Membrane Thickening Aerobic Digestion Processes

0

2012 PNCWA Conference

Bryen Woo, PE

DIGESTION EXPERTISE

• WEFTEC 1997-2001

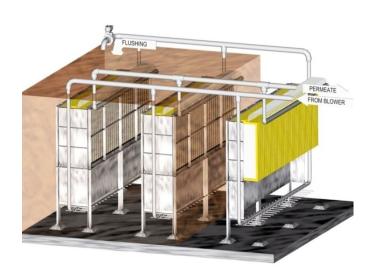
... recognized as the industry leader in aerobic digestion and thickening at high solids concentrations

Membrane Thickening Digestion

Aerobic digestion process using a Flat Plate Membrane Unit

Ideal for:

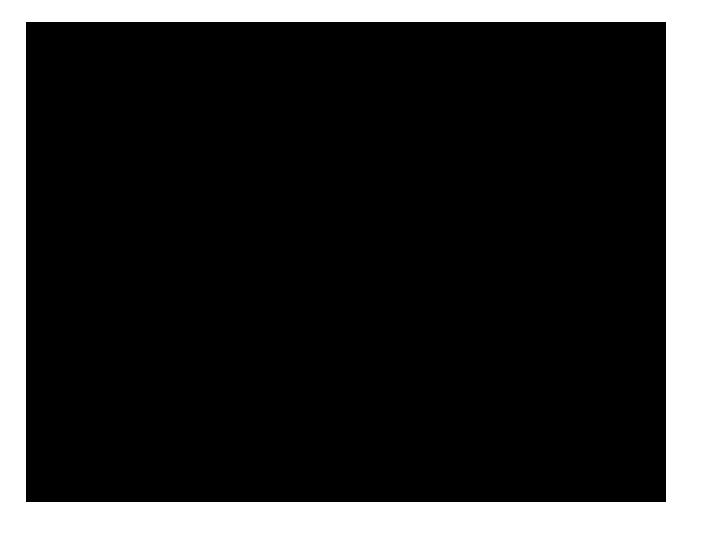
Facilities obligated to meet stringent nutrient discharge limits, specifically total nitrogen and phosphorus


Decentralized facilities or Reduced operations staff

Class B Applications

How Does Membrane Thickening Work?

• How Does Sludge Get Thickened With a Membrane?

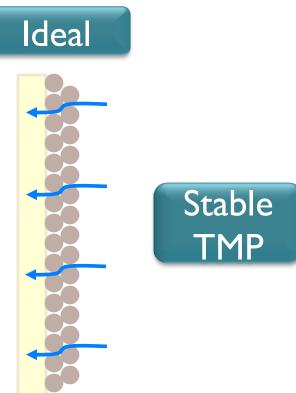


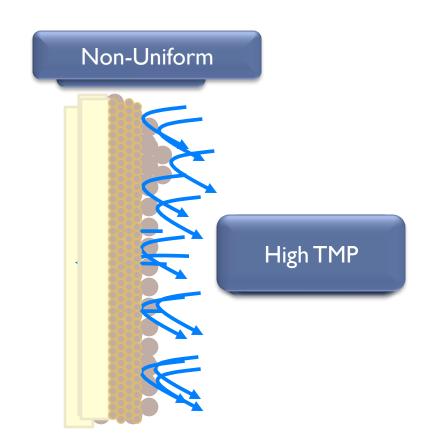
- A membrane thickening (MBT) submerged unit is used to create a physical barrier across which to extract clear water from sludge.
- Air diffuser incorporated on the lower part of the cassette.

Air Scouring

Membrane Thickener Key Ingredients

• Key Ingredients

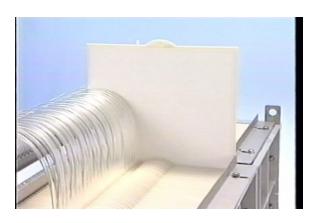

- Flux = Rate of filtration per unit area of membrane material. Since thickening is typically three times more than an MBR process, flux rates are significantly lower
 - MBR flux @ 20° C = 17.2 gfd vs MBT flux @ 20°C = 5.1 gfd
- **Transmembrane Pressure (TMP) =** The pressure across the membrane during filtration.
 - Typical TMP at design flux rates = 0.5 to 0.75 psig
 - Maximum TMP = 3.0 psig
- Air Scour = Air flow required to scour membranes to prevent fouling
- Biofilm = Complex dynamic of microorganisms. The interdependency between biological process conditions and membrane filtration performance through a biofilm is termed *BioHydraulics*


The Importance of Biofilm

- Biofilm Basics
 - YOU DON'T GET TO CHOOSE: All submerged membranes have a biofilm. As soon as filtration starts and biological solids are brought to the membrane surface, biofilm formation occurs.
 - Benefits
 - Biofilm serves as a secondary dynamic filter and represents a changing to filtrate flow.
 - Create a dense secondary membrane that can allow for enhanced nutrient removal and degradation of refractory organics.
 - Biofilm management is the key to operating a successful membrane thickening system.

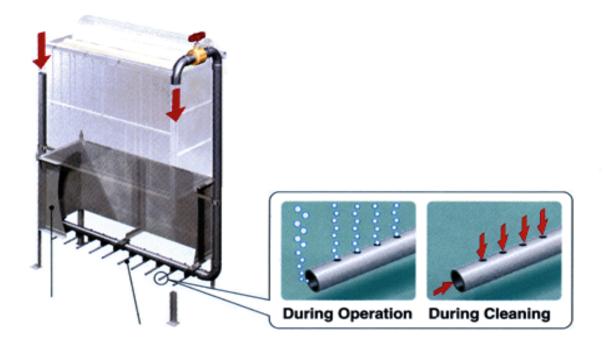
Biofilm Conditions

Biofilm Conditions



Membrane Thickener Facts

Membrane Thickener



• Flat Plate Membrane Thickener Facts

- PE membrane ultrasonically welded to ABS plate.
- Nominal pore size 0.4 micron, effective pore size 0.1 micron
- Effective air filtration area 8.6 ft² per cartridge
- MBT Design flux 5 gfd @ 20° C
- MBT Cross flow velocity is 2.25 ft / sec

Minimum Maintenance Requirements

- Automated Diffuser Cleaning, approximately 30 min/day
- Membrane Relax, approximately 1 min/10 min
- Chemical Cleaning, in-situ cleaning every 6 months, approximately 2 hour duration

NO NEED TO DRAIN TANKS OR TAKE OUT OF SERVICE FOR CHEMICAL CLEANING.

Operational Benefits of Membrane Thickening

1. Improved and Reliable Thickening

Operational Benefits of Membrane Thickening **SO**.....

Reduced Operator Attention

Economic Benefits of Membrane Thickening

2. Reduced Footprint

Digestion with Membrane Thickening

Traditional Digester

- Class B Stabilization in a Reduced volume
- Reduced Tanks Sizes and Ideal for Retrofits
- Less air requirements/energy usage.

Process Benefits of Membrane Thickening

3. Produces a High Quality Permeate that features:

- Minimal Total N and P without chemical addition
- Reuse quality that can be recycled to head of plant or sent to disinfection
- Protects effluent quality of BNR Process

Aerobic Digestion Processes vs Activated sludge processes

Aerobic Digestion is a <u>biological process</u> similar to Activated Sludge. Activated Sludge = Growth <u>Aerobic Digestion = Decay</u>

Aerobic Digestion Processes vs Activated sludge processes

Practical Approach To Help Understand the Difference!

Activated Sludge

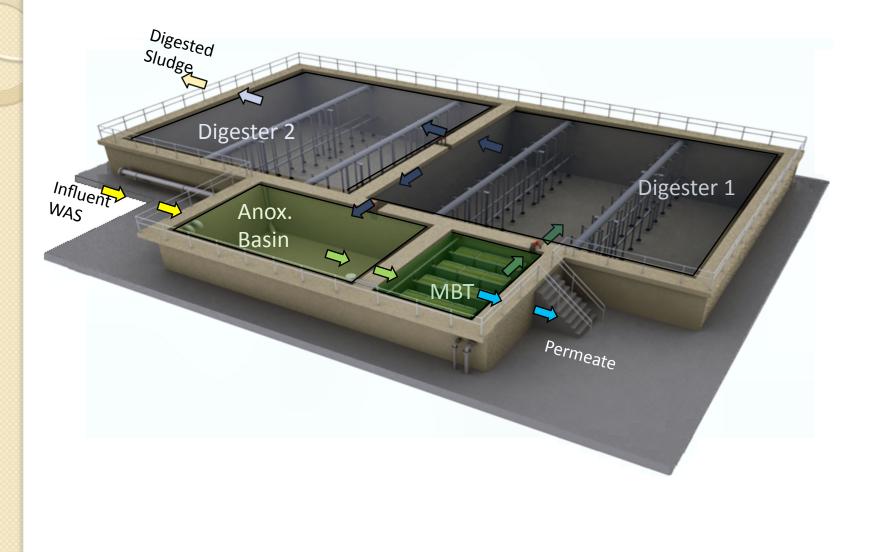
Aerobic Digestion

Aerobic Digestion Chemistry

1. Digestion: $C_5H_7NO_2 + 5O_2 = 4CO_2 + H_2O + (NH_4HCO_3)$ BiomassAmmonium Carbonate

<u>2. Nitrification:</u> $NH_4^+ + 2O_2 = H_2O + 2H^+ + NO_3^-$ **Ammonia Acid** Nitrate

3. Digestion with Nitrification: $C_5H_7NO_2 + 7O_2 = 5CO_2 + 3H_2O + HNO_3$ BiomassNitric Acid


Aerobic Digestion Chemistry

4. Digestion with Nitrification: $C_5H_7NO_2 + 7O_2 = 5CO_2 + 3H_2O + HNO_3$ BiomassNitric Acid

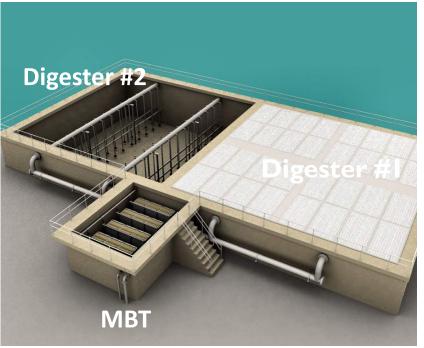
5. Denitrification: $C_5H_7NO_2 + 4NO_3^- + H_2O = NH_4^+ + 5HCO_3^- + 2N_2$ Biomass NitrateAmmoniaN GasAlkalinity

<u>6. Complete Nitrification / Denitrification:</u> $C_5H_7NO_2 + 5.75O_2 = 5CO_2 + 3.5H_2O + 0.5N_2$ Biomass N Gas

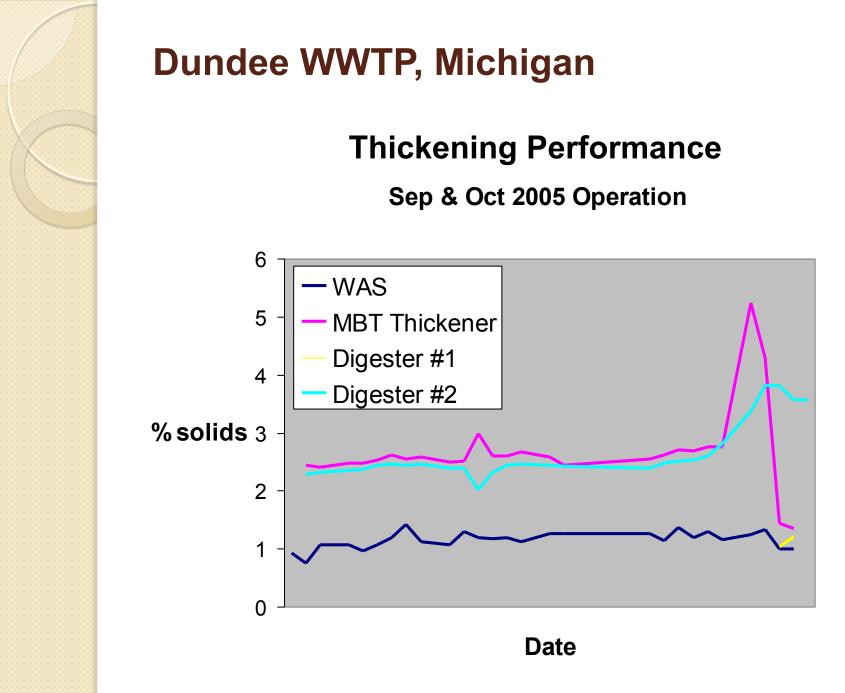
Membrane Thickening Aerobic Digestion Process

Case Studies

Case Studies Membrane Thickening Aerobic Digestion Processes



First U.S. Installation


Commissioned:2005Liquid Process:MBR (1.2 MGD)MBT Size:800 platesSolid Conc.:3%-5.25%Chemical Cleaning:2-3 / year (scheduled)

Engineer: Arcadis

• History:

- Objective was to reduce the hauling to 2 times per year. Tanks are designed to store 180 days at 3% solids.
- Operator friendly when compared to other systems.

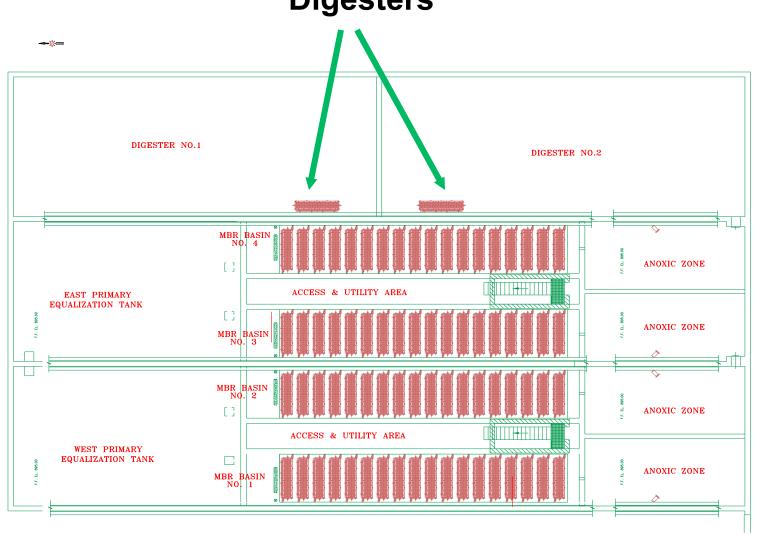
Sustainable Permeate Quality

BOD:1.12 mg/lTSS:2.00 mg/lNH₃-N:0.22 mg/lNO₃-N:0.03 mg/lTP:1.09 mg/l

Sludge Hauling Cost Summary

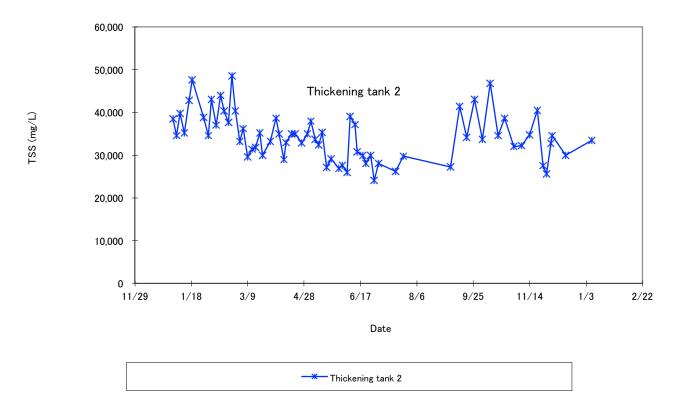
Years	Gallons Hauled	Dry Tons	Yearly Cost
2004 (0.6 MGD)	248,885 – Belt	22.67 – Belt	\$16,850 – Belt
	943,200 – Truck 1,192,100 - Total	99.39 – Truck 122.06 - Total	\$30,088 – Truck \$46,938 - Total
2005 (1.2 MGD)	572,400 – Belt	55.62 – Belt	\$39,135 – Belt
MBT operational for	432,000 – MBT	47.55 – MBT	\$14,623 – MBT
2 nd half of year only	1,004,400 - Total	103.17 - Total	\$53,758 – Total
2006	887,400 - MBT	130.48 – MBT*	\$32,739 - MBT

Belt press was needed for years 2003 -05 due to lack of storage space.


Sludge Hauling costs for first full year of operation of MBT in 2006 was \$32,739 which is cheaper than the last 5 years * Sludge Production minimized due to N/DN

Engineer: CT Consultants

Two Stage Membrane Thickening Aerobic Digestion Process



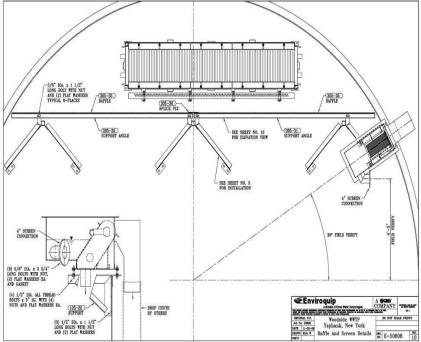
Membrane Units Installed Directly Inside the Digesters

Commissioned: Waste Type: Liquid Process: MBT Size: Solids Conc.: 2005 Municipal MBR (1.8 MGD) 400 plates 3.5%-5.5%

Membrane thickening at McFarland Creek WWTP was able to thicken up to 5% solids.

McFarland Creek WWTP Improved Dewatering Operations

Annual BFP run time w/o PAD®-K8,736 hoursAnnual BFP run time with PAD®-K3,744 hoursReduction BFP run time57.14%

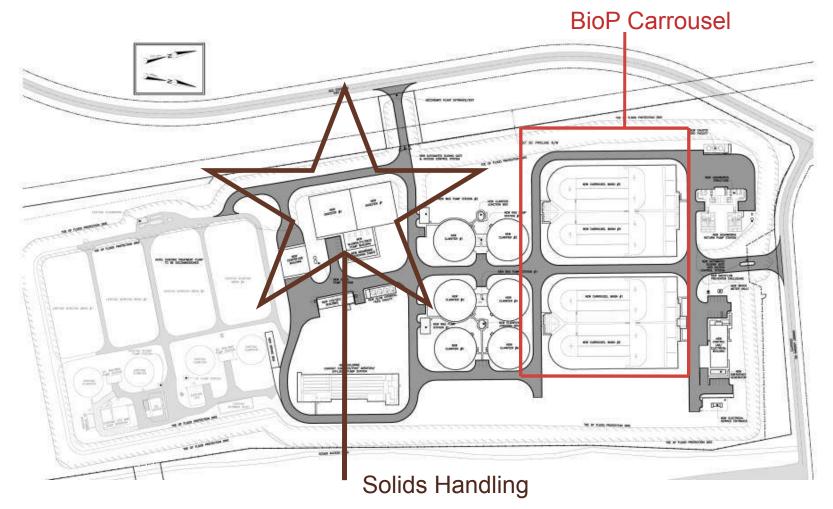

MORE EFFICIENCY MEANS BETTER RESULTS.....

41% Reduction in CUBIC YARDS PRODUCED
36.5% Reduction in DRY TONS PRODUCED
41% Cost Reduction in POLYMER
41% Cost Saving in SLUDGE DISPOSAL

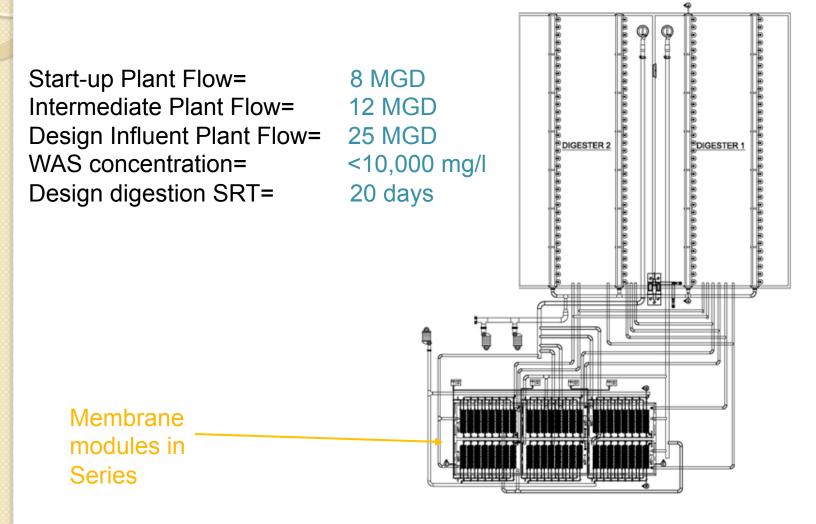
Woodside WWTP, New York

Biological Process: Concentric Circular Plant GOAL: Reduce Number of Sludge Hauling Trips

Less gallons to haul per year: Sludge hauling reduction 625,783 gal. Savings per year \$59,449 ROI of 2.57 years based solely on hauling


Engineer: American Engineering Consultants Membrane Thickening Digestion Following a Carrousel Biological Process: Coming To A Theatre Near You

Current Site 8 MGD Cap. To be expanded to 25 MGD


Membrane Thickening Digestion selected to protect BioP Carrousel Ditch

Plant Layout at 25 MGD

Cayce WWTP Carrousel MD Process

Benefits

- Eliminated construction of thickener building.
- Reduced number and size of digesters by operating at 4% TS.
- Provided flexibility for a gradual flow increase.
- Reduced O&M costs by eliminating use of polymer for thickening.
- Reduced O&M costs due to less aeration / energy needs.
- Reduced O&M costs due to less supervision needs.

SAFEGUARD HIGH QUALITY BIO-P CARROUSEL EFFLUENT

Conclusions

MEMBRANE THICKENING AEROBIC DIGESTION PROCESSES BRING:

ECONOMIC VALUE:

- Reduced Tank Sizes and Ideal for Retrofits
- Savings on Energy, Disposal, Chemical, and Concrete Costs

PROCESS VALUE:

- Class B Stabilization
- Reuse Quality Permeate with Low Total N and P
- Odor Control
- Increased Solids Storage Capacity in existing or new tanks

OPERATIONAL VALUE:

- Reduced Operator Attention
- Thickening Without Polymers
- No Attention to Decanting

Any Questions?

ANY QUESTIONS?

Thank You THAT'S ALL FOLKS!

Bryen Woo, PE Aerobic Digestion/Aeration Product Manager 512-652-5818 Bryen.woo@ovivowater.com