
SO2/SOA

Mechanisms for entering the
system

Yolanda Becerra Fontal

Juan José Costa Prats

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC)

BarcelonaTech

2019-2020 QT

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• OS implements access to machine resources

– Isolate users from low-level machine-dependent code

– Group common code for all users: save disk space

– Implement resource allocation policies
• Arbitrate the usage of the machine resources in multi-user

and multiprogrammed environments

– Prevent machine and other users from user damage
• Some instructions can not be executed by user codes: I/O

instructions, halt,…

Introduction

SO2/SOA

• Requirement:
– Prevent users from direct access to resources

• Ask the OS for services

• Privilege instructions
– Instructions that only can execute the OS
– HW support is needed
– When a privilege instruction is executed, the hw checks if it is

executing system code
• If not  exception

• How to distinguish user code from system code?
– Privilege levels

• At least 2 different levels
• System execution mode vs User execution mode

– Intel defines 4 different privilege levels.

Privilege levels (I)
In

tr
o

d
u

ct
io

n

SO2/SOA

• How to scale privileges?

– Intel offers interrupts

• Interrupt Driven Operating System

– When an interrupt/exception happens

• Hw changes the current privilege level and enables the
execution of privilege instructions

– When the interrupt/exception management ends

• Hw changes the current privilege level to unable the
execution of privilege instructions

Privilege levels (II)
In

tr
o

d
u

ct
io

n

SO2/SOA

Interrupt driven OS

System

User

time

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Exceptions
– Synchronous, produced by the CPU control unit after

terminating the execution of an instruction

• Interrupts
– Asynchronous, produced by other hardware devices at arbitrary

times

• System calls
– Synchronous: assembly instruction to cause it

• Trap (in Pentium: INT, sysenter…)

– Mechanism to request OS services

• All of them are managed through the interrupts vector
– New arquitectures implement a fast system call mechanism that

skip the interrupts vector: sysenter instruction

Mechanisms for entering the system

SO2/SOA

• Pentium

– IDT: Interrupt Descriptor Table: 256 entries

• Three groups of entries, one for each kind of
event:

– 0 - 31: Exceptions

– 32 - 47: Masked interrupts

– 48 - 255: Software interrupts (Traps)

Interrupts Vector
M

e
ch

an
is

m
s

fo
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

SO2/SOA

• Each entry in the IDT, identifying an interrupt
number, has:

– A code address

• Entry point to the routine's code to be executed

– A privilege level

• The minimum needed to execute the previous code

Initialization
M

e
ch

an
is

m
s

fo
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

SO2/SOA

Management code

System

User

time

i

Enter the
system

Exit the
system Solve the

interrupt

SO2/SOA

• It could be done in a single routine
– Divided in two parts: hw context mgmt + solve int.

• Hw context mgmt
– Entry point handler
– Basic hardware context management
– Assembly code
– Call to a Interrupt Service Routine

• Solve interrupt
– Interrupt Service Routine
– High level code (C for example)
– Specific algorithm for each interrupt

Management Code
M

e
ch

an
is

m
s

fo
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

SO2/SOA

Example: clock interrupt behavior
M

e
ch

an
is

m
s

fo
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

User Code

IDT
clock_handler:

 ...

call clock_routine

...

iret

clock_routine()

{

/* clock interrupt
code */

}

Kernel Code

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Switch to protected execution mode

– User Mode → Kernel Mode

• Save hardware context: CPU registers

– ss, esp, psw, cs i eip

– General purpose registers

• Execute service routine

Procedure for entering the system

HW

handler

SO2/SOA

Procedure for entering the system
P

ro
ce

d
u

re
 f

o
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

User Code Kernel Code

User Stack

eip

cs

esp

ss

SO2/SOA

Procedure for entering the system
P

ro
ce

d
u

re
 f

o
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

User Code Kernel Code

User Stack

eip

cs

esp

ss

idtr

IDT

gdtr tr

GDT

esp0

ss

tss

Kernel Stack

SO2/SOA

Procedure for entering the system
P

ro
ce

d
u

re
 f

o
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

User Code Kernel Code

User Stack

eip

cs

esp

ss

idtr

int i

IDT

gdtr tr

GDT

esp0

ss

tss

Kernel Stack

SO2/SOA

Procedure for entering the system
P

ro
ce

d
u

re
 f

o
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

User Code Kernel Code

User Stack

eip

cs

esp

ss

idtr

int i

IDT

gdtr tr

GDT

esp0

ss

tss

Kernel Stack

esp

ss

flags

cs

eip

SO2/SOA

Procedure for entering the system
P

ro
ce

d
u

re
 f

o
r

e
n

te
ri

n
g

th
e

 s
ys

te
m

User Code Kernel Code

User Stack

eip

cs

esp

ss

idtr

int i

IDT

gdtr tr

GDT

esp0

ss

tss

Kernel Stack

esp

ss

flags

cs

eip

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Restore HW context

– General purpose registers

– ss, esp, flags, cs, eip

• Switch execution mode

– Kernel mode → User mode

Procedure to exit the system
P

ro
ce

d
u

re
 t

o
 e

xi
t

th
e

 s
ys

te
m

HW (iret instruction)

handler

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• There are some exceptions that push a
parameter of 4 bytes (a hardware error code)
to the kernel stack after entering the system:

Exceptions: Stack layout
Ex

ce
p

ti
o

n
s

Kernel Stack

ss

esp

flags

cs

eip

error

SO2/SOA

IDT Exception Error Code

0 Divide Error

1 Debug Exception

2 NMI Interrupt

3 Breakpoint

4 Overflow

5 BOUND Range Exceeded

6 Invalid Opcode (Undefined Opcode)

7 Device Not Available (No Math
Coprocessor)

8 Double Fault 

9 Coprocessor Segment Overrun (reserved)

10 Invalid TSS 

11 Segment Not Present 

12 Stack-Segment Fault 

13 General Protection 

14 Page Fault 

15 (Intel reserved. Do not use.)

16 x87 FPU Floating-Point Error (Math Fault)

17 Alignment Check 

18 Machine Check

19 SIMD Floating-Point Exception

20 Virtualization Exception

21-31 (Intel reserved. Do not use.)

Exception: IDT

SO2/SOA

• Save hardware context

• Call exception service routine

• Restore hardware context

• Remove error code (if present) from kernel
stack

• Return to user (iret)

Exception´s handler
Ex

ce
p

ti
o

n
s

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Similar to exception, but:

– No hardware error code in kernel stack

– It is necessary to notify the interrupt controller
when the interrupt management finishes

• Meaning that a new interrupt can be processed

• End Of Interrupt (EOI)

Interrupt´s handler
In

te
rr

u
p

ts

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Why cannot be invoked like a regular user
function?

• Which is the mechanism to identify the system
call?

• How to pass parameters to the kernel?

• How to get results from the kernel?

Handling system calls
Sy

st
e

m
 c

al
ls

SO2/SOA

• Assembly instruction that causes a software generated interrupt
– int assembly instruction (int idt_entry)
– Alternative: sysenter assembly instruction: fast system call mechanism

• An entry point per syscalls?
– Limitation for the potential number of syscalls

• A single entry point is used for all system calls
– int

• 0x80 for Linux
• 0x2e for Windows

– sysenter
• system call handler @ is kept on a control register: SYSENTER_EIP_MSR

• And an extra parameter (EAX) to identify the requested service
• A table is used to translate the user service request to a kernel

function to execute

System calls: invocation and identification

Sy
st

e
m

 c
al

ls

SO2/SOA

• Parameter passing: Stack is NOT shared
– Linux: syscall handler expects parameters in the

registers
• (first parameter) ebx, ecx, edx, esi, edi, ebp

• Copy parameters from user stack

– Windows: Use a register to pass a pointer to
parameters
• EBX

• Returning results:
– EAX register: contains error code

System calls: parameters and results
Sy

st
e

m
 c

al
ls

SO2/SOA

• System must provide the users with an easy and
portable way to use them
– New layer: wrappers

• wrap all the gory details in a simple function call

• Wrapper responsibilities
– Invoke the system call handler

• Responsible for parameter passing
• Identify the system call requested
• Generate the trap

– Return the result to the user code
• Use errno variable to codify type of error and returns -1 to

users

System call wrappers
Sy

st
e

m
 c

al
ls

SO2/SOA

System call mechanism overview
Sy

st
e

m
 c

al
ls

User Code

IDT

syscall_handler:

 ...

call *sys_call_table(,eax,0x4)

...

iret

sys_xyz() {

...

If error

ret –ERR;

...

}

Kernel Code

...

xyz();

...

xyz() {

...

int 0x80;

...

}

System call
invocation in
application
program

Wrapper for
system call

system call
handler

system call
service routine

sys_call_table

eax

SO2/SOA

• Avoid interrupt mechanism

• Avoid privilege check  Always user to sys

• 3 control registers initialized at boot time

– SYSENTER_CS_MSR: contains kernel cs selector

– SYSENTER_EIP_MSR: contains kernel entry point

– SYSENTER_ESP_MSR: points to the TSS base @

• NOT USED AS STACK!

• used to load ESP with the TSS´s field esp0

• avoid modifications in the task_switch code

Fast System calls: sysenter/sysexit

SO2/SOA

• vsyscall_page

– Shared page: linked with system library

– elf code:

• defines kernel_vsyscall function

– if sysenter is not available: int 0x80 + ret

– else

• defines SYSENTER_RETURN

modifications to wrapper

pushl %ecx
pushl %edx
pushl %ebp
movl %esp, %ebp
sysenter
….

popl %ebp
popl %edx
popl %ecx
ret

SO2/SOA

• change to system mode

• loads cs SYSENTER_CS_MSR

• loads eip  SYSENTER_EIP_MSR

• loads esp  SYSENTER_ESP_MSR

• loads ss  CS + 8

– Stack segment must be defined at this position

• (not a problem)

sysenter

SO2/SOA

• Trick: Change to real stack

– At entry point ESP contains TSS base address

– Load ESP  TSS.esp0

• Configure kernel stack like the interrupt
mechanism

• And the rest as before (SAVE_ALL, check eax…)

kernel entry point

pushl USER_DS
pushl %ebp
pushfl
pushl USER_CS
pushl $SYSENTER_RETURN
….

SO2/SOA

• after RESTORE_ALL

– EDX  EIP user (it is in the stack)

– ECX  ESP user (it is in the stack)

– sysexit

• change mode

• change stack

• returns to user code (vsyscall_page: SYSENTER_RETURN)

exit

SO2/SOA

• Save hardware context and prepare parameters for the
service routine
– Linux: stores registers with system call parameters at the

top of the kernel stack
– Windows: copy parameters from the address stored in ebx

to the top of the kernel stack

• Execute system call service routine
– Error checking: system calls identifiers
– Using system_call_table

• Update kernel context with the system call result
• Restore hardware context
• Return to user

System call handler
Sy

st
e

m
 c

al
ls

SO2/SOA

• Check parameters

• User code is NOT reliable

– System MUST validate ALL data provided by users

• Access the process address space (if needed)

• Specific system call code algorithm

System calls service routines
Sy

st
e

m
 c

al
ls

SO2/SOA

• Introduction
• Mechanisms for entering the system

– Initialization
– Management
– Example

• Procedure for entering the system
• Procedure to exit from system
• Exceptions
• Interrupts
• System calls
• Summary

Content

SO2/SOA

• Save user context

• Restore system context

• Retrieve user parameters [if needed]

• Identify service [if needed]

• Execute service

• Return result [if needed]

• Restore user context

Interrupt Handling Summary
Su

m
m

ar
y

SO2/SOA

• [1] Understanding Linux Kernel 3rd ed. Chapter 4
Interrupts and Exceptions.

• [2] Understanding Linux Kernel 3rd ed. Chapter 9
System Calls.

• [3] Intel® 64 and IA-32 architectures software
developer's manual volume 3: System
programming guide. Chapter 6.

• [4] Intel® 64 and IA-32 architectures software
developer's manual volume volume 2: Instruction
set reference. sysenter, sysexit

References

