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Abstract 

The commutative, associative, and distributive properties are at the heart of mathematics. 

This study examines 97 US and 167 Chinese third and fourth graders’ understanding of 

these basic properties through paper-and-pencil assessments. Even though students’ 

understanding in both countries are not ideal, Chinese students demonstrate much better 

understanding than their US counterparts. Among these properties, the associative and 

distributive properties are most challenging, especially for the US students. By the end of 

grade 4, many Chinese students demonstrate full understanding of the associative and 

distributive properties across tasks however, almost none of the US students have 

achieved a comparable level of understanding. Student understanding in different 

contexts also reveals cross-cultural differences. For instance, Chinese students tend to 

reason upon concrete contexts for sense-making, which is rare with US students. Finally, 

there is a clear growth of student understanding with Chinese but not US students. In fact, 

the understanding gap dramatically increases across grades. Implications are discussed.  
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The commutative, associative, and distributive properties (CP, AP, and DP, 

respectively) are at the heart of mathematics (Carpenter et al., 2003) because these basic 

properties allow tremendous freedom in doing arithmetic (National Research Council 

[NRC], 2001), serve as fundamentals when working with equations (Bruner, 1977; Wu, 

2009), and provide a foundation for generalizations and proofs (e.g., Schifter, Monk, 

Russell, & Bastable, 2008). Thus, an extensive use of these properties can serve as a good 

introduction to algebra (Wu, 2009). Unfortunately, many US students, including college 

students, conflate CP and AP (Ding, Li, & Capraro, 2013) and have difficulties with 

using DP to solve equations (Koedinger, Alibali, & Nathan, 2008). Given that the 

learning and understanding of basic properties should take place in elementary school 

(Common Core State Standards Initiative, 2010), it is necessary to explore the current 

status of elementary students’ understanding of these basic properties. To date, few 

studies have explored how elementary students understand these basic properties. The 

purpose of this study is to systematically examine elementary students’ understanding of 

the basic properties of operations from a cross-cultural perspective. Specifically, this 

study examines how US elementary students perform on tasks involving these basic 

properties in comparison with their Chinese counterparts. Focusing on third and fourth 

graders’ understanding of the commutative, associative, and distributive properties (CP, 

AP, and DP), we ask three questions: (1) How do US and Chinese elementary students 

understand the CP, AP, and DP, respectively? (2) How do US and Chinese elementary 

students demonstrate understanding of the basic properties in different contexts? And (3) 

How do US and Chinese elementary students develop understanding of the basic 

properties over time?  
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Literature Review 

The commutative property, associative property, and distributive property 

undergird the arithmetic operations of addition and multiplication (NRC, 2001). The 

commutative property (CP) refers to the invariance of the addition and multiplication 

operations to reordering of the operands. Algebraically, this property can be denoted as 

“a + b = b + a” (CP of addition, or “CP+” hereafter) and “a × b = b × a” (CP of 

multiplication, or “CP×” hereafter), where a and b standard for “arbitrary numbers in a 

given number system” (CCSSI, 2010, p.90). The associative property (AP) refers to the 

invariance of expressions in which three numbers are added or multiplied together to the 

order in which the operations are carried out. Elementary students are expected to know 

that operating on either the first two numbers or the latter two numbers will not lead to 

different results (CCSSI, 2010). Still using a, b, and c to stand for any arbitrary numbers, 

AP can be denoted as either “(a + b) + c = a + (b + c)” or “(a × b) × c = a × (b × c)” 

(“AP+” and “AP×” hereafter). The distributive property (DP) is unique in that it involves 

the interaction between two different operations. This property states that multiplying a 

given number by a sum of two numbers is equivalent to multiplying each summand 

individually and then adding the two products. One may denote this property as “a × (b + 

c) = a × b + a × c.” Accordingly, one may say that the factor “a” distributes to each 

summand “b” and “c,” or that multiplication distributes over addition. 

As noted, these properties of operations are of fundamental importance as 

computational tools for arithmetic, rules for algebraic manipulation, and as foundations 

for reasoning, generalization and proof.  Moreover, properties of arithmetic are also 

crucial for developing a structural notion of operations – an “operation sense” (Slavit, 
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1998) – in which arithmetic operations are conceptualized as mental objects.  For 

instance, to compute 8 ´ 6, students in early grades may use the known facts 5 ´ 6 = 30 

and 3 ´ 6= 18 to compute the answer. With a structural guidance on more arithmetic 

examples such as 8 ´ 6 = (5 + 3) ´ 6 = 5 ´ 6 + 3 ´ 6, students may be prompted to see the 

distribute property, a ´ (b + c) = a ´ b + a ´ c. The transition towards this “structural” 

thinking is of great importance to the development of mathematical understanding (Sfard, 

1991), and to the development of students’ success in algebra (Slavit, 1998). Explicit 

understanding of the properties of arithmetic is necessary for students to grasp algebra as 

a generalization of arithmetic (Tent, 2006). 

In addition to their aforementioned importance for the learning of computational 

skills and development of algebraic ability, these three properties of arithmetic operations 

– commutative, associative, and distributive – serve an important foundational basis of 

what arithmetic operations are (in that they are important parts of the standard 

axiomatization of the real field). Thus, they are equally crucial for developing 

fundamental understanding of the meaning of abstract arithmetic operations, which is an 

important step in the development of mathematical understanding (Pirie & Kieren, 1994). 

Student Poor Understanding of the basic properties 

Among the three properties, CP (especially of addition) is straightforward and 

used intuitively and extensively by children from early grades (Baroody, Ginsburg, & 

Waxman, 1983; Slavit, 1998). However, with the learning of more properties, many 

students struggle to differentiate between CP and AP (Fletcher, 1972; Tent, 2006). In 

fact, difficulty disambiguating these two properties persists even to the undergraduate 

level (Ding et al., 2013; Larsen, 2010). This may be partly due to the fact that the two 
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often co-occur in the same problem (Tent, 2006). For instance ubiquitous facts such as “a 

+ b + c = c + b + a” involve both AP and CP. Additionally, CP and AP both relate to 

the notion of reordering — while CP refers to the reordering of operands, AP refers to 

the reordering of operations — and student difficulty in understanding this distinction 

may be the cause of much of their difficulty in distinguishing the two properties (Larsen, 

2010). 

In addition, many students also have difficulty learning the DP. Koedinger, 

Alibali, and Nathan (2008) reported that 71% of the U.S. undergraduates in their study 

could not solve an equation x-0.15x = 38.24. If these undergraduates had a deep 

understanding of the DP, they might have been able to apply this property to simplify “x-

0.15x” as “(1-0.15)x,” which most likely would have led them to successfully solve the 

equation. Students’ learning difficulties with the basic properties indicate their lack of 

explicit understanding of these mathematical principles. This may be traced back to 

students’ initial learning in elementary school, where formal learning of the properties 

occurs (CCSSI, 2010). 

Unfortunately, prior research indicates a common instructional limitation in 

elementary school – focusing on strategies rather than the underlying properties – which 

may be a source of students’ learning difficulties and poor understanding. For example, 

Schifter et al. (2008) reported classroom scenarios involving US third and fourth graders’ 

creative problem solving strategies related to DP and AP. The teachers in those 

classrooms did not promote and utilize students’ informal understanding to reveal the 

underlying properties. In fact, many existing US textbooks also do not provide effective 

support for students’ learning of the basic properties. For instance, in regards to the 
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distributive property, Ding and Li (2010) reported that existing US textbooks presented 

many computation strategies such as using a known fact (e.g., 3×8=2×8+8), double 

strategy, (e.g., 8×5=4×5+4×5), and breaking apart a number to multiply (e.g., 

18×12=18×10+18×2). Regardless of the variety of strategy, the underlying DP was rarely 

made explicit (Ding & Li, 2010).  Focusing on the teaching of strategies rather than the 

underlying property not only increases student cognitive load, but also hinders students’ 

learning and transfer of the basic properties to new contexts. In this study, we are 

interested in exploring to what extent our student participants may possess explicit 

understanding of each of the basic properties. 

Understanding Basic Properties through Varied Contexts  

Research indicates that elementary students are mainly exposed to the basic 

properties in numerical contexts where CP, AP, and DP are used implicitly or explicitly 

to solve computational tasks (Baroody et al, 1983; Schifter et al., 2008). To compute 8 ´ 

6, a third grader in the US may be expected to add two known facts (5 ´ 6 = 30 and 3 ´ 6 

= 18) to find the answer, which involves the DP (CCSSI, 2010; Ding & Li, 2010). While 

these non-contextual tasks are important learning opportunities, these basic properties are 

abstract for elementary students who most likely need concrete support for sense-making 

during initial learning. Otherwise, the learned properties may be become “inert” 

knowledge that cannot be flexibly and actively retrieved to solve new problems 

(Koedinger et al., 2008). As such, elementary children’s understanding of the basic 

properties through concrete contexts (e.g., real objects and story situations) should be 

acknowledged and valued. This is because the contextual support may enable students to 
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justify the to-be-learned property, serving as a path for retrieval of the basic properties as 

needed.  

NRC (2001) provided explanations for how CP, AP, and DP can be learned 

through experiences with and observations of problems set in context. For instance, using 

cube trains with different colors, CP+ and AP+ can be illustrated. In addition, CP× or 

AP× can be modeled by using an array or volume model. NRC also suggests that 

contextual tasks such as solving for the perimeter of a rectangle in two different ways, 

2L+ 2W and 2(L+W), presents a great opportunity for helping students make sense of the 

DP. In a similar vein, Ding and Li (2010) found that Chinese textbooks situate the initial 

learning of the DP in story situations. By solving a story problem in two ways, students 

can compare the two solutions and make sense of the DP. In fact, this approach was 

observed with all basic properties in Chinese textbooks. In contrast, existing US 

curriculum and instruction on these properties seems to mainly be limited to number 

manipulations without sense-making. For example, even though some US textbooks 

introduced the DP and AP by using word problem contexts similar to the Chinese 

textbooks, the US word problems were not unpacked to illustrate the properties and were 

used primarily as a pretext for computation (Ding & Li, 2010; Ding, 2016). This type of 

textbook presentation creates missed opportunities for helping students make sense of the 

basic properties. In this study, we are interested in exploring whether students can 

recognize and explain the basic properties through contextual tasks. 

Based on the literature about how students learn the basic properties, this study 

will explore students’ understanding through different contexts. It is widely reported that 

students’ understanding depends on the contexts to which they are exposed (Bisanz & 
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LeFevre, 1992; Bisanz, Watchorn, Piatt, & Sherman, 2009; Greeno & Riley, 1987). As 

such, it is necessary to assess students’ understanding using both contextual and non-

contextual tasks (Bisanz & LeFevre, 1992; Bisanz et al., 2009). Through these contexts, 

students may be asked to evaluate (whether a strategy works), apply (the properties to do 

computation), and explain (why a strategy or a computation procedure work), which 

together may provide valid assessment of students’ procedural and conceptual 

understanding. Additionally, those that are able to explain the use of these properties,  

still provide explanations that differ in quality (Ding & Auxter, 2017). For instance, 

providing a numerical example of the CP+ (e.g., 3+7=7+3) may indicate only an implicit 

understanding of a single case, whereas providing an algebraic formula (e.g., a + b = b + 

a) may reveal a students’ more general understanding of the CP+.  

Learning the Basic Properties across Grades 

The understanding of the basic properties is not an all-or-nothing phenomenon. 

Rather, through different contexts, understanding develops over time. Greeno and Riley 

(1987) pointed out that the development of understanding is progressive, often moving 

from implicit to explicit. To “apply” a property for computation/operation intuitively and 

subconsciously might indicate implicit understanding. On the other hand, to verbalize and 

explain the property in a more general/structural sense may show explicit understanding, 

which is at a higher cognitive level. The transition from implicit to explicit understanding 

is in some sense similar to the notion of shifting from operational (process-oriented) to 

structural (object-oriented) conception, which is developed through reification of the 

processes (Sfard & Linchevski, 1994). In theory, as grade level increases, students should 

progressively shift implicit understanding to explicit understanding of the basic 
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properties. However, previous empirical studies do not necessarily support this 

prediction. For instance, Canobi (2005) found that as grade level increased, students’ 

computation accuracy improved; yet, their explanations did not necessarily improve. In 

this study, we are interested in exploring whether there is a developmental trend in 

elementary students’ understanding of the CP, AP, and DP as indicated by their paper-

and-pencil responses.  

Method 

To examine US and Chinese elementary students’ understanding of the CP, AP, 

and DP, we use both quantitative and qualitative methods. The quantitative analysis 

provides relatively accurate pictures about the levels of understanding across grades and 

countries. The qualitative analysis suggests interesting cross-cultural patterns that may 

further inform both curriculum and instruction.  

Participants 

This study is part of a NSF funded project on early algebra. A total of 97 US and 

167 Chinese third and fourth grade students who took both a pre- and post-test involving 

the properties were included in the current study. In China, students formally learn the 

basic properties in fourth grade, over the span of two focused chapters (an entire chapter 

devoted to the DP is taught in the second semester; the rest of the properties are all 

included in one chapter taught during the first semester). Prior to fourth grade, Chinese 

students  only learn the properties in implicit and informal ways. In contrast, US students 

are formally introduced to the basic properties much earlier (e.g., learning CP in the first 

grade). They also have recurring opportunities to constantly learn these properties across 

several grades. Regardless of the differences, both the US and Chinese students will have 
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formally learned the CP, AP, and DP by the end of the fourth grade. As such, we are 

interested in exploring the current status of third and fourth graders’ understanding of 

these properties. The US students in this study were from an urban school district in the 

Northeast, and the Chinese students were also from an urban district in Southeast China. 

Students were also selected from multiple classrooms within each grade in each country. 

Given that the school districts were large, sampled students were also from various 

schools. All of the sampled US and Chinese students were taught by expert teachers who 

had more than 10-years teaching experiences with good teaching reputations (e.g., earned 

teaching awards or recommended by school district or their principals). Table 1 shows 

detailed information about the student sample sizes for this study.   

Table 1. The Sample Size for both Pre- and Post-tests 
 

US (N = 97)   China (N = 167) 
Grade 3 (N = 32) Class 1 N = 10   Grade 3 (N = 84) Class 1 N = 48 

Class 2 N = 22   Class 2 N = 36 
Grade 4 (N = 65) Class 1 N = 17   Grade 4  (N = 83) Class 1 N = 44 

Class 2 N = 27   Class 2 N = 39 
Class 3 N = 21       

 
Instrument 
 

The student assessment instrument was developed for this NSF project in order to 

measure students’ understanding of the CP, AP, and DP in grades 1-4. The instrument 

design was guided by Bisanz and colleagues (Bisanz & LeFevre, 1992; Bisanz et al., 

2009). Items used to measure each property included both contextual and non-contextual 

tasks that demand evaluation, application and explanation of these properties. Students 

who have a good understanding of the basic properties should be able to identify the 

basic properties presented across various contexts. Figure 1 illustrates a sample of three 

of the tasks. The first two items are non-contextual tasks that require students’ 
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evaluation/application and explanation based on the CP or the AP. The last item is a 

contextual task that require students’ recognition of the DP.   

Q1: If you know 7 + 5= 12 does that help you solve 5 + 7?  Why?   
 

Non-contextual 
evaluation/explanation task: CP+ 
 

Q7a: Please use efficient strategies to solve. Show your strategy 
and explain why it works. (3 × 25) × 4. 
           

Non-contextual 
application/explanation task: AP× 

Q10: The length of a rectangular playground is 118 m and the 
width is 82 m. What is the perimeter?   

John solved it with：  
2 × 118 + 2 × 82 

Mary solved it with:    
2 × (118 + 82) 

Both are correct. Compare the two strategies, what do you find? 
   

Contextual  
recognition task: DP  

Figure 1. Sample tasks used in the instrument. 
 

Overall, there were 10 items (16 sub-tasks) gleaned from literature (e.g., Baroody, 

1999) and elementary textbooks. Table 2 shows the structure of the instrument (the full 

instrument is presented in Appendix 1). This instrument has been reviewed by two 

experts (one mathematician and one mathematics educator) in the field and then validated 

through pilot testing in a 2nd and a 4th grade classroom. Note that for item 2, the second 

teacher of the piloting class suggested removing the words “instead of counting from 3” 

due to concerns of children’s reading ability. Unfortunately, the revised task seemed to 

shift students’ attention to the counting process rather than CP+. As such, we excluded 

item 2 and used the remaining 15 subtasks (5 for each CP, AP and DP) to assess students’ 

understanding of the properties.   

Table 2. The structure of the instrument
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Property Item  Task  Context Nature Points 

CP  
 
 

(+) 1 If you know 7 + 5= 12 does that help you solve 
5 + 7?  Why?  
 

Non-
contextual 

Evaluation, 
Explanation 

2 
 

3(a) 2 + 7 + 8  
(Use efficient strategies to solve) 
 

Non-
contextual  

Application, 
Explanation  
 

2 

4 Story problem about 8 boys and 5 girls. Solved 
by: 8 + 5 and 5+8 

Contextual Recognition 2 

(´) 6 
To solve 3 × 28, Mary wrote:   
 

Non-
contextual  

Evaluation, 
Explanation 

2 

8(c) 8 × 6 is solved by:  
Since 6 × 8 = 48, 8 × 6 = 48. 

Non-
contextual  
 
 

Explanation 2 

AP  
  

(+) 3(b) (7 + 19) + 1  
(Use efficient strategies to solve)   

Non-
contextual  

Application, 
Explanation  
 

2 

3(c) 2 + (98 + 17)   
(Use efficient strategies to solve) 

Non-
contextual  

Application, 
Explanation  
 

2 

5 Story problem about three book shelfs with 7, 
8, and 5 books on each. Solved by:  
(7 + 8) + 5 and 7 + (8 + 5) 
 

Contextual Recognition 2 

(´) 7(a) (3 × 25) × 4  
(Use efficient strategies to solve)            

Non-
contextual  

Application, 
Explanation  
 

2 

9 Story problem about 3 tables of 2 plates of 5 
mangos. Solved by:  
(3  ×  2 )  ×  5  and 3 × (2  ×  5) 
 
 

Contextual Recognition 2 

DP  
  

7(b) 102 × 7  
(Use efficient strategies to solve)  

Non-
contextual  

Application, 
Explanation  
 

2 

7(c) 98 × 7 + 2 × 7  
(Use efficient strategies to solve)  

Non-
contextual  

Application, 
Explanation  
 

2 

8(a) 8 × 6 is solved by:  
3 × 6 = 18, 5 × 6 = 30, and 18 + 30 = 48 
 

Non-
contextual  

Explanation 2 

8(b) 8 × 6 is solved by:  
10 × 6 = 60, 2 × 6 =12, and 60 –12 = 48 
 

Non-
contextual  

Explanation 2 

10 Story problem about a playground perimeter 
with the length of118m and width of 82m. 
Solved by:  
2 × 118 + 2 × 82 and 2 × (118 + 82) 

Contextual Recognition 2 

Note. Full instrument is available in Appendix 1. 
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Data Coding and Procedures 

We first developed a coding rubric based on two authors’ collaborative coding of 

student responses from one US and one Chinese class. It was decided that subtasks would 

be assigned 2 points, resulting in a total of 10 points for each of the CP, AP, and DP. For 

an item that contains both evaluation/application and explanation [items 1, 3(a), 3(b), 

3(c), 6, 7(a), 7(b), and 7(c)], we assigned 1 point to evaluation/application and the other 1 

point to the explanation. The rest of the explanation/recognition tasks [4, 5, 8(a), 8(b), 

8(c), 9, and 10] were each assigned 2 points. Regardless of the assigned points, students’ 

explanation/recognition were classified into three levels: explicit, implicit and no/wrong, 

with full, half, or no score applied. For each item, we have supplemented the coding 

rubric with typical Chinese and US responses. Figure 2 illustrates the coding rubric for 

items 1 and 4. Note that we considered US students’ “turn around facts” as full-

understanding of the CP because some US textbooks call the CP the “turn-around 

property.” After the rubric was defined, we trained the other two coders who coded part 

of the US and Chinese data for reliability checking. Our reliability (the # of common 

codes/the # of total codes) for coding the US data was 94% and for coding the Chinese 

data was 97%.  
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 Item 1:  
Evaluation/Explanation Task of CP+  

(Non-contextual) 
 

If you know 7+5=12 does that help you solve 
5+7? Why?   

Item 4:  
Recognition Task of CP+  

(contextual) 
 

There are 8 boys and 5 girls in a swimming pool. 
How many children are there altogether? 
John solved it with: 8+5; Mary solved it with: 
5+8 
Both are correct, comparing the two strategies, 
what do you find?  
 

Full 
understanding 

Correct evaluation   (1) 
Explicit explanation (1) 
 
Chinese example: 

 
Yes. If one has learned the commutative 
property of addition, he knows a+b=b+a. In 
this case, It is 5+7=7+5. 
 
US example: 

 
 
 

Explicit recognition (2) 
 
Chinese example: 

 
I found that 8+5=5+8 and I discovered the 
commutative property of addition that we have 
learned. 
 
US example: 

 
Partial 
understanding  

Correct evaluation    (1) 
Implicit explanation (0.5) 
 
Chinese example: 

 
Answer: Yes, helpful, because 5+7=7+5 
 
US example: 

 
 

Implicit recognition (1) 
 
Chinese example: 

 
Answer: I found the two number sentences are 
the same, only the numbers are flipped.  
 

Chinese example:  

 
Answer: Comparing these two methods, I 
found Xiaoming’s computation first considered 
boys and then girls while Xiaofang first 
considered girls and then boys.  
 

US example: 

 

Correct evaluation        (1) 
No/wrong explanation  (0) 
 
Chinese example: 

 
Answer: Yes, it is correct.  

No 
Understanding  

No/Wrong evaluation     (0) 
No/wrong explanation    (0) 
 
Chinese example:  

 
Answer: Not helpful, because the two number 
sentences are the same.  
 
US example: 
No response at all.  

No/wrong recognition (0) 
 
Chinese example: 

 
Answer: They have the same answer. 
 

 
Figure 2. Example coding rubric for items 1 and 4. 
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Data Analysis 

All coded data was merged for analysis. To answer the first research question 

about student understanding of the CP, AP, and DP, we considered the third and fourth 

graders together and computed the overall pre- and post-test scores for each property 

within each country. Independent t-tests were conducted to determine the significance of 

differences between different groups. For all tests, type 1 error was controlled with 

Bonferoni post-hoc control. To obtain a clearer picture of students’ understanding by the 

end of grade 4 (by then, the Chinese students have formally learned all properties), we 

conducted a further inspection on grade 4 students’ post-tests in terms of the percentage 

of full, partial, and no understanding for each property. For each item, 2 points (full 

score) indicates a full understanding and “0 point” indicates no understanding. The other 

assigned scores (1.5 points and 1 point) indicate a partial understanding (see Figure 2 for 

an example). In these “partial” situations, students may have correctly evaluated a 

situation or applied a right property for the computation, but their explanations were 

implicit (score of 0.5) or even no/wrong (score of 0). Initially, we disagreed whether a 

correct evaluation/application with no/wrong explanation could be considered as “partial 

understanding.” However, after discussion we agreed that since evaluation, application, 

and explanations were all indicators of understanding, it was reasonable to consider such 

responses as partial understanding even if the explanations were missing or were 

incorrect.  

To answer the second research question about students’ understanding across 

contexts, student performance on contextual and non-contextual tasks involving the three 
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basic properties were analyzed. Cross-cultural differences were identified. Likewise, we 

further compared the fourth graders’ post-tests in terms of full, partial, and no 

understanding under different contexts (tasks). Typical student examples were identified 

and are reported to substantiate the findings. 

Finally, to answer the third research question about students’ understanding of the 

basic properties over time, we examined US and Chinese third and fourth graders’ 

responses to the pre- and post-tests from different angles by using matched pairs t-tests 

and independent t-tests. In addition, we examined the trends over several time spots in 

order to obtain a general sense of student understanding: the beginning and end of G3, 

and the beginning and end of G4. We are cautions of the limitation that the two student 

groups (grade 3 and grade 4) were different. Nevertheless, given that these students were 

selected from the same school district in each country, we believe these comparative 

results are at least to some degree insightful and informative.  

Results  

In this section, we report US and Chinese students’ performance in alignment 

with three research questions: (1) students’ understanding of the CP, AP, and DP in 

general, (2) students understanding of the basic properties in different contexts, and (3) 

students’ understanding of the basic properties over time.  

Student Understanding of the CP, AP, and DP  

Figure 3 indicates the overall mean difference for the CP, AP, and DP, treating all 

students across grades in each country as a single group. The mean score for each 

property was obtained by averaging the scores of the corresponding five items (see Table 

2). Even though students in both countries show improvement from the pre- to post-tests, 



	 18	

independent t-tests reveal that Chinese students performed better than US students for 

each property in both the pre- and the post-tests:  tCP-pre(200.78) = 8.8, p < 0.01; tCP-

pst(247.89) = 5.2, p < 0.01; tAP-pre(254.7) = 12.1, p < 0.01; tAP-pst(258.83) = 9.6, p < 0.01; 

tDP-pre(235.6) = 10.97, p < 0.01; tDP-pst(248.71) = 10.1, p < 0.01.  

 
 

Figure 3. US and Chinese students’ overall performance on CP, AP, and DP. 
 

 
As indicated by Figure 3, among the three properties, students in both countries 

performed better in the CP than they did with the AP and DP. In fact, the cross-cultural 

gap in student understanding was most evident in the AP and the DP. Many US students 

conflated the AP and the CP. For instance, students in Q5 were expected to identify the 

AP+  from the story situation. A typical US response was, “The strategy I found was both 

Mary and John used the commutative property. It is just like the turn-around fact.” 

Similar responses were found with Q9, a contextual task for the AP×, “… all they did 

was changed the numbers order. Just like the commutative property.” Such a conflation 

between the CP and the AP was rare with Chinese students. For the DP, many US 

students referred  to it as the “breaking down” strategy or simply mentioned the level of 
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easiness of a strategy. In Q8, when asked to explain Mary’s strategy (3 ´ 6 =18, 5 ´ 6 = 

30, 18 + 30 = 48) to solve 8 ´ 6, a student responded, “Mary’s strategy works because 

she is breaking down the problem to make it easier.” Similarly, a typical response to Q10 

was, “One is making it harder to do and the other one is doing it the simple.”  

One might notice that even though the Chinese students performed better in each 

property, the mean scores were relatively low (e.g., MCP-pst = 5.1, MAP-pst = 4.2, and MDP-

pst = 3.4; out of 10). This may be due to the fact that Chinese students do not formally 

learn these properties until fourth grade. As such, we further examined the US and 

Chinese fourth graders’ post-tests to obtain a truer picture about students’ understanding 

by the end of grade 4. Table 3 summarizes the fourth graders’ mean scores for the CP, 

AP, and DP in the post-tests of both countries.  

 
Table 3. US and Chinese students’ mean score of CP, AP, and DP at the end of grade 4.  
 

 CP  AP  DP 
 Mean SD  Mean SD  Mean SD 

US_G4Pst 3.7 1.3  1.5 1.5  0.9 1.3 
China_G4Pst 6.0 2.0  6.0 2.2  5.1 2.5 
 

Table 3 shows that by the end of grade 4, Chinese students have improved their 

understanding of the AP and the DP to almost the same level as their understanding of the 

CP. On average, Chinese fourth graders can answer about 60% (6 out of 10) AP tasks and 

51% (5 out of 10) DP tasks. In fact, there were 7 Chinese fourth graders who correctly 

answered 90-97% of all tasks. On the other hand, on average US fourth grade students 

correctly answered 15% of the AP and 9% of the DP tasks. Table 4 provides further 

information about the extent to which students demonstrated full, partial, and no 

understanding of each property through each relevant task.  
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Table 4. Students’ Levels of Understanding of CP, AP, and DP by the end of grade 4.  
  CP  AP  DP 
  + + + ´ ´  + + + ´ ´       
  Q1 Q3a Q4 Q6 Q8c  Q3b Q3c Q5 Q7a Q9  Q7b Q7c Q8a Q8b Q10 

 Under-
standing 

Eva, 
Exp 

App, 
Exp 

Rec Eva, 
Exp 

Exp  App, 
Exp 

App, 
Exp 

Rec App, 
Exp 

Rec  App, 
Exp 

App, 
Exp 

Exp Exp Rec 

US 
(n=65) 

Full  22% 0% 15% 2% 3%  0% 0% 0% 0% 0%  0% 0% 0% 0% 2% 

Partial  74% 25% 46% 75% 26%  28% 38% 42% 15% 29%  23% 6% 23% 20% 9% 

No  5% 75% 38% 23% 71%  72% 62% 58% 85% 71%  77% 94% 77% 80% 89% 

                   
China 
(n=83) 

Full  46% 16% 59% 16% 30%  22% 25% 49% 24% 51%  20% 43% 16% 16% 63% 

Partial  46% 81% 17% 82% 8%  75% 71% 22% 73% 16%  70% 51% 31% 33% 8% 

No  8% 4% 24% 2% 61%  4% 4% 29% 2% 34%  10% 6% 53% 52% 29% 

Note. Due to rounding totals of percentages may not equal 100%. 

As explained in Methods, students’ full understanding of a property refers to 

using correct terminology, a formula (e.g., a + b = b + a), or verbally stating a property at 

a general level (see Figure 2 for examples). In Table 4, there were about 22% of US 

students in Q1 and 15% in Q4 who demonstrated full understanding of CP+. However, 

students’ full understanding of the CP+ was inconsistent across tasks (e.g., no students in 

Q3 demonstrated understanding). Overall, much fewer US students (2%-3%) 

demonstrated full understanding of the CP×. With regards to the AP and the DP no US 

students demonstrated full understanding of these two properties across items (note: one 

student who correctly mentioned the DP in one task: Q10). In contrast, many more 

Chinese students demonstrated full understanding of all of these properties across all 

tasks (CP: 16%-59%; AP: 24%-51%; and DP: 16%-63%). In particular, while there were 

between 58%-85% of US students who had no understanding of the AP across tasks, only 

between 2%-34% Chinese students completely lacked this understanding.  

Student Understanding of the Basic Properties in Different Contexts 

Combining tasks for all three properties, Figure 4 shows the average percentages 

of the total points (22 points) that US and Chinese students earned. A first glance, these 
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data appear to reveal a similar pattern of understanding between contextual and non-

contextual tasks (see Figure 4) across grades and across countries. Independent t-tests, 

however, reveal a difference between US and Chinese students in all pre- and post-tests, 

except for the G3-post-test non-contextual tasks (see Figure 4). The standardized t-scores 

for non-contextual are: tG3-pre(79.1) = -6.6, p < 0.01; tG3-pst(62) = -0.45, p = 0.65; tG4-

pre(129.2) = -10.9, p < 0.01; tG4-pst(131.54) = -13.135, p < 0.01. The standardized t-scores 

for contextual tasks are: tG3-pre(92.8) = -5.1, p < 0.01; tG3-pst(94.5) = -3.13, p < 0.01; tG4-

pre(145.4) = -9.1, p < 0.01; tG4-pst(124.3) = -9.4, p < 0.01. 

 

Figure 4. Percentage of points students earned in different contexts. 
 

A closer inspection of the Chinese G3 non-contextual tasks revealed that some 

Chinese third graders in the post-tests computed tasks Q3 and Q7 [e.g., solving (3 × 25) × 

4] based on the order of operations. These students explained that one should first 

perform the computations inside the parenthesis. It seems that the third graders’ learning 

of the order of operations has perhaps overshadowed their intuitive/implicit knowledge of 

the basic properties. It is therefore encouraging to know that Chinese students formally 
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learn the basic properties in fourth grade. As indicated by Figure 4, once Chinese students 

have learned these properties, many of the Chinese fourth graders can flexibly use these 

properties to do computations (see Figure 4, G4post). Table 5 below provides further 

information about the US and Chinese students’ full, partial, and no understanding across 

contexts by the end of grade 4. 

Table 5. Fourth Graders’ Understanding of the Basic Property across Contexts 

  Non-contextual (22 points)  Contextual (8points) 

  Eva/Exp  App/Exp  Exp  Rec 

  Q1 
CP+ 

Q6 
CP´ 

 Q3a 
CP+ 

Q3b 
AP+ 

Q3c 
AP+ 

Q7a 
AP´ 

Q7b 
DP 

Q7c 
DP 

 Q8a 
DP 

Q8b 
DP 

Q8c 
CP´ 

 Q4 
CP+ 

Q5 
AP+ 

Q9 
AP´ 

Q10 
DP 

US 
(n=65) 

Full  22% 2%  0% 0% 0% 0% 0% 0%  0% 0% 3%  15% 0% 0% 2% 

Partial  74% 75%  25% 28% 38% 15% 23% 6%  23% 20% 26%  46% 42% 28% 9% 

No  5% 23%  75% 72% 62% 85% 77% 94%  77% 80% 71%  38% 58% 72% 89% 

                    
China 
(n=83) 

Full  46% 16%  16% 22% 25% 24% 20% 43%  16% 16% 30%  59% 49% 51% 63% 

Partial  46% 82%  81% 75% 71% 73% 70% 51%  31% 33% 8%  17% 22% 16% 8% 

No  8% 2%  4% 4% 4% 2% 10% 6%  53% 52% 61%  24% 29% 34% 29% 

 

 An inspection of Table 5 indicates an overall consistence in student understanding 

within each type of task. The cross-cultural differences were mostly evident with the non-

contextual application (explanation) tasks and the contextual recognition tasks, while the 

difference in evaluation tasks appeared to be minimal.  

Non-contextual –evaluation/explanation.  When students were asked whether 

knowing 7 + 5= 12 helped them solve 5 + 7 (Q1), about 22% of the US students 

demonstrated full understanding of the CP+. In contrast, when asked whether Mary can 

write  to solve 3 × 28 (Q6), only 2% of US students (n=1) fully understood this to 

be the CP×. In fact, to describe these two tasks, most of the US students used the term 

“turn-around facts.” The Chinese students on the other hand performed relatively better 



	 23	

on these two tasks with 46% (Q1) and 16% (Q6) demonstrating full understanding. Also 

supporting the notion that Chinese students demonstrated better understanding of the  

CP×, is the finding that 23% of US students but only 2% of Chinese students showed no 

understanding of Q6. Students’ partial understanding indicated by their responses, 

supports the finding that students have more sensitivity to CP+ but not to CP×. For 

instance, in addition to correct evaluation, there were 29 (out of 38) Chinese students and 

44 (out of 48) US students who provided partial explanations in Q1 (CP+); yet, only 6 

(out of 68) Chinese and 3 (out of 49) US students could do so in Q6 (CP×). The rest of 

the students either provided wrong or procedural explanations, “because the number with 

more digits should be placed above” (a Chinese example) and “because you always do 

big number first” (a US example).  

Non-contextual-application/explanation. Q3 and Q7 asked students to apply the 

basic properties to compute 2 + 7 + 8, (7 + 19) + 1, 2 + (98 + 17), (3 × 25) × 4, 102 × 7, 

and 98 × 7 + 2 × 7. We expected students to apply and explain the undergirding CP+, 

AP+, AP×, and the DP respectively (see Table 5). Regardless of the properties, none of 

the US students demonstrated full understanding on these tasks. In contrast, between 16% 

and 43% of the Chinese students explicitly mentioned the properties involved in their 

computations for these tasks (see Figure 5 for examples). Consistent with this 

observation, between 62% and 94% of US students, but only between 2% and10% of 

Chinese students demonstrated no understanding of the properties on these tasks (i.e., 

they simply followed the order of operations, see Figure 5). In other words, most of 

Chinese students were able to apply the basic properties and use efficient strategies to do 
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computations, while most of the US students conveyed no knowledge of how to compute 

these problems efficiently.   

Note that there were 6-38% US and 51-81% Chinese fourth graders who 

demonstrated partial understanding on these non-contextual application/explanation 

tasks. In these cases, all US students (except for one student in Q3) and most Chinese 

students correctly applied the properties to do computations, but their explanations only 

described procedures without explanation of the undergirding properties. For instance, 

students from both countries described that they first attempted to make  a 10 or a 100 out 

of the numbers. And, some US students described how they “break down” a number prior 

to multiplying (see Figure 5 for examples). Uniquely, there were a few Chinese students 

who provided partial explanations which shows better understanding than the procedural 

descriptions reported above (e.g., 10 students in Q3a, 4 in Q7c, and a few in other tasks). 

These partial explanations either referred to the surface features of the targeted property 

or referred to the meaning of operations within a task (see Figure 5). For instance, to 

explain their strategy for solving 98 × 7 + 2 × 7= (98 + 2) × 7 = 100 × 7 = 700, some 

Chinese students pointed out “combining 98 groups of 7 and 2 groups of 7.” These partial 

explanations were not observed with any of the US students. Note that US students 

particularly struggled with Q7c where the DP needs to be applied in an opposite direction 

from how this property is traditionally introduced to students in US (Ding & Li, 2010). 

Specifically, only 6% of US students could solve this problem, which is in sharp contrast 

to 94% of their Chinese counterparts.  
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Figure 5. Examples of students work with non-contextual application/explanation tasks.  

Common Responses between US and China 
No 
understanding 
 
 
 

Computation does not apply the properties. Explanation confirms the procedures. (A total of 0 point) 
Chinese examples: 

Translation: (a) from left to right. (b) and (c) first 
compute what is inside of the parenthesis.  
 

 
Translation: (a) 3 ´ 25 equals to 75, 75 ´ 4 equals to 
300. (b) 102 ´ 7 = 714, because 2 ´ 7 = 14, carrying 
1, then 0 is changed to 1, 1 ´ 7 = 7. Thus, it is 714. 
 

US examples: 

 
 
 

 

Partial 
understanding 
 
 
 

Correctly applies the properties to compute.  Explanation repeats the computation procedures such as making a 
10 or 100 first. (A total of 1 point)  
Chinese examples: 

Translation: (a) Because 8+2=10, 10 is tens. Tens is 
easier to compute than the other number. (b) Because 
19+1=20, Adding 20 is easier to compute than the 
other number. (c) Because 2+98=100, 100 is 
hundreds. If you add 98+17, that is be harder.  
 

 
Translation: (a) because 25 ´ 4 = 100 which is a 
whole number. (b) You can separate 102 as 100 and 2, 
and then multiplying by 7. (c) First compute 100 ´ 7 
and then add 2 ´ 7. 

US examples: 

 
 
 

 
 
 

Unique Responses of China 
Partial  
Understanding 
 
 
 

(1)  Correctly applies the properties to compute.  Explanation refers to surface features of a property (1.5 points) 

 

Translation 
(b) Because for addition, however you change, the 
answer will not be changed (expect for changing the 
sign). I removed the parenthesis and then added it to 
19+1. This makes computation easy. (c) Because for 
addition, however you add the parenthesis, the answer 
will not be changed. As such, I first removed the 
parenthesis and then added it to 2+98. 

(2) Correctly applies the properties to compute.  Explanation referring to meaning of an operation (1.5 points). 

 

Translation  
(b) because combines 102 groups of 7.  
(c) because it combines 98 groups of 7 and 2 groups 
of 7.  
 

Full 
understanding 
  
 

Correctly applies the properties to compute.  Explanation explicitly pointed out the properties involved (2 points). 

 
 

 

Translation  
(a) according to CP of addition, (b) and (c) according 
to AP of addition. 
 
 
Translation: (a) using AP of multiplication, (b) and 
(c) using DP. 
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Non-contextual - explanation. Q8 asked students to explain how the properties 

were used in solving 8 ´ 6, a modified task based on US curricula. In nature, this item is 

similar to Q3 and Q7 except for the application that is given. This task turned out to be 

challenging for Chinese students. For instance, only 16% demonstrated full 

understanding of the DP (8a, 8b) and only 30% fully explained the CP (8c, see Figure 6). 

Interestingly, even though this item was modified from US textbooks, no US students 

(0%) could explicitly point out the undergirding DP and CP. Some US students did refer 

to  the DP as the “breaking down strategy” and thus received partial credit. In fact, a 

much higher proportion of US students demonstrated no understanding (77%, 80%, and 

71% for Q8a, 8b, 8c, respectively) than did the Chinese students (53%, 52%, and 61%). 

 
(Note: The English names Mary, John, and Kate were replaced with popular Chinese names, Xiaohong, Xiaohua, and XiaoLi) 
 
Ex1 

 
Translation: Xiaohong (Mary) broke down 8 into 3 and 5 and used the DP of multiplication. XiaoHua 
(John) viewed 8 as 10-2 and then used DP of multiplication. XiaoLi (Kate) used the commutative 
property of multiplication.  
 
Ex2 

 
Translation:   
Hong (Mary): Used DP of multiplication. 8´ 6=(3+5)´6=3´6 + 5´6 = 18 + 30= 48.  
Hua (John): Used DP of multiplication. 8´ 6=(10-2) ´ 6=10´6 – 2´6 = 60 – 12= 48.  
Li (Kate): Used CP of multiplication. 8´ 6=6 ´ 8=48. 

 Figure 6. Typical Chinese student responses that show understanding of the DP. 
 

Contextual-recognition.  In this study, students were expected to “recognize” the 

basic properties (CP, AP, DP) illustrated by the story problem solutions (Q4, Q5, Q9, and 

Q10). As indicated by Table 5, Chinese students performed the best in this type of task in 
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a consistent manner (59%, 49%, 51%, 63%). This is in stark contrast to only 15% of the 

US students who recognized the CP and almost no students explicitly recognized the AP 

or the DP. In fact, there were about 37%, 58%, 71%, and 88% of US students who 

showed no understanding of CP+, AP+, AP´, and DP, respectively. An interesting 

observation lies in the differences between the US and Chinese students’ partial 

understanding of these properties. At this understanding level, even though both Chinese 

and US students often partially described the pattern observed with the number sentences 

(e.g., “the parenthesis moved place,” “the order of the parenthesis is changed”), across 

items, many Chinese students reasoned upon the two solutions based on the meaning of  

the story situations (see Figure 2, task 4). Note that Q9, the Mango problem, was a task 

taken from a US textbook (Ding, 2016). Chinese students’ tendency of making sense of 

the numerical solutions based on contextual support was not observed with the US 

students including their responses to Q9. Below are common Chinese examples of this 

reasoning strategy. 

(Q5, CP+) I found that Xiaoming first figured out the number of books on the 

first and second bookshelves while Xiaofang first figured out the books on the 

second and third bookshelves. They both get the same answer. 

(Q9, AP´) I found that Xiaoming first figured out the total of six plates and then 

the total of 30 mangos; Xiaofaing first figured out that there were 10 mangos on 

each table and then a total of 30 mangos. They got the same answer. 

(Q10, DP) I found that Xiaoming first computed the (total) length of the 

playground and then the (total) width of the playground; Xiaofaing first compute 
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“length + width” of the playground, and then find two “length + width.” Both 

answers are correct.  

Student Understanding of the Basic Properties Over Time 

To examine the progression of student learning, we analyzed student performance 

across grades. Being cognizant of the fact that the third and fourth grade students have 

inherently different mathematical ability levels, we analyzed the data from different 

angles. Figure 7 illustrates students’ average scores for each property in the pre- and post-

tests (10 points for each property; 30 points total). Matched pairs t-tests were conducted 

to examine the performance difference between pre- and post-tests in each grade and in 

each country. It was found that the Chinese third grade students did not have a difference 

in their pre- and post-tests of their total scores, t(83) = -.82, p =.79. This indicates that 

Chinese third graders did not have significant learning gains with the basic properties 

from the pre- to the post-tests. However, a matched pairs t-test did in fact show that 

Chinese fourth graders did perform differently on their pre- and post-tests, t(82) = 7.6, p 

< 0.01. This difference was found to be positive (post-test minus pre-test). For the US 

students, both the third and fourth graders scored significantly better on their post-tests 

than their pre-test, tG3(31) = 4.99, p G3 < 0.01; tG4(64) = 4.54, p G4 < 0.01. This indicates 

that the US third and fourth graders in this study both made progress over the course of 

corresponding grades.  
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Figure 7. US and Chinese students’ understanding of each property over time. 

Independent t-tests per each property were conducted to compare Chinese and US 

students’ performances at different grades. For the third graders, it was found that the 

Chinese students performed better than their US counterparts in each property on the pre-

tests: tCP-pre(53.6) = 7.1, p < 0.01; tAP-pre(71.5) = 4.7, p < 0.01; ; tDP-pre(109.4) = 5.1, p < 

0.01. However, there was no difference between the US and Chinese students’ 

understanding of the post-tests: tCP-post(51.7) = 0.62, p=0.54; tAP-post(85.6) = -1.63, p = 

0.11; tDP-post(85.5) = -2.44, p = 0.02.  This indicates that by the end of third grade, the US 

students in this study had eliminated the cultural differences that existed between all 

properties. When it comes to the fourth grade, the US fourth graders’ pre-test indicated a 

similar level of understanding as the third graders in their pre- but not post-tests. This 

may be due to sampling issue because the third and fourth graders were different 

students. This may also be due to fourth graders’ forgetting about what they had learned 

in the third grade. Regardless of the interpretations, the fourth graders did increase 

understanding in their post-test. However, in all pre- and in all post-tests, Chinese fourth 
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graders performed significantly better than the US counterparts in each property: tCP-

pre(144.19) = 6.29, p < 0.01; tAP-pre(142.87) = 12.5, p < 0.01; tDP-pre(112.86) = 11.5, p < 

0.01. tCP-pst(140.02) = 8.3, p < 0.01; tAP-pst(143.8) = 14.9, p < 0.01; ; tDP-pst(127.1) = 13.6, 

p < 0.01. 

Finally, we inspected the progress that students made from grade 3 to grade 4 

with regards to understanding these basic properties. Combining all three properties, the 

progress in the Chinese students was very evident after classroom instruction in the 

fourth grade (see Figure 7). In contrast, even though the US students formally learned all 

properties by grade 3 and relearned them during grade 4, they seemed to make little 

progress overall. In particular with the AP and the DP, the Chinese and US students’ 

understanding gap dramatically increased from the beginning of grade 3 to the end of 

grade 4. The initial gaps for AP and DP were 1.4 and 1.1 points respectively (2.8-1.4=1.4 

for AP; 1.3-0.2=1.1 for DP). However, by the end of the fourth grade, the gaps were 

increased to 4.5 and 4.2 points (6-1.5=4.5 for AP; 5.1-0.9 = 4.2 for DP). In other words, 

the US and Chinese participating students’ understanding gap was magnified 

approximately four-fold once the Chinese students had formally learned all properties.   

Discussion  

Deep initial learning matters in students’ development of structural understanding 

(Chi & VanLehn, 2012). As such, an emphasis on the understanding of basic properties 

of operations in elementary school is never overstated because these properties are 

foundations for future learning of more advanced topics such as algebra (Carpenter et al., 

2003; CCSSI, 2010; Schifter et al., 2008; Wu, 2009). This study is one of the very first to 

systematically examine students’ understanding of the basic properties from a cross-
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cultural perspective. Cross-cultural findings reveal that Chinese students demonstrated 

better understanding of all properties, even though their understanding does not reach an 

ideal level. These findings shed light on students’ learning challenges in both countries, 

especially those of US students. Our findings also suggest possible ways to develop 

students’ explicit understanding of these basic properties. 

Student Difficulties in Understanding the Basic Properties  

The cross-cultural difference between US and Chinese students’ understanding of 

the basic properties does not appear to be as large as other algebraic topics such as the 

equal sign (Li, Ding, Capraro, & Capraro, 2008). On the one hand, this suggests the basic 

properties are a harder early algebraic topic to be grasped. On the other hand, this 

suggests there is room for students in both countries to improve their learning. In fact, in 

comparison with their Chinese counterparts, the US students performed worse in all 

properties except for the CP+. This finding confirms the literature that the CP+ is 

relatively easy and students in early grades use it intensively (Baroody et al., 1983, Slavit, 

1998). However, when referring to students’ responses to the AP tasks, we found that US 

students do not have a solid understanding of the CP because they tended to 

overgeneralize this property to the AP related tasks. In other words, many US students 

conflated the CP and the AP. The conflation is consistent with prior report about 

undergraduate students’ confusion (Ding et al., 2013, Fletcher, 1972; Larsen, 2010; Tent, 

2006). Our finding suggests that students’ confusion between the CP and the AP may 

stem from their initial learning of these properties in elementary school. 

In addition to the above difficulty, US students’ understanding of the AP and the 

DP is disappointing. As reported, there were almost no US students who demonstrated 
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full understanding of both properties. Many students viewed the AP as merely the use of 

parenthesis and the DP as breaking-down a factor. Even with partial understanding, while 

94% of Chinese fourth graders could use the DP in the direction of ab + ac = a (b+c) to 

perform a computation, only 6% of US students could do so. Note that such a use of DP 

is in a opposite direction from a (b+c) = ab + ac, and appears frequently in the Chinese 

but not the US textbooks (Ding & Li, 2010). Given that an understanding of DP in an 

opposite direction is critical for solving algebraic equations such as x - 0.15x = 38.24 

(Koedinger et al., 2008), our finding about US students’ lack of ability to use DP in an 

opposite direction calls for attention. In the current study, different from the US students, 

more than half of the Chinese students demonstrated full understanding once they had 

learned these properties in fourth grade. In fact, there were seven Chinese fourth graders 

who scored above 90% for all properties across all tasks. This indicates that all of the 

basic properties are learnable if taught appropriately. In contrast, even though US 

students are repeatedly taught these properties in both grades 3 and 4, almost none of 

them could obtain full understanding. This calls for examination of what happens inside 

US classrooms. Further, an investigation into how teachers may transform textbooks into 

classroom instruction seems warranted. In fact, our finding about the increased 

understanding gap between US and China by the end of the fourth grade confirms this 

pressing need.  

Develop Student Understanding through varied Contexts  

Students in this study demonstrated different understanding in different contexts. 

Our findings reveal that Chinese students did much better in contextual tasks than their 

US counterparts. In fact, many Chinese students (especially before their formal learning 
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of the properties) could explain the meaning of each step of both solutions to make sense 

of them. This contextual-based implicit understanding will likely enable students to make 

sense of the abstract properties once they are formally introduced to students. Indeed, this 

is consistent with the Chinese textbook approach to instruction of these properties as 

reported by Ding and Li (2010). For instance, Chinese textbook lessons situate the initial 

teaching of the DP in a word problem context. Through solving a word problem in two 

different ways and making sense of both solutions, students are asked to compare the two 

number sentences and then pose additional similar examples. Based on these 

conversations, the curriculum then formally reveals the terminology and algebraic 

formula of the DP. This approach - from concrete to abstract and from specific to general 

– is consistent with the concreteness fading method (Goldstone & Son, 2005) that has 

been shown to effectively develop students’ mathematical understanding (Fyfe, McNeil, 

& Borias, 2015; Fyfe, McNeil, Son, & Goldstone, 2014; McNeil & Fyfe, 2012). In our 

study, Chinese students’ responses to the contextual items are in nature different from US 

students who tended to reason upon computation results rather than quantitative 

relationships. In fact, the use of concrete support to teach the basic properties has been 

emphasized by NRC (2001) with suggested methods for teaching each property. Possibly, 

a better path for developing US students’ initial understanding of the basic properties is to 

better use “concrete contexts” for the purpose of sense-making.  

Of course, students’ understanding of the basic properties demand varied contexts 

including both contextual and non-contextual ones. In this study, students in both 

countries demonstrated inconsistent understanding across tasks. For instance, even 

though many Chinese students can use the terminologies of the basic properties in 
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contextual tasks, they did not perform equally well with non-contextual tasks, especially 

the one from the US textbooks (explaining the strategies of 8´6). In fact, most Chinese 

students were able to apply the basic properties to solve problems with larger numbers 

(e.g., 102´7) and some even explicitly pointed out the underlying properties. Ironically, 

when facing an easier task with smaller numbers (8´6), more Chinese students failed to 

explain the involved properties. This may be due to the fact that Chinese students in 

second grade are expected to master the basic multiplication facts like 8´6 and they do 

not use “breaking up a factor” to find the answer in later grades. However, their lack of 

explanation of the given computation strategies may reflect a lack of completeness in 

their understanding about the DP. On the one hand, this confirms the importance of 

assessing students’ understanding using a variety of tasks. On the other hand, to develop 

students’ understanding, varied contexts and different types of tasks should be used. In 

fact, the US students performed poorly in almost all types of contexts, which indicates 

their lack of awareness and understanding of the basic properties. The US students were 

particularly weak in applying the properties to solve problems efficiently, which is in 

sharp contrast to the Chinese students. The cross-cultural differences indicate that 

students’ difficulties with certain types of problems are not universal. Likely, this 

understanding gap stems from the different types of problems and contexts involved in 

classroom instruction in each country. 

Develop Explicit Understanding through Spaced Learning  

In this study, the US students did not perform progressively better in 

understanding the basic properties over grades, which is quite different from the observed 

Chinese pattern. Are these different learning patterns caused by different curriculum 
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designs? For instance, the Chinese students learn the properties informally in grade 3 

while the US students have repeatedly learned both properties (AP, DP) in grades 3 and 

4. In fact, even though the US students have formally learned the properties in two 

different years, their explicit understanding of the AP and the DP by the end of grade 4 

was quite low. Since explicit understanding is a necessary level of understanding that 

enables transfer of learning to new context (Greeno & Riley, 1987), US students’ 

systematic lack of explicit understanding of these basic properties might be a 

fundamental reason of low performance in many international studies. In addition, we 

observed that many US third and fourth graders still called the CP a “turn-around fact.” 

Even though we coded this as “full understanding,” we question why these students do 

not know or use the actual terminology of the CP. It is understandable that when the CP 

is initially introduced to US first graders that  the vivid metaphor of “turn-around” may 

be helpful however, why haven’t students been introduced to the formal terminology of 

this property over time? Lacking the common terminology about this basic property, if 

not harmful, may not be helpful for students’ future learning of more advanced 

mathematics. The above questions call for future exploration of what is happening inside 

US classrooms when teaching the basic properties. 

Encouragingly, we notice that many US students possess implicit understanding 

of these properties. Even though this is demonstrated by often unclear and even 

inaccurate descriptions, such understanding can serve as a springboard for developing 

students’ explicit and full understanding (Ding & Auxter, 2017). In fact, prior research 

argues for an implicit to an explicit learning progression (Fyfe et al., 2015; Greeno & 

Riley, 1987; Pirie & Kieren, 1994; Sfard & Linchevski, 1994). However, students in this 
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study demonstrated difficulties with transforming implicit understanding of the properties 

into explicit understanding. Many US third and fourth graders only focused on superficial 

features such as “moving a parenthesis” or “breaking down a factor.” This seems to be 

consistent with Ding and Li’s (2010) textbook report where US textbooks presented 

many strategies but failed to help the teacher and students perceive and comprehend the 

underlying properties. In fact, US textbooks sometimes treat the properties as one of the 

computation strategies. Once such intended curriculum is delivered in classrooms, 

students might only learn procedures. This may explain why US students attended to 

strategies, but not the basic properties, even though they had repeatedly learned them 

across multiple grades.   

In this study, the Chinese students’ learning pattern is quite different. Although 

there is room for improvement, many Chinese students have shifted their understanding 

of the basic properties from implicit to explicit by the end of fourth grade. This suggests 

an exploration of Chinese formal lessons on the basic properties. Of course, Chinese 

students’ underperformance on the easy task 8 ´ 6 calls for re-thinking of how to deepen 

understanding by linking back to familiar knowledge of basic multiplication facts. In 

China, students learn and master these basic facts like 8 ´ 6 in second grade and during 

initial learning students are guided to use the DP-based strategies (similar to Q8); yet, the 

undergirding properties are not expected to be made explicit at that time. Therefore, when 

students formally learn the DP in the fourth grade, in addition to asking students to apply 

the DP to solve problems with large numbers, bringing their attention back to familiar 

knowledge may also be helpful for deepening their understanding. An exploration of US 

and Chinese lessons on both implicit and explicit teaching of the basic properties would 
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most likely be informative for detecting the causes of students’ different learning 

patterns. More specifically, future studies may explore what are the important 

instructional factors that contribute to the shift of student thinking from implicit to 

explicit? Furthermore, what exactly does spacing learning over time mean if one expects 

students to shift thinking from implicit to explicit?  

Conclusion, Limitation, and Implication. This study compares US and Chinese 

third and fourth graders’ understanding of the basic properties. Our findings call for an 

increased attention to the learning and teaching of the AP and the DP in both countries. It 

seems that explicit classroom instruction involving varied contexts, especially the 

contextual ones, is critical. Of course, we are cognizant of the limitations in this study. 

First, as previously acknowledged, the third and fourth graders are different groups of 

students which may affect the observed learning patterns over time. Second, the 

instruments were self-designed. Even though the various tasks had been piloted, reviewed 

and revised, perhaps some tasks may be further improved. Third, we only assessed 

students’ understanding through paper-and-pencil tests and did not conduct interviews to 

confirm our interpretations. Nevertheless, our cross-cultural findings reveal different 

learning patterns that may be otherwise neglected. These findings have practical 

implications for classroom practices, teacher education, and textbook design. For 

instance, textbooks and classroom instruction should treat the basic properties as 

mathematics principles that go beyond computation strategies, help students develop 

meaningful initial learning through contextual support, and use varied contexts to prompt 

students’ shift of understanding from implicit to explicit over time. With joint efforts on 
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improving current teaching and learning environments, students can be expected to 

develop better understanding of the basic properties.  
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Appendix 1. The Full Instrument 

Name ____________ Grade_______  School ___________ Teacher __________Date  
 
1. If you know 7 + 5= 12 does that help you solve 5 + 7?  Why?  

 
 

2. When solving 3 + 8, Mary’s strategy was to start with 8 and count 9, 10, 11. She ended up with her 
answer as 11. Is this strategy correct? Why? 

 
 
3. Please use efficient strategies to solve. Show your strategy and explain why it works.  

(a)   2 + 7 + 8 
 

(b) (7 + 19) + 1 (c) 2 + (98 + 17) 

Explain: Explain: Explain: 

 
4. There are 8 boys and 5 girls in a swimming pool. How many children are there altogether? 

John solved it with:   8 + 5 Mary solved it with:    5 + 8  
Both are correct. Compare the two strategies, what do you find?   

 
 
5. There is a bookcase with three shelves. The first shelf has 7 books, the second shelf has 8 books, and 

the third shelf has 5 books. How many books are there in all?  
John solved it with:   (7 + 8) + 5  Mary solved it with:   7 + (8 + 5) 

 Both are correct. Compare the two strategies, what do you find?   
 

6. When	solving	3	×	28,	Mary	wrote	it	as			 .			Is	this	order	correct?	Why?	

	

  
7. Please use efficient strategies to solve. Show your strategy and explain why it works. 

(a) (3 × 25) × 4                          (b) 102 × 7   
                      

(c) 98 × 7 + 2 × 7                                         

       Explain:  
 

  Explain:  
 

   Explain:  
 

8. To solve 8 × 6, 
(a) Mary thought: 

3 × 6 = 18, 
5 × 6 = 30,  
18 + 30 = 48 

(b) John thought:  
10 × 6 = 60, 
2 × 6 =12, 
60 –12 = 48 

(c) Kate thought: 
Since 6 × 8 = 48, 
          8 × 6 = 48 

Please explain why each strategy works.  
 
 
9. Mr. Levin's students are tasting foods grown in rainforests. He put 5 pieces of mango on each plate and 

put 2 plates on each table. There are 3 tables. How many pieces of mango are there? 
John solved it with:    ( 3  ×  2 )  ×  5   Mary solved it with:   3  ×�2  ×  5� 

 Both are correct. Compare the two strategies, what do you find?     
 
 
10. The length of a rectangular playground is 118 m and the width is 82 m. What is the perimeter?   

John solved it with� 2 × 118 + 2 × 82 Mary solved it with:   2 × (118 + 82) 
      Both are correct. Compare the two strategies, what do you find?
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