

Meeting the Challenges of a Modern Grid Using a Phasor-based Technology

NEDO Smart Community Summit 2018

Patrick T. Lee

President – PXiSE Energy Solutions

Vice President – Sempra Infrastructure

KEY DRIVERS SHAPING A GLOBAL ENERGY TRANSITION

Energy Need in Developing Countries **Cost in Islands**

OBSERVABLE & RECOGNIZED TRENDS IN ELECTRIC ENERGY WORLDWIDE

CHANGES TO ELECTRIC GRID DISRUPT OPERATIONS AND BUSINESS MODELS

OPERATIONAL TECHNOLOGIES IN-USE – SLOW RESPONSE AND MOST INVOLVED OPERATORS

Electric Generation (frequency-based control)

- Isochronous control control power output to maintain frequency at a set point
- Droop control vary power output according to frequency level
- Ramp control slow down renewable power plant output variations

Electric Delivery

- Power Flow control
 - Switch in/out of power lines
 - Reconfigure open points of distribution circuits
- Voltage control
 - Change voltage taps of transformers and voltage regulators
 - Turn on/off "static and/or dynamic" capacitors and reactors

Equipment Outage Response

Automatic control or system operators intervention required

TECHNOLOGIES IN-USE CANNOT KEEP UP WITH THE DYNAMICS OF A MODERN GRID

Power regulation devices cannot respond timely

- Intermittent renewable supplies & distributed demands
- Reliability and power quality issues on the rise

Isochronous/droop controlled generators too slow to react

- Larger swing of frequency and voltage due to smaller system inertia
- Unstable grid conditions and blackouts threaten energy dependencies

Even fast energy storage devices have limited benefits

- Frequency-based droop control helps to stabilize power surges
- Less effective in multiple devices coordination & low system inertia

FAST BATTERIES HAVE POTENTIAL BUT NEED A SYSTEM LEVEL CONTROL AND COORDINATION

CURRENT BATTERY CONTROL TECHNOLOGY HAS LIMITATIONS -INSIGHT FROM FREQUENCY EVENT

HPR Battery Responded Below 49.85 Hz Based On Droop Settings

- 7% output , 7.3 MW @ 70ms
- Quick but offered little help (560MW Drop)
- 3 minute duration ended when 49.85 Hz reached

Difficult to Coordinate Multiple Batteries Without Tim Synchronization & Advanced Control

- Limited to frequency-based control
- Fast response from droop settings may cause oscillations/instability in the system with multiple batteries

Specific Control Mode Limits Utilization of Battery for Additional Benefits Limited utilization – mostly on standby, respond only for frequency deviation outside of dead-band

PAIN POINTS FOR UTILITIES AND ASSET OWNERS

Operational problems create risks and uncertainties

- Customer complaints
- Regulatory oversights
- Reputation of energy utility

Long term investments become risky for utilities

- Fast technology and market changes affect business models
- Trade off of wired and non-wired solutions are difficult to model for long term benefits
- Regulators restrict utility investments as business model changes
 - Slow regulatory process and policy change
 - Cannot compete in behind the meter generation
 - Limited investment opportunities on energy storage
- Changing customer behaviors and expectations

KEEPING FOCUS ON OPERATIONAL OBJECTIVES AND CAPABILITIES IN A DYNAMIC MODERN GRID

Power and supply balancing

> Able to balance grid with high % of renewables in the generation mix

Power delivery management

> Able to coordinate distributed resources and loads in a network

Cost and environmental management

Able to maximize use and predict asset conditions and performance

Reliability and quality management

Able to stabilize the grid and improve service quality

OPERATIONAL VARIANCE INSIGHTS OFFER BETTER INFRASTRUCTURE INVESTMENT DECISIONS

BUILDING CAPABILITIES TO MANAGE A DYNAMIC MODERN GRID REQUIRES:

PHASOR IS A PHASE VECTOR

PHASOR-BASED DATA OFFERS A BUILDING BLOCK FOR ADVANCED CONTROL IN A DYNAMIC MODERN GRID

WHY POSSIBLE NOW PREVIOUSLY UN-TAPPED DATA IS NOW AVAILABLE

PXiSE's adaptive use of synchrophasor-based technology provides complete vision and peak performance to control electric grid assets

PHASOR MEASUREMENTS OFFER NEW INSIGHTS

HIGH-RESOLUTION AND HIGH-SPEED DATA ENHANCE VISIBILITY AND ACCURATE CONTROL NECESSARY FOR THE MODERN, RENEWABLE, AND DER-BASED GRIDS

PHASOR-BASED TECHNOLOGY OFFERS BROAD APPLICATIONS AND BENEFITS:

Better Visibility of Operations and Situation Awareness

Faster and More Precise Control of Energy Resources

Better Predictive Asset Management

Insights for Operations and Investment Planning

PHASOR DATA OFFERS ENHANCED INFORMATION FOR CONTROL CENTERS

Operating Center

PHASOR-BASED VISUALIZATION PROVIDES IMPROVED OPERATIONS AND SITUATION AWARENESS

Example Use Cases	Benefits
Frequency excursion map	Offer nodal specific insights both in steady and dynamic states
System oscillation display	Early detection to prevent catastrophic events
Voltage stability margin display	Visibility to fast voltage fluctuation in transmission and distribution system
Frequency vs ACE display	Shows system's ability to maintain neutral power exchange
State measurement deviation chart	Indicate dynamic range of each power node, insights for normal versus abnormal system changes
Automatic location of disturbance event origin	Provide visibility of event originated from outside the region in a large connected system
Real-time sequence of events display	Real-time automated tool eliminate hours of semi- manual data processing post events

EXAMPLE: UNDERSTAND DEVIATION OF POWER FLOW AT NODES AS A RESULT OF SYSTEM CHANGES

Frequency and Voltage Angle Plots

PHASOR MEASUREMENT OFFERS FASTER AND MORE PRECISE CONTROL OF ENERGY RESOURCES

Phasor Measurements **Enable Decoupled** P-Q Control Support **Time-synchronized**

Feedback

Meet IEEE C37.118 Standard on speed (up to 120 Hz) and accuracy of measurements

Phasors enables precise and coordinated real and reactive power control (Decoupled)

Supporting multi-level feedback control further improves accuracy Fast & Precision Control

MANY PHASOR-BASED CONTROL APPLICATIONS

Phasor-based control has broad applications across the full power grid; it can precisely coordinate and synchronize the control of many energy assets

FAST AND PRECISE PHASOR-BASED CONTROL ENABLES ENERGY STORAGE WITH FULL VALUE STACK OPTIMIZATION

PHASOR-BASED CONTROL OFFERS NEW CAPABILITIES

PHASOR-BASED ADVANCED FREQUENCY CONTROL - ISLAND GRID USE CASE

- 1. Reduce fossil spinning reserve
- 2. Improve generator's dispatch range
- 3. Reduce fuel costs and O&M of generators
- 4. Enable further increase of renewable mix to lower energy cost

PHASOR-BASED ASSET CONDITION MONITORING EXAMPLE

Setup to Monitor Conductors

Detection Algorithm

Time

Fast Detection

Detect conductor break by comparing phasor measurements from different parts of the circuit up to 60 times per second

Quick Action

Less than 0.5 seconds from conductor broken to Circuit Breaker opened

PHASOR MEASUREMENTS CAPTURE OPERATIONAL VARIANCES THAT CONTRIBUTE TO OPERATIONS AND SYSTEM PLANNING

- Frequency response baseline (system inertia changes)
- Oscillation performance frequency, damping, energy intensity
- Voltage stability indicators
- Power-angle sensitivities

Capturing power system measurements that best indicate system stress

- Voltage angles deviation
- generation clusters
- Reactive reserves

Providing valuable data point for system planning as new infrastructures are proposed

FREQUENCY RESPONSE BASELINE OFFERS INSIGHT ON SYSTEM INERTIA VARIABILITY OVER TIME AND UNDER VARIOUS SYSTEM CONDITIONS

SUMMARY: PHASOR-BASED TECHNOLOGY OFFERS BROAD APPLICATIONS AND BENEFITS:

Better Visibility of Operations and Situation Awareness

Faster and More Precise Control of Energy Resources

Better Predictive Asset Management

Insights for Operations and Investment Planning

Patrick Lee President - PXiSE Energy Solutions patrick.lee@pxise.com