Measuring and Constructing Angles

Warm Up

Lesson Presentation

Lesson Quiz

1-3 Measuring and Constructing Angles

Warm Up

1. Draw $\overrightarrow{A B}$ and $\overrightarrow{A C}$, where A, B, and C are noncollinear.

Possible answer:

2. Draw opposite rays $\overrightarrow{D E}$ and $\overrightarrow{D F}$.

Solve each equation.
3. $2 x+3+x-4+3 x-5=18031$
4. $5 x+2=8 x-104$

1-3 Measuring and Constructing Angles

Objectives

Name and classify angles.
Measure and construct angles and angle bisectors.

1-3 Measuring and Constructing Angles

Vocabulary

angle
right angle
obtuse angle straight angle congruent angles angle bisector degree acute angle

1-3 Measuring and Constructing Angles

A transit is a tool for measuring angles. It consists of a telescope that swivels horizontally and vertically. Using a transit, a survey or can measure the angle formed by his or her location and two distant points.

An angle is a figure formed by two rays, or sides, with a common endpoint called the vertex (plural: vertices). You can name an angle several ways: by its vertex, by a point on each ray and the vertex, or by a number.

1-3 Measuring and Constructing Angles

The set of all points between the sides of the angle is the interior of an angle. The exterior of an angle is the set of all points outside the angle.

Angle Name

$\angle R, \angle S R T, \angle T R S$, or $\angle 1$

You cannot name an angle just by its vertex if the point is the vertex of more than one angle. In this case, you must use all three points to name the angle, and the middle point is always the vertex.

1-3 Measuring and Constructing Angles

Example 1: Naming Angles

A surveyor recorded the angles formed by a transit (point A) and three distant points, $B_{\text {, }}$ C, and D. Name three of the angles.

Possible answer:

$\angle B A C$
$\angle C A D$
$\angle B A D$

1-3 Measuring and Constructing Angles

Check It Out! Example 1

Write the different ways you can name the angles in the diagram.

$\angle R T Q, \angle T, \angle S T R, \angle 1, \angle 2$

1-3 Measuring and Constructing Angles

The measure of an angle is usually given in degrees. Since there are 360° in a circle, one degree is $\frac{1}{360}$ of a circle. When you use a protractor to measure angles, you are applying the following postulate.

Postulate 1-3-1 Protractor Postulate

Given $\overleftrightarrow{A B}$ and a point O on $\overleftrightarrow{A B}$, all rays that can be drawn from O can be put into a one-to-one correspondence with the real numbers from 0 to 180.

1-3 Measuring and Constructing Angles

You can use the Protractor Postulate to help you classify angles by their measure. The measure of an angle is the absolute value of the difference of the real numbers that the rays correspond with on a protractor.

If $\overrightarrow{O C}$ corresponds with c and $\overrightarrow{O D}$ corresponds with d, $\mathrm{m} \angle D O C=|d-c|$ or $|c-d|$.

1-3 Measuring and Constructing Angles

Types of Angles

Acute Angle

Measures greater than 0° and less than 90° ${ }^{\circ}$

Right Angle

Measures 90°

Obtuse Angle

Measures greater than 90° and less than 180°

Straight Angle

Formed by two opposite rays and meaures 180°

1-3 Measuring and Constructing Angles

Example 2: Measuring and Classifying Angles

Find the measure of each angle. Then classify each as acute, right, or obtuse.
A. $\angle W X V$
$\mathrm{m} \angle W X V=30^{\circ}$
$\angle W X V$ is acute.

B. $\angle Z X W$

$$
\mathrm{m} \angle Z X W=\left|130^{\circ}-30^{\circ}\right|=100^{\circ}
$$

$\angle Z X W=$ is obtuse.

1-3 Measuring and Constructing Angles

Check It Out! Example 2

Use the diagram to find the measure of each angle. Then classify each as acute, right, or obtuse.
a. $\angle B O A$
$\mathrm{m} \angle B O A=40^{\circ}$
$\angle B O A$ is acute.
b. $\angle D O B$
$\mathrm{m} \angle D O B=125^{\circ}$
$\angle D O B$ is obtuse.
c. $\angle E O C$

$\mathrm{m} \angle E O C=105^{\circ}$
$\angle E O C$ is obtuse.

1-3 Measuring and Constructing Angles

Congruent angles are angles that have the same measure. In the diagram, $\mathrm{m} \angle A B C=\mathrm{m} \angle D E F$, so you can write $\angle A B C \cong \angle D E F$. This is read as "angle $A B C$ is congruent to angle DEF." Arc marks are used to show that the two angles are congruent.

The Angle Addition Postulate is very similar to the Segment Addition Postulate that you learned in the previous lesson.

1-3 Measuring and Constructing Angles

Postulate 1-3-2 Angle Addition Postulate

If S is in the interior of $\angle P Q R$, then $\mathrm{m} \angle P Q S+\mathrm{m} \angle S Q R=\mathrm{m} \angle P Q R$.
(\angle Add. Post.)

1-3 Measuring and Constructing Angles

Example 3: Using the Angle Addition Postulate

$\mathrm{m} \angle D E G=115^{\circ}$, and $\mathrm{m} \angle D E F=48^{\circ}$. Find $\mathrm{m} \angle F E G$

$$
\mathrm{m} \angle D E G=\mathrm{m} \angle D E F+\mathrm{m} \angle F E G \angle \text { Add. Post. }
$$

$115^{\circ}=48^{\circ}+\mathrm{m} \angle F E G \quad$ Substitute the given values.
$\frac{-48^{\circ}}{67^{\circ}} \frac{-48^{\circ}}{=m \angle F E G}$
Subtract 48 from both sides.
Simplify.

1-3 Measuring and Constructing Angles

Check It Out! Example 3

$m \angle X W Z=121^{\circ}$ and $m \angle X W Y=59^{\circ}$. Find $m \angle Y W Z$.


```
m}\angleYWZ=\textrm{m}\angleXWZ-\textrm{m}\angleXWY\angleAdd. Post
m}\angleYWZ=12\mp@subsup{1}{}{\circ}-5\mp@subsup{9}{}{\circ
    Substitute the given values.
m}\angleYWZ=62
Subtract.
```


1-3 Measuring and Constructing Angles

An angle bisector is a ray that divides an angle into two congruent angles.
$\overrightarrow{J K}$ bisects $\angle L J M$; thus $\angle L J K \cong \angle K J M$.

1-3 Measuring and Constructing Angles

Example 4: Finding the Measure of an Angle
$\overrightarrow{K M}$ bisects $\angle J K L, m \angle J K M=(4 x+6)^{\circ}$, and $\mathrm{m} \angle M K L=(7 x-12)^{\circ}$. Find $\mathrm{m} \angle J K M$.

1-3 Measuring and Constructing Angles

Example 4 Continued

Step 1 Find x.

$\mathrm{m} \angle J K M=\mathrm{m} \angle M K L$	Def. of \angle bisector
$(4 x+6)^{\circ}=(7 x-12)^{\circ}$	Substitute the given values.
+12 +12	Add 12 to both sides.
$4 x+18=7 x$	Simplify.
$-4 x \quad-4 x$	Subtract 4x from both sides.
$18=3 x$	Divide both sides by 3.
$6=x$	Simplify.

1-3 Measuring and Constructing Angles

Example 4 Continued

Step 2 Find $\mathrm{m} \angle J K M$.

$$
\begin{aligned}
\mathrm{m} \angle J K M & =4 x+6 & & \\
& =4(6)+6 & & \text { Substitute } 6 \text { for } x . \\
& =30^{\circ} & & \text { Simplify. }
\end{aligned}
$$

1-3 Measuring and Constructing Angles

Check It Out! Example 4a

Find the measure of each angle.
$\overrightarrow{Q S}$ bisects $\angle P Q R, m \angle P Q S=(5 y-1)^{\circ}$, and $\mathrm{m} \angle P Q R=(8 y+12)^{\circ}$. Find $m \angle P Q S$.
Step 1 Find y.
$\angle P Q S=\frac{1}{2} \angle P Q R$
Def. of \angle bisector
$(5 y-1)^{\circ}=\frac{1}{2}(8 y+12)^{\circ} \quad$ Substitute the given values.

$$
5 y-1=4 y+6 \quad \text { Simplify }
$$

$$
y-1=6
$$

Subtract $4 y$ from both sides.

$$
y=7
$$

Add 1 to both sides.

1-3 Measuring and Constructing Angles

Check It Out! Example 4a Continued

Step 2 Find $\mathrm{m} \angle P Q S$.

$$
\begin{aligned}
\mathrm{m} \angle P Q S & =5 y-1 & & \\
& =5(7)-1 & & \text { Substitute } 7 \text { for } y . \\
& =34^{\circ} & & \text { Simplify. }
\end{aligned}
$$

1-3 Measuring and Constructing Angles

Check It Out! Example 4b

Find the measure of each angle.
$\overrightarrow{J K}$ bisects $\angle L J M, \mathrm{~m} \angle L J K=(-10 x+3)^{\circ}$, and $\mathrm{m} \angle K J M=(-x+21)^{\circ}$. Find $\mathbf{m} \angle L J M$.
Step 1 Find x.

$$
\begin{aligned}
\angle L J K & =\angle K J M \\
(-10 x+3)^{\circ}= & (-x+21)^{\circ} \\
+x & +x \\
\hdashline-9 x+3= & 21 \\
-3 & \frac{-3}{18} \\
-9 x= & -2
\end{aligned}
$$

Def. of \angle bisector
Substitute the given values. Add x to both sides.
Simplify.
Subtract 3 from both sides.
Divide both sides by -9 .
Simplify.

1-3 Measuring and Constructing Angles

Check It Out! Example 4b Continued

Step 2 Find $\mathrm{m} \angle L J M$.

$$
\begin{aligned}
\mathrm{m} \angle L J M & =\mathrm{m} \angle L J K+\mathrm{m} \angle K J M \\
& =(-10 x+3)^{\circ}+(-x+21)^{\circ} \\
& =-10(-2)+3-(-2)+21 \text { Substitute }-2 \text { for } x . \\
& =20+3+2+21 \quad \text { Simplify. } \\
& =46^{\circ} \quad
\end{aligned}
$$

1-3 Measuring and Constructing Angles

Lesson Quiz: Part I

Classify each angle as acute, right, or obtuse.

1. $\angle X T S$ acute
2. $\angle W T U$ right

3. K is in the interior of $\angle L M N, \mathrm{~m} \angle L M K=52^{\circ}$, and $\mathrm{m} \angle K M N=12^{\circ}$. Find $\mathrm{m} \angle L M N$. 64°

1-3 Measuring and Constructing Angles

Lesson Quiz: Part II

4. $\overrightarrow{B D}$ bisects $\angle A B C, \mathrm{~m} \angle A B D=\left(\frac{1}{2} y+10\right)^{\circ}$, and $\mathrm{m} \angle D B C=(y+4)^{\circ}$. Find $\mathrm{m} \angle A B C$.
32°
5. Use a protractor to draw an angle with a measure of 165°.

1-3 Measuring and Constructing Angles

Lesson Quiz: Part III

6. $\mathrm{m} \angle W Y Z=(2 x-5)^{\circ}$ and $\mathrm{m} \angle X Y W=(3 x+10)^{\circ}$. Find the value of x.

