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Abstract—In this paper, we propose a measurement-based
approach to the real-time security-constrained economic dispatch
(SCED). The real-time SCED is a widely used market scheduling
tool that seeks to economically balance electricity system supply
and demand and provide locational marginal prices (LMPs)
while ensuring system reliability standards are met. To capture
network flows and security considerations, the conventional
SCED relies on sensitivities that are typically computed from a
linearized power flow model, which is vulnerable to phenomena
such as undetected topology changes, changes in the system
operating point, and the existence of incorrect model data. Our
approach to the formulation of the SCED problem utilizes power
system sensitivities estimated from phasor measurement unit
(PMU) measurements. The resulting measurement-based real-
time SCED is robust against the aforementioned phenomena.
Moreover, the dispatch instructions and LMPs calculated with the
proposed measurement-based SCED accurately reflect real-time
system conditions and security needs. We illustrate the strengths
of the proposed approach via several case studies.

Index Terms—Economic Dispatch, Contingency Analysis, Es-
timation, Security, Distribution Factors, Operations, PMU.

I. INTRODUCTION

The majority of electricity consumers in the United States
are served by entities that procure energy in Independent
System Operator (ISO)- or Regional Transmission Organi-
zation (RTO)-run markets [1]. ISO/RTOs oversee schedul-
ing procedures consisting of a sequence of forward markets
based on security-constrained unit commitment- and economic
dispatch-based algorithms (see, e.g., [2], [3]). The goal of
these processes is to schedule resources on various time-scales
such that the system operator can maintain the supply-demand
balance around-the-clock, and satisfy operational and physical
constraints imposed by the electricity network and reliability
standards. Moreover, the market outcomes include resource
dispatch targets and the prices for energy, the locational
marginal prices (LMPs), and ancillary services [4], which pro-
vide important economic signals to participants. The so-called
real-time markets are the final stage in the market scheduling
process, and real-time security-constrained economic dispatch
(SCED), which relies on accurate contingency selection and
analysis, is a key component of that stage. Typically, the real-
time SCED is formulated using model-based linear flow sen-
sitivities, known as injection shift factors (ISFs), to represent
network flows [5]. In this work, we propose a measurement-
based approach to the real-time SCED.
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In the power system real-time operational context, system
operators are primarily concerned with economically main-
taining system security. The system is said to be in a secure
state when resource dispatch targets and other controllable
system resources are set such that the supply-demand balance
is met and so that the system can tolerate the failure of a
small number of components without jeopardizing continued
operation [6]. To achieve secure operation, system operators
have conventionally undertaken three security functions: (i)
system monitoring, (ii) contingency analysis, and (iii) security-
constrained optimal power flow (SCOPF) [5]. System mon-
itoring consists of collecting and processing measurements,
e.g., voltages, power injections, or breaker statuses, for use in
real-time applications. Contingency analysis harnesses the data
from system monitoring along with a system model to perform
model-based dc and ac power flow analyses to identify outages
in the system that may cause overloads on system equipment
and thus compromise system security. The overloads identified
by contingency analysis are utilized with system operational
constraints and system model data to formulate the real-
time SCED—the formulation of the SCOPF used in real-time
operations.

The SCED was first formulated more than 40 years ago [7].
Over the years, SCED research has focused on improv-
ing computational speed and incorporating additional system
and reliability information, e.g., transient stability constraints
and remedial actions, into the SCED problem formulation
(see, e.g., [8]). More recent developments in methods for
improving SCED solution computation times have focused
on reducing the size of the problem, e.g., by eliminating
unnecessary constraints (see e.g., [9]), or by decomposing
the problem into a series of less computationally burdensome
subproblems via methods such as Benders’ decomposition
(see, e.g., [10]). Furthermore, the introduction of market-
based scheduling for electricity and reserves necessitates more
complex formulations of the SCED (see, e.g., [11]). Also, in
the past two decades, improvements in optimization methods
and the availability and economy of computational resources
have driven a surge in the exploration of probabilistic methods
for incorporating reliability considerations into the SCED
(see, e.g., [12]). In this paper, we focus on a deterministic
single-stage linear formulation of the SCED, which, to our
knowledge, is the formulation commonly used in practice (see,
e.g. [2], [3D).

In order to perform conventional contingency analysis and
formulate power flow, network flow, and security constraints in
the real-time SCED, the system operator requires an up-to-date



model of the ISO/RTO’s electricity system and that of neigh-
boring systems, which is typically derived from the output of
a state estimator. The state estimator-based model is vulner-
able to errors due to numerous phenomena, e.g., undetected
changes in the internal system topology and erroneous model
parameters [13], as well as inaccurate representations of neigh-
boring systems [14]. Further, model line parameters errors can
arise as a result of assumptions made when computing model
parameter values, e.g., the extent of line transposition and
non-homogeneity in conductor material due to partial facility
upgrades/reconductoring [15]. Also, model parameter values
are impacted dynamically by natural phenomena, e.g., mutual
conductance, temperature, humidity, and ground conductance
[16]. The accuracy of security constraints identified through
contingency analysis and the dispatch targets and LMPs de-
termined in the model-based real-time SCED are coupled
with the accuracy of the system model and, as such, subject
to the same vulnerabilities. Inaccurate contingency analysis,
dispatch targets, and LMPs have economic implications, e.g.,
sending incorrect local price signals and over/under payment
to resources, as well as system reliability implications, e.g.,
unintended equipment overloads and outages [17], [18], [19].

In this paper, we propose a measurement-based approach
to the real-time SCED with the goal of overcoming the short-
comings of the model-based SCED described above. The crux
of our approach is the reformulation of the SCED constraints
using more accurate data—removing model-based quantities
and replacing them with measurement-based estimates of the
same quantities. Specifically, we reformulate two types of
constraints: (i) network flow constraints, and (ii) security
constraints. In the model-based SCED, both of these types
of constraints depend on model-based ISFs and sensitivities
derived from ISFs. Instead of relying on model-based ISFs,
our approach utilizes the measurement-based method for esti-
mating sensitivities described in [20] and [21].

By moving away from a model-based representation of
the network, our approach virtually eliminates the impacts
of phenomena such as undetected changes in system topol-
ogy and erroneous model parameters on the real-time SCED
outcomes. Furthermore, by computing sensitivities directly
from measurements, the measurement-based SCED can be
formulated without the output of a topology processor and
state estimator, which may be advantageous for cases in which
the state estimator fails to converge (see, e.g., [17], [18]). Our
measurement-based approach also removes the requirement to
define an arbitrary distributed slack bus policy in order to
compute the ISFs, which is a fundamental limitation of model-
based ISFs. Finally, the measurement-based sensitivities can be
used to enhance contingency selection, which, as we show, can
improved contingency analysis by identifying potential cases
of security constraint omission and commission due to model
errors that will subsequently impact the SCED formulation
and solution.

Our approach relies on the availability of phasor measure-
ment units (PMUs), the preponderance of which in power
systems is facilitating the proliferation of a new generation of
operational tools that harness the very high frequency and time
synchronicity of their measurements (see, e.g., [22], [23]). The

use of PMU data in real-time operations has been promoted
as a means by which to circumvent the shortcomings of the
existing telemetry system, and reduce the frequency of occur-
rence and the magnitude of the impact of preventable outages
[19]. As we show, the real-time contingency selection and
SCED processes can likewise be enhanced by the deployment
of PMU measurements.

Several approaches to identifying and handling erroneous
data in state estimation have been proposed [24]. Further,
ISOs/RTOs update system model data periodically as er-
roneous data are identified through ex-post analysis, e.g.,
the analysis of non-convergent state-estimator solutions, and
reporting by market participants (see, e.g., [25]). However,
even with these error detection and correction algorithms and
processes in place, the potential for erroneous model data and
topological errors persists in real-time operations and presents
a challenge to reliable and economic power system operations.
As discussed above, our proposed measurement-based SCED
approach addresses this challenge by bypassing the need for
a system model.

This paper extends in a number of directions the preliminary
work reported in [26]. First, we give a detailed account
of the advantages of applying measurement-based security
assessment in real-time operations. Second, we formulate the
security-constrained economic dispatch, whereas in [26] we
did not consider system security. Finally, we furnish the
results of case studies carried out on a larger test system to
demonstrate the scalability of our approach.

The remainder of this paper is organized as follows. In
Section II, we give an overview of conventional model-based
contingency analysis and SCED. In Section III, we describe
the measurement-based sensitivity estimation approach that
we leverage in this work, as well as the application of
measurement-based sensitivities in the context of the real-time
contingency analysis and SCED. In Sections IV and V, we
present the results of case studies carried out to demonstrate
the strengths of the proposed measurement-based SCED. The
final section reiterates the contributions of this work and points
to some directions for future work.

II. CONVENTIONAL REAL-TIME SCED

The SCED is a widely-used, optimal power flow (OPF)-
based market scheduling tool that has four primary compo-
nents: (i) power flow and network flow constraints obtained
from a model of the system; (ii) equipment constraints, e.g.,
generator power output limits; (iii) reliability-driven con-
straints, e. g., reserve requirement and security constraints; and
(iv) the objective, typically the maximization of social surplus
or minimization of generator costs, commonly quadratic or
piecewise-linear functions (see, e.g., [5], [7], [27]).

For a number of computational and practical reasons, the
conventional real-time SCED is commonly formulated using
a simplified OPF formulation, referred to as the DC-OPF [28].
The DC-OPF relies on the so-called “dc” assumptions: (i) the
system is lossless, (ii) the voltage at each bus is approximately
equal to one p.u., (iii) the difference in the voltage angles
between each pair of connected buses is small [5]. These



assumptions result in a linear approximation of the nonlinear
power flow and network flow constraints.

A. Power Balance

To formulate the real-time SCED, we consider a system that
consists of N buses indexed by N = {1,..., N}, and L lines
indexed by £ = {/1,...,¢1}, where each ¢; is an ordered pair
(n,m), n,m € N, representing a transmission line between
buses n and m, with the convention that positive flow on such
a line is in the direction from n to m. Moreover, let there be G
generators indexed by G = {1,...,G}, and D loads indexed
by D ={1,...,D}. Let G, C G be the subset of generators
at bus n € N, and let D,,, C D be the subset of loads at bus
meN.

Let P? be the output of generator i € G, with the convention
that PY > 0 if generator i injects real power into the system;
and let P{f be the demand of load v € D, with the convention
that P4 > 0 if load j withdraws real power from the system.
Then, define the vectors of generation and demand as P9 =
[PY,...,P%]" and P4 = [PE,..., Pg]T, respectively. With
these quantities, we define the net injection at a bus n € N’

as
P,=) P'— > P (1)
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with the convention that P, > 0 if real power is injected info
the system. Then, define the vector of net injections at all
buses as P = [Py, ..., Py]".

In the ISF-based network representation, the voltage angles
are not explicitly represented, rather the bus power balance
and power flowing on each line are written in terms of the
system-wide power balance, the linear flow sensitivities, and
the bus injections. The system-wide power balance constraint
is given by

1Lps —1Tp? - P =0, )

where 14 and 1p are all-ones vectors of dimensions G and
D, respectively; and Plis system-wide losses, which we will
assume takes the form of a sensitivity-factor-based loss model,
such as that given in [29].

B. Network Flow Constraints

Let A = [a1,...,0a;,...,ay] denote the transmission net-
work incidence matrix, where a; is an L-dimensional column
vector the jth entry of which is equal to 1 if bus ¢ is the
from bus of line j, —1 if bus ¢ is the fo bus of line j, and
zero otherwise. Further, let b denote the L-dimensional column
vector of branch susceptances, and define the diagonal L x L
branch susceptance matrix as By = diag{b}, where diag{-}
denotes a diagonal matrix such that By[i,] = b;, Vi. Then,
define the (N —1) x (N —1) reduced nodal susceptance matrix
as B = /iTBbfl, where A is the incidence matrix absent the
column corresponding to the specified slack bus.

The L x N linear flow sensitivity matrix, or ISF matrix,
denoted by U, provides the basis of the ISF-based DC-OPF
network flow representation. An entry of ¥, denoted by ¥[l, 7],
provides the sensitivity of the flow on line ¢; € L to an
injection at bus ¢ that is withdrawn at the slack bus. Under

the DC assumptions, ¥ can be calculated directly from the
network connectivity and parameters as follows [5]

U = B,AB™ ", 3)

where we assume that U has been augmented in the appro-
priate location with a column of zeros corresponding to the
slack bus such that it is of dimensions L x N.

With the model-based ISFs from (3), we define the vector
of line flows in terms of the bus injections as

Pl = WP, 4)

which are bounded above and below by the line upper and
lower limits, denoted by P/ and P/, respectively.

C. Security Constraints

Power systems are typically operated with the so-called
“N-1” security criterion, i.e., no equipment will be overloaded
by the outage of a single line, generator, or other facility.
To ensure that this requirement is upheld in the solution of
the real-time SCED, security constraints are added to the for-
mulation. These constraints incorporate the post-contingency
behavior of the system into the real-time SCED so that the
resulting dispatch is secure under such contingencies. In this
work, we consider a deterministic formulation of the SCED
with no corrective actions, i.e., no decision variables for
post-contingency reconfiguration of system resources. Such
a formulation is a preventative approach to ensuring system
security, and is consistent with current practice in ISO/RTO-
run markets [8]. Alternative SCED formulations, which in-
clude the possibility of post-contingency reconfiguration of
system resources in response to contingencies (see, e.g., [10]
,[12], [30]), have been proposed, but, to our knowledge, their
deployment has so far been limited in scope.

In order to select the contingencies for which security
constraints will be formulated, the system operator undertakes
contingency selection and analysis so as to ascertain the
contingencies, e.g., line and generator outages, that will result
in overloads on system equipment. In practice, operators do
not consider the impacts of every possible single outage on
every piece of equipment, e.g., line, transformer, in the system,
rather they consider a subset of facilities and contingencies via
a pre-defined set of so-called mon-con pairs—each mon-con
pair specifies a monitored facility and the contingency with
respect to which it is monitored for overloads.

To be useful in the real-time operational context, real-time
contingency analysis must be executed in a timely fashion (on
the order of minutes, see, e.g. [31]) . As such, contingency
analysis is conducted using a contingency list composed of a
subset of all possible mon-con pairs, which are selected using
a combination of off-line studies, operator discretion, and dc-
analysis, e.g., the flow performance index [5]. Ac power flow-
based contingency analysis is used to analyze each mon-con
pair on the contingency list, i.e., those contingencies deemed
to have significant potential to degrade system security. The
outcome of contingency analysis is a set of mon-con pairs
for which the corresponding outages cause overloads and for
which security constraints must be included in the SCED.



Power system sensitivities, namely the power transfer dis-
tribution factors (PTDFs) and line outage distribution factors
(LODFs), are essential to the formulation of security con-
straints [5]. The N x N matrix of PTDFs for a line ¢,
denoted by ®,, provides the sensitivity of the flow on line ¢;
to real-power transactions between buses in the system, e.g.,
the (n, m)th element of ®;, denoted by ®;[n, m], gives us the
proportion of a real power transaction injected at bus n and
withdrawn at bus m that flows over line ¢;. The PTDF for a
line ¢; with respect to an injection at a bus n that is withdrawn
at a bus m is calculated directly from the ISFs as follows [5]:

®;[n,m| = ¥[l,n] — ¥[l,m]. 3)

The L x L matrix of LODFs provides the proportion of the
pre-outage flow on each line ¢; that flows on each in-service
line ¢, in the system in the event of the outage of line ¢; . The
LODF for a line ¢, with respect to the outage of a separate
line ¢; = (n,m) is calculated from the PTDFs in (5) of the
respective lines by [5]

D, [n, m]

Elw 1] = 1 —®n,m]’

(6)

Let C9 and C7 be the sets of generator and line outage
mon-con pairs, respectively, identified by the system operator
through contingency analysis as causing overloads. The sets
C9 and C’ consist of doubles of the form (¢, cf) and
(éu,clf ), respectively, where (£,,c{) is the mon-con pair for
the overload of monitored line ¢,, with respect to the outage
of generator j and (¢, le ) is similarly defined for line outage
mon-con pairs.

We formulate a security constraint for each line outage mon-
con pair, (€, clf ) € Cf, using the LODFs from (6) as follows

P! < W, P+ E[u,l|U,P < P!, (7

where W, and W; are the uth and [th rows, respectively, of
the ISF matrix. Then, define U/ as the matrix of line flow to
bus injection sensitivities for all line outages, where each row
m corresponds to a mon-con pair (£, clf ) € Cf and is given
by
U =0, + Z[u, 1] (8)
The line flow impacts of generator contingencies depends on
the response of the remaining generators in the system, which
is typically approximated by a function of each generator’s
inertial constant, maximum capacity, or dispatchable range [5].
For the contingency of a generator j, we assume the generators
remaining online respond according to pre-specified participa-
tion factors corresponding to the outage of generator j. Define
the participation factor of each generator ¢ corresponding to
the outage of generator j by

p? o ..
g g Zlegl#JPf lfz;éj’leg7
aj(cf) =1 -1 ifi=ji€eg, ©)
0 otherwise.
Then, let a(c] 7) be the N-dimensional vector of nodal gen-

erator partlclpatlon factors corresponding to the outage of

generator j, each entry of which is given by

an(c]) = Z af(cf).
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(10)

For notational convenience, and without loss of generality,
we assume there are no loads at the generator buses. Using
the participation factors from (10), we formulate a security
constraint for each generator outage mon-con pair, (£, c? ) €
C9, as follows

Pl < U, P+ (Uya(c)e] )P < Pf, (11

where ¢; is an N-dimensional vector with a one in the jth
entry and a zero in each other entry. Define W9 as the matrix of
line flow to bus injection sensitivities for the generator outages,
where each row m corresponds to a mon-con pair (£, c? ) €
CY9 and is given by

I, =W, + (Vyalcd))e] .

(12)
Furthermore, to ensure reliability is not compromised by a
generator outage, there must be adequate upward capacity
among all generators in the system to respond to the outage.
Such limitations are typically captured by reserve constraints
in the SCED. Though critically important for maintaining
reliability, the reserve constraints are not directly impacted by
the measurement-based formulation proposed here and so, for
the sake of brevity, we do not explicitly represent them in the
formulation.

Let P®, P*, be the vectors of lower and upper security
constraint limits, respectively, which consist of the line limits
corresponding to the potentially overloaded lines of their
respective security constraints. Then, we can concisely state
the collection of security constraints corresponding to those
mon-con pairs in C/ and CY and defined in (7) and (11),
respectively, as

13)

where
(14)

D. Model-Based Real-Time SCED Problem Formulation

Let &;(-) be the offer function of generator ¢ and %jd() be
the bid function of demand j, the arguments of which are P/
and Pd respectively. The objective of the real-time SCED is
the max1m1zat1on of the social surplus [27], which is defined

as
> By(P =D 0u(PP).

veED i€G

S (P9, P4y = (15)
Combining the objective in (15) with the constraints that result
from the power balance and network flow expressions in (2)
and (4), respectively, and the security constraints in (13) we



formulate the model-based real-time SCED as follows

max, S (P9, PY) (16a)
s.t.

1aP9 —1pP?— P =04 )\, (16b)
P9 < PI<PY (16¢)
pt<pi<pe (16d)
Pl <wp< pf < pl nf (16e)
P° < U°P < P* © ps e, (16f)

where P9(P9) and P?(P%) are the vectors of generator and
load lower (upper) limits, respectively, and \,, u/, i/, and
u®, i° are the dual variables of their respective constraints,
also referred to as shadow prices due to their well-known
economic interpretation [27]. The shadow price of the system-
wide power balance constraint, )., is often referred to as
the system reference or energy price. Note that for clarity of
presentation in (16), we have left out of the real-time SCED
the reserve requirement and ramping constraints that are often
present in a practical real-time SCED [4]. The exclusion of
these constraints, however, has no bearing on the formulation
of the measurement-based real-time SCED and they may
easily be included in our approach.

The primary outcomes of the real-time SCED are: (i) the
optimal generator and load dispatch instructions, which are a
direct result of the solution to (16); and (ii) the LMPs, which
are not a direct result of the solution to (16), but may be
calculated from the ISFs, the loss sensitivity vector, and the
shadow prices [32].

Let ¢ be the N-dimensional column vector of the sensitivity
of system-wide losses to nodal injections. Then, the LMPs are
computed as follows [33]:

-1
- | e

w] (5

where 1 is an N-dimensional all-ones vector. Now, define

c v g ﬂf I
LT (][] e o

to be the N-dimensional vectors representing the congestion
and loss components of the LMPs. The LMP expression in (17)
is the so-called three-part LMP (see, e.g., [32], [33]), which
consists of: (i) A, the energy component, which represents the
cost, from those generators that provide it, to generate the next
MW; (ii) A, the congestion components, which capture the
additional costs to deliver the next MW to each bus associated
with transmission congestion-driven dispatch limitations; and
(iii) A%, the loss components, which account for the location-
differentiated cost of losses associated with serving the next
MW at each bus.

A=M\1y+ { D + Ay (A7)

III. MEASUREMENT-BASED REAL-TIME SCED

It is clear from (16) that the dispatch targets and LMPs
calculated from the results of the model-based real-time SCED
depend heavily on the model-based ISFs and how accurately
these ISFs reflect the conditions in the system at the time the

real-time SCED is formulated. However, due to potential inac-
curacies in telemetry and state estimation that may propagate
to the underlying system model, the model-based ISFs may not
always reflect the real-time system conditions.We address this
shortcoming of the model-based SCED via the deployment of
the measurement-based ISF approach proposed in [20].

A. Measurement-Based ISFs

Consider the same power system defined in Section II.
Suppose the net real power injected into the system at bus
n at time ¢, P,(t), varies by a small amount AP, (t) from
time ¢ to time t + A¢, where At > 0 and small. Further,
let AP, ,,(t) be the change in real power flow on line ¢; due
to AP,. Define the measurement-based ISF for line ¢; with
respect to an injection at bus n as

opf AP/
Il,n] =L ~ ",
oP, AP,

While APlfn(t) is not directly available through PMU mea-

surements, we can, however, measure APlf (t), the total
change in flow on line ¢; due to bus injections at time f.
We observe that the variation in the flow on line ¢; is due
to variations in the injections at each bus n:

APl = AP/ () + -+ AP/ (1).

19)

(20)
Employing (19) in (20) we obtain
AP/ ~ AP ()T, 1] + --- + APx(t)T[I, N].

Now suppose we have M + 1 sets of synchronized measure-
ments. Let

AP, k] = P,[(k + 1)At] — P,[kAt], (1)
AP[K) = Ff[(k+1)A0 - Pl kAl @2
for j =1,..., M and define
AP, = [AP,[1] --- AP,[K] --- AP, M]]",  (23)
AP/ = |AP/[1] --- AP/[K] --- AP/[M] ! (24)
Let I, = [T'[l,1],...,T[l,n],...,T'[l, N]]. Then, clearly,
AP/ =[AP, --- AP, --- APy|TT. (25)
Let AP denote the M x N matrix [AP; --- AP, .-+ APy].
Then, the system in (25) becomes
AP/ = aprt. (26)

If M > N, then (26) is an overdetermined system. More-
over, assuming the ISFs are approximately constant over the
M + 1 measurements, we can obtain an estimate of I'; from
least-squares error estimation as

7 = (APTAP)'APTAP]. 27)

1) Practical Considerations for the ISF Estimation: The
estimation of the measurement-based ISF in (27) requires
a complete set of data, i.e., M sets of injection and line
flow measurements, where M > N. Moreover, it gives



equal weight to all measurements, regardless of when they
were taken. In practice, these aspects of the approach above
may prove to be impractical. To address this, [20] deploys a
weighted least squares (WLS) formulation of (27) given by

7 = (APTWAP)'APTWAP/, (28)

where W is the weighting matrix, which can be selected to
give more weight to recent measurements. Such an approach
is advantageous for tracking changing operating conditions
and minimizing the impacts of erroneous measurements. The
WLS approach in (28) is further improved in [20] by the
application of recursive weighted least squares, which enables
the generation of updated estimates of the I'; as each set
of measurements arrives, as opposed to the requirement in
(27) of a complete set of measurements in order to perform
the estimation. An alternative approach proposed in [21],
applicable if M < N, is to estimate I using sparse vector
recovery methods from Compressed Sensing. In this work, we
adopt the WLS approach in (28) with a diagonal weighting
matrix W, where W[k, k] = fM=* and f € (0,1], for the
purpose of demonstrating the benefits of our measurement-
based SCED formulation.

2) PMU Measurement Error Impacts: PMU measurement
data may contain errors due to a host of issues, e.g., communi-
cation channel failure, inadequate maintenance and calibration
of PMUs, and detection of such errors is an area of ongoing
research [34]. The accuracy of measurement data used in
conventional applications, e.g., state estimation, is commonly
assessed via error residuals (see, e.g., [24]). Additionally, some
erroneous data can be detected by analyzing: (i) measurement
magnitude, e.g., are the measurements orders of magnitude
too small or large to be plausible; and (ii) measurement con-
sistency, e.g., do the measurements result in gross violations
of Kirchhoff’s laws. In this paper, we assume that standard
checks have been performed on the PMU measurements prior
to their use in sensitivity estimation. Furthermore, the impacts
of temporary errors in measured data are minimized through
the use of weighted least squares with a sliding measurement
window and by setting f < 1. In the following section, we
discuss the application of the measurement-based ISFs in the
context of the real-time SCED.

B. Measurement-Based Network and Security Constraints

Our primary goal in this work is to leverage the
measurement-based ISF estimation approach described above
to remove the dependence on a system model of the SCED
in (16). To this end, we reformulate the network and security
constraints, (16e) and (16f), respectively.

1) Network Constraints: Let ' be the L x N matrix of
the measurement-based ISF estimates, each row of which is
obtained from (28). As described in Section II, model-based
ISFs form the basis of the network description in the real-time
SCED. To remove the model dependence of (16), we deploy
I" to re-formulate the network constraints (16e) as

pf<rpP< Pl (29)

With these reformulated network constraints, the real-time
SCED constraints will be based on pre-contingency line flows
that accurately reflect real-time conditions. The measurement-
based ISFs are also instrumental to measurement-based con-
tingency analysis and the formulation of security constraints.

2) Sensitivity-Based Contingency Selection: The
measurement-based ISFs can also be used to compute
the LODFs and PTDFs, which may subsequently be used
to perform contingency selection and formulate security
constraints. The application of the measurement-based ISFs
in this context offers several substantial enhancement to
the SCED. The adaptive nature of the measurement-based
ISFs reduces or eliminates the impacts of model accuracies,
e.g., erroneous model data or undetected changes in system
topology, on: (i) the identification of contingencies and
their relative severity during contingency selection; (ii) the
identification, through contingency analysis, of those facilities
in the system that will be overloaded by a given outage
(by providing an accurate contingency list); and (iii) the
formulation of security constraints that accurately reflect the
impacts of outages and injections.

To conduct online measurement-based contingency selec-
tion, the system operator could deploy the measurement-based
ISFs and LODFs to compute the impacts of all potential
contingencies (or a pre-determined subset of all potential
contingencies composed of a set larger than the current
contingency list). For each potential outage of a line ¢;, the
operator analyzes the flow impacts on each non-outage line ¢,
as follows:

0, P+ E[u, )1y P| < P, (30)

where Z[u, [] is the measurement-based estimate of the LODF
of line ¢, with respect to the outage of line ¢;. Similarly, for
each potential outage of a generator j, the operator analyzes
the flow impacts on each line /,, as follows:

LW P + (Cua(cd)e] )P| < Pf. (31)

If a generator or line contingency is found to cause an
overload via (30) or (31), respectively, a mon-con pair for
the contingency and each corresponding overloaded element
is added to the contingency list, which is subsequently used
in ac contingency analysis to populate C¥ and C9.

Additionally, if the post-contingency flows computed with
(30) or (31) conflict substantially with those computed using
ac contingency analysis, e.g., if a flow difference of more
than 40% is identified (greater than the flow error between
the various ac and dc models studied in [28]), the system
operator could flag a potential error in the ac system model,
which could be investigate using methods such as “Parity
Checking”, which is used in fault detection (see, e.g., [35]).
Furthermore, the system operator could use the results of the
online measurement-based contingency selection in (30) and
(31) in addition to, or in lieu of, such (potentially erroneous)
ac contingency analysis results to formulate the security con-
straints in the SCED.

3) Security Constraints: We reformulate the line outage se-
curity constraints for each line outage mon-con pair, (¢,,, czf )€



Fig. 1: The 6-bus test system topology.

TABLE I: 6-Bus Generator Offer Function Parameters

generator a; ($/MWh?) b; ($/MWh) ¢ ($)
1 0.1100 5.0 150
2 0.0850 1.2 600
6 0.1225 1.0 335

C7, to reflect the utilization of the measurement-based ISFs as

P/ <T,P+E[u, TP < P/ (32)

u

where é[u, l] is the measurement-based estimate of the LODF
of line ¢,, with respect to the outage of line ¢; calculated using
the measurement-based ISFs, and those for each generator
outage mon-con pair (£,,cj) € CY as

Pl <T,P+ (Tua(c))el )P < PJ. (33)

With the reformulated network and security constraints in
(29) and in (32) and (33), respectively, the real-time SCED
no longer relies on a system model. Instead, the system
operator continuously updates the estimate of I via (28), and
recomputes = via (5) and (6), as new PMU measurements
become available and uses the most up-to-date estimates to
perform contingency selection/analysis, identify and formulate
the necessary security constraints, and formulate the real-time
SCED. This measurement-based real-time SCED is adaptive
to changing system conditions, such as detected or unde-
tected topology changes, variations in bus injections, and even
changes in line and other system parameters due to loading or
extreme temperature conditions. As such, the dispatch targets
and LMPs resulting from the SCED process will reflect real-
time system conditions.

A key strength of our proposed measurement-based SCED
approach is its consistency with the current real-time SCED
framework; the structure of the SCED formulation is left
largely unchanged, but more appropriate data is used as the
basis for that structure. The result is an enhanced and adaptive
real-time SCED. The following case studies demonstrate the
adaptability of our measurement-based approach to the real-
time SCED.

IV. CASE STUDY I: 6-BUS SYSTEM

We demonstrate the strengths of the proposed measurement-
based real-time SCED by using a modified version of the
3-generator, 6-bus test system, shown in Fig. 1, which is
provided in the simulation package Matpower [36].

To estimate f‘ we use simulated PMU measurements (as-
sumed to be collected at a measurement frequency of 30/s) of

the random power injection fluctuations in each load j € D.
These measurements are generated using the nominal load
provided with the case according to

Pk] :Pﬁo[k]+alpio[k}V1+02V27 34

where PZ[k] is the case nominal power injection by load
v at instant k, and v; and vy are pseudorandom values
drawn from a normal distribution with zero mean and standard
deviations o1, 05 = 0.01, respectively (alP]ffO [k]v1 represents
random load fluctuations, whereas oov5 represents measure-
ment noise). We compute simulated PMU measurements of
generator power injections P/ [k] for each generator i € G
corresponding to the loads at instant k£ by solving a dis-
tributed slack bus ac power flow with initial generation outputs
P9k — 1], and loads P9[k], nominal bus reactive power
injections )y and voltages Vj and distributed slack weights,
v E RS, the entries of which are defined by

Pf
Yi = Zj €Go 719
0

where G, C G is the set of generators with non-zero outputs in
the test case nominal power flow solution. In each case studied,
we use the simulation package Matpower [36] to compute the
relevant line flows. Furthermore, we assume each load has an
infinite willingness to pay, i.e., the demand is inelastic, and
each generator 7, submits a quadratic offer function of the
form a;(P?)? +b; PY + ¢;, the parameters of which we report
in Table 1.

if 1 € G,

otherwise,

(35)

A. Selection of M and f

The WLS estimation procedure in (28) has two degrees
of degrees of freedom: (i) the selection of the number of
samples, M, to include in the estimation, i.e. the size of the
measurement window; and (ii) the selection of f € (0,1] so
as to specify the diagonal weighting matrix W. A larger mea-
surement window, M, increases the accuracy of the estimation
and decreases its susceptibility to noise when the system is
in steady state at the expense of increased error when the
operation point changes [37]. The selection of f impacts the
weight given to the measurements from each measurement
instant in the measurement window and choosing f < 1 can
improve the tracking of the estimator under changing operating
conditions at the expense of steady state accuracy [38]. We
demonstrate the impacts of the selection of M and f on
the ISF estimation with the following series of examples and
provide some guidelines for their selection.

To illustrate the impacts on the ISF mean-squared error
(MSE) of the selection of M under steady state conditions, we
simulate 500 PMU measurements using the process outlined
above at the nominal 6-bus power flow solution. Then, we
compute the ISFs using (28) with f = 1 and with M varied
from 20 to 380 measurement instants in increments of 20. The
ISF estimates are compared to the ‘actual’ ISFs, which are
computed by repeatedly solving the ac power flow equations
around the operating point at each measurement instant with
a 0.01 p.u. increase in the net injection at each bus and taking
the ratio of line flow changes to the net injection change.
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Fig. 2: Sensitivity of the ISF estimation error to the selection

of M under steady-state operating conditions with f = 1.

As shown in Fig. 2, as we increase the value of M, the
MSE between the estimated and ‘actual’ ISFs decreases—
substantially between M = 20 and M = 100 and then
slowly for M > 120. This finding suggests that one should
select as large an M as is computationally feasible. However,
when performing the estimation under changing operating
conditions, the ISF MSE may not decrease with increasing
M, as we show below. Furthermore, the ISF MSE can be
improved under changing conditions by selecting f < 1.

To demonstrate the impacts on the ISF MSE of the selection
of f and M under changing operating conditions, we again
simulate 500 PMU measurements, however now we increase
the load at bus 4 linearly by 100% between measurement
instants 300 and 400, assuming the load increase is balanced
by the generators in the system according to the distributed
slack policy defined in (35). We then compute four cases
of the ISF estimation using (28) with estimation parameters
f and M: (i) executed at measurement instance 350 with
M =120 and f varied from 0.7 to 1 measurement instants in
increments of 0.02; (ii) f = 1 and M varied from 140 to 500
measurement instants in increments of 20 and executed at each
measurement instance; (iii) with f = 1 and M = 120 executed
at measurement instants 140 to 500 in increments of 20; and
(iv) with f = 0.98 and M = 120 executed at measurement
instants 140 to 500 in increments of 20. We select M = 120
in these cases based on the the relatively low steady-state ISF
MSE found in the above sensitivity study. For each case, we
compare the ISF estimates to the ‘actual’ ISFs computed at
the corresponding measurement instant.

As is clear from Fig. 3, the ISF MSE in case (i) is minimized
during the operating point change for a fixed M by selecting
a value of f close to 1 (or, alternatively, by selecting a value
of f such that the weights for oldest measurements in the
measurement window do not decay to near zero rendering the
measurements ineffectual). As shown in Fig. 4, in case (ii),
the MSE increases considerably during the operating point
change between measurement instants 300 and 400, due to
the inclusion of pre-operating point change data from measure-
ment instants 140 through 300 in the estimation. However, in
case (iii), in which we select f = 1 and a sliding measurement
window of M = 120, the MSE is decreased compared to
case (ii) during the operating point change as fewer pre-
operating point measurements are included in the measurement

ISF MSE (p.u./p.u.)

8.72 0.76 08 0.84 0.88 092 096 1
f

Fig. 3: Sensitivity of the ISF estimation error at instant 350 to
the selection of f under changing operating conditions with
M = 120.

ISF MSE (p.u./p.u.)

940 180 220 260 300 340 350 420 460 500
measurement inSt‘dnl

Fig. 4: Impacts on ISF estimation error under changing oper-

ating conditions of the selection of M and f.

window throughout the change. Finally, in case (iv), in which
we select f = 0.98, the ISF MSE when adapting to the
operating point change is improved further still due to the bias
introduced towards the most recently obtained measurements
in the measurement window. However, the ability to track
the operating point change in cases (iii) and (iv) comes at
the expense of additional steady state MSE, as illustrated by
the MSE from measurement instants 140 through 300 for
those cases. Thus, there is a tradeoff between the estimator’s
ability to accurately track changing operating conditions and
the steady state accuracy. Our observations from a number of
tests carried out on IEEE test systems of varying sizes suggest
that for larger-scale systems M =~ 2N and [ ~ e are
appropriate for balancing tracking and steady-state error.

B. Undetected Line Outage

In this study, we simulate 600 PMU measurements and
assume there is an undetected outage of line /3 at measure-
ment instant 300 and that the real-time SCED is executed
at measurement instant 500. We compute the ISFs at each
measurement instant beginning with instant 120 using (28) and
with M = 120 and f = 0.98, and execute the SCED every
20 measurement instants. For buses 1, 2, and 6 (generator
buses) and buses 3 through 5 (load buses), and at measurement
instants 120 (pre-outage) and 500 (post-outage), Table II
shows: (i) the undetected-outage, model-based LMPs, which
are the LMPs that would be realized in the presence of



TABLE II: LMPs for Case I-B

model-based measurement-based

LMP ($/MWh) LMP ($/MWh)
bus un(()iuett;;ed d;tl?;;d pre-outage  post-outage
1 19.54 17.41 19.54 17.65
2 19.48 13.99 19.48 13.91
3 20.04 30.92 20.04 31.18
4 20.26 20.91 20.25 20.77
5 20.40 52.73 20.40 53.12
6 19.63 30.04 19.63 29.91

40
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-+ meas.-based, bus 3| |
35 | omodel-based, bus 1~
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LMP ($/MWh)
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Fig. 5: Measurement- and correct-model-based LMP evolution

at a subset of buses with outage of line /3.

the undetected outage; (ii) the detected-outage, model-based
LMPs, which are the LMPs that would be realized if the outage
was detected; and (iii) the measurement-based estimates of the
LMPs. Unsurprisingly, there is a large discrepancy between the
undetected and detected outage model-based LMPs, more than
$30/MWh at bus 5. The measurement-based LMPs, however,
closely track the correct model-based LMPs regardless of
whether or not the outage is detected.

Furthermore, the measurement-based LMPs converge
quickly to the correct values following the outage of line
¢3. Fig. 5 shows the evolution of the measurement-based and
correct-model-based LMPs at buses 1 and 3 (a generator and
load bus, respectively) before, during, and after the outage.
As shown Fig. 5, the measurement-based LMPs at both buses
are nearly coincident with the correct-model-based LMPs prior
the the contingency at measurement instant 300, after which
there is a period of 100 measurements during which the
measurement-based LMPs diverge. However, as the measure-
ment window moves past the pre-outage measurement period,
starting at measurement instant 400, the measurement-based
LMPs again track the correct-model-based LMP values.

C. Incorrect Data Impacts on Security Analysis

In this study, we simulate 600 PMU measurements and
assume the line /5 impedance data in the model is incorrectly
thought to be 20% higher than its true value. The ISFs are
again estimated at each measurement instant beginning with
instant 120 using (28) and with M = 120 and f = 0.98. We
run ac contingency analysis with sensitivity-based contingency
selection and the real-time SCED at measurement instant 400.
Table III shows the overloads identified and SCED LMPs
with: (i) the model-based contingency selection and SCED

TABLE III: Identified Overloads and LMPs for Case I-C.

model-based

incorrect correct measurement-
data data based
identified
overload B (45, Cé) (45, Cé)
bus LMP ($/MWh)
1 19.86 20.99 21.09
2 19.80 19.02 18.96
3 20.36 20.29 20.28
4 20.57 23.62 23.99
5 20.73 21.57 21.66
6 19.95 19.83 19.81

TABLE IV: 118-bus test system modified line limits.

line: ls l31 b1 Log  Log  li3g {139
P/ (MW): 200 60 50 70 70 70 70

in the presence of the incorrect line data; (ii) the model-
based contingency selection and SCED in the presence of the
correct line data; and (iii) the measurement-based contingency
selection and SCED.

The model-based contingency selection run with the model-
based ISFs finds no potential overloads and so no security
constraints are added to the model-based SCED formulation.
As a result, the model-based SCED with incorrect line data
LMPs are similar at all buses, except for differences due to
losses. However, with correct line impedance data, contin-
gency selection identifies a potential overload with respect
to (55,05 ), which is confirmed by contingency analysis. As
such, a security constraint is added in the model-based SCED
formulation with correct line data, which binds on execution
producing significantly different LMPs than in the incorrect
data case. The measurement-based contingency selection iden-
tifies the overload (&,cé ) and the resulting SCED with the
measurement-based security constraints produces LMPs that
track those in the model-based case with correct line data.

V. CASE STUDY II: 118-BUS SYSTEM

In this section, we present the results of case studies carried
out using a modified IEEE 54-generator, 186-line, 118-bus
test system [39], in which a subset of line limits, shown in
Table IV, have been reduced so as to introduce transmission
congestion. The test system total load is 4242 MW, and
total generation capacity is 9966.2 MW and we assume the
market operates as a single-clearing-price auction [5]. With
these studies, we illustrate the strengths of the proposed
measurement-based SCED over the conventional model-based
SCED in a larger-scale system.

A. Undetected Line Outage

In this study, we simulate 1500 PMU measurements, which
were synthesized using (34), the approach outlined in Sec-
tion IV, and the nominal 118-bus case power flow solution.
Further, we assume there is an undetected outage of the double
circuit consisting of lines fg9g and {99 at measurement instant
500 and that the real-time SCED is executed at measurement
instant 1400. We compute estimates of the ISFs at each
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Fig. 6: LMP errors at a highly impacted subset of buses due

to the undetected outage of double-circuit fgg, {yg.

measurement instant beginning with instant 240 using (28)
and with M = 236 and f = 0.99.

Figure 6 shows the absolute LMP errors for the model-
based SCED with an undetected outage and the measurement-
based SCED compared to the model-based SCED with the
detected outage at a highly impacted subset of buses. The
undetected changes in system topology have a significant
impact on the prices realized with the real-time SCED process,
especially at those buses close to transmission lines at their
limit, e.g., buses 49 and 50 or buses 66 and 67. The LMP
MSE with the undetected outage in the dc-model-based SCED
with respect to the detected-outage, dc-model-based LMPs is
$14.4/MWh across all buses. In contrast, the measurement-
based LMPs track the detected-outage, model-based LMPs
quite well resulting in an LMP MSE of $0.90/MWh. This
result suggests that the proposed measurement based approach
remains accurate as the system size is scaled up.

B. Inaccurate System Model Data

In this study, we simulate the real-time SCED in the
presence of erroneous model data. To this end, we perturb
the line impedance on each of the top 30% of loaded lines
by a random multiple in [0.7,1.3] drawn from a uniform
distribution. We simulate 600 measurements using the same
simulated load PMU data used in Case II-A and compute the
line flows with the incorrect and correct data. Further, we
compute estimates of the ISFs at each measurement instant
beginning with instant 240 using (28) and with M = 236
and f = 0.99 and assume the real-time SCED is executed at
measurement instant 500.

We perform sensitivity-based contingency selection on the
20 and 10 most impactful line and generator contingencies,
respectively, to identify overloads. The contingencies that
resulted in overloads during contingency analysis (and, in the
measurement-based SCED, those that were identified as caus-
ing overloads by measurement-based contingency selection)
and thus necessitate the formulation of security constraints
are reported in Tables V and VI. As reported in Table V, the
incorrect model data results in the failure of model-based con-
tingency selection/analysis to identify line contingency pairs
(Cs1,cLy). (bs1,cly). (s1,¢ly), and (£sy,¢l,q). Furthermore,
as shown in Table VI, the inaccurate model data results

TABLE V: Identified line outage overloads common to all
cases and those unidentified due to incorrect data.

Ov.erloaded overload w.r.t. outage of line #
line #
identified overloads common to all cases
8 33,36,37,51,54
31 16,33,34,36,38,51,54,104,116
71 16,33,34,36,37,38,54,70,74,82,93,94,97,107,116,119
98,99 16,33,34,36,37,38,51,54,74,82,93,94,96,97,104,116,1 19
138,139 16,33,34,36,37,38,51,54,70,74,82,93,94,96,97,104,107,116,119
overloads unidentified due to bad data
31 70,74,82,119

TABLE VI: Identified generator outage overloads common to
all cases and those mis-identified due to incorrect data.

O\iielileoided overload w.r.t. outage of generator #
identified overloads common to all cases
8 1,6
31 10,21,22,23,24,25,37,40
71 1,6,10,22,23,24,25,37
98,99 1,6,10,21,22,23,24,25
138,139 1,6,10,21,22,23,24,25,37
overloads mis-identified due to bad data
71 40

in the incorrect identification of generator contingency pair
(€70, ¢%o)- The unidentified (mis-identified) overloads translate
into fewer (additional) constraints in the SCED that subse-
quently impact the market outcomes. The measurement-based
contingency selection, on the other hand, identifies the appro-
priate contingency overloads and results in the formulation of
the correct security constraints.

Figure 7a shows the deviations between the dc-model-based
LMPs with correct line impedance data and the bad model
data dc-model-based LMPs and measurement-based LMPs.
Overall, the measurement-based SCED approach results in
LMPs close to those found with the correct line data, the
MSE over all buses is $1.67/MWh compared to $5.25/MWh
for the incorrect data dc-model. However, there are some
deviations between the model-based with correct data and
measurement-based approaches. To give some insight into the
nature of these differences, Fig. 7b shows the correct-data, dc-
model-based LMPs and measurement-based LMPs compared
to LMPs computed by running the SCED with ‘actual’ ISFs
calculated by repeatedly solving the ac power flow.

When compared to the ’actual’ model-based LMPs, the
measurement-based LMPs perform much better than the dc-
model-based LMPs, the MSE is $0.23/MWh compared to the
$1.78/MWh for the correct-data, dc-model-based LMPs. This
finding suggests that the measurement-based SCED approach
is able to capture information that the dc-model-based SCED
approach does not, e.g., the impacts of reactive power and
voltage changes in response to active power injection changes
on active power flows, which is subsequently reflected in the
LMPs. As such, the differences between the measurement-
base LMPs and correct-data, dc-model-based LMPs, reported
in Fig. 7a, may actually be indicative of errors in the correct-
data, dc-model-based LMPs related to the underlying dc
assumptions; the measurement-based approach requires the as-
sumption that the relationship between active power injections
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Fig. 7: Model-based and measurement-based absolute LMP errors due to the incorrect model data for heavily loaded lines with
respect to correct data, dc-model and ‘actual’ LMPs at a highly impacted subset of buses.

and active power flows is linear, however it does not require
the dc assumptions and thus is not impacted by the error
introduced by those assumptions.

C. Computational Speed and ISF Accuracy

In the real-time power system operations environment, time
is a scare commodity and thus fast computation is a necessity.
Indeed, most ISOs/RTOs execute state estimation and con-
tingency analysis on a one-minute basis (see, e.g., [31]) and
the SCED on a five-minute basis (see, e.g., [2]). As such,
the proposed measurement-based SCED must attain reason-
able accuracy with no more computation than conventional
processes, in order for it to be useful in this context.

Table VII reports for each of the SCED case studies: (i)
the computation time for executing one ISF estimation prior
to the SCED, the MSE between the measurement-based ISFs
and the ’actual’ ISFs (computed, as before, by repeatedly
solving the ac power flow); and (ii) the computation time
for computing the model-based ISFs and the MSE between
the bad data/undetected outage model-based ISFs and ’actual’
ISFs. Additionally, the SCED computation time is reported
for each case; the computation times for the SCED were
found to be nearly identical with the model- and measurement-
based approaches, so we don’t differentiate between them in
the table. For reference, all case studies were carried out
using Matlab on a MacBook Pro with a 3 GHz Intel Core
17 processor and 16 GB of memory.

In all cases, the measurement-based ISF MSE is an order
of magnitude less than that for the model-based ISFs, which
provides additional explanation for the observed differences
in the LMPs reported above. Additionally, the time required
to compute an estimate of the ISFs is on the order of the
time required to compute them via the model-based approach.
However, we note that the ISF computation times reported
for the model-based approach do not include the additional
time that would be required in practice to execute topology
processing and state estimation. Thus, we are confident that
with a state-of-the-art implementation, the measurement-based
SCED could be executed within the time constraints of real-
time operations.

TABLE VII: Comparison of case study computation times and
ISF accuracy.

meas.-based model-based

ISF est. ISE MSE ISF ISF MSE SCED
Case comp. comp comp.

time (ms) (pu/p.u.) time (ms) (pu/p.u.) time (ms)
1I-B 0.011 0.059 0.367 1.26 5.4
I-C 0.011 0.046 0.367 1.28 16
1I-A 4.01 0.479 2.54 16.3 33
1I-B 4.02 0.250 2.54 16.4 51

VI. CONCLUDING REMARKS

In this paper, we proposed a measurement-based approach
to the real-time SCED. Our approach leverages sensitivities
estimated from PMU measurements to perform contingency
selection and formulate security constraints, as well as to
reformulate the model-based power flow and network flow
constraints of the existing model-based real-time SCED. As
shown in our case studies, the measurement-based real-time
SCED is robust to undetected system disturbances and inac-
curate model data and results in market outcomes that more
accurately reflect real-time system conditions.

Our future work will focus on the evaluation of the compar-
ative performance of the measurement-based vs model-based
real-time SCED in interconnected systems with little or no in-
formation exchange. Moreover, we will explore measurement-
based methods to compute the loss factors.

APPENDIX
NOMENCLATURE
Indices:

1,] indices of generators
v index of loads
l,u indices of lines
n,m indices of buses

k index of discrete time intervals
t index of continuous time

1 = (n,m) ordered pair denoting line [ is from n to m
(Lus ) ordered pair denoting overload of line ¢,, due

to contingency of generator j
(Lu,c]) order pair denoting overload of line ¢, due

to contingency of line ¢;



Sets:
N
L
g
Gn
D
Dy

cr
c9

Scalars:

)\'I"
v1 (v2)

Vectors:
P
P9
Pd
)22
P9 (P9)
P (P4
P’ (Ph)
P (P?)
()

W (i)

¢
1y

Matrices:
\\J
9,
\I/S
r
w
AP

Functions:
(P9I, Pd)

set of N buses

set of L lines

set of G generators

set of generators at bus n

set of D loads

set of loads at bus n

set of line outage mon-con pairs

set of generator outage mon-con pairs

net injection at bus n

output of generator ¢

demand of load v

flow on line 4,

system-wide losses

change in injection at bus n at time ¢
change in flow on line ¢; due to change in
injection at bus n at time ¢

number of synchronized measurements
exponential weight parameter

dual variable of power balance constraint
zero mean normal random variable with stan-
dard deviation o7 (02)

net injections at all buses n € N

outputs of all generators i € G

demands of all loads v € D

flow on all lines ¢; € £

generator output lower (upper) limits

load demand lower (upper) limits

line flow lower (upper) limits

security constraint lower (upper) limits

flow constraint lower (upper) limit dual vari-
ables

security constraint lower (upper) limit dual
variables

bus marginal loss sensitivity vector
N-dimensional all-ones vector

lth row of ISF matrix

lth row of measurement-based ISF matrix
nodal outage participation factors for outage
of generator j

N-dimensional vector with 1 in entry 5 and
zero elsewhere

collection of M flow change measurements
on line /;

ISF matrix

PTDF matrix for line ¢;

LODF matrix

security constraint sensitivity matrix
measurement-based ISF matrix

diagonal weighting matrix

collection of M net injection change mea-
surements for each of the IV buses
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