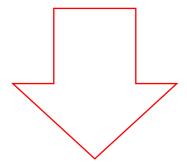
MEIOSIS

"Mitosis is used for almost all of your body's cell division needs. It adds new cells during development and replaces old and worn-out cells throughout your life. The goal of mitosis is to produce daughter cells that are genetically identical to their mothers, with not a single chromosome more or less."

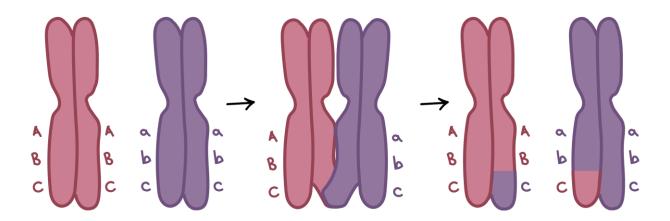

<u>Meiosis</u>, on the other hand, is used for just one purpose in the human body: the production of **gametes**—sex cells, or sperm and eggs. Its goal is to make daughter cells with exactly half as many chromosomes as the starting cell.

To put that another way, **meiosis** in humans is a division process that takes us from a diploid cell—one with two sets of chromosomes—to haploid cells—ones with a single set of chromosomes. In humans, the haploid cells made in meiosis are sperm and eggs. When a sperm and an egg join in fertilization, the two haploid sets of chromosomes form a complete diploid set: a new genome.

Phases of meiosis

In many ways, meiosis is a lot like mitosis. The cell goes through similar stages and uses similar strategies to organize and separate chromosomes. In meiosis, however, the cell has a more complex task. It still needs to separate **sister chromatids** (the two halves of a duplicated chromosome), as in mitosis. But it must also separate **homologous chromosomes**, the similar but non-identical chromosome pairs an organism receives from its two parents..

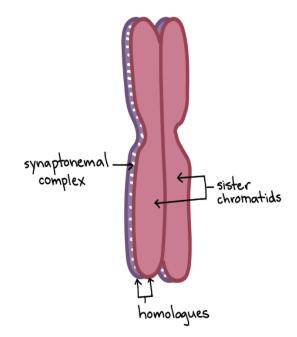
These goals are accomplished in meiosis using a two-step division process. Homologue pairs separate during a first round of cell division, called **meiosis I**. Sister chromatids separate during a second round, called **meiosis II**. Since cell division occurs twice during meiosis, one starting cell can produce four gametes (eggs or sperm). In each round of division, cells go through four stages: prophase, metaphase, anaphase, and telophase.



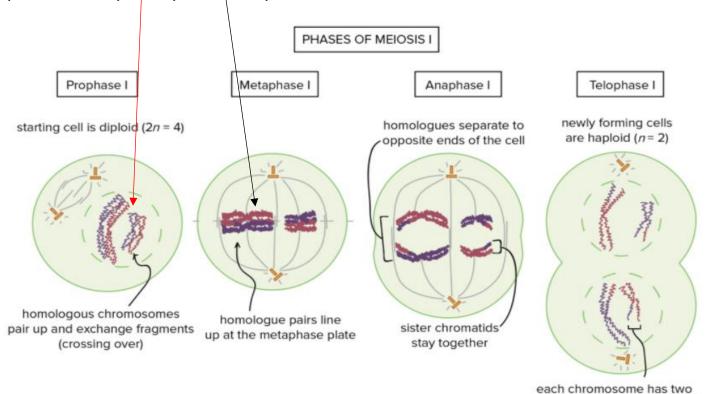
Meiosis I

Before entering meiosis, I, a cell must first go through interphase. As in mitosis, the cell grows during G_1 , copies all of its chromosomes during S_1 phase, and prepares for division during S_2 .

During **prophase I**, differences from mitosis begin to appear. As in mitosis, the chromosomes begin to condense, but in meiosis I, they also pair up. Each chromosome carefully aligns with its homologue partner so that the two match up at corresponding positions along their full length.

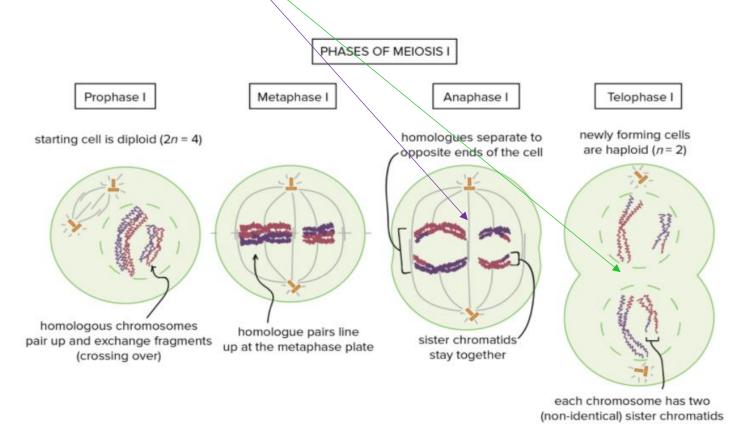

For instance, in the image below, the letters A, B, and C represent genes found at particular spots on the chromosome, with capital and lowercase letters for different forms, or alleles, of each gene. The DNA is broken at the same spot on each homologue—here, between genes B and C—and reconnected in a criss-cross pattern so that the homologues exchange part of their DNA.

This process, in which homologous chromosomes trade parts, is called **crossing over**. It's helped along by a protein structure called the **synaptonemal complex** that holds the homologues together. The chromosomes would actually be positioned one on top of the other—as shown in the image on next page—throughout crossing over; they're only shown side-by-side in the image above so that it's easier to see the exchange of genetic material.


You can see crossovers under a microscope as **chiasmata**, cross-shaped structures where homologues are linked together. Chiasmata keep the homologues connected to each other after the synaptonemal complex breaks down, so each homologous pair needs at least one. It's common for multiple crossovers (up to 252525!) to take place for each homologue pair.

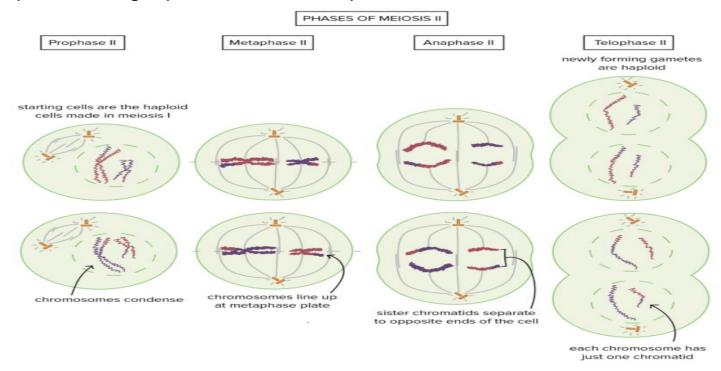
The spots where crossovers happen are more or less random, leading to the formation of new, "remixed" chromosomes with unique combinations of alleles.

(non-identical) sister chromatids


After <u>crossing over</u>, the spindle begins to capture chromosomes and move them towards the center of the cell (metaphase plate). This may seem familiar from mitosis, but there is a twist. Each chromosome attaches to microtubules from just one pole of the spindle, and the two homologues of a pair bind to microtubules from opposite poles. So, during <u>metaphase I</u>, homologue pairs—not individual chromosomes—line up at the metaphase plate for separation.

When the homologous pairs line up at the metaphase plate, the orientation of each pair is random. For instance, in the diagram above, the pink version of the big chromosome and the purple version of the little chromosome happen to be positioned towards the same pole and go into the same cell. But the orientation could have equally well been flipped, so that both purple chromosomes went into the cell together. This allows for the formation of gametes with different sets of homologues.

In <u>anaphase I</u>, the homologues are pulled apart and move apart to opposite ends of the cell. The sister chromatids of each chromosome, however, remain attached to one another and don't come apart.


Finally, in <u>telophase I</u>, the chromosomes arrive at opposite poles of the cell. In some organisms, the nuclear membrane re-forms and the chromosomes decondense, although in others, this step is skipped—since cells will soon go through another round of division, meiosis II. Cytokinesis usually occurs at the same time as telophase I, forming two haploid daughter cells.

Meiosis II

Cells move from meiosis I to meiosis II without copying their DNA. Meiosis II is a shorter and simpler process than meiosis I, and you may find it helpful to think of meiosis II as "mitosis for haploid cells."

The cells that enter meiosis II are the ones made in meiosis I. These cells are haploid—have just one chromosome from each homologue pair—but their chromosomes still consist of two sister chromatids. In meiosis II, the sister chromatids separate, making haploid cells with non-duplicated chromosomes.

During **prophase II**, chromosomes condense and the nuclear envelope breaks down, if needed. The centrosomes move apart, the spindle forms between them, and the spindle microtubules begin to capture chromosomes.

The two sister chromatids of each chromosome are captured by microtubules from opposite spindle poles. In **metaphase II**, the chromosomes line up individually along the metaphase plate. In **anaphase II**, the sister chromatids separate and are pulled towards opposite poles of the cell.

In **telophase II**, nuclear membranes form around each set of chromosomes, and the chromosomes decondense. Cytokinesis splits the chromosome sets into new cells, forming the final products of meiosis: four haploid cells in which each chromosome has just one chromatid. In humans, the products of meiosis are sperm or egg cells.

How meiosis "mixes and matches" genes

The gametes produced in meiosis are all haploid, but they're not genetically identical. For example, take a look the meiosis II diagram above, which shows the products of meiosis for a cell with 2n = 42n=42, n, equals, 4 chromosomes. Each gamete has a unique "sample" of the genetic material present in the starting cell.

As it turns out, there are many more potential gamete types than just the four shown in the diagram, even for a cell with only four chromosomes. The two main reasons we can get many genetically different gametes are:

- Crossing over. The points where homologues cross over and exchange genetic material are chosen more or less at random, and they will be different in each cell that goes through meiosis. If meiosis happens many times, as in humans, crossovers will happen at many different points.
- Random orientation of homologue pairs. The random orientation of homologue pairs in metaphase I allows for the production of gametes with many different assortments of homologous chromosomes.
 - In a human cell, the random orientation of homologue pairs alone allows for over 8 million different types of possible gametes