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1. Introduction 

Composite materials are attractive in lightweight structural design because of their elastic 

tailorability. A class of composites known as flexible matrix composites (FMC) consists of high 

strength fibers such as carbon and an elastomeric matrix such as polyurethane. A possible 

application is a one-piece carbon/polyurethane filament wound composite helicopter driveline 

that can accommodate misalignment (soft in bending) while transmitting power (stiff in torsion). 

In this application, a single composite shaft can replace the typical multi-segmented shaft, 

reducing complexity and maintenance requirements (figure 1). Optimization codes for the design 

of FMC shafts that are lighter than conventional drivelines rely on the existence of validated 

models that can predict the stiffness and strength of shafts of arbitrary stacking sequence and 

winding pattern. 

 

Figure 1. Schematic of traditional driveline (top) and proposed  

driveline (bottom) (1). 

Current methods of predicting the strength and modulus of filament wound tubes based on 

classical laminated plate theory (CLPT) (2) and measured properties from flat, unidirectionally 

reinforced fiber have been shown to be highly inaccurate, particularly for tubes made with FMC 

materials. The discrepancy in modulus is thought to be due to the low modulus of the matrix 

where discrepancies in strength are mainly due to fiber undulations built into the tubes by the 

winding process. Models of textile composites address the strength of undulated fibers as well as 

the modulus (3), but these models are confined to orthogonally crossing fibers. Approaches for 

modeling the axial modulus of filament wound FMC tubes have been presented, although neither 

model has been well vetted with extensive experimental data (4, 5). The key features of these 
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models are recognition of the modulus-reducing effects of out-of-plane fiber undulations that 

occur where fibers cross under and over each other in filament winding. 

Literature experimental work aimed to back out the in-situ fiber-direction modulus of FMC 

material in filament wound tubes using an empirical approach (6). Filament wound tubes of 

varying angle-ply laminate arrangements ranging from ±20° to ±90° were tested in axial 

compression to failure. The longitudinal modulus E1 was backed out with CLPT to match the 

axial modulus of the experiments Ex (figure 2). The extrapolated axial modulus of a tube with 

hypothetical winding angle 0° is around 43 GPa in compression. The “backed out” fiber-

direction compressive modulus of 43 GPa is considerably lower than that predicted by the Rule 

of Mixtures (RoM) (6, 7). The predicted value obtained using RoM with known fiber volume 

fraction and constituent properties is 145 GPa, clearly showing that conventional models cannot 

be used to model this class of material. Measured values of strength were also hypothetically 

biased to lower values by “barreling” of the tube specimen due to high values of Poisson’s ratio. 

 

Figure 2. FMC axial modulus versus fiber angle Θx —experiments and theory (6). 

The filament winding process also creates a weaving architecture known as the filament winding 

pattern (FWP). FWP refers to the integer number of circumferential rhombi (highlighted in red) 

on the finished part around the circumference (figure 3). FWP can be varied in filament wound 

tubes without any change to the stacking sequence. Experimental results showed that changing 

the FWP from 5 to 23 in angle-ply tubes increased the strength by 27%. Changing the FWP 

through the thickness, using 10 and 5 in a two-ply laminate, increased the ultimate compression 

strength by up to 25%, compared to 5 and 5 (8). 
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 3 

 

Figure 3. Depiction of winding patterns. 

2. Objective 

The objective of the investigation is to develop a test method for monitoring full field strains in 

filament wound tubes using the digital image correlation (DIC) method. The investigation is just 

one part of a larger investigation aimed at characterizing the micromechanics of fiber-direction 

stiffness and strength in filament wound tubes. 

3. Approach 

3.1 Specimens 

The prospective composite materials are all reinforced with about 58% by volume AS4D 

standard modulus carbon fibers (Hexcel Corp., Stamford, CT). The flexible matrix will be made 

of DPRN 30917 which is a toluene diisocyanate (TDI)/polytetramethylene ether glycol 

(PTMEG)/polycaprolactone (PCL) prepolymer formulated by Cytec Industries (Olean, NY). The 

polyurethane prepolymer is cured using a delayed action diamine curative named Duracure 

C3LF (Chemtura Corp., Middlebury, CT). The elastic modulus of DPRN 30917 is 976 MPa in 

the 1000–2000  strain range. 

Standards such as American Society for Testing and Materials (ASTM) D 3410 for 

experimentally determining the compressive modulus and strength of a laminated polymer 

composite do not apply in this case because a laminated flat plate contains neither FWP nor fiber 

undulation. ASTM D 3410 requires the application of tabs to the ends of the specimens because 
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of the large gripping forces for applying compression loading to the specimen through shear. An 

alternative for determining compressive properties for a unidirectional specimen is using a 

combined loading compression test setup, which replaces half of the 0° plies with 90° plies (9). 

The substitution for 90° plies reduces the failure loads and eliminates undesirable failures in the 

grips and the need for specimen tabs. The fiber direction modulus and strength can then be 

“backed out” later using CLPT. In a similar approach, the laminate              is tested in this 

investigation reducing the Poisson’s ratio of the specimen to prevent “barreling” failures. 

Specimens were machined from a 48.31.4533 mm (inner diameter, thickness, length) parent 

specimen to approximately 48.3x1.4x76.0 mm with a water-cooled circular diamond saw. 

Specimens were tested with varied FWP through the thickness as well as orientation angle. It 

should be noted that 89° circumferentially wound plies do not have a FWP because they are not 

woven. 

3.2 Instrumentation 

Specimens were tested on a Model 1127 Instron (Norwood, MA) electromechanical universal 

testing machine with load voltage acquired and exported by Bluehill 2. Specimens were tested at 

a rate of 3.5 mm/min, (40–60 s to failure). A 50-kip load cell was used to measure applied load. 

DIC was used to measure the surface displacement/deformation of the specimen under load. DIC 

is a unique optical approach for tracking pixel displacement by the speckle pattern on the surface 

of the specimen during deformation (10–12). The speckle pattern is created using commercially 

available flat black and white spray paints. If the paint is overly reflective it will not be possible 

to correlate the gathered images. Additionally black and white spray paints provide the largest 

color/brightness contrast in grayscale. Compared to traditional strain measurement methods such 

as strain gages or mechanical extensometers, the spray paint application is easy and fast without 

causing any damage to the surface of the specimen. In this investigation, two Point Grey 

Research (Richmond, B.C. Canada) GRAS-20S4M digital cameras are used to acquire images 

simultaneously in a stereo setup, allowing out-of-plane measurements to be made (13–14). 

Each specimen is potted in steel end caps to prevent the ends from “brooming” during testing 

(figure 4). A hemispherical ball and socket joint is placed in the load train to compensate for any 

moment loading to the specimen. A florescent lamp illuminated the speckled surface of the 

specimen and we used a flexible head lamp to illuminate any dark areas in the areas of interest 

(AOIs). Cameras were placed approximately 61 cm behind the specimen, away from common 

walkways. Nikon 28–105 mm focal length lenses were used in focusing the image of the 

specimen. 
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Figure 4. Compression test setup. 

3.3 DIC Calibration 

Calibration images for the two digital cameras were acquired using the computer software Vic-

Snap 2010 (Correlated Solutions) using the following procedures: 

1. Mount the specimen as in figure 4. 

2. Magnify the image with the lenses until only the speckled region of the specimen is visible 

in the vertical direction (figure 5a). 

3. Click the toggle crosshairs tool to ensure both cameras are centered at the same point on 

the specimen. 

a. Start by magnifying the image to around 350% and picking out a distinct feature to 

center on. If none exists, a piece of tape with a marker dot will suffice. 

4. Focus each camera. 

5. Click Edit Project to create a new project folder for all calibration images, remove the 

specimen, and choose a calibration grid of similar size to the specimen (figure 5b). 

 

2 Megapixel Camera:

PGR GRAS-20S4M

Specimen

Direct 

Illumination

Area Illumination

Hemispherical 

Joint

End Caps
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a 

 
b 

Figure 5. (a) Original speckled image and (b) example calibration grid. 

6. Place the grid at the same location as the specimen front and rotate the calibration grid 

around its horizontal and vertical axis, slowly acquiring 20–25 images 

A calibration project file is created using Vic-3D 2010 (Correlated Solutions) and following 

these steps: 

1. In Vic-3D, click Project->Calibration Images to load images. 

2. Click Calibration->Calibrate stereo system. 

3. Select your calibration grid, and extract all. 

a. Click calibrate. Calibrations below 0.1 are satisfactory. 

4. Save the calibration project in the same folder as the calibration images. 

3.4 Testing Procedure 

The following is the testing procedure: 

1. Mount the specimen as in figure 4. 

2. In Vic Snap 2010, click Images->Select Timer->Custom and select an acquisition rate 

(figure 6). 

a. In this investigation, the rate was 5–8 Hz to acquire 150–200 images per test. 
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Figure 6. Vic Snap 2010: Acquire images. 

3. Click Analog Data to view the data channels with respect to time. 

4. Click Images->Streaming Capture (figure 6) to acquire images at the rate set in Step 2. 

5. Start the Streaming Capture to begin acquiring images and then start the load frame. 

6. Stop the Streaming Capture to end acquiring images. A loss of 80% peak load in this 

investigation was used as a stop criteria. 

3.5 Image Correlation 

Collected images from Testing Procedure can be correlated using Vic 3D 2010 and performing 

the following steps: 

1. Click Project->Speckle Images to load collected images. 

2. Click Calibration->From project file and choose the file saved in step 10 of DIC setup. 

3. Select an Area of Interest, AOI tools->create rectangle (figure 7). 
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Figure 7. Vic 3D 2010: AOI. 

4. Choose an appropriate Subset size; some trial and error is necessary. 

a. “The subset size controls the area of the image that is used to track the displacement 

between images” (15, 16). If the subset is too small, Vic-3D may not be able to 

distinguish each area during correlation due to a coarse speckle pattern or non-ideal 

lighting. A larger subset decreases resolution and noise however. An effort was made in 

this investigation to create a fine speckle pattern, which allowed for a subset size of 25. 

5. Choose an appropriate Step size; some trial and error is necessary. 

a. “The step size controls the spacing of points that are analyzed during correlation” (15, 

16). If the subset size is 1, a correlation is performed on every pixel in the AOI. A subset 

size of 7 was used in this investigation. 

6. Click Start Analysis to begin the correlation. 

7. When step 6 is finished, click Calibration->Calibrate Camera Orientation->Fixed 

Baseline. 

a. This step increases the correlation confidence and is only available after Step 6. 
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8. Rerun Start Analysis. 

9. Select Data->Coordinate Tools->Compute Cylinder Transformation. 

a. Determines the specimen radius to calculate cylindrical coordinate deformations 

b. Click as close to the center of the AOI as possible 

10. Select Data->Coordinate Tools->Apply Cylinder Transformation. 

a. Calculates specimen radius as well as out of plane radial deformation 

11. Select Data->Post-Processing Tools->Calculate Strain. 

a. “Calculated strains are always smoothed using a local filter. The decay filter is a 90% 

center-weighted Gaussian filter…The filter size box controls the size of the smoothing 

window. Since the filter size is given in terms of data points rather than pixels, the 

physical size of the window on the object also depends on the step size used during 

correlation…” (15, 16). For this investigation, a filter size of 7 and tensor type of 

Lagrange was used. 

12. Select Data->Post-Processing Tools->Apply Function. 

a. Applying functions allows for the calculation of the strain field in coordinates other than 

the cameras, or the calculation of Poisson’s ratio. 

13. Select Project->Data tab->select an image under project->Inspector tools->Inspect 

rectangle->Extract. 

4. Results 

Preliminary results obtained using PGR-GRAS-03K2M cameras suggested that the resolution 

necessary to observe the effect of the FWP on the strain field, εyy, is not as great as the resolution 

needed to observe changes in R or dR. This is most certainly due to the minimum filtering of 5 in 

strain computation available in Vic 3D. It is possible that other correlation programs could use a 

filter as low as 1. However, use of such a low filter value increases noise. Also, the smallest 

resolvable strain reported in literature for DIC is nominally 50 µε. Increasing the spatial 

resolution of the testing field is made possible by using higher resolution cameras as was 

ultimately done here. The AOI was nominally 96.5 mm wide by 70.0 mm tall. For the GRAS-

O3K2M (640400 px), the spatial resolution was 6.66.9 px/mm, and for the GRAS-20S4M 

(1624 x 1224 px), the spatial resolution was 16.8 x 17.5 px/mm. Correlated images from just 

before failure are shown in figure 8. Individual tow placement and the unit rhombi are easily 
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visible in the radius (figure 8a). The FWP can easily be seen in the strain fields (figures 8b–d) 

with the minor exception of figure 8b where failure is initiated by concentrations of negative 

strain, giving the strain field relatively less contrast. 

 
 a 

 
 b 

 
 c 

 
 d 

Figure 8. (a) [±31/89/±31] laminate, pattern 10: radius, (b) [±31/89/±31] laminate, pattern 10: axial strain.εyy, 

(c) [±31/89/±31] laminate, pattern 10: hoop strain εxx., and (d) [±31/89/±31] laminate, pattern 10: 

shear strain εxy. 
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5. Conclusions 

Resolving the fiber architecture in a cylindrical composite requires a great deal of detail and care 

on the part of the experimenter. The filament wound tubes investigated here required a spatial 

resolution of approximately 16 pixels/mm in order for the FWP to be resolved in the strain field. 

If only radial displacements are of interest, a lower resolution may be used. The advantage of 

DIC for measuring strain fields is realized by the low time and cost for specimen preparation.  
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