Mendelian Genetics Chapter 11

Starts on page 308

Roots, Prefixes & Suffixes:

homo =	hetero =		geno =
pheno =	zyg =	CO =	poly =
Section 11-1: M	lendel & His Peas		

I. Vocabulary Words:

A. <u>Gene</u> - a small section of a _____ (DNA) that holds the ______ for making a specific type of protein.

1. Example: _____ color gene makes the _____ that turns your eyes a certain color.

B. For each gene, there are at least ______ out in the world. Some genes have ______ alleles.

1. Example: _____ color.

C. The alleles are either:

Dominant, which is written as:

OR

Recessive, which is written as:

D. Dominant alleles will _____ show up (_____) IF a person has at least _____. 1. Example: _____ hair. E. Recessive alleles will _____ show up (_____) IF a person has _____ recessive alleles. 1. Example: hair. F. Gametes (sex cells: sperm or egg) each have only _____ copy of each _____. In other words, _____ allele per _____ in each _____. G. We each have _____ alleles for each gene. 1. Example: you received one allele for eye color from and one from ____. H. If we get both our alleles from our parents, then we have whatever _____ of _____ and _____ they give us.

1. AA = homozygous dominant

a. We know this because:

i. <u>homo-</u> means _____.

and

ii. <u>dominant</u> is shown by a ______ letter.

2. **aa** = <u>homozygous recessive</u>

a. We know this because:

i. <u>homo-</u> means _____.

and

ii. <u>recessive</u> is shown by a ______ letter.

3. Aa = <u>heterozygous</u>

a. We know this because:

i. -<u>hetero</u> means _____.

and

ii. the <u>genotype</u> above contains <u>two different</u> <u>alleles</u>.

I. <u>Genotype</u> - the possible ______ of _____ of _____ we could get from our parents.

1. Possible combinations:

J. <u>Phenotype</u> - _____ characteristics that the combinations of _____ cause. Normally, you are _____ either _____ or ____ for each gene.

		Trait Survey		
Feature	Dominant Trait	Number	Recessive Trait	Number
А	Free ear lobes		Attached ear lobes	
В	Hair on fingers		No hair on fingers	
С	Widow's peak		No widow's peak	
D	Curly hair		Straight hair	
Е	Cleft chin		Smooth chin	

II. Gregor Mendel's Peas

A. Vocabulary Words:

1. Cross-pollination - po	of	
) from	to	;
between two	plants.	

2. <u>Self-pollination</u> - pollination (_______ of ______ of _______ to _______, between flowers on the ______ plant.

B. Plants use ______ reproduction to reproduce.

1. <u>Gregor</u> <u>cross-pollinated</u> plants with different ______ to see if he could figure out the ______ of how ______ were passed on.

a. <u>Mendel</u> was a _____ working in Europe in the _____'s. He studied ______ and _____ while working as a priest and taking care of the monastery _____.

b. <u>Mendel's</u> work changed biology (the study of _____) FOREVER.

C. Mendel always started with plants that were ______ - <u>breeding</u> = - <u>homozygous</u>.

1. <u>Homozygous</u> means:

a. Every time these plants self-pollinated, they produced ______ that were _____ to themselves.

D. What are the <u>most important vocabulary words</u> from this section (i.e., what words do you <u>absolutely</u> need to know for the test?

III. Mendel's Experiments

A. Mendel crossed ______-breeding _____ plants for one allele with true-breeding pea plants for the ______ allele.

1. Example: cross (breed) ______ -seeded pea plants X ______ -seeded pea plants

a. This is the <u>generation</u>. This makes sense, because these two plants are the _____.

2. THEN... Mendel ______ the _____.

B. Mendel saw that _____ the offspring (the <u>F1 generation</u>) showed only _____ of the _____ possible traits/alleles for seed color. The <u>F1 generation</u> is the first group of _____ (children).

1. Green-seeded pea plants X yellow-seeded pea plants =

_____% _____-seeded pea plants!

2. Mendel wasn't sure what happened to the other _____! Did it _____?

Figure 11-3 on page 310

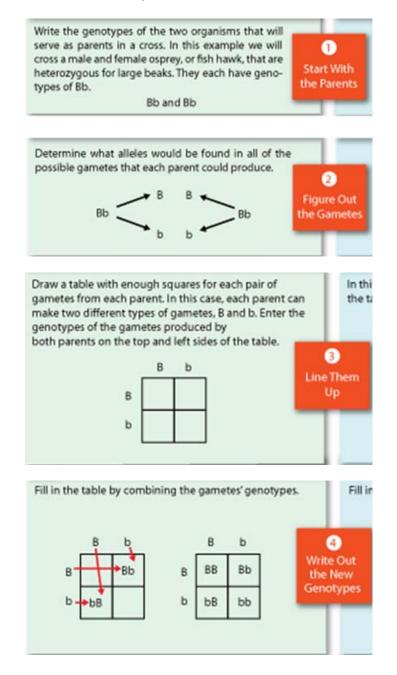
	Seed	Seed	Seed	Pod	Pod	Flower	Plant
	Shape	Color	Coat	Shape	Color	Position	Height
Ρ	Round	Yellow	Gray	Smooth	Green	Axial	Tall
	X	X	X	X	X	X	X
	Wrinkled	Green	White	Constricted	Yellow	Terminal	Short
F,	↓ © Round	↓ © Yellow	Gray	Smooth	Green	Axial	Tall

C. To see what had really happened, Mendel crossed _____ of the F1 generation plants:

1. ______ -seeded pea plants X ______ - seeded pea plants

a. Mendel got...

i. _____% ______ -seeded pea plants & _____% ______ -seeded pea plants

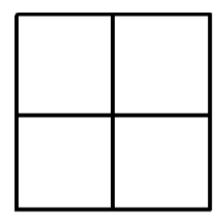

D. Did the other allele disappear?!? How do you know?

IV. Anatomy of a Punett Square

A. IF you know the		_ (the possible	_ combinations we
get from our	_), <u>THEN</u> a _	square cal	۱
the possible	of the	Thi	is is shown either
as a chance or as a	e		

1. Example: Gene for hair color from parents. The only possible combinations are:

B. How to Make a Punnett Square: Predict Possible Gene Combos in Offspring


C. Punnett Square Problem #1 (USE A HIGHLIGHTER)

1. What are the <u>possible offspring</u> of a <u>homozygous dominant</u> organism crossed with a <u>heterozygous</u> organism?

a. Step One: Write out the cross:

_____ X _____

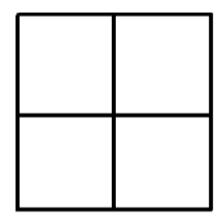
b. Set Up the Punnett Square:

c. Where do you see (draw arrows):

i. Parent #1?

ii. Parent #2?

iii. Possible offspring?


D. Punnett Square Problem #2

1. What are the <u>possible offspring</u> of a <u>heterozygous</u> organism crossed with another <u>heterozygous</u> organism?

a. Step One: Write out the cross:

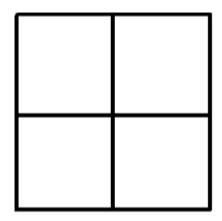
b. Set Up the Punnett Square:

c. Where do you see (draw arrows):

i. Parent #1?

ii. Parent #2?

iii. Possible offspring?


E. Punnett Square Problem #3

1. What are the <u>possible offspring</u> of a <u>homozygous</u> <u>dominant</u> organism crossed with a <u>heterozygous</u> organism?

a. Step One: Write out the cross:

b. Set Up the Punnett Square:

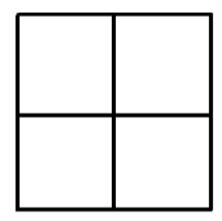
c. Where do you see (draw arrows):

i. Parent #1?

ii. Parent #2?

iii. Possible offspring?

d. What is the genotypic ratio? _____: ____: ____: _____
 Homozygous Homozygous Dominant
 e. What is the phenotypic ratio? ______: _____
 Dominant
 Recessive Recessive


F. Punnett Square Problem #4

1. What are the <u>possible offspring</u> of a <u>homozygous</u> <u>recessive</u> organism crossed with a <u>heterozygous</u> organism?

a. Step One: Write out the cross:

b. Set Up the Punnett Square:

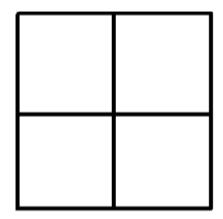
c. Where do you see (draw arrows):

i. Parent #1?

ii. Parent #2?

iii. Possible offspring?

d. What is the genotypic ratio? _____: ____: _____
 Homozygous Homozygous Dominant
 e. What is the phenotypic ratio? ______: _____
 Dominant
 Recessive


G. Punnett Square Problem #5

1. What are the <u>possible offspring</u> of a <u>homozygous</u> <u>dominant</u> organism crossed with another <u>homozygous</u> <u>dominant</u> organism?

a. Step One: Write out the cross:

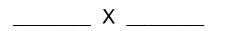
_____ X _____

b. Set Up the Punnett Square:

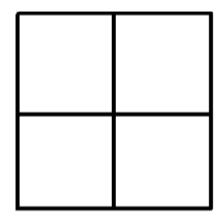
c. Where do you see (draw arrows):

i. Parent #1?

ii. Parent #2?


iii. Possible offspring?

d. What is the genotypic ratio?		:	:
	Homozygous	Heterozygous	Homozygous
	Dominant		Recessive
e. What is the <u>phenotypic ratio</u>		inant	Recessive


H. Punnett Square Problem #6

1. What are the <u>possible offspring</u> of a <u>heterozygous</u> organism crossed with another <u>heterozygous</u> organism?

a. Step One: Write out the cross:

b. Set Up the Punnett Square:

c. Where do you see (draw arrows):

i. Parent #1?

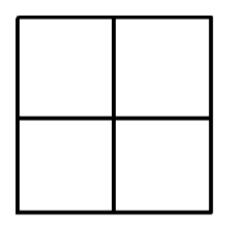
ii. Parent #2?

iii. Possible offspring?

 d. What is the genotypic ratio?
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :

I. <u>Word Problem #1(USE A HIGHLIGHTER)</u>

A plant homozygous dominant for plant height is crossed with a plant heterozygous for the same gene. What is the percent chance of getting a short plant?


V. Problems with Specific Genes & Alleles

A. Problem #1

A plant that is homozygous dominant for plant height is crossed with a plant that is heterozygous for plant height.

What is the percent chance of getting a short plant?

Step One: Define Genes & Alleles
 Gene =
 Alleles = =
 = =
 2. Step Two: Write Out the Cross
 _____ X _____
 3. Step Three: Make Your Punnett Square

4. Step Four: Figure Out the Ratios

Genotypic ratio?	:	:	
	Homozygous	Heterozygous	Homozygous
	Dominant		Recessive
Phenotypic ratio?	Dominar	: nt F	Recessive

5. Step Five: Go back and answer any specific questions:

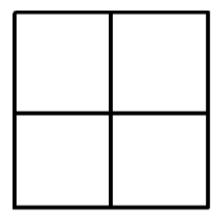
B. Problem #2

A short pea plant is crossed with a plant heterozygous for the same gene.

What is the percent chance of getting a short plant?

1. Step One: Define Genes & Alleles

Gene =


Alleles = =

= =

2. Step Two: Write Out the Cross

_____ X _____

3. Step Three: Make Your Punnett Square

.

4. Step Four: Figure Out the Ratios

Genotypic ratio?

Genotypic ratio?		· ·	
	Homozygous	Heterozygous	Homozygous
	Dominant		Recessive
Phenotypic ratio?	Domin	ant F	Recessive

5. Step Five: Go back and answer any specific questions:

C. Problem #3

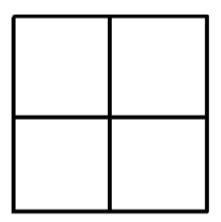
A plant with wrinkled seeds is crossed with a plant with round seeds.

What will the offspring be like?

1. Step One: Define Genes & Alleles

Gene =

Alleles = =


=

2. Step Two: Write Out the Cross

=

_____ X _____

3. Step Three: Make Your Punnett Square

4. Step Four: Figure Out the Ratios

Genotypic ratio?		: :	
	Homozygous	Heterozygous	Homozygous
	Dominant		Recessive
Phenotypic ratio?	Domir	: pant F	Recessive

5. Step Five: Go back and answer any specific questions:

Section 11-3: Alternatives to Dominant & Recessive Alleles

I. <u>So Far:</u> Dominant ______ wins. When dominant and recessive alleles are together, you only see _____.

II. But Now: We will learn about other possibilities.

A. _____ Dominance - heterozygotes that look like an _____ of the _____ possible alleles.

1. Example: Homozygous white flower X homozygous red flower: <u>Online Example</u>

= HETEROZYGOUS _____ FLOWERS!

B. <u>Codominance</u> - heterozygote shows _____ alleles at the same _____. <u>Online Example</u>

1. Example: White chicken X black chicken

= _____ CHICKEN!

a. <u>Speckled</u> - both _____ and _____ feathers at the same time.

C. _____ Alleles - one gene with _____ than two alleles in the _____. Online Example

1. Examples: Eye color, rabbit coat color, _____ type

D. <u>Polygenic Traits</u> - one ______ is controlled by ______ genes. <u>Online Example</u>

1. Examples: Skin color, height, eye color

Туре	
1. <u>Blood type</u> is an exa	mple of alleles and .
2. There are	blood types in humans:
ΟΑΒ	AB
	on their system can _ them.
4. Pictures of the four of	different types of blood cells:
Туре А	
Туре В	
Туре АВ	
Туре О	
5. You can only receive	e blood that has
that you	have, or your blood will coagulate
() t system will	Decause your the
6. Type \mathbf{O} = univers	al donor
a	can receive Type O blood.
i. WHY?	

7. Type AB = universal acceptor

a. People with Type AB blood can ______ blood from anyone.

i. WHY?

8. Example: A mother with Type AB blood is crossed with a father with Type O blood.

a. Is it possible for their offspring to have Type O blood?

A = = B = =