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Assessment
The course will be assessed in the following manner:

Partial Exam  30%

Final Exam 30%

Quizzes (3)*  33%

Attendance and Class Participation 7%
(*) A total of three quizzes will be performed.   

(**) Class Attendance (after the second absence ‐ 1 point will be deducted for each non‐
authorized absence). The participation in class will be taken into account.

Attendance
Attendance and participation in the lectures are mandatory and will 
be considered in the grading. Students should bring calculators, 
rulers, pen and pencils to be used during the lectures. Students are 
expected to keep up with the assigned reading and be prepared for 
the pop‐quizzes or to answer questions on these readings during 
lecture.



Texbooks
G.E. Dieter; Mechanical Metallurgy; Mc Graw Hill
M.A. Meyers and K.K. Chawla; Mechanical Metallurgy: Principles and 
Applications; Prentice‐Hall 
I will also post my lecture notes in the web: http://academic.uprm.edu/pcaceres

TENTATIVES DATES
Jan/9‐11

Basic Principles
Jan/14‐18 

Stress‐Strain
Jan/21‐25 

Basic Elasticity

Jan/28‐Feb/01 
Basic Elasticity

Feb/04‐08 
Single Crystals

Feb/11‐15
Dislocation Theory

March/3‐7 
Strengthening Mechanisms

Mar/24‐28 
Fracture

April /14‐18 Mechanical 
Properties

Feb/18‐22 
Dislocation Theory 1st Exam

Feb/25‐29 Strengthening 
Mechanisms

March/10‐14 
Strengthening Mechanisms

Mar/17‐21–
No Class ‐ Holy Week

April/1‐4
Fracture

April/7‐11  Mechanical 
Properties Exam 2

April/22‐25 –Mechanical 
Properties

Apr/28‐May02‐Mechanical 
Properties



Content

•Stress and Strain Relationships for Elastic Behavior
•Elements of the Theory of Elasticity
•Plastic Deformation of Single Crystals
•Dislocation Theory
•Strengthening Mechanisms
•Fracture
•Mechanical Properties



The Concept of Stress
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Uniaxial tensile stress: A force F is applied perpendicular 
to the area (A). Before the application of the force, the 
cross section area was AO

Engineering stress or nominal stress: Force 
divided by the original area.

True stress: Force divided by the 
instantaneous area A
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Engineering Strain or Nominal Strain: Change of 
length divided by the original length

True Strain: The rate of instantaneous increase in 
the instantaneous gauge length. ∫ ⎟⎟
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Relationship between engineering and true stress and strain
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Primary Types of Loading

(a) Tension 
(b) Compression
(c) Shear
(d) Torsion
(e) Flexion



Hooke’s Law
When strains are small, most of materials are linear elastic.
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Torsion Loading resulting from the twist of a shaft.
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From equilibrium principles:
τxy = τyx , τxz = τzx  , τzy = τyz

Stress Components Normal Stresses σx, σy, σz
Shear Stresses τxy , τyx , τxz , τzx , τzy , τyz

Normal stress (σ) : the subscript identifies the 
face on which the stress acts.  Tension is positive 
and compression is negative.
Shear stress (τ) : it has two subscripts. The first 
subscript denotes the face on which the stress 
acts. The second subscript denotes the direction 
on that face. A shear stress is positive if it acts 
on a positive face and positive direction or if it 
acts in a negative face and negative direction. 



A shear strain in an element is positive when the angle between two positive faces 
(or two negative faces) is reduced, and is negative if the angle is increased.

Sign Conventions for Shear Stress and Strain
The Shear Stress will be 
considered positive when a 
pair of shear stress acting on 
opposite sides of the element 
produce a counterclockwise 
(ccw) torque (couple).
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For static equilibrium  τxy = τyx , τxz = τzx , τzy = τyz resulting in

Six independent scalar quantities. These six scalars can be arranged 
in a 3x3 matrix, giving us a stress tensor.

The sign convention for the stress elements is that a positive force on 
a positive face or a negative force on a negative face is positive. All 
others are negative.
The stress state is a second order tensor since it is a quantity
associated with two directions (two subscripts direction of the 
surface normal and direction of the stress).



F1
F3

F2
Cube with a Face area Ao
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A property of a symmetric tensor is that there exists an orthogonal set 
of axes 1, 2 and 3 (called principal axes) with respect to which the 
tensor elements are all zero except for those in the diagonal.
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Plane Stress or Biaxial Stress : When the material is in plane stress in 
the plane xy, only the x and y faces of the element are subject to 
stresses, and all the stresses act parallel to the x and y axes.

Stresses on Inclined Sections
Knowing the normal and shear stresses acting in the element denoted 
by the xy axis, we will calculate the normal and shear stresses acting 
in the element denoted by the axis x1y1.
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Equilibrium of forces: Acting in x1
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Eliminating Ao , secθ = 1/cosθ
and τxy=τyx

θθτθσθσσ cossin2sincos 22
1 XYYXX ++=

Acting in y1

τx1y1Aosecθ = − σxAosinθ + τxyAocosθ + σyAotanθcosθ − τyxAotanθsinθ

Eliminating Ao , secθ = 1/cosθ    and    τxy=τyx
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Transformation Equations for Plane Stress
Using the following trigonometric identities:
Cos2θ = ½ (1+ cos 2θ)   Sin2θ = ½ (1- cos 2θ)     Sin θ cos θ = ½ sin 2θ

These equations are known as the transformation equations for 
plane stress.
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Case 1: Uniaxial stress 

Special Cases
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Case 3: Biaxial stress
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Example:  An element in plane stress is subjected to stresses 
σx=16000psi, σy=6000psi, and τxy=τyx= 4000psi (as shown in figure 
below). Determine the stresses acting on an element inclined at an 
angle θ=45o (counterclockwise - ccw).

Solution: We will use the following transformation 
equations:
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Numerical substitution
½ (σx + σy) = ½ (16000 + 6000) = 11000psi
½ (σx - σy) = ½ (16000 – 6000) = 5000psi             τxy = 4000psi
sin 2θ = sin 90o = 1           cos 2θ = cos 90o = 0       Then 
σx1 = 11000psi + 5000psi (0) + 4000psi (1) = 15000psi
τx1y1 = - (5000psi) (1) + (4000psi) (0) = - 5000psi
σx1 + σy1 = σx + σy then σy1 = 16000 + 6000 – 15000 = 7000psi

psi
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psi
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Example: A plane stress condition exists at a point on the surface of 
a loaded structure such as shown below. Determine the stresses 
acting on an element that is oriented at a clockwise (cw) angle of 15o

with respect to the original element.

Solution:
We will use the following transformation equations:
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Numerical substitution
½ (σx + σy) = ½ (- 46 + 12) = - 17MPa
½ (σx - σy) = ½ (- 46 – 12) = - 29MPa           τxy = - 19MPa
sin 2θ = sin (- 30o) = - 0.5             cos 2θ = cos (- 30o) = 0.866         then 
σx1 = - 17MPa + ( - 29MPa)(0.8660) + (-19MPa)(- 0.5) = - 32.6MPa
τx1y1 = - (- 29MPa) (- 0.5) + (- 19MPa) (0.8660) = - 31.0MPa
σx1 + σy1 = σx + σy then σy1 = - 46MPa + 12MPa – (- 32.6MPa) = - 1.4MPa



Example : A rectangular plate of dimensions 3.0 in x 5.0 in is formed 
by welding two triangular plates (see figure). The plate is subjected to 
a tensile stress of 600psi in the long direction and a compressive stress 
of 250psi in the short direction. Determine the normal stress σw acting 
perpendicular to the line or the weld and the shear stress τw acting 
parallel to the weld. (Assume σw is positive when it acts in tension and 
τw is positive when it acts counterclockwise against the weld).



Solution
Biaxial stress weld joint σx = 600psi σy = -250psi τxy = 0
From the figure 
tanθ = 3 / 5 θ = arctan(3/5) = arctan(0.6) = 30.96o

We will use the following 
transformation equations:

Numerical substitution
½ (σx + σy) = 175psi ½ (σx - σy) = 425psi         τxy = 0psi
sin 2θ = sin 61.92o cos 2θ = cos 61.92o
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Then 
σx1 = 375psi     τx1y1 = - 375psi
σx1 + σy1 = σx + σy

then σy1 = 600 + (- 250) – 375 = -25psi

-375psi

Θ = 
30.96o

375psi25psi

x

y



Stresses acting on the weld

σw

θ
τw

25psi

375psi
θ = 30.96o

σw = -25psi and τw = 375psi



Principal Stresses and Maximum Shear Stresses
The sum of the normal stresses acting on perpendicular faces of 
plane stress elements is constant and independent of the angle θ.

YXYX σσσσ +=+ 11
As we change the angle θ there will be maximum and minimum 
normal and shear stresses that are needed for design purposes.
The maximum and minimum normal stresses are known as the 
principal stresses. These stresses are found by taking the derivative 
of σx1 with respect to θ and setting equal to zero.
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The subscript p indicates that the angle θp defines the orientation of 
the principal planes. The angle θp has two values that differ by 90o. 
They are known as the principal angles. 

For one of these angles σx1 is a maximum principal stress and for 
the other a minimum. The principal stresses occur in mutually 
perpendicular planes.
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Principal stresses:

The plus sign gives the algebraically larger principal stress and the 
minus sign the algebraically smaller principal stress. 
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Maximum Shear Stress

The location of the angle for the maximum shear stress is obtained 
by taking the derivative of τx1y1 with respect to θ and setting it equal 
to zero.
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The planes for maximum shear stress 
occurs at 45o to the principal planes. The 
plane of the maximum positive shear 
stress τmax is defined by the angle θS1 for 
which the following equations apply:
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The corresponding maximum shear is 
given by the equation
Another expression for the maximum 
shear stress

The normal stresses associated with the 
maximum shear stress are equal to 
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General equation

Consider

Equation (1)
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Alternative sign conversion for 
shear stresses:  

(a) clockwise shear stress,
(b) counterclockwise shear 

stress, and 
(c) axes for Mohr’s circle.  

Note that clockwise shear 
stresses are plotted upward and 
counterclockwise shear stresses 
are plotted downward.

a) We can plot the normal stress σx1 positive to the right and the shear 
stress τx1y1 positive downwards, i.e. the angle 2θ will be positive 
when counterclockwise or

b) We can plot the normal stress σx1 positive to the right and the shear 
stress τx1y1 positive upwards, i.e. the angle 2θ will be positive when 
clockwise.

Both forms are mathematically correct. We use (a)

Forms of Mohr’s Circle



Two forms of Mohr’s circle: 
(a) τx1y1 is positive downward and the angle 2θ
is positive counterclockwise, and
(b) τx1y1 is positive upward and the angle 2θ is 
positive clockwise.  (Note: The first form is 
used here)



Construction of Mohr’s circle for plane stress.



Example: At a point on the surface of a pressurized 
cylinder, the material is subjected to biaxial stresses 
σx = 90MPa and σy = 20MPa as shown in the element 
below.
Using the Mohr circle, determine the stresses acting 
on an element inclined at an angle θ = 30o (Sketch a 
properly oriented element).

Solution (σx = 90MPa,  σy = 20MPa   and  
τxy = 0MPa)
Because the shear stress is zero, these are the 
principal stresses.
Construction of the Mohr’s circle
The center of the circle is 
σaver = ½ (σx + σy) = ½ (90 + 20) = 55MPa
The radius of the circle is 
R = SQR[((σx – σy)/2)2 + (τxy)2] 
R= (90 – 20)/2 = 35MPa.



Stresses on an element inclined at θ = 30o

By inspection of the circle, the coordinates of point D are
σx1 = σaver + R cos 60o = 55MPa + 35MPa (Cos 60o) = 72.5MPa
τx1y1 = - R sin 60o = - 35MPa (Sin 60o) = - 30.3MPa
In a similar manner we can find the stresses represented by point D’, which 
correspond to an angle θ = 120o ( 2θ = 240o)
σy1 = σaver - R cos 60o = 55MPa - 35MPa (Cos 60o) = 37.5MPa
τx1y1 = R sin 60o = 35MPa (Sin 60o) = 30.3MPa



Example: An element in plane stress at the 
surface of a large machine is subjected to 
stresses σx = 15000psi, σy = 5000psi and 
τxy = 4000psi, as shown in the figure.

Using the Mohr’s circle determine the following:
a) The stresses acting on an element inclined at 

an angle    θ = 40o

b) The principal stresses and
c) The maximum shear stresses. 

Solution
Construction of Mohr’s circle:
Center of the circle (Point C): σaver = ½ (σx + σy) = ½ (15000 + 5000) = 10000psi
Radius of the circle: R = SQR[((σx – σy)/2)2 + (τxy)2] 
R = SQR[((15000 – 5000)/2)2 + (4000)2] = 6403psi.
Point A, representing the stresses on the x face of the element (θ = 0o) has the 
coordinates σx1 = 15000psi   and τx1y1 = 4000psi
Point B, representing the stresses on the y face of the element (θ = 90o) has the 
coordinates σy1 = 5000psi   and τy1x1 = - 4000psi
The circle is now drawn through points A and B with center C and radius R



Stresses on an element inclined at θ = 40o

These are given by the coordinates of point D which is at an angle 2θ = 80o from point 
A. By inspection the angle ACP1 for the principal stresses (point P1) is tan ACP1 = 
4000/5000 = 0.8 or 38.66o.
Then, the angle P1CD is 80o – 38.66o = 41.34o



Knowing this angle, we can calculate the coordinates of point D (by inspection)
σx1 = σaver + R cos 41.34o = 10000psi + 6403psi (Cos 41.34o) = 14810psi
τx1y1 = - R sin 41.34o = - 6403psi (Sin 41.34o) = - 4230psi
In an analogous manner, we can find the stresses represented by point D’, which 
correspond to a plane inclined at an angle θ = 40o + 90o = 130o

σy1 = σaver - R cos 41.34o = 10000psi - 6403psi (Cos 41.34o) = 5190psi
τx1y1 = R sin 41.34o = 6403psi (Sin 41.34o) = 4230psi
And of course, the sum of the normal stresses is 
14810psi + 5190psi = 15000psi + 5000psi



Principal Stresses
The principal stresses are represented by 
points P1 and P2 on Mohr’s circle.
σ1 = 10000psi + 6400psi  = 16400psi
σ2 = 10000psi – 6400psi = 3600psi
The angle it was found to be 2θ = 38.66o

or θ = 19.3o

Maximum Shear Stresses
These are represented by point S1 and 
S2 in Mohr’s circle. 
The angle ACS1 from point A to point 
S1 is  2 θS1 = 51.34o. This angle is 
negative because is measured clockwise 
on the circle. Then the corresponding 
θS1 value is – 25.7o.



Example:At a point on the surface of a 
generator shaft the stresses are σx = -50MPa, 
σy = 10MPa and τxy = - 40MPa as shown in 
the figure. Using Mohr’s circle determine the 
following: 

(a) Stresses acting on an element inclined at an 
angle θ = 45o,

(b) The principal stresses and
(c) The maximum shear stresses
Solution
Construction of Mohr’s circle:
Center of the circle (Point C): σaver = ½ (σx + σy) = ½ ((-50) + 10) = - 20MPa
Radius of the circle: R = SQR[((σx – σy)/2)2 + (τxy)2] 
R = SQR[((- 50 – 10)/2)2 + (- 40)2] = 50MPa.
Point A, representing the stresses on the x face of the element (θ = 0o) has the 
coordinates σx1 = -50MPa   and τx1y1 = - 40MPa
Point B, representing the stresses on the y face of the element (θ = 90o) has the 
coordinates σy1 = 10MPa   and τy1x1 = 40MPa
The circle is now drawn through points A and B with center C and radius R.



Stresses on an element inclined 
at θ = 45o

These stresses are given by the 
coordinates of point D (2θ = 90o

of point A). To calculate its 
magnitude we need to determine 
the angles ACP2 and P2CD.

tan ACP2=40/30=4/3  ACP2=53.13o    P2CD = 90o – ACP2 = 90o – 53.13o = 36.87o

Then, the coordinates of point D are
σx1 = σaver + R cos 36.87o = - 20MPa – 50MPa (Cos 36.87o) = - 60MPa
τx1y1 = R sin 36.87o = 50MPa (Sin 36.87o) = 30MPa
In an analogous manner, the stresses represented by point D’, which correspond to a 
plane inclined at an angle θ = 135o or 2θ = 270o

σy1 = -20MPa + 50MPa (Cos 36.87o) = 20MPa τx1y1 = -30MPa
And of course, the sum of the normal stresses is -50MPa+10MPa = -60MPa +20MPa



Principal Stresses
They are represented by points P1 and 
P2 on Mohr’s circle.
σ1 = - 20MPa + 50MPa  = 30MPa 
σ2 = -20MPa – 50MPa = - 70MPa
The angle ACP1 is 2θP1 = 180o + 53.13o

= 233.13o or θP1 = 116.6o

The angle ACP2 is 2θP2 = 53.13o or θP2
= 26.6o

Maximum Shear Stresses
These are represented by point S1 and S2
in Mohr’s circle. 
The angle ACS1 is  2θS1 = 90o + 53.13o = 
143.13o or θ = 71.6o . 
The magnitude of the maximum shear 
stress is 50MPa and the normal stresses 
corresponding to point S1 is -20MPa. 


