
SIXTH EDITION

A TEXTBOOK OF

(Mechanics of Solids) S.I. Units

Dr. R.K. Bansal

A TEXTBOOK OF STRENGTH OF MATERIALS [MECHANICS OF SOLIDS]

ii

A TEXTBOOK OF STRENGTH OF MATERIALS

[Mechanics of Solids]

(In S.I. Units)

[For Degree, U.P.S.C. (Engg. Services), GATE and Other Competitive Examinations]

By

Dr. R.K. BANSAL B.Sc. Engg. (Mech.), M. Tech., Hons. (I.I.T., Delhi) Ph.D., M.I.E. (India) Formerly Professor and Head Department of Mechanical Engineering, (University of Delhi) Delhi College of Engineering, Delhi

(An ISO 9001:2008 Company)

BENGALURU • CHENNAI • COCHIN • GUWAHATI • HYDERABAD JALANDHAR • KOLKATA • LUCKNOW • MUMBAI • RANCHI • NEW DELHI BOSTON (USA) • ACCRA (GHANA) • NAIROBI (KENYA)

iii

A TEXTBOOK OF STRENGTH OF MATERIALS

Compiled by : Smt. Nirmal Bansal

© by Author and Publishers

All rights reserved including those of translation into other languages. In accordance with the Copyright (Amendment) Act, 2012, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise. Any such act or scanning, uploading, and or electronic sharing of any part of this book without the permission of the publisher constitutes unlawful piracy and theft of the copyright holder's intellectual property. If you would like to use material from the book (other than for review purposes), prior written permission must be obtained from the publishers.

Printed and bound in India *Typeset at* Goswami Associates, Delhi Third Edition : 1996, Reprint : 1998, 2000, 2001, 2002, 2003, 2004, Fourth Edition : 2007 Revised Fourth Edition : 2010, Reprint : 2011, Fifth Edition : 2012, Reprint : 2013, 2014, Sixth Edition : 2015, Reprint : 2017 ISBN : 978-81-318-0814-6

Limits of Liability/Disclaimer of Warranty: The publisher and the author make no representation or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties. The advice, strategies, and activities contained herein may not be suitable for every situation. In performing activities adult supervision must be sought. Likewise, common sense and care are essential to the conduct of any and all activities, whether described in this book or otherwise. Neither the publisher nor the author shall be liable or assumes any responsibility for any injuries or damages arising here from. The fact that an organization or Website if referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers must be aware that the Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

All trademarks, logos or any other mark such as Vibgyor, USP, Amanda, Golden Bells, Firewall Media, Mercury, Trinity, Laxmi appearing in this work are trademarks and intellectual property owned by or licensed to Laxmi Publications, its subsidiaries or affiliates. Notwithstanding this disclaimer, all other names and marks mentioned in this work are the trade names, trademarks or service marks of their respective owners.

PUBLISHED IN INDIA BY

(An ISO 9001:2008 Company) 113, GOLDEN HOUSE, DARYAGANJ, NEW DELHI - 110002, INDIA Telephone : 91-11-4353 2500, 4353 2501 Fax : 91-11-2325 2572, 4353 2528 www.laxmipublications.com info@laxmipublications.com

	Ø	Bengaluru	080-26 75 69 30	
	Ø	Chennai	044-24 34 47 26,	24 35 95 07
	Ø	Cochin	0484-237 70 04,	405 13 03
	Ø	Guwahati	0361-254 36 69,	251 38 81
Branches	Ø	Hyderabad	040-27 55 53 83,	27 55 53 93
ran	Ø	Jalandhar	0181-222 12 72	
-	Ø	Kolkata	033-22 27 43 84	
	Ø	Lucknow	0522-220 99 16	
	Ø	Mumbai	022-24 93 12 61	
	Ø	Ranchi	0651-220 44 64	

C— R/017/02 Printed at: International Print-O-Pac, Delhi

Dedicated to The loving memory of my daughter, Babli

vi

PREFACE TO THE SIXTH EDITION

The popularity of the fifth edition and reprints of the book A Textbook of Strength of Materials amongst the students and the teachers of the various Indian universities, has prompted the bringing out of the sixth edition of the book so soon. The sixth edition has been thoroughly revised and brought up-to-date. A large number of problems from different B.E. degree examinations of Indian universities and other examining bodies, such as Institution of Engineers, U.P.S.C. (Engineering Services) and GATE have been selected and have been solved at proper places in this edition in S.I. Units.

Four advanced topics of Strength of Materials such as stresses due to rotation in thin and thick cylinders, bending of curved bars, theories of failure of the material and unsymmetrical bending and shear centre have been added. These chapters have been written in such a simple and easy-to-follow language that even an average student can understand easily by self-study.

In the chapter of 'Columns and Struts', the advanced articles such as columns with eccentric load, with initial curvature and beam columns have been included. Also in the chapter of 'Principal Stresses and Strains', strain on an oblique plane and Mohr's strain circle have been added.

The notations in this edition have been used up-to-date by the use of sigma and tau for stresses.

The objective type multiple-choice questions are often asked in the various competitive examinations. Hence a large number of objective type questions with answers have been added at the end of the book.

Also a large number of objective type questions which have been asked in most of competitive examinations such as Engineering Services Examination and GATE with answers and explanation have been incorporated in this edition.

With these editions, it is hoped that the book will be quite useful for the students of different branches of Engineering at various Engineering Institutions.

I express my sincere thanks to my colleagues, friends, students and the teachers of different Indian universities for their valuable suggestions and recommending the book to their students.

Suggestions for the improvement of this book are most welcome and would be incorporated in the next edition with a view to make the book more useful.

-Author

PREFACE TO THE FIRST EDITION

I am glad to present the book entitled, A **Textbook of Strength of Materials** to the engineering students of mechanical, civil, electrical, aeronautical and chemical and also to the students of A.M.I.E. Examination of Institution of Engineers (India). The course-contents have been planned in such a way that the general requirements of all engineering students are fulfilled.

During my long experience of teaching to the engineering students for the past 20 years, I have observed that the students face difficulty in understanding clearly the basic principles, fundamental concepts and theory without adequate solved problems along with the text. To meet this very basic requirement to the students, a large number of the questions taken from the examinations of the various universities of India and from other professional and competitive examinations (such as Institution of Engineers, and U.P.S.C. Engineering Service Examinations) have been solved along with the text, in S.I. units.

This book is written in a simple and easy-to-follow language, so that even an average students can grasp the subject by self-study. At the end of each chapter, highlights, theoretical questions and many unsolved numerical problems with answers are given for the students to solve them.

I am thankful to my colleagues, friends and students who encouraged me to write this book. I am grateful to Institution of Engineers (India), various universities of India and those authorities whose work have been consulted and gave me a great help in preparing this book.

I express my appreciation and gratefulness to my publisher, Shri R.K. Gupta (a Mechanical Engineer) for his most co-operative, painstaking attitude and untiring efforts for bringing out the book in a short period.

Smt. Nirmal Bansal deserves special credit as she not only provided an ideal atmosphere at home for book writing but also gave inspiration and valuable suggestions.

Though every care has been taken in checking the manuscripts and proof reading, yet claiming perfection is very difficult. I shall be very grateful to the readers and users of this book for pointing any mistakes that might have crept in. Suggestions for improvement are most welcome and would be incorporated in the next edition with a view to make the book more useful.

-Author

viii

CONTENTS

Chapters

Chapter	1. Simple Stresses and Strains	1—58
1.1.	Introduction	 1
1.2.	Stress	 1
1.3.	Strain	 2
1.4.	Types of Stresses	 2
1.5.	Elasticity and Elastic Limit	 5
1.6.	Hooke's Law and Elastic Modulii	 6
1.7.	Modulus of Elasticity (or Young's Modulus)	 6
1.8.	Factor of Safety	 6
1.9.	Constitutive Relationship between Stress and Strain	 6
1.10.	Analysis of Bars of Varying Sections	 14
1.11.	Analysis of Uniformly Tapering Circular Rod	 24
1.12.	Analysis of Uniformly Tapering Rectangular Bar	 27
1.13.	Analysis of Bars of Composite Sections	 30
1.14.	Thermal Stresses	 42
1.15.	Thermal Stresses in Composite Bars	 44
1.16.	Elongation of a Bar Due to its Own Weight	 50
1.17.	Analysis of Bar of Uniform Strength	 51
	Highlights	 53
	Exercise	 54
Chapter	2. Elastic Constants	59—8 4
2.1.	Introduction	 59
9.9	Longitudinal Strain	50

	2.2.	Longitudinal Strain		59
	2.3.	Lateral Strain		59
	2.4.	Poisson's Ratio		60
	2.5.	Volumetric Strain		62
	2.6.	Volumetric Strain of a Cylindrical Rod		68
	2.7.	Bulk Modulus		70
	2.8.	Expression for Young's Modulus in Terms of Bulk Modulus		70
	2.9.	Principle of Complementary Shear Stresses		73
	2.10.	Stresses on Inclined Sections when the Element is Subjected to Simple		
		Shear Stresses		74
	2.11.	Diagonal Stresses Produced by Simple Shear on a Square Block		76
	2.12.	Direct (Tensile and Compressive) Strains of the Diagonals		77
	2.13.	Relationship between Modulus of Elasticity and Modulus of Rigidity		78
		Highlights		81
		Exercise		82
01				1 4 0
Chaj	pter	3. Principal Stresses and Strains	85—	142
	3.1.	Introduction		85
	3.2.	Principal Planes and Principal Stresses		85
	3.3.	Methods of Determining Stresses on Oblique Section		85

_			
3.1.	Introduction		

3.2.	Principal Planes and Principal Stresses	 85
3.3.	Methods of Determining Stresses on Oblique Section	 85
3.4.	Analytical Method for Determining Stresses on Oblique Section	 85

3.4. Analytical Method for Determining Stresses on Oblique Section

ix

Pages

Chapters			Pages
3.5.	Mohr's Circle		123
3.6.	Strain on an Oblique Plane		133
3.7.	Mohr's Strain Circle		137
	Highlights		137
	Exercise		139
Chapter	4. Strain Energy and Impact Loading	143–	-170
4.1.	Introduction		143
4.1.	Some Definitions	····	$143 \\ 143$
4.3.	Expression for Strain Energy Stored in a Body when the Load is Applied		
4.4.	Gradually Expression for Strain Energy Stored in a Body when the Load is Applied		143
4 5	Suddenly Engranding for Standing Products and the Londin Applied		145
4.5.	Expression for Strain Energy Stored in a Body when the Load is Applied with Impact		152
4.6.	Expression for Strain Energy Stored in a Body due to Shear Stress		$162 \\ 165$
4.0.	Highlights		166
	Exercise		$160 \\ 167$
			101
Chapter	5. Centre of Gravity and Moment of Inertia	171–	-236
5.1.	Centre of Gravity		171
5.2.	Centroid		171
5.3.	Centroid or Centre of Gravity of Simple Plane Figures		171
5.4.	Centroid (or Centre of Gravity) of Areas of Plane Figures		
	by the Method of Moments		171
5.5.	Important Points		173
5.6.	Area Moment of Inertia		195
5.7.	Radius of Gyration		196
5.8.	Theorem of the Perpendicular Axis		196
5.9.	Theorem of Parallel Axis		197
	Determination of Area Moment of Inertia		198
	Mass Moment of Inertia		212
	Determination of Mass Moment of Inertia Product of Inertia		213
0.201			219
	Principal Axes		220
0.10.	Principal Moments of Inertia		221
	Highlights Exercise		$\begin{array}{c} 229 \\ 230 \end{array}$
	Exercise		200
Chapter	6. Shear Force and Bending Moment	237–	-294
6.1.	Introduction		237
6.2.	Shear Force and Bending Moment Diagrams		237
6.3.	Types of Beams		237
6.4.	Types of Load		238
6.5.	Sign Conventions for Shear Force and Bending Moment		239
6.6.	Important Points for Drawing Shear Force and Bending Moment Diagrams		240
6.7.	Shear Force and Bending Moment Diagrams for a Cantilever with a		
	Point Load at the Free End		241
6.8.	Shear Force and Bending Moment Diagrams for a Cantilever with a		
	Uniformly Distributed Load		244

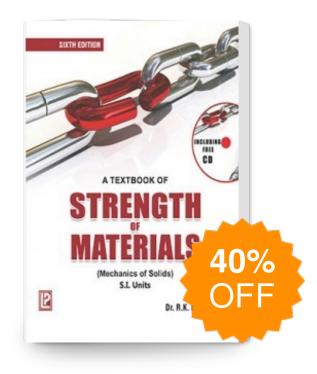
x

Chapters

6.9.	Shear Force and Bending Moment Diagrams for a Cantilever Carrying a Gradually Varying Load		252
6.10.	Shear Force and Bending Moment Diagrams for a Simply		
0.11	Supported Beam with a Point Load at Mid-point		254
6.11.	Shear Force and Bending Moment Diagrams for a Simply		050
0.10	Supported Beam with an Eccentric Point Load		256
6.12.	Shear Force and Bending Moment Diagrams for a Simply		258
6 1 9	Supported Beam Carrying a Uniformly Distributed Load		200
0.15.	Shear Force and Bending Moment Diagrams for a Simply Supported Beam Carrying a Uniformly		
	Varying Load from Zero at Each End to <i>w</i> Per Unit Length at the Centre		266
614	Shear Force and B.M. Diagrams for a Simply Supported Beam	•••	200
0.14.	Carrying a Uniformly Varying Load from Zero at one End to <i>w</i> Per Unit		
	Length at the Other End		268
6.15	Shear Force and Bending Moment Diagrams for Over-hanging Beams		272
	S. F. and B. M. Diagrams for Beams Carrying Inclined Load		281
	Shear Force and Bending Moment Diagrams for Beams Subjected		-01
	to Couples		286
6.18.	Relations between Load, Shear Force and Bending Moment		289
	Highlights		290
	Exercise		291
Chapter	7. Bending Stresses in Beams	295-	-344
7.1.	Introduction		295
7.2.	Pure Bending or Simple Bending		295
7.3.	Theory of Simple Bending with Assumptions Made		296
7.4.	Expression for Bending Stress		297
7.5.	Neutral Axis and Moment of Resistance		298
7.6.	Bending Stresses in Symmetrical Sections		300
7.7.	Section Modulus		303
7.8.	Section Modulus for Various Shapes or Beam Sections		303
7.9.	Bending Stress in Unsymmetrical Sections		315
7.10.	Strength of a Section		323
7.11.	Composite Beams (Flitched Beams)		330
	Highlights		340
	Exercise		341
		9.45	900
Unapter	8. Shear Stresses in Beams	345-	-380
8.1.	Introduction		345
8.2.	Shear Stress at a Section		345
8.3.			351
	Highlights		376
	Exercise		377
Chanton	9. Direct and Bending Stresses	901	-412
Unapter	5. Direct and Dending Stresses	381-	-412
9.1.	Introduction		381
9.2.	Combined Bending and Direct Stresses		381
9.3.	Resultant Stress when a Column of Rectangular Section is Subjected to		
	an Eccentric Load		382
9.4.	Resultant Stress when a Column of Rectangular Section is Subjected to a		
	Load which is Eccentric to both Axes		390
			xi

Pages

Chapte	rs			Pages
	9.5.	Resultant Stress for Unsymmetrical Columns with Eccentric Loading		397
	9.6.	Middle Third Rule for Rectangular Sections (<i>i.e.</i> , Kernel of Section)		402
	9.7.	Middle Quarter Rule for Circular Sections (i.e., Kernel of Section)		404
	9.8.	Kernel of Hollow Circular Section (or Value of Eccentricity		
		for Hollow Circular Section)		405
	9.9.	Kernel of Hollow Rectangular Section (or Value of		
		Eccentricity for Hollow Rectangular Section)	•••	406
		Highlights		409
		Exercise		410
Cha	pter	10. Dams and Retaining Walls	413–	-468
	10.1.	Introduction		413
		Types of Dams		413
		Rectangular Dams		413
		Stresses Across the Section of a Rectangular Dam		417
		Trapezoidal Dam having Water Face Inclined		428
		Stability of a Dam		434
		Retaining Walls		447
		Rankine's Theory of Earth Pressure		449
		Surcharged Retaining Wall . Chimneys	•••	$\begin{array}{c} 459 \\ 462 \end{array}$
	10.10	<i>Highlights</i>	•••	$462 \\ 464$
		Exercise	•••	466
			•••	100
Cha	pter	11. Analysis of Perfect Frames	469 –	-514
	11.1.	Introduction		469
		Types of Frames		469
		Assumptions Made in Finding Out the Forces in a Frame		470
		Reactions of Supports of a Frame		470
	11.5.	Analysis of a Frame		471
		Highlights		508
		Exercise	•••	508
Cha	pter	12. Deflection of Beams	515 –	-558
	12.1.	Introduction		515
	12.2.	Deflection and Slope of a Beam Subjected to Uniform Bending Moment		515
	12.3.	Relation between Slope, Deflection and Radius of Curvature		517
	12.4.	Deflection of a Simply Supported Beam Carrying a		
		Point Load at the Centre		519
		Deflection of a Simply Supported Beam with an Eccentric Point Load		523
		Deflection of a Simply Supported Beam with a Uniformly Distributed Load		530
		Macaulay's Method		535
		Moment Area Method		550 559
		Mohr's Theorems . Slope and Deflection of a Simply Supported Beam Carrying a Point Load at		552
	14.10	the Centre by Mohr's Theorem		553
	12.11	Slope and Deflection of a Simply Supported Beam Carrying a		000
	10,11	Uniformly Distributed Load by Mohr's Theorem		554
		Highlights		555
		Exercise		556


xii

Chapters			Pages
Chapter	13. Deflection of Cantilevers	559 –	-582
	Introduction Deflection of a Cantilever with a Point Load at the Free End by Double		559
	Integration Method Deflection of a Cantilever with a Point Load at a Distance 'a' from		559
10.0.	the Fixed End		561
13.4.	Deflection of a Cantilever with a Uniformly Distributed Load		562
	Deflection of a Cantilever with a Uniformly Distributed Load for a Distance 'a' from the Fixed End		566
13.6.	Deflection of a Cantilever with a Uniformly Distributed Load for a		
10 5	Distance 'a' from the Free End		566 570
	Deflection of a Cantilever with a Gradually Varying Load		572 572
13.8.	Deflection and Slope of a Cantilever by Moment Area Method Highlights	•••	$\begin{array}{c} 576 \\ 580 \end{array}$
	Exercise		$580 \\ 581$
			001
Chapter	14. Conjugate Beam Method, Propped		
-	Cantilevers and Beams	583 –	-618
14.1.	Introduction		583
14.2.	Conjugate Beam Method		583
14.3.	Deflection and Slope of a Simply Supported Beam with a Point		
	Load at the Centre		583
	Simply Supported Beam Carrying an Eccentric Point Load		585
	Relation between Actual Beam and Conjugate Beam		597
	Deflection and Slope of a Cantilever with a Point Load at the Free End		597
	Propped Cantilevers and Beams		602
14.8.	S.F. and B.M. Diagrams for a Propped Cantilever Carrying a Point Load at the Centre and Propped at the Free End		603
14.9	S.F. and B.M. Diagrams for a Propped Cantilever Carrying	•••	000
11.0.	a Uniformly Distributed Load and Propped at the Free End		604
14.10	.S.F. and B.M. Diagrams for a Simply Supported Beam with		
	a Uniformly Distributed Load and Propped at the Centre		610
14.11	. Yielding of a Prop		614
	Highlights		615
	Exercise		616
Chapter	15. Fixed and Continuous Beams	619-	-678
15.1.	Introduction		619
	Bending Moment Diagram for Fixed Beams		620
	Slope and Deflection for a Fixed Beam Carrying a Point Load at the Centre		624
	Slope and Deflection for a Fixed Beam Carrying an Eccentric Point Load		628
		•••	020
15.5.	Slope and Deflection for a Fixed Beam Carrying a Uniformly Distributed		C A A
15 G	Load Over the Entire Length Fixed End Moments of Fixed Beam Due to Sinking of a Support	•••	644 654
	Advantages of Fixed Beams	•••	$\begin{array}{c} 654 \\ 657 \end{array}$
	Continuous Beams		$\frac{657}{658}$
	Bending Moment Diagram for Continuous Beams		658
	Highlights		675

15.9. Bending Moment Diagram for Continuous Beams Highlights Exercise

xiii

A Textbook Of Strength Of Materials (Mechanics Of Solids) 6th Edition

Publisher : Laxmi Publications ISBN : 9788131808146 Author : R K Bansal

Type the URL : http://www.kopykitab.com/product/11676

