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MECH3130: MECHANICS OF MATERIALS LABORATORY 

 

 This laboratory is designed to provide students hands-on experience on Mechanics of 

Material. This lab has adequate equipments to complete the course successfully. Table 1 

shows a list of the available equipments.  This course is performed in two parts – 

experimental and simulation. In the experimental part students gets exposure of different 

techniques (strain gage method, photo-elasticity etc.) to measure normal stress, normal 

strain, shear stress, shear strain, force, deflection etc. Several experiments also performed 

to teach measuring techniques of different material behavior like elastic modulus, 

modulus of rigidity, poisons ratio etc. Some of the experiments are also designed to 

validate some important principles of mechanics of material like theories related to beam 

stress, beam strain, beam deflection etc. Students also learn application of photo-elastic 

techniques in mechanics of material. In the simulation part students learn details use of 

computer software like ANSYS to perform finite element analysis (FEA). Preprocessing, 

analysis and post-processing techniques of truss, beam, 2D solid, 3D solid FEA models 

are taught in this part. In the final lab students perform some experiment and then do 

FEA modeling of the experimental specimen to validate their experimental results. 

Overall this lab is very informative and provides students idea of some real life 

techniques and applications related to the solid mechanics field. 

Table 1: List of equipments used in MECH 3130 laboratory 

Laboratory Equipment 

Mechanics of Material 

Lab 

• Strain gages, Kit boxes for strain gage mounting, 

Chemicals needed for surface preparation, Solder 

irons, Slide projectors, Slides on strain gage mounting.  

• Hydraulic tensile tester, Pressure gage, Strain 

Indicator, Switch balance unit. 

• Torsion testing machine, cylindrical specimens with 

mounted rosette. 

• Several I-beams with mounted strain gages on it. 

• Polariscope, Loading fixture, Overhead projector, 

Photo-elastic testing specimen. 

• Beam deflection measuring equipment, dial gages 
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FORMAT FOR FORMAL LAB REPORTS 

ME 3130 - Mechanics of Materials 

1. TITLE PAGE:  

• Show the lab number, title, your lab section, date due and your name (5 pts)  

2. PURPOSE:   

• Briefly state the lab's objective and the methods used to achieve it  (5 pts) 

3. THEORY: 

• List the assumptions made       (5pts) 

• State the theoretical equations to be tested     (5 pts) 

• Include drawings as necessary      (5 pts) 

• Define all symbols        (5 pts)  

4. PROCEDURE:   

• Describe the steps taken to perform the experiment    (10pts) 

•  Include schematics illustrating the location of strain gages, measurements    

taken, etc.         (5pts) 

5. DATA: 

• Tabulate all measurements taken in the lab     (5 pts) 

• Include proper units                        (-5 pts if improper or absent) 

6. SAMPLE CALCULATIONS: 

• For each experiment, show complete calculations using one set of data (20pts)   

• Calculate the percentage differences between experimental and theoretical   

values.                               (5 pts) 

7. RESULTS AND CONCLUSIONS: 

• Results:  

- Tabulate all results.        (5 pts)  

- Include relevant graphs.       (10pts) 

• Conclusions:  

- Briefly explain what you learned from the lab.    (5 pts)  

- Discuss the probable reasons for errors, if any.    (5 pts) 
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LAB REPORT GUIDELINES: 

ME 3130 - Mechanics of Materials 

 

1. Lab reports are due at the subsequent lab period (normally one week later).  A penalty 

of ten points for every day (including holidays or weekends) late will be assessed.   

2. Begin each section of the report on a fresh page. 

3. Use engineering paper stapled in the upper left corner. 

4. Grading will also consider neatness, grammar, spelling, and adherence to format. 

5. Graphs:  

• Must be done on computer. 

• Include a title. 

• Label the graph axes and include units. 

• Distinguish between curves on the same graph. 

6. Cheating is a serious offense and will not be tolerated.  Work that you hand in should 

be your own, and not copied from another student.  Cheating could result in your 

appearance before the university disciplinary committee.  You are strongly advised 

not to cheat in your labs or computer programs. 
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Lab-1 Notes - Centroids and Moments of Inertia 

MECH 3130 - Mechanics of Materials 

 

PLANAR AREAS 

The objectives of the current laboratory are to review the definitions and calculation 

procedures for centroids and moments of inertia of areas.  A general planar area in the x-

y plane is shown in Figure 1. 

 

Figure 1 - General Planar Area 

CENTROIDS   

Definitions:   

For a general area A such as shown in Figure 1, the first moments of area A about a given 

x-axis and y-axis are defined by 

 

           (1) 
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The centroid of the area has the coordinates: 

 

(2) 

Composite Areas  

 For a composite area A made up of several smaller parts Ai (i = 1, 2, 3, …, N), eq. (2) 

can be shown to simplify to: 

 
(3) 

Where ( i ix , y ) are the coordinates of the centroid of each sub-area Ai.  Note that a section 

with a cutout can also be treated as a composite area.  In such a case, the areas of the 

cutouts are taken to be negative. 

 

MOMENTS OF INERTIA 

Definitions: 

The moments of inertia of an area about the x and y axes are defined by 

 

(4) 
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The product moment of inertia for the x and y axes is defined by 

 
(5) 

and the polar moment of inertia is defined as 

 
(6) 

Composite Areas 

 

For a composite area A made up of several smaller parts Ai (i = 1, 2, 3, …, N), eqs. (4-6) 

can be shown to simplify to: 

 
(7) 

Note that a section with a cutout can also be treated as a composite area.  In such a case, 

the moments of inertia of the cutouts are taken to be negative. 

 

Parallel Axis Theorem 

 

The parallel axis theorem relates the moment of inertia for an area about any given axis 

given to the moment of inertia about a parallel axis that passes through the centroid of the 

area and the distance between the axes.  Referring to Figure 2, the parallel axis theorem 

can be stated as 

 
  (8) 

where In’ is the moment of inertia about the n-axis, nI  is the moment of inertia about an 

axis parallel to the n-axis which also passes through the centroid (point C), A is the area, 
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and d is the distance between the two axes.  For the x’-y’ axes and x-y axes shown in 

Figure 3 (the x-y axes pass through the centroid), the appropriate relations for the 

moments and products of inertia are: 

 

 
(9) 

Note that x yd x' and d y'= =  can be negative numbers. 
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Example #1  

Rectangle 
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For this area, moment of inertia Ix is derived as follows: 

 
Similarly, it can be shown that 

 
 

Ixy Calculation: 

 

 
In fact, it is a general rule that when an area is symmetric about either the x-axis or the y-

axis, the product moment of inertia Ixy = 0. 
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Example 2 

Circle 

 
For this area, moment of inertia Ix is derived using polar coordinates as follows: 

 
 

Using a similar approach, it can be shown that 

           
It is easy to show that Ixy = 0 since the area is symmetric about the x and y axes. 
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Example 3  

Rectangle with Circular Cutout 

 
Calculate moment of inertia Ix using the composite area formula: 

 
Similarly, 
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Example 4  

“L” Shaped Area 

 

Calculate the Position of the Centroid, and the Moments and Products of Inertia for a Set 

of x-y axes passing through the Centroid. 

 
 

Centroid Calculation:   
 

For the purpose of calculations, the area has been split up into two parts as shown above.   

 
The formulas for the centroid of a composite area are: 

 
Thus, for the “L” shaped area, the coordinates of the centroid are: 
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Moment of Inertia Calculation: 

 

We again split up the area into sub-areas 1 and 2 as shown previously.  The moment of 

inertia of the composite area is determined by 

 

 
 

Where (Ix)i is the moment of inertia of the sub-area i about the x-axis passing through the 

centroid of the entire composite area.  Using the parallel axis theorem 

 

 
 

Where (Ix)i is the moment of inertia of the sub-area i about an axis passing through its 

centroid.  The length dxi is the vertical distance between the centroid of sub-area i and the 

centroid of the entire composite area. 

 

 

 
 

Using similar calculations: 

 
What is Ixy?? 
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 17 

Lab #1 Assignment - Moment of Inertia  

MECH 3130 

 

1. a)   For the following cantilever beam with rectangular cross-section, discuss whether 

a horizontal or vertical transverse load on the end of the beam will give a greater 

magnitude of the end deflection and why? 

 
(b) For the following cantilever beam with circular cross-section, discuss whether a 

horizontal or vertical transverse load on the end of the beam will give a greater 

magnitude of the end deflection and why? 

 

 
 

2. Approximate the aluminum I-beam cross-sectional area shown in lab as a set of 

rectangles.  Find the centroid of the cross-section, and find the moments of inertia 

Ixx, Iyy and Ixy for a set of axes x and y passing through the centroid.  Compare your 

approximate moments of inertia to the moments of inertia listed for I-beam cross 

sections in a table of properties for rolled metal structural shapes. 

 

3. Approximate the aluminum “L” shaped cross-sectional area shown in lab as a set of 

rectangles.  Find the centroid, and the moments of inertia Ixx, Iyy and Ixy for a set of 

x and y axes passing through the centroid. 
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4. Calculate Ix, Iy, Ixy, Ix', Iy', Ix'y' for the area shown below. 

 

(a) 

 
(b) 
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(c) 

 
 

(d) 
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(e) 
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Lab-2  

STRAIN GAGE MOUNTING 
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LAB-2 - Strain Gage Mounting 

MECH 3130 - Mechanics of Materials 

 

Lab Objective: 

 

To obtain a general understanding of strain gage technology and to successfully mount 

axial and transverse strain gages on a uniaxial test specimen. 

 

Procedure: 

 

1. Receive lecture material on the basics of resistance strain gages. 

2. View and understand the instructional slide presentation on the strain gage mounting 

procedure. This procedure is also discussed in the Student Manual for strain gage 

technology. 

3. Know the five basic steps in surface preparation done before strain gage mounting, 

and understand their purposes. 

a) Solvent Degreasing 

b) Surface Abrading 

c) Gage Location 

d) Surface Conditioning 

e) Neutralizing 

 

4. Locate test specimen, strain gages, and necessary mounting materials. 

5. Clean specimen thoroughly by removing old strain gages and adhesives. 

6. Bond strain gages to your specimen in accordance to the steps previously obtained in 

1 and 2. 

7. Properly and neatly solder necessary lead wires to the strain gages. 

8. Test the resistances of the mounted gages using a digital multimeter. 

 

 

Note:  

The following four pages are copies of the “Instruction Bulletin B-127-9” from 

Measurements Group, INC., which describes the steps in mounting a strain gage. 
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Lab-3 

UNIAXIAL TENSILE TESTING 
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LAB-3 - Uniaxial Tensile Testing  

MECH 3130 - Mechanics of Materials 

 

Wheatstone Bridge Circuit 

 

From our lecture at the last laboratory, the normalized resistance change of a strain 

gage is given by g

R
S

R
ε

∆
= . To get the strain we need to accurately measure the 

normalized resistance change.  This can be accomplished by using an electric circuit 

called the Wheatstone Bridge. 

 

 
In the above figure, R1, R2, R3, R4 are arbitrary resistors, Ei is the known input voltage 

(from a battery or power supply), and Eo is output voltage (that we will measure). Using 

Ohm’s Law (V = IR) and circuit theory, you can show that: 

 

(1) 

When we use a Wheatstone Bridge, normally the resistors are chosen so that the bridge is 

“balanced” and Eo = 0.  This requires: 

                                                                                                               (2) 
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Once the bridge is balanced, the output voltage will change if the resistance of one or 

more of the resistors changes (for example, one of the resistors might be a strain gage and 

its resistance will change as the specimen strain changes).  For this case, the output 

voltage is given by: 

                                                        (3) 

 

Quarter Bridge : (Strain Gage = R1, “Dummy Gage” = R2) 

If we use a Wheatstone Bridge based Strain Gage Indicator (e.g. Measurements Group 

Model 3800) to measure the resistance change experienced by a single strain gage, the 

circuit is set up so that R1 = Rgage, and so that R2 = R1 (either 120 or 350 ohms).  Once 

the test begins, the resistors R2, R3, and R4 are considered to have fixed resistance.  

Thus: 

                                               (4) 

                                                                                         (5) 

For this case, eq. (3) becomes: 

                                                                                                                 (5)  

For typical student strain gages, Sg = 2.  If we choose the input excitation voltage as Ei = 

2 Volts, eq. (5) simplifies to: 

                          (6) 

This means that a strain of ε = 1 x 10
-6
 = 1 µε will produce a Wheatstone Bridge output 

voltage of 1 µV.  Most low cost digital voltmeters can’t measure voltages that small 

(microvolts), but can measure 1 mV (millivolts).  Thus, an operational amplifier with an 

amplification of 1000 is usually added to the Wheatstone Bridge circuit to make the 

signal easy to measure.  With the addition of the amplifier, the output of the 

Bridge/Amplifier becomes:  

                  (6) 
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Thus, a strain of ε = 1 x 10
-6
 = 1 µε will produce a Bridge/Amplifier output voltage of 1 

mV.  In the instruments we use in class, the red digital readout is actually measuring the 

output of the Bridge/Amplifier in millivolts.  If everything is configured correctly, this 

number will also be the strain in the gage in microstrain. 

 

Lab Objective:  

To perform a uniaxial tension test on a standard test specimen, and to use the measured 

stress-strain data to determine the Elastic Modulus (E) and the Poisson’s Ratio (ν) of the 

specimen material.  To gain a simple understanding of the theory and operation of the 

Wheatstone Bridge circuit used in strain gage measurements. 

 

Procedure: 

1. Receive lecture material on the Wheatstone Bridge circuit, and its use in strain gage 

measurements. 

2. Retest the resistances of the mounted strain gages on your test specimen prepared in 

the last lab session using a digital multimeter. 

3. Mount the specimen into the uniaxial tensile test apparatus. 

4. Apply several loads on the tensile sample, and record the values of load, axial strain, 

and transverse strain. 

5. Calculate the values of axial stress on the test specimen at each of the utilized test 

loads. 

6. Plot graphs of the axial stress vs. axial strain (σa vs. εa) and transverse strain (absolute 

value) vs. axial strain ( |εt| vs. εa ).  Use least squares fitting to calculate the elastic 

modulus (E) and Poisson’s ratio (ν). 
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7. Compare the experimental values of E and ν to the published values for your 

specimen material.  Calculate the percent differences between the measured and 

published values. 

8. Identify sources of errors in your measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  

Prepare a complete lab report on your results for Labs #2 and #3.  Use the provided Lab 

Format as a guideline for preparing your report. 
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Lab-4  

TORSION TESTING 
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LAB-4 - Torsion Testing 

MECH 3130 - Mechanics of Materials 

Lab Objective:  

To perform a torsion (shear) test on a shaft with a circular cross-sectional area, and to 

apply torsion theory learned in lecture, and to measure the shear modulus of a material 

using two different methods. 

 

Procedure: 

1. Receive lecture material on two basic methods for experimentally measuring the 

shear modulus G of a material using torsion testing and computations involving the 

applied torque, shear strain, and angle of twist. 

2. Prepare the torsion test experimental setup including: 

a) Torsion testing machine 

b) Strain indicator 

c) Switch and balance unit 

d) Properly prepared cylindrical shaft sample(s) with mounted three element (0-45-

90) strain gage rosettes. 

3. Apply loads to the torque arm in increments of 5 N (e.g. P = 5, 10, 15, 20, …). 

4. At each load, record the three strains at the gage locations, and the vertical deflection 

of the torque arm.  Use this data to determine the torque, shear strain, and angle of 

twist at each load.  Tabulate all of your measurements and calculations. 

5. Use the measured data to generate plots of Shear Stress vs. Shear Strain (τxy vs. γxy), 

and Torque vs. Angle of Twist (T vs. θT).   
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6. Using linear regression fits to the data in each plot, calculate two different values of 

the shear modulus. 

7. Compare the experimental values of G to the published value for your specimen 

material.  Calculate the percent differences between the measured and published 

values. 

8. Identify sources of errors in your measurements. 

 

Prepare a complete lab report on your results for Lab #4.  Use the provided Lab 

Format as a guideline for preparing your report. 

 

 

Notes on the Torsion Experiment 

1. Calculation of Applied Torque: 

 

The torque is given by 

T = Pd 

Where, P is the applied load, and d is the length of the torque arm. 

 

2. Calculation of the Angle of Twist 

 

The angle of twist is given by 

 

Where, h is the vertical deflection of the torque arm measured using a deflection dial 

gage and s is the distance between the center of the shaft and the dial gage. 
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3. Calculation of Shear Strain from the 0-45-90 Strain Gage Rosette Data 

   

     

 

It can be shown that the normal strain at a point is a function of orientation given by 

 

Applying this relation at each of the gage angles leads to: 

 

These expressions can be rearranged to solve for the shear strain in terms of the gage 

normal strains: 
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Lab-5 

BEAM STRESSES AND STRAINS 

(STRAIN GAGES) 
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LAB -5 - Beam Stresses and Strains (Strain Gages) 

MECH 3130 - Mechanics of Materials 

Lab Objectives: 

To perform experimental strain measurements on aluminum beams using strain gages 

mounted at various locations. To verify the theoretical equations for the normal stresses 

and strains in beams loaded in bending. 

Procedure: 

 

1. Receive lecture material covering the beam configurations to be tested, including 

derivation of the shear force and bending moment distributions. 

2. Prepare the beam test experimental setups including: 

e) Beams with properly mounted strain gages 

f) Dead weight loads 

g) Strain indicators 

h) Switch and balance units 

3. Measure dimensions on your test configurations needed for beam stress and strain 

calculations (e.g. lengths of beam, cross-sectional dimensions, precise locations of 

supports, precise locations of applied concentrated loads, precise location of each 

strain gage, etc.) 

4. Test each of the three beams by applying various loads and recording the strain gage 

data. Use the formulas 

 
to calculate the theoretical strains at each of the gage locations and compare to your 

experimental data.  Calculate the percent errors and discuss possible reasons for the 

discrepancies.  Prepare tables to present your numerical results in a logical format.  

Also, generate graphs that show both your experimental measurements (as data 

points) and theoretical predictions (as solid lines/curves).  Further details and 

discussions on the beam test configurations are given below. 

 

Prepare a complete lab report on your results for Lab #5.  Use the provided Lab 

Format as a guideline for preparing your report. 
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Notes on the Beam Experiments 

 

Beam #1 

This experiment consists of a simply supported I-Beam loaded in four point bending.  

As shown below, a total of 11 strain gages have been mounted in the center of the 

beam at various heights on the cross-sectional area.  The concentrated loads on the 

top of the beam are applied using a 200 lb weight (each load is 100 lb). 

 

At the center of the beam (location of all of the gages), the bending moment is a fixed 

value.  Thus, the theoretical strain distribution on the cross-sectional area is given by: 

 

Where, C1=M /EI is a constant that can be calculated.  As part of this experiment, you 

should generate a table such as shown below, which lists the measured and predicted 

strains at each gage location. 
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Also, you should plot εx vs. y, to graphically compare the theoretical and 

experimental results.  In your graph, use data points for your experimental 

measurements and a solid line for you theoretical prediction as shown below. 

 

Beam #2 

This experiment consists of a simply supported I-Beam loaded by a central 

concentrated load (caused by hanging several “dead” weights at the center of the 

beam).  As shown below, a total of 11 strain gages have been mounted in on the top 

of the beam at various horizontal positions. 

 

Along the top of the beam where the gages are all located, the value of “y” is fixed.  

Thus, the theoretical strain distribution for points on the top of the beam is given by: 



 40 

 

Where, C2= y/EI is a constant that can be calculated.  As part of this experiment, you 

should generate a table such as shown below, which lists the measured and predicted 

strains at each gage location. 

 

Also, you should plot εx vs. x, to graphically compare the theoretical and 

experimental results.  In your graph, use data points for your experimental 

measurements and a solid line for you theoretical prediction as shown below. 
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Lab-6 

BEAM STRESSES AND STRAINS 

(PHOTOELASTICITY) 
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LAB-6 - Beam Stresses and Strains (Photoelasticity) 

MECH 3130 - Mechanics of Materials 

Lab Objectives: 

To perform experimental stress measurements on a polycarbonate beam subjected to 

four-point bending using photoelasticity. To measure the normal stress variation across 

the cross-sectional area of a beam, and compare the obtained data to the results predicted 

by beam theory. 

Procedure: 

1. Receive lecture material covering an introduction to photoelasticity, and discussion of 

the beam configurations to be tested. 

2. Prepare the beam test experimental setup including: 

a) Polariscope and overhead projector 

b) Load frame with screw driven application of load and dial indicator load cell 

c) Plastic beam with four-point bending fixture 

3. Measure dimensions on your test configuration needed for beam stress calculations 

(e.g. length of beam, cross-sectional dimensions, precise locations of supports, 

precise locations of applied concentrated loads, etc.) 

4. Test your beams by applying selected loads, and recording the photoelastic stress data 

(trace the photoelastic fringe patterns onto a piece of paper). At each fringe location, 

calculate the experimental normal stress value using the formula 

                                                                        (1) 

5. Use the formula 

                                                                                                          (2) 

to calculate the theoretical stress distribution over the cross-sectional area (center of 

the beam), and compare your results to the photo elastic experimental measurements. 

Calculate the percent errors and discuss possible reasons for the discrepancies. 

Prepare tables to present your numerical results in a logical format. Also, generate 

graphs that show both your experimental measurements (as data points) and 

theoretical predictions (as solid lines/curves).  
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LAB-6 - Beam Stresses and Strains (Photoelasticity) 

The Photoelastic Method: 

Photoelasticity is an experimental full field optical technique, which can be used to 

determine states of stress at various points in a loaded structure.  The name of the method 

comes from the fact that it involves the interaction of light and optics (photo) with the 

stresses and strains (elasticity) in certain plastic materials that exhibit the phenomena of 

stress-induced birefringence.  In laymen’s terms, the stresses acting on certain 

transparent plastics will cause changes in the light waves that pass through them.  In more 

detail, stress causes directionally dependent changes in the indices of refraction of the 

plastic material.  In such plastics, the material changes from being optically isotropic 

(unstressed state) to optically anisotropic (stressed state).  Therefore, stress measurements 

in loaded plastic structures can be made using optical measurements of the indices of 

refraction of the plastic material and the appropriate theoretical equations relating stress 

to the change in index of refraction. 

Measurements of the stress-induced optical changes in the plastic materials can be made 

using an optical device called a polariscope, consisting of a set of optical filters 

(polarizing plates and quarter wave plates) in a particular configuration.  When a plastic 

material is placed in the middle of a so-called circular polariscope, no light will pass 

through it (i.e. it appears totally dark).  Once the plastic is stressed, colored bands of light 

(contours) called photoelastic fringes will appear across the specimen.  When these 

fringes are viewed through a monochromatic filter (single color), they appear as black 

fringes on a single color specimen (we use yellow-green filters). 

 

 

Fig: Typical photoelastic fringes for a plastic simply supported beam with central load 
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Using the Theory of Photoelasticity (no details given here), it can be shown that the 

following equation holds on every black fringe: 

 

                                                                                      (3)                

 

where N is some integer (N = 0, 1, 2, 3, …), b is the thickness of the plastic material 

(thickness that the light passes through), and fσ is an material constant. 

For the polycarbonate plastic and yellow-green filter used in our laboratory,                    

fσ = 40 psi − in.  Also, the plastic beams have a thickness of b = .25 inches.  Thus, eq. (3) 

simplifies to 

 

                                                                      (4) 

 

In all beams, the vertical normal stress is negligible (σy ≈ 0).  In addition, the shear force 

is zero (V = 0) in the center region of the four-point bending beam specimen geometry 

considered in this experiment.  Thus, τxy= 0 in the center of the beam, and the equation 

for the stress σx on a black fringe becomes 

 

                                                                                                     (5)               

 

To determine the precise value of stress on a particular fringe, one must use intuition or 

other knowledge of the structure to choose the value of the fringe order N.  In the four-

point beam bending experiment, we can use the fact that the stress is known to be zero on 

the neutral axis.  Also, the stress σx should increase in magnitude as we get farther away 

from the neutral axis.  Finally, the stress should be tension on one side of the neutral axis 

and compression on the other. 
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Notes on the Photoelastic Beam Experiment   

 

The experiment consists of using the fixture shown below in Figure 1 to load a 

polycarbonate plastic beam in four-point bending. This fixture is put into a uniaxial 

tensile loading frame, which is capable of applying known forces (P). These forces are 

transferred to the plastic beam specimen by the steel bars and the four short two-force 

members having pinned ends. 

 

As shown in Figure 2, each two-force member transfers a force of F/2 to the 

polycarbonate beam.   This results in a constant bending moment in the center region of 

the beam (between the inner two forces) with a value of 
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The theoretical stress distribution on any cross-sectional area in the center region of the 

beam is given by: 

                                                                                          (6) 

 

where C is a constant that can be calculated.  The shear stress τxy = 0 as the shear force is 

zero in the center of the beam. In addition, the vertical stress in beams is typically 

neglected (σy ≈ 0).  As mentioned previously, these conditions cause the photoelasticity 

relation for the stress σx on a black fringe in the four point bending specimen to become: 

  

                                                                                                    (7) 

 

Theoretically (eq. (6), σx is constant at various vertical positions y. Thus, the photoelastic 

pattern for the four point bending specimen should be a set of horizontal fringes (in the 

region of pure bending). 

 

 

Figure - Typical Photoelastic Fringe Pattern for a Beam in Four Point Bending 

 

Using your recorded photoelastic fringe pattern, experimental values of stress σx can be 

calculated at various vertical positions y. Using eq. (6) and the known applied forces, 

theoretical values of stress σx can be calculated at various vertical positions y.  As part of 

this experiment, you should generate a table (format shown below), which lists the 

measured and predicted stresses at the various photoelastic fringe locations. 
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Also, you should plot σx vs. y, to graphically compare the theoretical and experimental 

results.  In your graph, use data points for your experimental measurements and a solid 

line for you theoretical prediction as shown below. 
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Lab-7 

BEAM DEFLECTIONS 
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Lab-7 - Beam Deflections 

MECH 3130 - Mechanics of Materials 

Lab Objectives: 

To perform experimental deflection measurements on statically determinate and statically 

indeterminate beams and to compare the obtained data to beam theory predictions.  To 

verify the principle of superposition for beam deflections. 

 

Procedure: 

1. Receive lecture material covering a review of beam deflection theory, and a 

discussion of the beam configurations to be tested. 

2. Prepare the beam test experimental setup including: 

a) Beam deflection test stand 

b) Aluminum beams to be tested (36 x 1 x 0.25 inches) 

c) End supports for the beam (cantilever and roller) 

d) Displacement gages 

e) Dead weight loads 

3. Measure the dimensions on your test configurations needed for calculating beam 

deflections (e.g. length of the beam between the supports, positions of the 

displacement gages, etc.) 

4. For each of your beam configurations, apply the loads and record the beam 

deflections at each of the dial gage locations.  Using beam theory, calculate analytical 

values of the beam deflections at each dial gage location.  Compare your measured 

deflection values with your predicted values.  Calculate the percent errors and discuss 

possible reasons for the discrepancies.  Prepare tables to present your experimental 

and theoretical results in a logical format.  Also generate graphs that show both your 

experimental measurements (as data points) and theoretical predictions (as solid 

lines/curves).  Further details and discussions on the beam test configurations are 

given below. 

 

Prepare a complete lab report on your results for Lab #7.  Use the provided Lab 

Format as a guideline for preparing your report. 
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Notes on Beam Deflection Experiment 

Beam #1 (Statically Determinate): 

This experiment consists of a simply supported beam with rectangular cross-sectional 

area that is loaded with intermediate concentrated load as shown below.   

 

Measure the displacements at each of the dial gage locations.  Compare your 

experimental data to predicted values generated using beam theory. 

 

 

Beam #2 (Statically Indeterminate) 

This experiment consists of a beam with rectangular cross-sectional area that has a 

clamped support on its left end and a roller support on its right end, and that is loaded 

with intermediate concentrated load as shown below.   
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Measure the displacements at each of the dial gage locations.  Compare your 

experimental data to predicted values generated using beam theory. 

 

 

Beam #3 (Method of Superposition): 

 

This experiment consists of a simply supported beam with rectangular cross-sectional 

area that is loaded with two intermediate concentrated loads as shown below. 

 

 

 

Apply each of the loads separately, and measure the displacements caused by each 

load (v1 and v2 for loads P1 and P2, respectively).  When two or more loads are 

applied on any beam, the Principle of Superposition states that the resultant deflection 

at any point is equal to the summation of the deflections at that point caused by each 

of the loads acting separately.  The only restriction on this method is that the effect 

produced by each load must be independent of that produced by the other loads; i.e. 

each separate load must not cause an excessive change in the original shape or length 

of the beam.  Using the Method of Superposition, predict the displacements that 
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should occur when both loads are applied simultaneously to the beam considered 

above (v1 + v2).  Then, apply both loads simultaneously, and measure the resulting 

displacements.  For the case of both loads being applied, compare your predicted 

displacements with your measured values.   

 

 


