Sieve Analysis

Description of soil		Sample No		
	Tr.	Mass of oven dry sample, W		
Location				
Tested by		Date		

Sieve No.	Sieve opening (mm)	Mass of soil retained on each sieve, W_n	Percent of mass retained on each sieve, R_n	Cumulative percent retained, ∑R _n	Percent finer, 100-∑R _n
					8
20		8	8		
	, T				
	20 E				
37.00	# # # # # # # # # # # # # # # # # # #				SH .
	3		2	z , z	
Pan	,			8	

 \sum = W

Mass loss during sieve analysis = $\frac{W - W_1}{W} \times 100 = \frac{W}{W} \times 100 = \frac{W}$

MEASUREMENT OF MOISTURE CONTENT (ASTM D2216) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		

II. TEST DETAILS

Oven temperature:	Drying time:		
Scale type/precision/serial no.:			
Notes, observations, and deviations from ASTM D	02216 test standard:		

III. MEASUREMENTS AND CALCULATIONS

Container ID:		
Mass of container (M_c) :		
Mass of moist soil + container (M_l) :		
Mass of dry soil + container (M_2) :		
Mass of moisture (M_w) :		
Mass of dry soil (M_s):		
Moisture content (w):		
Average moisture content:		

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

GRAIN SIZE ANALYSIS – HYDROMETER MEASUREMENT (ASTM D422) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:		
Lab partners/organization:			
Client:	Project:		
Boring no.:	Recovery depth:		
Recovery date:	Recovery method:		
Soil description:			

II. TEST DETAILS

Hydrometer manufacturer/serial n	10.:		
Mixer manufacturer/serial no.:			
Scale type/serial no./precision:			
Duration of initial soaking period:			
Concentration of sodium hexamet	aphosphate solution	on:	
Dry mass of soil used (M_d) :			
Specific gravity of soil solids:		Temperature:	
<i>K</i> :	a:		<i>b</i> :
Notes, observations, and deviations from ASTM D422 test standard:			

III. MEASUREMENTS AND CALCULATIONS

Clock Time (hh:mm:ss)	t (min)	R	L (cm)	D (mm)	P' (%)	<i>P</i> (%)

$$L = 16.3 - 0.163R$$
 $D = K\sqrt{L/t}$

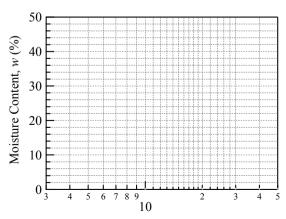
$$P' = \frac{(R-b)a}{M_d} \times 100\%$$
 $P = P'(P_{-\#40})$

LIQUID LIMIT (ASTM D4318) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS


Oven temperature:	Drying time:
Scale type/precision/serial no.:	
Notes, observations, and deviations from ASTM D	04318 test standard:

III. MEASUREMENTS AND CALCULATIONS

Trial Number	1	2	3
Container ID			
Mass of container (M_c)			
Mass of moist soil + container (M_I)			
Mass of dry soil + container (M_2)			
Mass of moisture (M_w)			
Mass of dry soil (M_s)			
Moisture Content (w)			
Number of Cranks			
Liquid Limit (<i>LL</i>)			
Corresponding Plastic Limit (PL)			
Plasticity Index (PI)			

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

$$PI = LL - PL$$

Number of Cranks

PLASTIC LIMIT (ASTM D4318) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		
_		

II. TEST DETAILS

Oven temperature:	Drying time:
Scale type/precision/serial no.:	
Notes, observations, and deviations from ASTM D	94318 test standard:

III. MEASUREMENTS AND CALCULATIONS

Trial Number	1	2	3
Container ID			
Mass of container (M_c)			
Mass of moist soil + container (M_I)			
Mass of dry soil + container (M_2)			
Mass of moisture (M_w)			
Mass of dry soil (M_s)			
Moisture Content (w)			
Average Plastic Limit (PL)			
Corresponding Liquid Limit (LL)			
Plasticity Index (PI)			

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

$$PI = LL - PL$$

COMPACTION TEST (ASTM D698, D1557) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		
_		

II. TEST DETAILS

II. IEST BETTIES		
Compaction effort (standard or modified):		
Soil hydration period prior to compaction:	Max. particle size:	
Compaction procedure (A, B, or C):	Mold diameter:	
Mold height:	Mold volume (V_m) :	
Notes, observations, and deviations from ASTM D698 and D1557 test standards:		

III. MEASUREMENTS AND CALCULATIONS

Location Within Specimen	Тор	Middle	Bottom
Container ID			
Mass of container (M_c)			
Mass of moist soil + container (M_1)			
Mass of dry soil + container (M_2)			
Moisture Content (w)			
Average Water Content (w_{avg})			

Net Mass of Compacted Specimen (<i>M</i>):	Dry Unit Weight (γ_d):
--	---------------------------------

$$w = \frac{M_1 - M_2}{M_2 - M_c} \times 100\%$$

$$\gamma_d = \frac{Mg}{(1 + w_{avg})V_m}$$

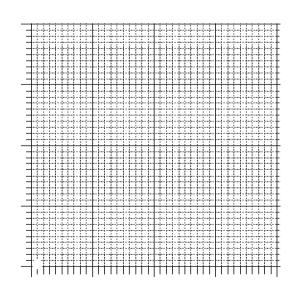
COMPACTION CURVE PLOT (ASTM D698, D1557)

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		
1		

II. TEST DETAILS

Compaction effort (standard or modified):	
Compaction procedure (A, B, or C):	Specific Gravity of Soil Solids (G_s):
Notes, observations, and deviations from ASTM	D698 and D1557 test standards:


III. MEASUREMENTS AND CALCULATIONS

Standard (ASTM			l Proctor L D1557)	ZAV (Curve
w	γ a	w	γ_d	w	γ_d

IV. EQUATION AND CALCULATION SPACE

ZAV:
$$\gamma_d = \frac{G_s \gamma_w}{l + wG_s}$$

Dry Unit Weight, 1/4 (

Moisture Content, w (

)

SAND CONE TEST (ASTM D1556) FIELD DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Field compaction method:	Date material compacted:	
Soil description:		
•		

II. TEST DETAILS

Description of sand used in sand cone (particle shape, C_u , D_{100} , %-#60):		
Description of calibration chamber (shape and dimensions):		
Calibration chamber volume (V_I) : Max. particle size of compacted material:		
Notes, observations, and deviations from ASTM D1556 test standard:		

III. MEASUREMENTS AND CALCULATIONS

Calibration	Measurement
Mass of filled device (M_6):	Mass of filled device (M_{10}):
Mass of device after filling base plate and funnel (M_7):	Mass of device after filling base plate, funnel, and test hole (M_{II}):
Mass of sand in the base plate and funnel (M_2) :	Mass of sand in the base plate, funnel, and test hole (M_I) :
Mass of refilled device (M_8):	Volume of test hole (<i>V</i>):
Mass of refilled device after filling base plate, funnel, and calibration chamber (M_9):	Mass of moist material excavated from the test hole (M_3) :
Mass of sand in the calibration chamber (M_5) :	Dry mass of material excavated From the test hole (M_4) :
Total unit weight of the sand (γ_i) :	

Moisture content (w):	Dry unit weight (γ_d) :

$$M_{2} = M_{6} - M_{7}$$
 $M_{1} = M_{10} - M_{11}$ $w = \frac{M_{3} - M_{4}}{M_{4}} \times 100\%$ $M_{5} = M_{8} - M_{9} - M_{2}$ $V = \frac{(M_{1} - M_{2})g}{\gamma_{1}}$ $\gamma_{d} = \frac{M_{4}g}{V}$ $\gamma_{d} = \frac{M_{5}g}{V_{1}}$

HYDRAULIC CONDUCTIVITY OF GRANULAR SOIL UNDER CONSTANT HEAD (ASTM D2434) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		
Son description.		

II. TEST DETAILS

II. TEST DETAILS			
Max. particle size:		$P_{+\#I0}$ or $P_{+3/8 in}$ (state which):	
Specimen diameter, <i>D</i> :		Specimen area, A:	
Manometer port spacing, L_c :		Specimen length:	
Dry mass of soil, M_s :		Volume of soil, <i>V</i> :	
Specific gravity of soil solids, G_s :		Dry unit weight, 7/2:	
Void ratio, <i>e</i> :	Scale type/seri	al no./precision:	
Saturation vacuum level:		Saturation vacuum duration:	
Specimen preparation method:			
Notes, observations, and deviations	s from ASTM D	2434 test standard:	

III. MEASUREMENTS AND CALCULATIONS

Test	Head	Hydraulic	Flow	Time	Flow Rate	Hydraulic
No.	Loss	Gradient	Volume		(q)	Conductivity
	(Δh)	<i>(i)</i>	(Q)	<i>(t)</i>		(k)
	·					

$$A = \frac{\pi D^2}{4} \qquad q = \frac{Q}{t}$$

$$i = \frac{\Delta h}{L_c} \qquad \qquad k = \frac{QL_c}{\Delta hAt}$$

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) MACHINE DEFLECTION MEASUREMENTS LABORATORY DATA SHEET

I. GENERAL INFORMATION

Test performed by:		Date tested:		
Lab partners/organization:				
Load frame type/serial no.:				
Load duration:	Blank mater	rial and thickness:		
Filter paper type:		-		
Porous stone type and thickness:				
Deformation indicator type and conversion factor <i>K</i> (if applicable):				
Notes, observations, and deviations from ASTM D2435 test standard:				

II. MEASUREMENTS

Pressure (psf)	Deformation Reading ()

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) SPECIMEN PREPARATION MEASUREMENTS LABORATORY DATA SHEET

I. GENERAL INFORMATION

Specimen prepared by:	Date:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		
•		

II. TEST DETAILS

II. TEST DETAILS		
Load frame type/serial no.:		
Scale type/serial no./precision:		
Consolidation ring diameter:	Initial specimen height, H_o :	
Consolidation ring mass:	Specimen volume, $V_{o:}$	
Specific gravity of soil solids, G_s :		
Notes, observations, and deviations from ASTM D2435 test standard:		

III. MEASUREMENTS AND CALCULATIONS

	Before Test	After Test
Mass of moist soil + ring		
Mass of moist soil	$M_{To} =$	M_{Tf} =
Mass of dry soil + ring		
Mass of dry soil	$M_d =$	$M_d =$
Mass of moisture		
Moisture content	$W_o =$	$w_f =$
Void ratio	$e_o =$	$e_f =$
Degree of saturation	$S_o =$	$S_f =$

$$e_o = \frac{V_o - \frac{M_d}{G_s \rho_w}}{\frac{M_d}{G_s \rho_w}}$$

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) TIME-DEFORMATION MEASUREMENTS LABORATORY DATA SHEET

I. GENERAL INFORMATION

Test performed by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

II. TEST DETAILS			
Load frame type/serial no.:			
Scale type/serial no./precision:			
Load no.:	Load increment, σ ':		
Filter paper type:			
Porous stone type and thickness:			
Machine deflection:			
Deformation indicator type and conversion factor <i>K</i> (if applicable):			
Notes, observations, and deviations from ASTM D	02435 test standard:		

III. MEASUREMENTS AND CALCULATIONS

Date	Clock Time	Elapsed Time	Raw Deformation	Deflection-Corrected
			()	Deformation
(mm/dd/yy)	(hh:mm:ss)	(hh:mm:ss)		()

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) TIME-DEFORMATION PLOTTING USING THE LOG TIME METHOD

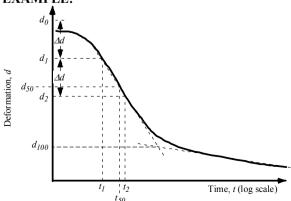
I. GENERAL INFORMATION

Data plotted by:	Date:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Load no.:	Load, σ ':	
Initial specimen height, H_o :	Deflection units:	
Dial gauge conversion factor, K:		
Notes, observations, and deviations from ASTM D2435 test standard:		

CALCULATION SPACE:


III. MEASUREMENTS AND CALCULATIONS

σ ':	d_{100} :
t_2 :	d_2 :
t_I :	d_{I} :
Δd :	d_o :
d_{50} :	<i>t</i> ₅₀ :
H_{D50} :	Cv.:

IV. EQUATIONS

$$t_1 = t_2/4$$
 $\Delta d = d_2 - d_1$ $d_0 = d_1 - \Delta d$ $d_{50} = (d_0 + d_{100})/2$ $H_{D50} = \frac{H_o - d_{50}(K)}{2}$ or $H_{D50} = \frac{H_o - d_{50}}{2}$ $c_v = \frac{0.197(H_{D50})^2}{t_{50}}$

EXAMPLE:

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) TIME-DEFORMATION PLOTTING USING THE ROOT TIME METHOD

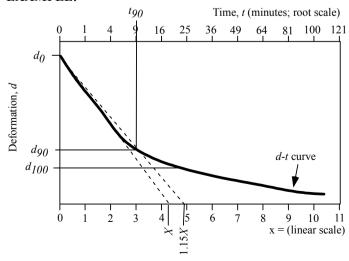
I. GENERAL INFORMATION

Data plotted by:	Date:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Load no.:	Load, σ ':	
Initial specimen height, H_o :	Deflection units:	
Dial gauge conversion factor, <i>K</i> :		
Notes, observations, and deviations from ASTM D2435 test standard:		

CALCULATION SPACE:


III. MEASUREMENTS AND CALCULATIONS

σ ':	d_0 :
<i>X</i> :	1.15X:
d_{90} :	<i>t</i> ₉₀ :
d_{100} :	H_{D50} :
<i>a</i> :	

IV. EQUATIONS

$$d_{100} = d_0 + 1.11(d_{90} - d_o) c_v = \frac{0.848(H_{D50})^2}{t_{90}}$$

EXAMPLE:

ONE-DIMENSIONAL CONSOLIDATION TEST (ASTM D2435) CONSTRUCTION OF $e-\log\sigma$ CURVE

I. GENERAL INFORMATION

TV OBT(BILIE II (I OTE, III I I OTE)		
Plotted by:	Dates tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Soil description:		

II. TEST DETAILS

II, TEST DETAILS		
Initial specimen height, H_o :	Specimen diameter:	
Initial specimen volume, V_o :	Specific gravity of soil solids, G_s :	
Net dry mass of specimen, M_d :	Initial void ratio, e_o :	
Deflection units:	Dial gauge conversion factor, <i>K</i> :	
Height of solids, H_s :		
Notes, observations, and deviations from ASTM D2435 test standard:		

III. MEASUREMENTS AND CALCULATIONS

σ'	d_{100}	Δe	e

EXAMPLE:

C_r :	
C_c :	
σ'_{max} :	

IV. EQUATIONS

$$e_o = \frac{V_o - \frac{M_d}{G_s \rho_w}}{\frac{M_d}{G_s \rho_w}} \qquad H_s = \frac{H_o}{1 + e_0} \qquad \Delta e = \frac{\Delta H}{H_s} = \frac{d_{100}(K)}{H_s} \text{ or } \Delta e = \frac{\Delta H}{H_s} = \frac{d_{100}}{H_s}$$

$$e = e_0 - \Delta e \qquad C = \frac{e_1 - e_2}{\log \sigma_2 - \log \sigma_1}$$

DIRECT SHEAR TEST (ASTM D3080) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:
Lab partners/organization:	
Client:	Project:
Boring no.:	Recovery depth:
Recovery date:	Recovery method:
Soil description:	

II. TEST DETAILS

Sample diameter:	Sample area, A:
Normal force, <i>N</i> :	Normal stress, σ .
Deformation rate:	Deformation indicator type:
Shear force measurement instrument type:	
Horizontal dial gauge conversion factor, K_H :	
Vertical dial gauge conversion factor, K_V :	
Proving ring dial gauge conversion factor, K_F :	
Notes, observations, and deviations from ASTM D3080 test standard:	

III. MEASUREMENTS AND CALCULATIONS

Horizontal	Vertical	Force	Horizontal	Vertical	Shear	Shear
Deformation	Deformation	Reading	Displacement	Displacement	Force	Stress
Reading	Reading					
(G_V)	(G_H)	(G_F)	(ΔH)	(ΔV)	(F)	(τ)
	_	_				

Shear strength ($(au_{\!f})$:

UNCONFINED COMPRESSIVE STRENGTH TEST (ASTM D2166) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:		
Lab partners/organization:			
Client:	Project:		
Boring no.:	Recovery depth:		
Recovery date:	Recovery method:		
Soil description:		•	
-			

II. TEST DETAILS

II. TEST DETAILS						
Initial specimen diameter, D_o :			Initial specimen area, A_o :			
Initial specimen length, L_o :			Initial specimen volume, V_o :			
Moist mass of specimen, <i>M</i> :		Dry mass of specimen, M_s :				
Moisture content, w:	Total unit weigh	t, γ.	Dry unit weight, γ_d :			
Specimen preparation method:						
Deformation indicator type:	Axial strain rate, $\Delta \varepsilon_l / \Delta t$:					
Deformation dial gauge convers	ion factor, K_L :					
Force measurement instrument type:						
Proving ring dial gauge conversion factor, K_P :						
Notes, observations, and deviations from ASTM D2166 test standard:						

III. MEASUREMENTS AND CALCULATIONS

Deformation Axial Load Axial Axial Corrected Axial Reading Deformation Reading Load Area Stress Strain (G_P) (G_L) (*P*) (ΔL) (ε_l) (*A*) (σ_l)

EO	TTA'	TIC	NC.
1247	\cup	111	ノノスいつ。

 $A = A_o/(1-\varepsilon_l)$

 $\sigma_l = P/A$

 $\Delta L = G_L K_L$

 $P = G_P K_P$

 $s_u = q_u/2$

Unconfined compressive strength, q_u :
Undrained shear strength, s_u :

UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST (ASTM D2850) LABORATORY DATA SHEET

I. GENERAL INFORMATION

Tested by:	Date tested:	
Lab partners/organization:		
Client:	Project:	
Boring no.:	Recovery depth:	
Recovery date:	Recovery method:	
Soil description:		
_		

II. TEST DETAILS

Initial specimen diameter, D_o :		Initial specimen area, A_o :			
Initial specimen length, L_o		Initial specimen volume, V_o :			
Moist mass of specimen, A	1:	Dry mass of specimen, M_s :			
Moisture content, w:		Total unit weight, γ.			
Dry unit weight, γ_d :		Degree of saturation, S:			
Membrane type:		Axial strain rate, $\Delta \varepsilon_l/\Delta t$:			
Deformation indicator:		Force indicator:			
Deformation conversion fa	ector, K_L :	Proving ring conversion factor, K_P :			
Cell pressure, σ_3 :	Specimen prep	paration method:			
Notes, observations, and deviations from ASTM D2850 test standard:					

III. MEASUREMENTS AND CALCULATIONS

Deformation Reading (G_L)	Axial Deformation (ΔL)	Load Reading (G_P)	Axial Load (P)	Axial Strain (ε_l)	Corrected Area (A)	Deviator Stress $(\Delta \sigma)$	EQUATIONS: $\varepsilon_l = \Delta L/L_o$
							$A = A_o/(1-\varepsilon_l)$
							$\Delta \sigma = P/A$
							$\Delta L = G_L K_L$
							$P = G_P K_P$
							$\sigma_{lf} = \sigma_3 + \Delta \sigma_f$
							σ_3 :
							$\Delta\sigma_{f}$:
							σ_{lf} :