Memory Diagram Examples

p-2o0f 12

Question C: Memory Diagram <16 marks>

Consider the following app:

import java.lang.Math;

public class MyApp {

public static void main(String[] args) {

3

double val;
val = Math.PI;

C-1.

[2 marks] Was the import statement on the first line necessary? Explain why or why
not.

the import statement was not strictly necessary; the app would have compiled even
if the import statement had been omitted.

the javac compiler automatically assumes an import of the package java.lang. This
holds for java.lang only and not any other package.

. [2 marks] When you are asked to draw a memory diagram, what is the diagram

actually representing, in terms of the real-world. Be specific.

the memory diagram is a visualization of the heap space that is allocated to the java
virtual machine (JVM) at run time.

The heap space is an actual portion of working memory of the computer on which
the JVM is running (working memory is the RAM part of the computer, the memory
that is volatile —e.g., when you turn the power off, the contents are lost. It is not the
hard drive, which is a storage device).

If you look at more detailed documentation, such as the wikipedia entry for the
JVM, you will see a lot of additional detail (like different areas within the heap for
different types of entities, such as objects vs class definitions). This is interesting,
but for the purposes of this course we will not cover that level of detail.

p-3 of 12

C-3.

C-4.

[2 marks] In the case of the app above, how does the virtual machine know that the
class MyApp will require the services of the class Math at run time?

when MyApp is compiled, the resulting byte code will contain the specification of
which classes, if any, are required during run time. The class Math will be listed
there.

The byte code for the class Math, in turn, will contain a specification of all of the
classes which it needs at run time.

For any class that is needed at run-time, the byte code must be available to the JVM
(i.e., it must be able to find the corresponding *.class file on the hard drive. This
is one of the reasons the JVM has the class path, so the JVM knows where to look to
find the classes that are required during run time. The class path is different than the
build path. The build path is used by the compiler. The compiler uses the build path in
order to know where to look in order to find the classes that are required in order to
complete the compilation process.

[2 marks] Give a general overview of what happens in the JVM upon invocation of
an app.

First, the class loader loads the class definition (the bytecode) of the class that con-
tains the main method MyApp. Next it loads any and all class definitions (byte code)
of classes that are used by the app (strictly speaking, some classes are loaded on de-
mand, but this complicates things and we will assume for the purposes of this course
that all of the required classes are loaded at the outset). At this point, the job of the
class loader is done.

Next, the JVM will look to see what byte code instructions it needs to invoke. In
the case of the example here, this byte code will be found in the byte code that
corresponds to the main method of MyApp. The JVM will invoke the byte code cor-
responding to the first statement of the main method. Then it will invoke the byte
code corresponding to the second line of the main method. And so on... until there
are no further statements to be invoked. Then the execution portion of the JVM will
complete.

If, during a statement, there is some value that is derived, then the JVM makes use
of a special area of workspace to temporarily hold the value. If there are variable
declarations during run time, the JVM uses the symbol manager (SM) to keep track
of them.

Last, there is a component that cleans up and shuts everything down. Then the JVM
terminates.

p-4of 12
C-5. [2 marks] Draw a memory diagram to show the contents of memory upon invoca-
tion of the program and up to but not including line 6 of the example.

san | class definition of
MyApp

Symbol Table
Var Name Type Location

1000 | class definition of
Math

These memory
addresses are made
up - we don't know
exactly where in the
heap these class
definitions are placed.
But for the purposes of
this exercise, the main
point is to show that
the class definitions
need to be loaded
somewhere.

The symbol table is
empty at the outset -
no variables have been
declared (yet)

p-5of 12

C-6. [2 marks] Draw a memory diagram to show the contents of memory upon invoca-
tion of the program and up to and including line 6 of the example.

Step 2:

SM says | will use the
memaory blocks starting
at location 2000 in the
heap for this. | need 8
blocks, since the type
of this variable is
double (and double
means 8 blocks). This
spot is ok because |
have 8§ contiguous
blocks.

(This memory address
is made up - we don't
know exactly where in
the heap the SM will
use, but for the
purposes of this
exercise, the main
point is to show that it
uses a set of blocks
somewhere.)

500

1000

class definition of
MyApp

class definition of
Math

Step3: (in green to distinguish it
from the other steps)

SM puts the information about the
variable wal in the symbol table

Symbol Table \'L |
Var Name Type Ln-catlc:riJ
val double | 2000
Step1:

JVM says to SM, | need to declare a
variable of type double and it is called
val.

SM says ok, | will locate a place in
the heap space, | will mark it off as
being in use (so nothing came come
along later and use it also) and place
that information in my symbol table

p- 6 of 12

C-7. [2 marks] Draw a memory diagram to show the contents of memory upon invoca-
tion of the program and up to and including line 7 of the example.

Step 1:

Evaluate the RHS of the
assignment statement.
This entails abtaining the
value that is stored by
Math.PT

500

1000
The J¥YM finds this value

inside the class definition
of Math.

The value looks

something like this:
00110010
10110110
11111000
00110010
00110010
10110110
11111000
00110010

val == Z000
2001

2007

It is 8 bytes large and
some sequence of 0's
and 1's that gets
deciphered according to
the IEEE standard for
doubles to the decimal
value of
3.141592653589793.
If the value were of type
long, it would also be 8
bytes but it would be
deciphered according to
the two's complement
standard. The same 8
bytes of 0's and 1's would
instead correspond to a
different decimal number
{albeit an integer number)

Step 2:

class definition of
MyApp

Check type compatibility - both LHS
and RHS are double, so the
assignment can be done.

class definition of
Math

3.141592653585753

Symbol Table
Var Name Type Location
wal double 2000

-
\

Step 3:

Do the assignment.

JVYM finds that the location of val is
2000, so it knows to place the value
3.141592653589793 at that
location.

(Actually, the 8 bytes of 0's and 1's
get written here, but we'll write the
decimal counterpart here for the sake
of readability)

