Order: [A] = [Y]
- The 2nd Order: [A] = [Y², Y]

Look-up Table

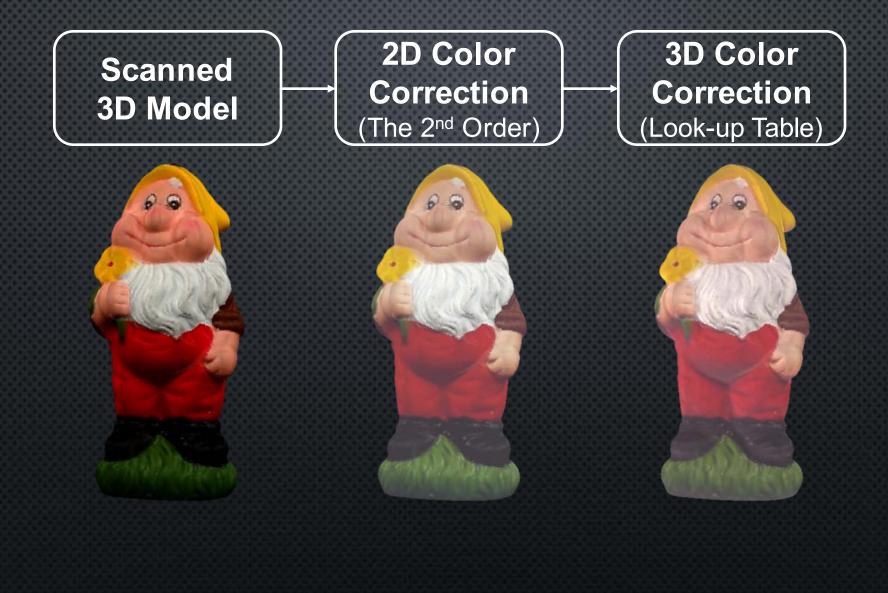
Ratio Table


		200 M	20000
	1 1700	1	L
(12			1.18
		8962	8.934
14	_		0.946
(12.)	11111	1,8773	and the second se
0.3	2.41	0.8982	1.985
103	1 403	0.902	0.879
12.6		1,6484	0.0150
(8.6	N STOR	0.875	1,845
H.s	1 100	0.8536	0.7874
- 10, 91	10001	1.000	0.0903
(1.1)	1000	0.80%	895
14.90	100	ENT	1.010
- C. D	1368	Litter	19415
R.[20		1 Mart	1400
4.13	LATS	0.6981	1104
11.10	136	183	0.0044
_A.10	Link	1214	1894
 	12105	1.894	3.2647
1.10	Laga	1.169	1.0%
	1301	Lin	1.1300
- 112 Time	Line	Lin	1796
- 3. Jan	- in-	138	1250
- 14. Tenne	- I tem	100	1,20%
	- LANS -	(set	1100
- B. Sant	21600	100	1.801
		1100	Una
12.19	100	100	1100
120	-1200	1400	340
讀	- Ellis-	144	14212
3.10	1	- Risk	
		4110	1200
S. in	100	199	1404
	100-	Abbi	1 Sales
北面		132	3468
	194	Line -	13.55
	and the second		945
	-	100-	2200
			2 1 E

<u>3D Color Correction – Color Difference Comparison</u>


	Raw	2DC	3D_1 st (Luminance)	3D_2 nd (Luminance)	LUT (Color)
Calibration Ball					
Scanned Model					
ΔE^*_{94}	24.7	15.7	15.5	15.0	0.5

- ΔE_{94}^* is calculated according to calibration ball.
- 2DC: 2D Color Correction
- 3D_1st: 3D Color Correction–1st Order Polynomial Regression
- 3D_2nd: 3D Color Correction–2nd Order Polynomial Regression
- LUT: 3D Color Correction–Look-up Table


<u>3D Color Correction – Luminance Distribution Curve</u></u>

<u> 3D Color Correction – Contrast Ratio</u>

Overall of Results

CONCLUSION

Proposed Color Correction for 3D Scanning

- 2D Color Correction
 - The 1st Order Polynomial Regression
 - The 2nd Order Polynomial Regression
- 3D Color Correction
 - The 1st Order 3D Color Correction
 - The 2nd Order 3D Color Correction
 - Look-up Table

> 2D Color Correction

Correction tool is ColorChecker

- Polynomial regression based on normalized RGB is better
- The 2nd order polynomial regression is better than the 1st order
- 3D Color Correction
 - Correction tool is calibration ball
 - Look-up table method has the best performance of all
- All the correction can be applied on realistic 3D scanned object well.

FUTURE WORK

 Different material of calibration ball for 3D Color Correction
 High-end DSLR replaces 2D colorimeter to capture reference values

THANK YOU.

Picture Source at P.2: http://3dprintingindustry.com/wp-content/uploads/2014/08/facialhair-3d-scanning.png https://s3-us-west-1.amazonaws.com/cubify/website/resources/images/products/sense/sense_physicaltodigital.jpg http://media02.hongkiat.com/augmented-reality-smart-glasses/meta.jpg http://1.bp.blogspot.com/-cO-IOcFe63M/VMsrZ4I-cfI/AAAAAAAC7Y/KH3OIOitixE/s1600/virtual-reality.jpg http://www.beardmillclinic.com/images/3d-4d-scans.png