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THE PRINCIPLE OF SUPERPOSITION

The principle of superposition is said to hold for a problem if the
responses (i.e., displacements) under two sets of boundary conditions
and loads are equal to the sum of the responses obtained by applying
each set of boundary conditions and loads separately.

Set1: u=a" onl,; t=t" onl; f=fYin O
Set2: u=a® onl; t=t?onl_; f=f®in Q
Then if
u=0"+a? on I'; t=tP+t? on I ; f=fY+f® in O
and the solution is
u(x) =u(x)+u?(x) forall x in Q

We say that the principle of superposition holds.



THE PRINCIPLE OF SUPERPOSITION

Application to Beams
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THE PRINCIPLE OF VIRTUAL DISPLACEMENTS J

Consider the beam shown in the figure. It can be viewed as a
superposition of two different loads. F =kuw,(0)
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CLAYPERON’S THEOREM

Theorem: The strain energy stored in a linear elastic body
IS equal to one-half of the work done by external forces on
the body: U—_1

E

Proof: We begin with the strain energy stored in a linear
elastic body

U——fc sdQ——faedQ U
— f U+ U dQ——faUu”dQ
:__f 0, U dQ+= 9gnauuld1“
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USES OF CLAYPERON’S THEOREM

Problem: Find w_using Clayperon’s Theorem.
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Solution: By Clayperon’s Theorem, F, w,
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USES OF CLAYPERON’S THEOREM J

Problem: Find 6, using Clayperon’s Theorem.

Solution: By Clayperon’s Theorem, j‘ Z v ‘/‘qo -
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BETTI'S RECIPROCITY THEOREM

Consider a linear elastic body undergoing small strains.
Let W, be the work produced by F,. Then, we apply force
F,, which produces work W,. When force F, 1s applied,
force F, does additional work because its point of
application is displaced due to the deformation caused by
force F,. Let us denote this work by W,,, which 1s the
work done by force F, in moving through the displacement

1
produced by force F, . Thus, the total work done 1s

W =W, + W, + W,

When the order of application of the forces is reversed,
we obtain

W=W+W,+W,



- BETTI'S & MAXWELL'S RECIPROCITY THEOREMS

The work done in both cases should be the same because
at the end the elastic body 1s loaded by the same pair of
external forces. Thus we have

VVlZ — ‘/V21
This 1s known as Betti's reciprocity theorem.

Let U;, be the displacement of point 1 produced by unit
force F?1in the direction of force F* and U,; be the
displacement of point 2 produced by unit force F! in the

direction of force F?. Then by Betti’s reciprocity theorem
we have

1 2 _
F 'ulz_F Uy = Up = Uy

This 1s the Maxwell's reciprocity theorem.



Theorem 4.6.2: If a linear elastic body is subjected to two different sets
of forces, the work done by the first system of forces in moving through the
displacements produced by the second system of forces is equal to the work done
by the second system of forces in moving through the displacements produced
by the first system of forces:

/ V. u® g0+ / 0. u® gr — / £ .0 g0+ / £@ . aM dr, (4.6.25)
Q o Q o

where u® is the displacement produced by body forces f1) and surface forces
t(1) and u®@ is the displacement produced by body forces f (2) and surface forces
t(2). The left-hand side of Eq. (4.6.25), for example, denotes the work done by
forces f1) and t(!) in moving through the displacement u(® produced by forces
£2) and t(.

Proof: The proof of Betti’s reciprocity theorem is straightforward. Let Wis
denote the work done by forces (f ON t(l)) acting through the displacement u(®
produced by the forces (£(2),t(2)). Then

Wiy = / ROE) dQJr]{t(l) u®@ gr
Q
/f(l) dQ+j£F() @ gr
I
/f(l dQ—i—j{ U](g)u?) ar
:/fl.(l)uf) dQ—i—/ (0’;?“52)) ~dSQ2
Q 2]
[ (e )P a0 [ o0
- /Q o ul do = /Q oD ag.

Using Hooke’s law ag) = Clijre 5,(612, we obtain

Wiy = / Cireeyy ety do. (4.6.26)
JO



Since Cjjre = Chyij, it follows that
W12 = / Cz]ké Ekf 6(2) dQ) = / Ckgij 65]2) 61(612) dQ) = / Ug)é‘]&g) dQ) = W21.
Q Q

One can trace back to show that Wa; is equal to the right-hand side of Eq. (4.6.25).
This completes the proof.
During the proof we have also established the equality

D2 o = [ oD
/Q%. e dQ_/Q el da,

(4.6.27)
/ o) . 6@ g — / @ e gq.
Q Q

Example 4.6.4

Consider a cantilever beam of length L subjected to two sets of loads: a uniformly distributed
load of intensity qo throughout the span, as shown in Fig. 4.6.6(a), and a concentrated load
F at the free end, as shown in Fig. 4.6.6(b). Verify Betti’s reciprocity theorem, that is, the
work done by the point load F' in moving through the displacement w?(0) produced by gqo is
equal to the work done by the distributed force go in moving through the displacement w” (z)
produced by the point load F'.
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(a) Load system 1 (b) Load system 2
Fig. 4.6.6: (a) A cantilever beam under uniformly distributed load. (b) A cantilever beam

with a point load at its free end.

Solution: From Egs. (4.6.5) and (4.6.6), the expression for deflection of the cantilever beam
with uniformly distributed load go alone is

4 4
apy= L 5402\, (%
wo(*) = 5457 [3 4(L)+(L) ] 1)
and the expression for deflection of the cantilever beam with the point load F' at the free end
alone is 5
S =gor 2-3(2) + ()
wi@ = 557 2-3 (D) + (£)°], @)

The work done by the load F' in moving through the displacement due to the application of
the uniformly distributed load qo is

FqoL*
SET

Weq = Fuwi(0) =



The work done by the uniformly distributed go in moving through the displacement field
w® () due to the application of point load F is

e = [ o= (3) # (2) e - E2,

which is in agreement with Wg,.

Example 4.6.5

Use Betti’s reciprocity theorem to determine the deflection at the free end of a cantilever
beam with distributed load of intensity go in the span between x = a and z = L, as shown in
Fig. 4.6.7. The deflection w” (z) due to a point load F at the free end (acting upward) is

we= 2 () - (2)7] g

EI = constant

Fig. 4.6.7: A cantilever beam with uniformly distributed load on a portion of the beam.

Solution: The work done by the point load F' in moving through the displacement due to the
application of the uniformly distributed load qo is

Wrq = Fwi(L). (2)

The work done by the uniformly distributed load go in moving through the displacement field
w® () due to the application of point load F is

[t FL? z\2 [z\3 _ Fqo 4 3, 4
WqF—/a 6E]7]|:3(Z) *(z) ]quI—24E[ (3L —4La” + a ) (3)

By Betti’s reciprocity theorem, we have Wyr = Wg,. Hence, the deflection at the free end of
the beam due to the distributed load is

g0 4 5 4




Example 4.6.6

Consider a cantilever beam of length L and constant EI and subjected to a point load Fy at
the free end [see Fig. 4.6.9(a)]. Use Maxwell’s theorem to determine the deflection at z = a
from the free end. Use the following data: E = 24 x 10° psi, I = 120 in*, Fy = 1,000 Ib,
a = 36 in, and b = 108 in.

Solution: By Maxwell’s theorem, the displacement wgpa at point B (x = a) produced by
unit load at point A (z = 0) is equal to the deflection wap at point A produced by unit
load at point B. We are required to find w(0) = wpa Fo. Thus, we must determine wap (which,
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Fig. 4.6.9: A cantilever beam with a point load at the free end.

presumably, is easier to compute by some way than to compute w(0) directly). Let wg and
0p denote the deflection and slope, respectively, at point B owing to a load F = 1 applied at
point B. Then the deflection at point A due to load F =1 is [see Fig. 4.6.9(b)]

wap = wp + Opa (1)
and the required solution is

w(0) = wpaFo = wapFo = Fo (ws +afB). (2)

The values of wg and 0g can be computed using Eq. (4.6.6) as

b T (Z\3 b
YB = GBI {27?@*(3) L:O_SEI’ ®)
dw b? 7\ 2 b
L - 1- (2 =—. 4
%8 =~ loeo = 2T { (b) L:o 2E1 @

Therefore, we have

b3 b%a Fyb?
1,000 x (108)2

T 6 x 24 x 106 x 120

(3 x 36 + 2 x 108) = 0.2187 in. (5)




Principle of virtual displacements and the associated Euler equations
[see Egs. (4.2.2), (4.2.5), and (4.2.6)]

W = 6Wr+0Wg = 0. (4.7.1)
V.o+f=0inQ n-oc—t=0 onl,. (4.7.2)
Unit dummy-displacement method [see Eq. (4.2.7)]

Fo-éuoz/azéeodﬁ. (4.7.3)
Q

The principle of minimum total potential energy and the associated
Euler equations [see Egs. (4.3.5) and (4.3.18)]

M =6U+Vg)=0. (4.7.4)
pVu+ A+ V(V-u)+f=0inQ, and t—t=0onT,. (4.7.5)
Castigliano’s Theorem I [see Eq. (4.3.22)]

ou
Gui N

F;. (4.7.6)



Principle of virtual forces and the associated Euler equations [see
Egs. (4.4.5) and (4.4.10)]

W™ =o0W; +6Wg =0. (4.7.7)
e—3[Vu+(Vw)']=0 in©Q; u-4=0 onT, (4.7.8)
Unit dummy-load method [see Eq. (4.4.11)]

5F0-u0:/e:500d9. (4.7.9)
Q

The principle of minimum total complementary energy and the as-
sociated Euler equations [see Egs. (4.5.2) and (4.5.5)]

SIT* = §(U* + Vi) = 0. (4.7.10)

C':o—1[Vu+(Vu)'|=0 inQ; u—a=0 onl,. (4.7.11)



Castigliano’s Theorem II [see Eq. (4.5.13)]

our
oF;,

Clapeyron’s Theorem [see Eq. (4.6.10)]

%/U:sdQ:%[/f~ud9+j{t-udf]. (4.7.13)
Q Q r

Betti’s Reciprocity Theorem [see Eqs. (4.6.25) and (4.6.27)]

/f<1>.u<2> dQ+/ t1.u® dF:/f(2)-u(1)dQ+/ t@.uMar. (4.7.14)
Q j Q Lo

/ oM+ e® o — / @+ e 4o, (4.7.15)
Q Q

Maxwell’s Reciprocity Theorem [see Eqs. (4.6.28)]

F1 cU1g = F2 U217 Or U12 — U21. (4.7.16)



[ Virtual work principles ]
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Principle of virtual displacements\
oW, + W, =0
V-o+f=0inQ
n-o=tonl,

i

~
Unit dummy—displacement
method

K, -ou, =

fazae"dg
Q Y,

i
The principle of the minimum total
potential energy

=0, I=U+V,
puVu+A+pwV(V-u)+f =0 in Q,
uﬁ-Vu-ﬁ-(A-l—u)ﬁ(V-u):f: onT, )

'

Castgliano’s Theorem I
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Principle of virtual forces

oW, + W, =0

e—4{vu+(vu)|=0ina
u—a=0onT,
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The principle of the minimum total
complementary energy

oIl =0, IT =U +V,
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Fig. 4.7.1: A flow chart of various energy principles and methods.
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