
Memory Management in the Java
HotSpot™ Virtual Machine

Sun Microsystems
April 2006

Table of Contents
1 Introduction . 3
2 Explicit vs. Automatic Memory Management . 4
3 Garbage Collection Concepts . 4

Desirable Garbage Collector Characteristics . 4
Design Choices . 5
Performance Metrics. 5
Generational Collection . 6

4 Garbage Collectors in the J2SE 5.0 HotSpot JVM . 7
Hotspot Generations . 7
Garbage Collection Types . 7
Fast Allocation . 8
Serial Collector . 8
Parallel Collector. 9
Parallel Compacting Collector. 10
Concurrent Mark-Sweep (CMS) Collector . 11

5 Ergonomics -- Automatic Selections and Behavior Tuning . 13
Automatic Selection of Collector, Heap Sizes, and Virtual Machine . 13
Behavior-based Parallel Collector Tuning . 14

6 Recommendations . 15
When to Select a Different Garbage Collector. 15
Heap Sizing. 15
Tuning Strategy for the Parallel Collector . 16
What to Do about OutOfMemoryError . 16

7 Tools to Evaluate Garbage Collection Performance . 17
–XX:+PrintGCDetails Command Line Option . 17
–XX:+PrintGCTimeStamps Command Line Option . 17
jmap . 17
jstat. 17
HPROF: Heap Profiler . 18
HAT: Heap Analysis Tool . 18

8 Key Options Related to Garbage Collection . 18
9 For More Information . 20

Sun Microsystems, Inc.2 Table of Contents

1 Introduction
One strength of the Java™ 2 Platform, Standard Edition (J2SE™) is that it performs automatic memory
management, thereby shielding the developer from the complexity of explicit memory management.

This paper provides a broad overview of memory management in the Java HotSpot virtual machine (JVM) in
Sun’s J2SE 5.0 release. It describes the garbage collectors available to perform the memory management, and
gives some advice regarding choosing and configuring a collector and setting sizes for the memory areas on
which the collector operates. It also serves as a resource, listing some of the most commonly-used options that
affect garbage collector behavior and providing numerous links to more detailed documentation.

Section 2 is for readers who are new to the concept of automatic memory management. It has a brief discussion
of the benefits of such management versus requiring programmers to explicitly deallocate space for data.
Section 3 then presents an overview of general garbage collection concepts, design choices, and performance
metrics. It also introduces a commonly-used organization of memory into different areas called generations
based on the expected lifetimes of objects. This separation into generations has proven effective at reducing
garbage collection pause times and overall costs in a wide range of applications.

The rest of the paper provides information specific to the HotSpot JVM. Section 4 describes the four garbage
collectors that are available, including one that is new in J2SE 5.0 update 6, and documents the generational
memory organization they all utilize. For each collector, Section 4 summarizes the types of collection algorithms
used and specifies when it would be appropriate to choose that collector.

Section 5 describes a technique new in the J2SE 5.0 release that combines (1) automatic selection of garbage
collector, heap sizes, and HotSpot JVM (client or server) based on the platform and operating system on which
the application is running, and (2) dynamic garbage collection tuning based on user-specified desired behavior.
This technique is referred to as ergonomics.

Section 6 provides recommendations for selecting and configuring a garbage collector. It also provides some
advice as to what to do about OutOfMemoryErrors. Section 7 briefly describes some of the tools that can be
utilized to evaluate garbage collection performance, and Section 8 lists the most commonly-used command line
options that relate to garbage collector selection and behavior. Finally, Section 9 supplies links to more detailed
documentation for the various topics covered by this paper.

2 Explicit vs. Automatic Memory Management
Memory management is the process of recognizing when allocated objects are no longer needed, deallocating
(freeing) the memory used by such objects, and making it available for subsequent allocations. In some
programming languages, memory management is the programmer’s responsibility. The complexity of that task
leads to many common errors that can cause unexpected or erroneous program behavior and crashes. As a
result, a large proportion of developer time is often spent debugging and trying to correct such errors.

One problem that often occurs in programs with explicit memory management is dangling references. It is
possible to deallocate the space used by an object to which some other object still has a reference. If the object
with that (dangling) reference tries to access the original object, but the space has been reallocated to a new
object, the result is unpredictable and not what was intended.

Another common problem with explicit memory management is space leaks. These leaks occur when memory is
allocated and no longer referenced but is not released. For example, if you intend to free the space utilized by a
linked list but you make the mistake of just deallocating the first element of the list, the remaining list elements
are no longer referenced but they go out of the program’s reach and can neither be used nor recovered. If
enough leaks occur, they can keep consuming memory until all available memory is exhausted.

An alternate approach to memory management that is now commonly utilized, especially by most modern
object-oriented languages, is automatic management by a program called a garbage collector. Automatic
memory management enables increased abstraction of interfaces and more reliable code.

Sun Microsystems, Inc.3 Introduction

Garbage collection avoids the dangling reference problem, because an object that is still referenced somewhere
will never be garbage collected and so will not be considered free. Garbage collection also solves the space leak
problem described above since it automatically frees all memory no longer referenced.

3 Garbage Collection Concepts
A garbage collector is responsible for

• allocating memory
• ensuring that any referenced objects remain in memory, and
• recovering memory used by objects that are no longer reachable from references in executing code.

Objects that are referenced are said to be live. Objects that are no longer referenced are considered dead and are
termed garbage. The process of finding and freeing (also known as reclaiming) the space used by these objects
is known as garbage collection.

Garbage collection solves many, but not all, memory allocation problems. You could, for example, create objects
indefinitely and continue referencing them until there is no more memory available. Garbage collection is also a
complex task taking time and resources of its own.

The precise algorithm used to organize memory and allocate and deallocate space is handled by the garbage
collector and hidden from the programmer. Space is commonly allocated from a large pool of memory referred
to as the heap.

The timing of garbage collection is up to the garbage collector. Typically, the entire heap or a subpart of it is
collected either when it fills up or when it reaches a threshold percentage of occupancy.

The task of fulfilling an allocation request, which involves finding a block of unused memory of a certain size in
the heap, is a difficult one. The main problem for most dynamic memory allocation algorithms is to avoid
fragmentation (see below), while keeping both allocation and deallocation efficient.

Desirable Garbage Collector Characteristics
A garbage collector must be both safe and comprehensive. That is, live data must never be erroneously freed,
and garbage should not remain unclaimed for more than a small number of collection cycles.

It is also desirable that a garbage collector operate efficiently, without introducing long pauses during which the
application is not running. However, as with most computer-related systems, there are often trade-offs between
time, space, and frequency. For example, if a heap size is small, collection will be fast but the heap will fill up
more quickly, thus requiring more frequent collections. Conversely, a large heap will take longer to fill up and
thus collections will be less frequent, but they may take longer.

Another desirable garbage collector characteristic is the limitation of fragmentation. When the memory for
garbage objects is freed, the free space may appear in small chunks in various areas such that there might not
be enough space in any one contiguous area to be used for allocation of a large object. One approach to
eliminating fragmentation is called compaction, discussed among the various garbage collector design choices
below.

Scalability is also important. Allocation should not become a scalability bottleneck for multithreaded
applications on multiprocessor systems, and collection should also not be such a bottleneck.

Sun Microsystems, Inc.4 Garbage Collection

Design Choices
A number of choices must be made when designing or selecting a garbage collection algorithm:

• Serial versus Parallel
With serial collection, only one thing happens at a time. For example, even when multiple CPUs are
available, only one is utilized to perform the collection. When parallel collection is used, the task of
garbage collection is split into parts and those subparts are executed simultaneously, on different
CPUs. The simultaneous operation enables the collection to be done more quickly, at the expense of
some additional complexity and potential fragmentation.

• Concurrent versus Stop-the-world
When stop-the-world garbage collection is performed, execution of the application is completely
suspended during the collection. Alternatively, one or more garbage collection tasks can be executed
concurrently, that is, simultaneously, with the application. Typically, a concurrent garbage collector
does most of its work concurrently, but may also occasionally have to do a few short stop-the-world
pauses. Stop-the-world garbage collection is simpler than concurrent collection, since the heap is
frozen and objects are not changing during the collection. Its disadvantage is that it may be
undesirable for some applications to be paused. Correspondingly, the pause times are shorter when
garbage collection is done concurrently, but the collector must take extra care, as it is operating over
objects that might be updated at the same time by the application. This adds some overhead to
concurrent collectors that affects performance and requires a larger heap size.

• Compacting versus Non-compacting versus Copying
After a garbage collector has determined which objects in memory are live and which are garbage, it
can compact the memory, moving all the live objects together and completely reclaiming the
remaining memory. After compaction, it is easy and fast to allocate a new object at the first free
location. A simple pointer can be utilized to keep track of the next location available for object
allocation. In contrast with a compacting collector, a non-compacting collector releases the space
utilized by garbage objects in-place, i.e., it does not move all live objects to create a large reclaimed
region in the same way a compacting collector does. The benefit is faster completion of garbage
collection, but the drawback is potential fragmentation. In general, it is more expensive to allocate
from a heap with in-place deallocation than from a compacted heap. It may be necessary to search the
heap for a contiguous area of memory sufficiently large to accommodate the new object. A third
alternative is a copying collector, which copies (or evacuates) live objects to a different memory area.
The benefit is that the source area can then be considered empty and available for fast and easy
subsequent allocations, but the drawback is the additional time required for copying and the extra
space that may be required.

Performance Metrics
Several metrics are utilized to evaluate garbage collector performance, including:

• Throughput—the percentage of total time not spent in garbage collection, considered over long
periods of time.

• Garbage collection overhead—the inverse of throughput, that is, the percentage of total time spent in
garbage collection.

• Pause time—the length of time during which application execution is stopped while garbage
collection is occurring.

• Frequency of collection—how often collection occurs, relative to application execution.

• Footprint—a measure of size, such as heap size.

• Promptness—the time between when an object becomes garbage and when the memory becomes
available.

Sun Microsystems, Inc.5 Garbage Collection

An interactive application might require low pause times, whereas overall execution time is more important to a
non-interactive one. A real-time application would demand small upper bounds on both garbage collection
pauses and the proportion of time spent in the collector in any period. A small footprint might be the main
concern of an application running in a small personal computer or embedded system.

Generational Collection
When a technique called generational collection is used, memory is divided into generations, that is, separate
pools holding objects of different ages. For example, the most widely-used configuration has two generations:
one for young objects and one for old objects.

Different algorithms can be used to perform garbage collection in the different generations, each algorithm
optimized based on commonly observed characteristics for that particular generation. Generational garbage
collection exploits the following observations, known as the weak generational hypothesis, regarding
applications written in several programming languages, including the Java programming language:

• Most allocated objects are not referenced (considered live) for long, that is, they die young.
• Few references from older to younger objects exist.

Young generation collections occur relatively frequently and are efficient and fast because the young generation
space is usually small and likely to contain a lot of objects that are no longer referenced.

Objects that survive some number of young generation collections are eventually promoted, or tenured, to the
old generation. See Figure 1. This generation is typically larger than the young generation and its occupancy
grows more slowly. As a result, old generation collections are infrequent, but take significantly longer to
complete.

Figure 1. Generational garbage collection

The garbage collection algorithm chosen for a young generation typically puts a premium on speed, since young
generation collections are frequent. On the other hand, the old generation is typically managed by an algorithm
that is more space efficient, because the old generation takes up most of the heap and old generation
algorithms have to work well with low garbage densities.

Sun Microsystems, Inc.6 Garbage Collection

Allocation

Promotion

Young Generation

Old Generation

4 Garbage Collectors in the J2SE 5.0 HotSpot JVM
The Java HotSpot virtual machine includes four garbage collectors as of J2SE 5.0 update 6. All the collectors are
generational. This section describes the generations and the types of collections, and discusses why object
allocations are often fast and efficient. It then provides detailed information about each collector.

HotSpot Generations
Memory in the Java HotSpot virtual machine is organized into three generations: a young generation, an old
generation, and a permanent generation. Most objects are initially allocated in the young generation. The old
generation contains objects that have survived some number of young generation collections, as well as some
large objects that may be allocated directly in the old generation. The permanent generation holds objects that
the JVM finds convenient to have the garbage collector manage, such as objects describing classes and methods,
as well as the classes and methods themselves.

The young generation consists of an area called Eden plus two smaller survivor spaces, as shown in Figure 2.
Most objects are initially allocated in Eden. (As mentioned, a few large objects may be allocated directly in the
old generation.) The survivor spaces hold objects that have survived at least one young generation collection
and have thus been given additional chances to die before being considered “old enough” to be promoted to the
old generation. At any given time, one of the survivor spaces (labeled From in the figure) holds such objects,
while the other is empty and remains unused until the next collection.

Figure 2. Young generation memory areas

Garbage Collection Types
When the young generation fills up, a young generation collection (sometimes referred to as a minor collection)
of just that generation is performed. When the old or permanent generation fills up, what is known as a full
collection (sometimes referred to as a major collection) is typically done. That is, all generations are collected.
Commonly, the young generation is collected first, using the collection algorithm designed specifically for that
generation, because it is usually the most efficient algorithm for identifying garbage in the young generation.
Then what is referred to below as the old generation collection algorithm for a given collector is run on both the
old and permanent generations. If compaction occurs, each generation is compacted separately.

Sometimes the old generation is too full to accept all the objects that would be likely to be promoted from the
young generation to the old generation if the young generation was collected first. In that case, for all but the
CMS collector, the young generation collection algorithm is not run. Instead, the old generation collection
algorithm is used on the entire heap. (The CMS old generation algorithm is a special case because it cannot
collect the young generation.)

Sun Microsystems, Inc.7 Garbage Collectors in the J2SE 5.0 HotSpot JVM

Young Generation

Eden

From To

empty Survivor Spaces

Fast Allocation
As you will see from the garbage collector descriptions below, in many cases there are large contiguous blocks
of memory available from which to allocate objects. Allocations from such blocks are efficient, using a simple
bump-the-pointer technique. That is, the end of the previously allocated object is always kept track of. When a
new allocation request needs to be satisfied, all that needs to be done is to check whether the object will fit in
the remaining part of the generation and, if so, to update the pointer and initialize the object.

For multithreaded applications, allocation operations need to be multithread-safe. If global locks were used to
ensure this, then allocation into a generation would become a bottleneck and degrade performance. Instead,
the HotSpot JVM has adopted a technique called Thread-Local Allocation Buffers (TLABs). This improves
multithreaded allocation throughput by giving each thread its own buffer (i.e., a small portion of the
generation) from which to allocate. Since only one thread can be allocating into each TLAB, allocation can take
place quickly by utilizing the bump-the-pointer technique, without requiring any locking. Only infrequently,
when a thread fills up its TLAB and needs to get a new one, must synchronization be utilized. Several techniques
to minimize space wastage due to the use of TLABs are employed. For example, TLABs are sized by the allocator
to waste less than 1% of Eden, on average. The combination of the use of TLABs and linear allocations using the
bump-the-pointer technique enables each allocation to be efficient, only requiring around 10 native instructions.

Serial Collector
With the serial collector, both young and old collections are done serially (using a single CPU), in a stop-the-
world fashion. That is, application execution is halted while collection is taking place.

Young Generation Collection Using the Serial Collector
Figure 3 illustrates the operation of a young generation collection using the serial collector. The live
objects in Eden are copied to the initially empty survivor space, labeled To in the figure, except for ones
that are too large to fit comfortably in the To space. Such objects are directly copied to the old
generation. The live objects in the occupied survivor space (labeled From) that are still relatively young
are also copied to the other survivor space, while objects that are relatively old are copied to the old
generation. Note: If the To space becomes full, the live objects from Eden or From that have not been
copied to it are tenured, regardless of how many young generation collections they have survived. Any
objects remaining in Eden or the From space after live objects have been copied are, by definition, not
live, and they do not need to be examined. (These garbage objects are marked with an X in the figure,
though in fact the collector does not examine or mark these objects.)

Figure 3. Serial young generation collection

After a young generation collection is complete, both Eden and the formerly occupied survivor space are
empty and only the formerly empty survivor space contains live objects. At this point, the survivor
spaces swap roles. See Figure 4.

Sun Microsystems, Inc.8 Garbage Collectors in the J2SE 5.0 HotSpot JVM

Young Generation

Old Generation

Eden

From To

empty Survivor Spaces

Figure 4. After a young generation collection

Old Generation Collection Using the Serial Collector
With the serial collector, the old and permanent generations are collected via a mark-sweep-compact
collection algorithm. In the mark phase, the collector identifies which objects are still live. The sweep
phase “sweeps” over the generations, identifying garbage. The collector then performs sliding
compaction, sliding the live objects towards the beginning of the old generation space (and similarly for
the permanent generation), leaving any free space in a single contiguous chunk at the opposite end. See
Figure 5. The compaction allows any future allocations into the old or permanent generation to use the
fast, bump-the-pointer technique.

Figure 5. Compaction of the old generation

When to Use the Serial Collector
The serial collector is the collector of choice for most applications that are run on client-style machines
and that do not have a requirement for low pause times. On today’s hardware, the serial collector can
efficiently manage a lot of nontrivial applications with 64MB heaps and relatively short worst-case
pauses of less than half a second for full collections.

Serial Collector Selection
In the J2SE 5.0 release, the serial collector is automatically chosen as the default garbage collector on
machines that are not server-class machines, as described in Section 5. On other machines, the serial
collector can be explicitly requested by using the -XX:+UseSerialGC command line option.

Parallel Collector
These days, many Java applications run on machines with a lot of physical memory and multiple CPUs. The
parallel collector, also known as the throughput collector, was developed in order to take advantage of available
CPUs rather than leaving most of them idle while only one does garbage collection work.

Young Generation Collection Using the Parallel Collector
The parallel collector uses a parallel version of the young generation collection algorithm utilized by the
serial collector. It is still a stop-the-world and copying collector, but performing the young generation

Sun Microsystems, Inc.9 Garbage Collectors in the J2SE 5.0 HotSpot JVM

a) Start of Compaction

b) End of Compaction

Young Generation

Old Generation

Eden

To From

empty

empty

 Survivor Spaces

collection in parallel, using many CPUs, decreases garbage collection overhead and hence increases
application throughput. Figure 6 illustrates the differences between the serial collector and the parallel
collector for the young generation.

Figure 6. Comparison between serial and parallel young generation collection

Old Generation Collection Using the Parallel Collector
Old generation garbage collection for the parallel collector is done using the same serial mark-sweep-
compact collection algorithm as the serial collector.

When to Use the Parallel Collector
Applications that can benefit from the parallel collector are those that run on machines with more than
one CPU and do not have pause time constraints, since infrequent, but potentially long, old generation
collections will still occur. Examples of applications for which the parallel collector is often appropriate
include those that do batch processing, billing, payroll, scientific computing, and so on.

You may want to consider choosing the parallel compacting collector (described next) over the parallel
collector, since the former performs parallel collections of all generations, not just the young
generation.

Parallel Collector Selection
In the J2SE 5.0 release, the parallel collector is automatically chosen as the default garbage collector on
server-class machines (defined in Section 5). On other machines, the parallel collector can be explicitly
requested by using the -XX:+UseParallelGC command line option.

Parallel Compacting Collector
The parallel compacting collector was introduced in J2SE 5.0 update 6. The difference between it and the parallel
collector is that it uses a new algorithm for old generation garbage collection. Note: Eventually, the parallel
compacting collector will replace the parallel collector.

Young Generation Collection Using the Parallel Compacting Collector
Young generation garbage collection for the parallel compacting collector is done using the same
algorithm as that for young generation collection using the parallel collector.

Old Generation Collection Using the Parallel Compacting Collector
With the parallel compacting collector, the old and permanent generations are collected in a stop-the-
world, mostly parallel fashion with sliding compaction. The collector utilizes three phases. First, each
generation is logically divided into fixed-sized regions. In the marking phase, the initial set of live objects
directly reachable from the application code is divided among garbage collection threads, and then all
live objects are marked in parallel. As an object is identified as live, the data for the region it is in is
updated with information about the size and location of the object.

Sun Microsystems, Inc.10 Garbage Collectors in the J2SE 5.0 HotSpot JVM

Stop-the-world pause

Serial Collector Parallel Collector

The summary phase operates on regions, not objects. Due to compactions from previous collections, it is
typical that some portion of the left side of each generation will be dense, containing mostly live
objects. The amount of space that could be recovered from such dense regions is not worth the cost of
compacting them. So the first thing the summary phase does is examine the density of the regions,
starting with the leftmost one, until it reaches a point where the space that could be recovered from a
region and those to the right of it is worth the cost of compacting those regions. The regions to the left
of that point are referred to as the dense prefix, and no objects are moved in those regions. The regions
to the right of that point will be compacted, eliminating all dead space. The summary phase calculates
and stores the new location of the first byte of live data for each compacted region. Note: The summary
phase is currently implemented as a serial phase; parallelization is possible but not as important to
performance as parallelization of the marking and compaction phases.

In the compaction phase, the garbage collection threads use the summary data to identify regions that
need to be filled, and the threads can independently copy data into the regions. This produces a heap
that is densely packed on one end, with a single large empty block at the other end.

When to Use the Parallel Compacting Collector
As with the parallel collector, the parallel compacting collector is beneficial for applications that are run
on machines with more than one CPU. In addition, the parallel operation of old generation collections
reduces pause times and makes the parallel compacting collector more suitable than the parallel
collector for applications that have pause time constraints. The parallel compacting collector might not
be suitable for applications run on large shared machines (such as SunRays), where no single application
should monopolize several CPUs for extended periods of time. On such machines, consider either
decreasing the number of threads used for garbage collection (via the –XX:ParallelGCThreads=n
command line option) or selecting a different collector.

Parallel Compacting Collector Selection
If you want the parallel compacting collector to be used, you must select it by specifying the
command line option -XX:+UseParallelOldGC.

Concurrent Mark-Sweep (CMS) Collector
For many applications, end-to-end throughput is not as important as fast response time. Young generation
collections do not typically cause long pauses. However, old generation collections, though infrequent, can
impose long pauses, especially when large heaps are involved. To address this issue, the HotSpot JVM includes a
collector called the concurrent mark-sweep (CMS) collector, also known as the low-latency collector.

Young Generation Collection Using the CMS Collector
The CMS collector collects the young generation in the same manner as the parallel collector.

Old Generation Collection Using the CMS Collector
Most of the collection of the old generation using the CMS collector is done concurrently with
the execution of the application.

A collection cycle for the CMS collector starts with a short pause, called the initial mark, that
identifies the initial set of live objects directly reachable from the application code. Then,
during the concurrent marking phase, the collector marks all live objects that are transitively
reachable from this set. Because the application is running and updating reference fields while the
marking phase is taking place, not all live objects are guaranteed to be marked at the end of the
concurrent marking phase. To handle this, the application stops again for a second pause, called remark,
which finalizes marking by revisiting any objects that were modified during the concurrent marking
phase. Because the remark pause is more substantial than the initial mark, multiple threads are run in
parallel to increase its efficiency.

At the end of the remark phase, all live objects in the heap are guaranteed to have been marked, so the
subsequent concurrent sweep phase reclaims all the garbage that has been identified. Figure 7
illustrates the differences between old generation collection using the serial mark-sweep-compact
collector and the CMS collector.

Sun Microsystems, Inc.11 Garbage Collectors in the J2SE 5.0 HotSpot JVM

Figure 7. Comparison between serial and CMS old generation collection

Since some tasks, such as revisiting objects during the remark phase, increase the amount of work the
collector has to do, its overhead increases as well. This is a typical trade-off for most collectors that
attempt to reduce pause times.

The CMS collector is the only collector that is non-compacting. That is, after it frees the space that was
occupied by dead objects, it does not move the live objects to one end of the old generation. See Figure 8.

Figure 8. CMS sweeping (but not compacting) of old generation

This saves time, but since the free space is not contiguous, the collector can no longer use a simple
pointer indicating the next free location into which the next object can be allocated. Instead, it now
needs to employ free lists. That is, it creates some number of lists linking together unallocated regions
of memory, and each time an object needs to be allocated, the appropriate list (based on the amount of
memory needed) must be searched for a region large enough to hold the object As a result, allocations
into the old generation are more expensive than they are with a simple bump-the-pointer technique.
This also imposes extra overhead to young generation collections, as most allocations in the old
generation occur when objects are promoted during young generation collections.

Another disadvantage the CMS collector has is a requirement for larger heap sizes than the other
collectors. Given that the application is allowed to run during the marking phase, it can continue to
allocate memory, thereby potentially continuing to grow the old generation. Additionally, although the
collector guarantees to identify all live objects during a marking phase, some objects may become
garbage during that phase and they will not be reclaimed until the next old generation collection. Such
objects are referred to as floating garbage.

Finally, fragmentation may occur due to lack of compaction. To deal with fragmentation, the CMS
collector tracks popular object sizes, estimates future demand, and may split or join free blocks to
meet demand.

Sun Microsystems, Inc.12 Garbage Collectors in the J2SE 5.0 HotSpot JVM

Stop-the-world pause

Stop-the-world pause

Serial Mark-Sweep-Compact
Collector

Concurrent Mark-Sweep
Collector

Initial Mark

Concurrent Mark

Remark

Concurrent Sweep

a) Start of Sweeping

b) End of Sweeping

Unlike the other collectors, the CMS collector does not start an old generation collection when the old
generation becomes full. Instead, it attempts to start a collection early enough so that it can complete
before that happens. Otherwise, the CMS collector reverts to the more time-consuming stop-the-world
mark-sweep-compact algorithm used by the parallel and serial collectors. To avoid this, the CMS
collector starts at a time based on statistics regarding previous collection times and how quickly the old
generation becomes occupied. The CMS collector will also start a collection if the occupancy of the old
generation exceeds something called the initiating occupancy. The value of the initiating occupancy is
set by the command line option –XX:CMSInitiatingOccupancyFraction=n, where n is a
percentage of the old generation size. The default is 68.

In summary, compared to the parallel collector, the CMS collector decreases old generation pauses—
sometimes dramatically—at the expense of slightly longer young generation pauses, some reduction in
throughput, and extra heap size requirements.

Incremental Mode
The CMS collector can be used in a mode in which the concurrent phases are done incrementally. This
mode is meant to lessen the impact of long concurrent phases by periodically stopping the concurrent
phase to yield back processing to the application. The work done by the collector is divided into small
chunks of time that are scheduled between young generation collections. This feature is useful when
applications that need the low pause times provided by the concurrent collector are run on machines
with small numbers of processors (e.g., 1 or 2). For more information on usage of this mode, see the
“Tuning Garbage Collection with the 5.0 Java™ Virtual Machine” paper referred to in Section 9.

When to Use the CMS Collector
Use the CMS collector if your application needs shorter garbage collection pauses and can afford to
share processor resources with the garbage collector when the application is running. (Due to its
concurrency, the CMS collector takes CPU cycles away from the application during a collection cycle.)
Typically, applications that have a relatively large set of long-lived data (a large old generation), and that
run on machines with two or more processors, tend to benefit from the use of this collector. An example
would be web servers. The CMS collector should be considered for any application with a low pause time
requirement. It may also give good results for interactive applications with old generations of a modest
size on a single processor.

CMS Collector Selection
If you want the CMS collector to be used, you must explicitly select it by specifying the command line
option -XX:+UseConcMarkSweepGC. If you want it to be run in incremental mode, also enable that
mode via the –XX:+CMSIncrementalMode option.

5 Ergonomics -- Automatic Selections and Behavior Tuning
In the J2SE 5.0 release, default values for the garbage collector, heap size, and HotSpot virtual machine (client or
server) are automatically chosen based on the platform and operating system on which the application is
running. These automatic selections better match the needs of different types of applications, while requiring
fewer command line options than in previous releases.

In addition, a new way of dynamically tuning collection has been added for the parallel garbage collectors. With
this approach, the user specifies the desired behavior, and the garbage collector dynamically tunes the sizes of
the heap regions in an attempt to achieve the requested behavior. The combination of platform-dependent
default selections and garbage collection tuning that uses desired behavior is referred to as ergonomics. The
goal of ergonomics is to provide good performance from the JVM with a minimum of command line tuning.

Automatic Selection of Collector, Heap Sizes, and Virtual Machine
A server-class machine is defined to be one with

• 2 or more physical processors and
• 2 or more gigabytes of physical memory

Sun Microsystems, Inc.13 Ergonomics - Automatic Selections and Behavior Tuning

This definition of a server-class machine applies to all platforms, with the exception of 32-bit platforms running a
version of the Windows operating system.

On machines that are not server-class machines, the default values for JVM, garbage collector, and heap sizes
are

• the client JVM
• the serial garbage collector
• Initial heap size of 4MB
• Maximum heap size of 64MB

On a server-class machine, the JVM is always the server JVM unless you explicitly specify the -client
command line option to request the client JVM. On a server-class machine running the server JVM, the default
garbage collector is the parallel collector. Otherwise, the default is the serial collector.

On a server-class machine running either JVM (client or server) with the parallel garbage collector, the default
initial and maximum heap sizes are

• Initial heap size of 1/64th of the physical memory, up to 1GB. (Note that the minimum initial heap size
is 32MB, since a server-class machine is defined to have at least 2GB of memory and 1/64th of 2GB is
32MB.)

• Maximum heap size of 1/4th of the physical memory, up to 1GB.

Otherwise, the same default sizes as for non-server-class machines are used (4MB initial heap size and 64MB
maximum heap size). Default values can always be overridden by command line options. Relevant options are
shown in Section 8.

Behavior-based Parallel Collector Tuning
In the J2SE 5.0 release, a new method of tuning has been added for the parallel garbage collectors, based on
desired behavior of the application with respect to garbage collection. Command line options are used to specify
the desired behavior in terms of goals for maximum pause time and application throughput.

Maximum Pause Time Goal
The maximum pause time goal is specified with the command line option

-XX:MaxGCPauseMillis=n

This is interpreted as a hint to the parallel collector that pause times of n milliseconds or less are
desired. The parallel collector will adjust the heap size and other garbage collection-related parameters
in an attempt to keep garbage collection pauses shorter than n milliseconds. These adjustments may
cause the garbage collector to reduce overall throughput of the application, and in some cases the
desired pause time goal cannot be met.

The maximum pause time goal is applied to each generation separately. Typically, if the goal is not met,
the generation is made smaller in an attempt to meet the goal. No maximum pause time goal is set by
default.

Throughput Goal
The throughput goal is measured in terms of the time spent doing garbage collection and the time spent
outside of garbage collection (referred to as application time). The goal is specified by the command line
option

-XX:GCTimeRatio=n

The ratio of garbage collection time to application time is

1 / (1 + n)

For example -XX:GCTimeRatio=19 sets a goal of 5% of the total time for garbage collection. The
default goal is 1% (i.e. n= 99). The time spent in garbage collection is the total time for all generations.
If the throughput goal is not being met, the sizes of the generations are increased in an effort to
increase the time the application can run between collections. A larger generation takes more time to
fill up.

Sun Microsystems, Inc.14 Ergonomics - Automatic Selections and Behavior Tuning

Footprint Goal
If the throughput and maximum pause time goals have been met, the garbage collector reduces the size
of the heap until one of the goals (invariably the throughput goal) cannot be met. The goal that is not
being met is then addressed.

Goal Priorities
The parallel garbage collectors attempt to meet the maximum pause time goal first. Only after it is met
do they address the throughput goal. Similarly, the footprint goal is considered only after the first two
goals have been met.

6 Recommendations
The ergonomics described in the previous section lead to automatic garbage collector, virtual machine, and
heap size selections that are reasonable for a large percentage of applications. Thus, the initial recommendation
for selecting and configuring a garbage collector is to do nothing! That is, do not specify usage of a particular
garbage collector, etc. Let the system make automatic choices based on the platform and operating system on
which your application is running. Then test your application. If its performance is acceptable, with sufficiently
high throughput and sufficiently low pause times, you are done. You don’t need to troubleshoot or modify
garbage collector options.

On the other hand, if your application seems to have performance problems related to garbage collection, then
the easiest thing you can do first is think about whether the garbage collector selected by default is appropriate,
given your application and platform characteristics. If not, explicitly select the collector that you think is
appropriate, and see whether the performance becomes acceptable.

You can measure and analyze performance using tools such as those described in Section 7. Based on the
results, you can consider modifying options, such as those that control heap sizes or garbage collection
behavior. Some of the most commonly-specified options are shown in Section 8. Please note: The best approach
to performance tuning is to measure first, then tune. Measure using tests relevant for how your code will
actually be used. Also, beware of over-optimizing, since application data sets, hardware, and so on—even the
garbage collector implementation!—may change over time.

This section provides information on selecting a garbage collector and specifying heap sizes. Then it provides
suggestions for tuning the parallel garbage collectors, and gives some advice regarding what to do about
OutOfMemoryErrors.

When to Select a Different Garbage Collector
Section 4 tells, for each collector, the situations in which usage of that collector is recommended. Section 5
describes the platforms on which either the serial or the parallel collector is automatically chosen by default.
If your application or environmental characteristics are such that a different collector than the default is
warranted, explicitly request that collector via one of the following command line options:

–XX:+UseSerialGC
–XX:+UseParallelGC
–XX:+UseParallelOldGC
–XX:+UseConcMarkSweepGC

Heap Sizing
Section 5 tells what the default initial and maximum heap sizes are. Those sizes may be fine for many
applications, but if your analysis of a performance problem (see Section 7) or of an OutOfMemoryError
(discussed later in this section) indicates a problem with the size of a particular generation or of the entire heap,
you can modify the sizes via command line options specified in Section 8. For example, the default maximum
heap size of 64MB on non–server–class machines is often too small, so you can specify a larger size via the –Xmx
option. Unless you have problems with long pause times, try granting as much memory as possible to the heap.
Throughput is proportional to the amount of memory available. Having sufficient available memory is the most

Sun Microsystems, Inc.15 Recommendations

important factor affecting garbage collection performance.

After deciding the total amount of memory you can afford to give to the total heap, you can then consider
adjusting the sizes of the different generations. The second most influential factor affecting garbage collection
performance is the proportion of the heap dedicated to the young generation. Unless you find problems with
excessive old generation collections or pause times, grant plenty of memory to the young generation. However,
when you’re using the serial collector, do not grant the young generation more than half the total heap size.

When you are using one of the parallel garbage collectors, it is preferable to specify desired behavior rather than
exact heap size values. Let the collector automatically and dynamically modify the heap sizes in order to achieve
that behavior, as described next.

Tuning Strategy for the Parallel Collector
If the garbage collector chosen (automatically or explicitly) is the parallel collector or parallel compacting
collector, then go ahead and specify a throughput goal (see Section 5) that is sufficient for your application.
Do not choose a maximum value for the heap unless you know that you need a heap greater than the default
maximum heap size. The heap will grow or shrink to a size that will support the chosen throughput goal.
Some oscillations in the heap size during initialization and during a change in the application behavior can
be expected.

If the heap grows to its maximum, in most cases that means that the throughput goal cannot be met within
that maximum size. Set the maximum size to a value that is close to the total physical memory on the platform
but that does not cause swapping of the application. Execute the application again. If the throughput goal is
still not met, then the goal for the application time is too high for the available memory on the platform.

If the throughput goal can be met, but there are pauses that are too long, select a maximum pause time goal.
Choosing a maximum pause time goal may mean that your throughput goal will not be met, so choose values
that are an acceptable compromise for the application.

The size of the heap will oscillate as the garbage collector tries to satisfy competing goals, even if the
application has reached a steady state. The pressure to achieve a throughput goal (which may require a larger
heap) competes with the goals for a maximum pause time and a minimum footprint (which both may require a
smaller heap).

What to Do about OutOfMemoryError
One common issue that many developers have to address is that of applications that terminate with
java.lang.OutOfMemoryError. That error is thrown when there is insufficient space to allocate an
object. That is, garbage collection cannot make any further space available to accommodate a new object, and
the heap cannot be further expanded. An OutOfMemoryError does not necessarily imply a memory leak. The
issue might simply be a configuration issue, for example if the specified heap size (or the default size if not
specified) is insufficient for the application.

The first step in diagnosing an OutOfMemoryError is to examine the full error message. In the exception
message, further information is supplied after “java.lang.OutOfMemoryError”. Here are some common
examples of what that additional information may be, what it may mean, and what to do about it:

• Java heap space
This indicates that an object could not be allocated in the heap. The issue may be just a configuration
problem. You could get this error, for example, if the maximum heap size specified by the –Xmx
command line option (or selected by default) is insufficient for the application. It could also be an
indication that objects that are no longer needed cannot be garbage collected because the
application is unintentionally holding references to them. The HAT tool (see Section 7) can be used to
view all reachable objects and understand which references are keeping each one alive. One other
potential source of this error could be the excessive use of finalizers by the application such that the
thread to invoke the finalizers cannot keep up with the rate of addition of finalizers to the queue. The
jconsole management tool can be used to monitor the number of objects that are pending
finalization.

Sun Microsystems, Inc.16 Recommendations

• PermGen space
This indicates that the permanent generation is full. As described earlier, that is the area of the heap
where the JVM stores its metadata. If an application loads a large number of classes, then the
permanent generation may need to be increased. You can do so by specifying the command line
option –XX:MaxPermSize=n, where n specifies the size.

• Requested array size exceeds VM limit
This indicates that the application attempted to allocate an array that is larger than the heap size. For
example, if an application tries to allocate an array of 512MB but the maximum heap size is 256MB,
then this error will be thrown. In most cases the problem is likely to be either that the heap size is too
small or that a bug results in the application attempting to create an array whose size is calculated to
be incorrectly huge.

Some of the tools described in Section 7 can be utilized to diagnose OutOfMemoryError problems. A few of
the most useful tools for this task are the Heap Analysis Tool (HAT), the jconsole management tool, and the
jmap tool with the –histo option.

7 Tools to Evaluate Garbage Collection Performance
Various diagnostic and monitoring tools can be utilized to evaluate garbage collection performance. This section
provides a brief overview of some of them. For more information, see the “Tools and Troubleshooting” links in
Section 9.

–XX:+PrintGCDetails Command Line Option
One of the easiest ways to get initial information about garbage collections is to specify the command line
option –XX:+PrintGCDetails. For every collection, this results in the output of information such as the
size of live objects before and after garbage collection for the various generations, the total available space for
each generation, and the length of time the collection took.

–XX:+PrintGCTimeStamps Command Line Option
This outputs a timestamp at the start of each collection, in addition to the information that is output if the
command line option –XX:+PrintGCDetails is used. The timestamps can help you correlate garbage
collection logs with other logged events.

jmap
jmap is a command line utility included in the Solaris™ Operating Environment and Linux (but not Windows)
releases of the Java Development Kit (JDK™). It prints memory–related statistics for a running JVM or core file. If it
is used without any command line options, then it prints the list of shared objects loaded, similar to what the
Solaris pmap utility outputs. For more specific information, the –heap, –histo, or –permstat options can be used.

The –heap option is used to obtain information that includes the name of the garbage collector,
algorithm–specific details (such as the number of threads being used for parallel garbage collection), heap
configuration information, and a heap usage summary

The –histo option can be used to obtain a class–wise histogram of the heap. For each class, it prints the number
of instances in the heap, the total amount of memory consumed by those objects in bytes, and the fully
qualified class name. The histogram is useful when trying to understand how the heap is used.

Configuring the size of the permanent generation can be important for applications that dynamically generate
and load a large number of classes (Java Server Pages™ and web containers, for example). If an application loads
“too many” classes, then an OutOfMemoryError is thrown. The –permstat option to the jmap command can
be used to get statistics for the objects in the permanent generation.

jstat
The jstat utility uses the built–in instrumentation in the HotSpot JVM to provide information on performance
and resource consumption of running applications. The tool can be used when diagnosing performance issues,
and in particular issues related to heap sizing and garbage collection. Some of its many options can print
statistics regarding garbage collection behavior and the capacities and usage of the various generations.

Sun Microsystems, Inc.17 Tools to Evaluate Garbage Collection Performance

HPROF: Heap Profiler
HPROF is a simple profiler agent shipped with JDK 5.0. It is a dynamically–linked library that interfaces to the
JVM using the Java Virtual Machine Tools Interface (JVM TI). It writes out profiling information either to a file or
to a socket in ASCII or binary format. This information can be further processed by a profiler front–end tool.

HPROF is capable of presenting CPU usage, heap allocation statistics, and monitor contention profiles. In
addition, it can output complete heap dumps and report the states of all the monitors and threads in the Java
virtual machine. HPROF is useful when analyzing performance, lock contention, memory leaks, and other issues.
See Section 9 for a link to HPROF documentation.

HAT: Heap Analysis Tool
The Heap Analysis Tool (HAT) helps debug unintentional object retention. This term is used to describe an object
that is no longer needed but is kept alive due to references through some path from a live object. HAT provides a
convenient means to browse the object topology in a heap snapshot that is generated using HPROF. The tool
allows a number of queries, including “show me all reference paths from the rootset to this object.” See Section
9 for a link to HAT documentation.

8 Key Options Related to Garbage Collection
A number of command line options can be used to select a garbage collector, specify heap or generation sizes,
modify garbage collection behavior, and obtain garbage collection statistics. This section shows some of the
most commonly–used options. For a more complete list and detailed information regarding the various options
available, see Section 9. Note: Numbers you specify can end with “m” or “M” for megabytes, “k” or “K” for
kilobytes, and “g” or “G” for gigabytes.

Garbage Collector Selection

Garbage Collector Statistics

Sun Microsystems, Inc.18 Key Options Related to Garbage Collection

Option Garbage Collector Selected

–XX:+UseSerialGC Serial

–XX:+UseParallelGC Parallel

–XX:+UseParallelOldGC Parallel compacting

–XX:+UseConcMarkSweepGC Concurrent mark–sweep (CMS)

Option Description

–XX:+PrintGC Outputs basic information at every garbage collection.

–XX:+PrintGCDetails Outputs more detailed information at every garbage collection.

–XX:+PrintGCTimeStamps Outputs a time stamp at the start of each garbage collection event. Used with
–XX:+PrintGC or –XX:+PrintGCDetails to show when each garbage collection
begins.

Heap and Generation Sizes

Options for the Parallel and Parallel Compacting Collectors

Sun Microsystems, Inc.19 Key Options Related to Garbage Collection

Option Default Description

–Xmsn See Section 5 Initial size, in bytes, of the heap.

–Xmxn See Section 5 Maximum size, in bytes, of the heap.

–XX:MinHeapFreeRatio=minimum
and
–XX:MaxHeapFreeRatio=maximum

40 (min)

70 (max)

Target range for the proportion of free space to
total heap size. These are applied per generation.
For example, if minimum is 30 and the percent of
free space in a generation falls below 30%, the size
of the generation is expanded so as to have 30% of
the space free. Similarly, if maximum is 60 and the
percent of free space exceeds 60%, the size of the
generation is shrunk so as to have only 60% of the
space free.

–XX:NewSize=n Platform–dependent Default initial size of the new (young) generation,
in bytes.

–XX:NewRatio=n 2 on client JVM,
8 on server JVM

Ratio between the young and old generations. For
example, if n is 3, then the ratio is 1:3 and the
combined size of Eden and the survivor spaces is
one fourth of the total size of the young and old
generations.

–XX:SurvivorRatio=n 32 Ratio between each survivor space and Eden. For
example, if n is 7, each survivor space is one–ninth
of the young generation (not one–eighth, because
there are two survivor spaces).

–XX:MaxPermSize=n Platform–dependent Maximum size of the permanent generation.

Option Default Description

–XX:ParallelGCThreads=n The number of CPUs Number of garbage collector threads.

–XX:MaxGCPauseMillis=n No default Indicates to the collector that pause times of n
milliseconds or less are desired.

–XX:GCTimeRatio=n 99 Number that sets a goal that 1/(1+n) of the total time
be spent on garbage collection.

Options for the CMS Collector

9 For More Information
HotSpot Garbage Collection and Performance Tuning

• Garbage Collection in the Java HotSpot Virtual Machine
(http://www.devx.com/Java/Article/21977)

• Tuning Garbage Collection with the 5.0 Java[tm] Virtual Machine
(http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html)

Ergonomics

• Server–Class Machine Detection
(http://java.sun.com/j2se/1.5.0/docs/guide/vm/server–class.html)

• Garbage Collector Ergonomics
(http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc–ergonomics.html)

• Ergonomics in the 5.0 Java™ Virtual Machine
(http://java.sun.com/docs/hotspot/gc5.0/ergo5.html)

Options

• Java™ HotSpot VM Options
(http://java.sun.com/docs/hotspot/VMOptions.html)

• Solaris and Linux options
(http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/java.html)

• Windows options
(http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html)

Tools and Troubleshooting

• Java™ 2 Platform, Standard Edition 5.0 Trouble–Shooting and Diagnostic Guide
(http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf)

• HPROF: A Heap/CPU Profiling Tool in J2SE 5.0
(http://java.sun.com/developer/technicalArticles/Programming/HPROF.html)

• Hat: Heap Analysis Tool
(https://hat.dev.java.net/)

Sun Microsystems, Inc.20 For More Information

Option Default Description

–XX:+CMSIncrementalMode Disabled Enables a mode in which the concurrent phases are done
incrementally, periodically stopping the concurrent phase
to yield back the processor to the application.

–XX:+CMSIncrementalPacing Disabled Enables automatic control of the amount of work the CMS
collector is allowed to do before giving up the processor,
based on application behavior.

–XX:ParallelGCThreads=n The number of CPUs Number of garbage collector threads for the parallel
young generation collections and for the parallel parts of
the old generation collections.

Finalization
• Finalization, threads, and the Java technology–based memory model

(http://devresource.hp.com/drc/resources/jmemmodel/index.jsp)
• How to Handle Java Finalization's Memory–Retention Issues

(http://www.devx.com/Java/Article/30192)

Miscellaneous

• J2SE 5.0 Release Notes
(http://java.sun.com/j2se/1.5.0/relnotes.html)

• Java™ Virtual Machines
(http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html)

• Sun Java™ Real–Time System (Java RTS)
(http://java.sun.com/j2se/realtime/index.jsp)

• General book on garbage collection: Garbage Collection: Algorithms for Automatic Dynamic Memory
Management by Richard Jones and Rafael Lins, John Wiley & Sons, 1996.

Sun Microsystems, Inc.21 For More Information

