

Meet the Experts – Sept. 20/21., 2011

## Alarm Management

## Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations



### Alarm Management How is your alarm system performing?

#### Do you recognize any of these behaviors?

- Operators acknowledge / silence alarms without looking at or acting on them?
- Incidents or near-incidents where operators missed alarms?
- Too many alarms without well-defined actions?
- Alarms disabled / suppressed for long periods without review?

#### Do you measure?

- Number of alarms / hour?
- Number of alarms disabled / suppressed?
- Time to silence / acknowledge?

#### How stressed are your operators?

#### Do you have a documented alarm philosophy?

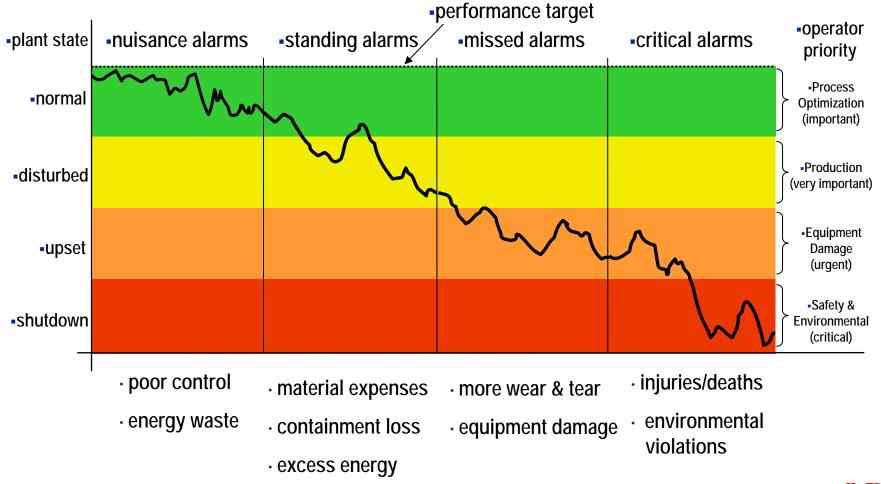
- Have you described roles and responsibilities?
- How do you review and modify alarm settings?



### Alarm Management Example: Texaco Milford Haven 1994



- Explosion injured 26 people and caused damage of around \$70 million
- Key factors included:
  - There were too many alarms and they were poorly prioritized
  - In the last 11 minutes before the explosion, the operators had to recognize, acknowledge and act on 275 alarms




## Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations



## Alarm Management Financial Impact





## Alarm Management Benefits

- Avoid unintended shutdowns from missing alarms or responding too slowly to alarms
  - Lower equipment repair costs and increased operational efficiency and/or production rates.
- Increase operator availability and effectiveness with reduction in average alarm and event rate
  - If initial rate is 25/hour/operator and each consumes an average of 45 seconds, then workload can be reduced almost 1 hour per 12 hour shift if rate is reduced by 25%.
- Reduce Minor and Major Incidents from better alarm management



## Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations



## Alarm Management Guidelines and Standards

- Engineering Equipment and Materials Users' Association (EEMUA) has published guideline
  - EEMUA 191: Alarm Systems A Guide to Design,
     Management and Procurement
- International Society of Automation (ISA) has published standard
  - ISA-18.2: Management of Alarm Systems for the Process Industries



## Alarm Management Definition of an Alarm System

#### **EEMUA 191**

- Purpose of an alarm system is to direct the operator's attention towards plant conditions requiring <u>timely</u> <u>assessment or action</u>
- Each alarm should
  - alert, inform and guide
  - be useful and relevant to the operator
  - have a defined response
- Adequate time should be allowed for the operator to carry out his defined response



### Alarm Management System Management Guidelines

#### **Define responsibilities**

- Design
- Management
- Operation

### Define procedures and standards

- Design
- Implementation
- management
- operation

#### **Alarm Philosophy document**

- Define what to alarm
- Standards for alarm annunciation and messages
- How the operator will interact with alarms

#### **Alarm System Design document**

- Define purpose
- Priority
- Operator response for each alarm

#### Define standards for configuration



### Alarm Management System Management Guidelines

- Define methods to address nuisance alarms and standing alarms
- Define alarm priorities based on impact and reaction time
- Provide alarm system training for operators, engineers and technicians
- Define procedures for management of changes to the alarm system
- Create reports, records and tools for monitoring alarm system performance



### Alarm Management EEMUA 191 Recommended priorities

 The use of three priority bands within any one type of display is ergonomically effective

High – Medium – Low ( + sometimes critical)

Written rules on priority assignment required.

### low 80%

high

medium

#### **Example:**

|                      | Example.       |            |            |  |  |  |  |
|----------------------|----------------|------------|------------|--|--|--|--|
| impact reaction time | < 1000 \$      | < 10000 \$ | > 10000 \$ |  |  |  |  |
| > 10 Min.            | Low            | Low        | Medium     |  |  |  |  |
| 3 to 10 Min.         | to 10 Min. Low |            | High       |  |  |  |  |
| < 3 Min              | Medium         | High       | High       |  |  |  |  |



## Alarm Management Industry Findings vs. Guidelines

|                                       | EEMUA   | Oil & Gas | PetroChem | Power    | Other    |
|---------------------------------------|---------|-----------|-----------|----------|----------|
| Average Alarms per Day                | 144     | 1200      | 1500      | 2000     | 900      |
| Average Standing Alarms               | 9       | 50        | 100       | 65       | 35       |
| Peak Alarms<br>per 10 Minutes         | 10      | 220       | 180       | 350      | 180      |
| Average Alarms/<br>10 Minute Interval | 1       | 6         | 9         | 8        | 5        |
| Distribution % (Low/Med/High)         | 80/15/5 | 25/40/35  | 25/40/35  | 25/40/35 | 25/40/35 |

Source: Matrikon



## Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations

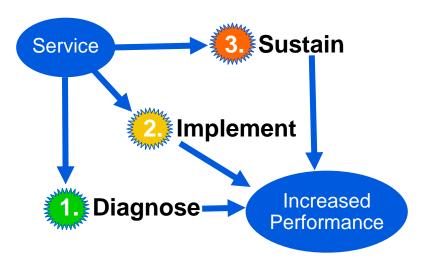


## Optimization Services Methodology

#### Diagnose

- Measure and Benchmark
- Detailed Improvement Plan
- Document Goals, KPI's

#### Implement


- Improve Performance
- Apply corrective actions

#### Sustain

- Maintain Performance
- Continued Improvement

#### **Proactive Solutions – not Reactive**

Six Sigma Similarities





### Alarm Management Lifecycle

- Alarm Design Strategy
- Culture Change
- Alarm Rationalization
- Alarm Management
- Training

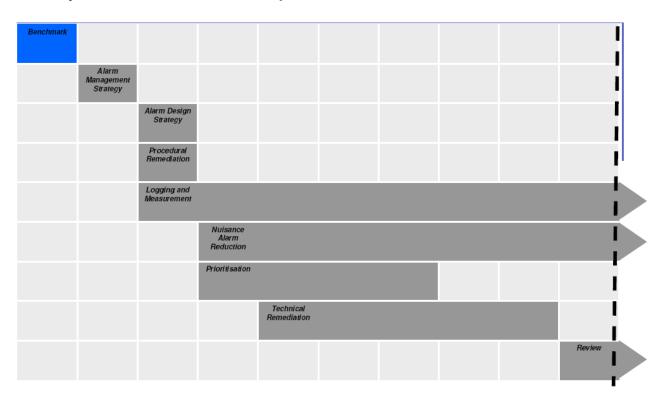


#### 1. Where are we now?

- Assess the Current Position
- Typically a short focussed assessment by experienced consultant engineer
- Assessed against benchmarks and targets

#### 2. Where do we want to be?

- Identify the Change Program
- Goal Setting (KPIs, Project success criteria)
- Identify deficiencies and corrective actions
- Planning/Budgeting


#### 3. How successful were we?

- On-Going Alarm Management
- owned by operations/ maintenance
- Audit and Measurement programme



### Alarm Management Fingerprint – The first step

 Goal: reduce alarms that are not useful to the operator, clarify alarms that are important





## Alarm Management Fingerprint

#### Alarm System Performance

- Calculate alarm statistics
- Compare to EEMUA guidelines

### Alarm System Management

- Evaluate alarm system documentation
- Evaluate methods and procedures for configuring, operating, and managing alarm system
- Compare to EEMUA guidelines

Recommendations for improvements



## Alarm Management Fingerprint Steps

#### **Interviews**

 Operators, Supervisors, Process Engineers, Technicians

Review of procedures and instructions

- Documentation
- Methods

Measurement of Alarm System Performance

- Alarm Rates in steady state and upset conditions
- Frequency of alarms nuisance alarms
- Standing and Shelved alarms
- Prioritization



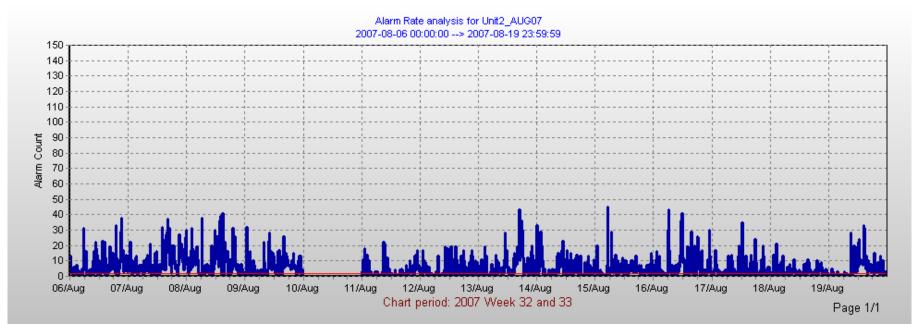
## Alarm Management Fingerprint

 Findings and recommendation described in the report



| Cont | ents |                                                 |    |
|------|------|-------------------------------------------------|----|
|      |      |                                                 |    |
|      | 1    | EXECUTIVE SUMMARY                               | 5  |
|      | 2    | INTRODUCTION                                    | 6  |
|      | 2.1  | Background                                      | 6  |
|      | 2.2  | Structure of the Work                           | 6  |
|      | 3    | ALARM SYSTEM PERFORMANCE                        | 9  |
|      | 3.1  | Average & Peak Alarm Rates                      | 10 |
|      | 3.2  | Standing & Shelved Alarms                       | 12 |
|      | 3.3  | Distribution of Alarms                          | 13 |
|      | 3.4  | Usefulness Questionnaire                        | 14 |
|      | 3.5  | Nuisance Alarms                                 | 15 |
|      | 4    | THE MANAGEMENT OF ALARMS                        | 16 |
|      | 4.1  | Overall Management of the Alarm System          | 16 |
|      | 4.2  | Alarm System Design                             | 18 |
|      | 4.3  | Method of operation and use of the Alarm System | 19 |
|      | 4.4  | Alarm Prioritisation                            | 20 |
|      | 4.5  | Nuisance Alarms                                 | 23 |
|      | 4.6  | Standing Alarms                                 | 25 |
|      | 4.7  | Training                                        | 27 |
|      | 4.8  | Control of Modifications                        | 28 |
|      | 5    | RECOMMENDATIONS FOR ACTION                      | 30 |
|      |      |                                                 |    |




## Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations



### Alarm Management Alarm Rate vs. EEMUA Guideline

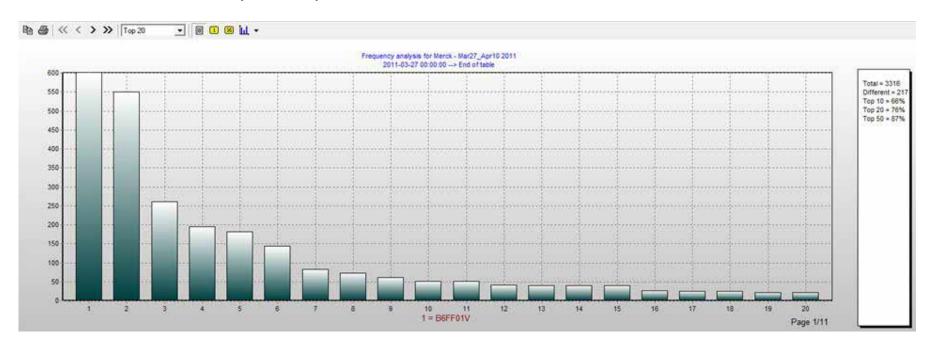
- Calculate alarm rates for each 10 minute period
- Compare to EEMUA guideline of 1 alarm per 10 minute period





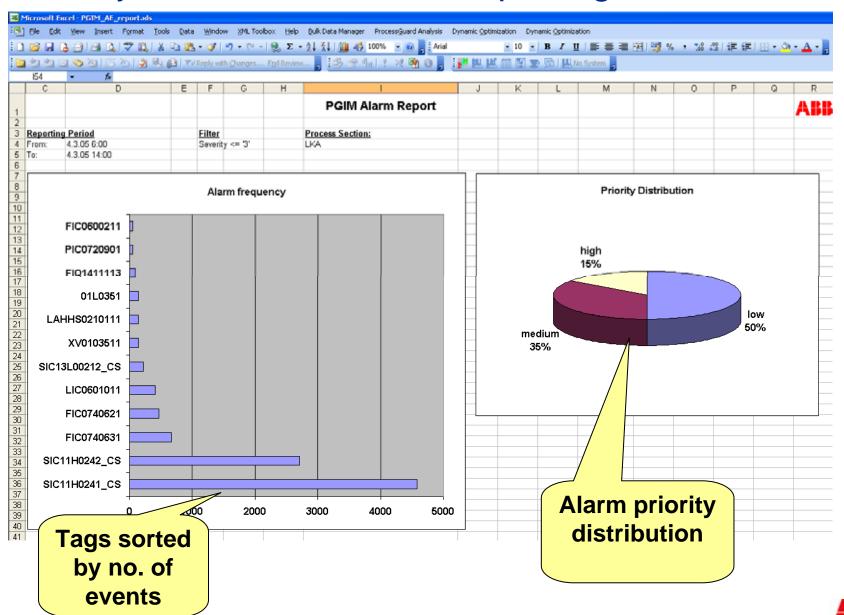
### Alarm Management Alarm Rate vs. EEMUA Guideline - Burst Rate

- Calculate burst alarm rates for each 10 minute period
- Compare to EEMUA burst rate guideline of 10 alarms per 10 minute period


| 08-AUG 8:22  | 318 / 20 min or 15.9/min |
|--------------|--------------------------|
| 19-SEP 11:00 | 681 / 20 min or 34.1/min |
| 20-OCT 00:40 | 719 / 20 min or 36.0/min |
| 09-DEC 07:45 | 61 / 2 min or 30.5/min   |
| 22-JAN 12:10 | 410 / 20 min or 20.5/min |

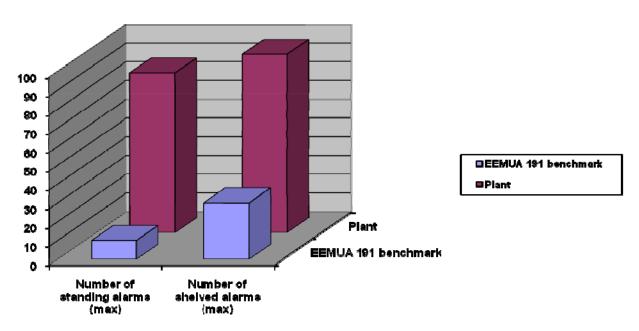
750 incidents of 10/min in 6 months




### Alarm Management Alarm Frequency Analysis

- A small number of tags are often responsible for a large percentage of the total alarms.
  - Top 10 represent 66% of alarms






### Alarm System Performance Reporting



### Alarm Management Standing and Shelved Alarms

- Shelved Alarm: An alarm that has been temporarily disabled until an underlying problem can be corrected.
   Such alarms should only be shelved for a period of time, not permanently disabled.
- Standing Alarm: An alarm that has remained in an active alarm state for a significant period of time (e.g. 4 to 8 hrs)





## Alarm Management Alarm System Management Findings

- Alarm Philosophy documentation does not exist
- Alarm Design documentation does not exist
  - Alarms defined when control system was commissioned
  - Almost all tags configured as alarms
  - Alarm priority classes seldom utilized
- Changes to alarm system are undocumented
- No methods to monitor alarm system performance



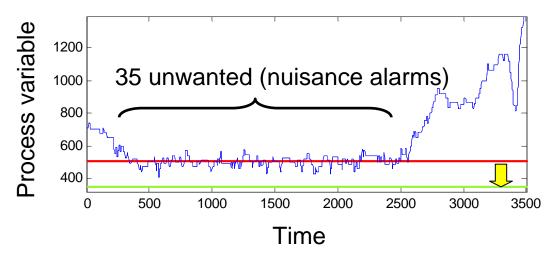
### Alarm Management Summary of Findings

- Limited alarm system documentation
- High alarm rates
  - Too many nuisance alarms going into and out of alarm state
  - Too many alarms configured
- Too many standing alarms
  - Equipment that is out of service
  - Bad quality instruments needing maintenance

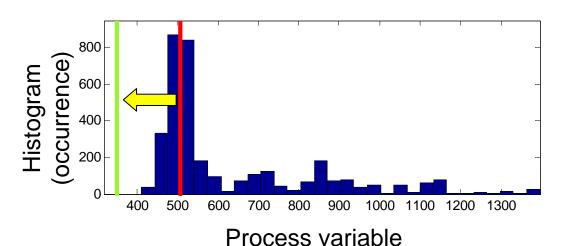


## Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations




## Alarm Management How to Eliminate Nuisance Alarms


- Reconfigure alarms that require no operator action as event
- Eliminate instrument malfunctions
- Tune chattering control loops
- Optimize alarm parameters: set limit thresholds, hysteresis
- Advanced Alarming
  - State based alarming
  - Flood suppression



### What-if scenario: Reducing nuisance alarms



Minimum limit: was set too high Minimum limit: lower limit gets rid of nuisance alarms



Analyzing the time trend using histograms:

- Which alarm limits will result in which alarm rate?
- Find the best alarm limits
   (e.g. reduce the minimum threshold



### Alarm Management Alarm Rationalization

- Form team to review all alarms
- Define purpose of each alarm some alarms may be reclassified as events
- Define new priority using EEMUA and ISA recommendations
- Determine required operator response and alarm description
- Remove redundant alarms
- Create Alarm Design documentation



## Alarm Management Recommendations

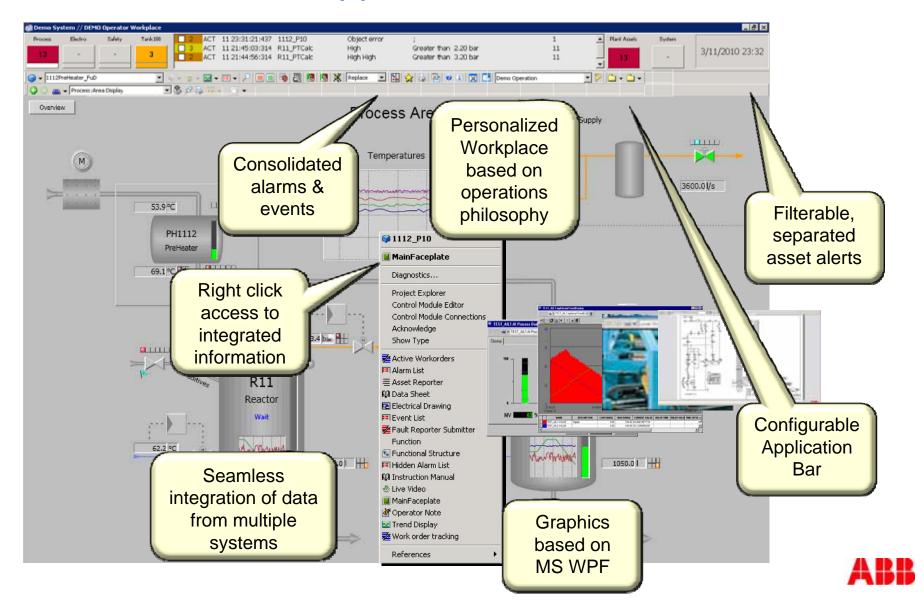
- Maintenance issues
  - Follow up on long standing issues
  - Shelve / Deactivate alarm if problem not fixed
  - Keep list of shelved alarms and periodically reevaluate
- Preventive Maintenance
  - Use a control loop management tool to improve tuning and identify instrumentation problems



### Alarm Management Alarm System Performance Monitoring

- ABB Smart Logger software
  - Capture and store alarm data
- ABB Smart Client software
  - Compute alarm statistics and compare with EEMUA guidelines
  - Monitor performance improvements over time




### Alarm Management Features in System 800xA

- Structured organization and single source of truth
- Pre-configured and ad-hoc filtering, live values
- Single click from alarm to multiple informational displays
- Alarm Hiding Dynamic alarm handling
- Alarm Shelving Operator based alarm hiding
- Built-in, operator accessible alarm analysis





## Improving Operator Effectiveness Effective decision support environment



# Power and productivity for a better world™

