
Distributed CI:
Scaling Jenkins on 

Mesos and Marathon

Roger Ignazio – Puppet Labs, Inc.
MesosCon 2015 – Seattle, WA



Roger Ignazio

QE Automation Engineer 
Puppet Labs, Inc.

@rogerignazio

About Me



Mesos In Action

mesosinaction.com

Code: cftwmesos



Agenda

● Puppet Labs’ testing environment
● Conventional methods for scaling Jenkins
● Motivations for re-architecting CI
● Breaking up the Jenkins monolith
● Demo, outcomes, and future work



Audience Poll



Intro to Mesos

● General-purpose cluster manager
● Represent many machines as a single entity
● Advertise resources directly to applications



Intro to Marathon

● Mesos framework that provides private PaaS
○ Manages long-running tasks

● Easily scale apps to N instances
● Automatically restarts failed app instances



Intro to Jenkins

● Distributed, open source CI tool
● Repeatable build/test of software projects
● Large community, rich plugin ecosystem



Puppet Labs’
Testing Environment



Testing at Puppet Labs

● 4k to 5k builds/day across 75 platforms
● 15 Jenkins clusters

○ Loosely based on team, project, function
○ ~ 1,300 executors across ~ 240 build machines

● Tooling: Beaker, vmpooler



Testing at Puppet Labs

● Configuration management
○ Most job configs and scripts stored in Jenkins
○ Infrastructure managed by Puppet

● Reporting
○ Jenkins UI ( x15! )
○ Clockin, Waylon



Conventional Methods 
for Scaling Jenkins



● Two common deployments
○ Single Jenkins master with many jobs
○ Master per team, project, or function

● Not highly available
● Can’t load balance across masters
● Static partitioning kills overall utilization

Scaling Jenkins



Scaling Jenkins

FOSS Jenkins

. . .
Jenkins Slave 1

Jenkins Slave 2

. . .
Jenkins Slave N

PE Jenkins

Jenkins Slave 1

Jenkins Slave 2

. . .
Jenkins Slave N

Project X 
Jenkins

Jenkins Slave 1

Jenkins Slave 2

. . .
Jenkins Slave N

90% Utilized
(Normal)

140% Utilized
(40 builds in queue)

0% Utilized
(Idle)



Scaling Jenkins

What can we do about it?

On-demand resources!



Scaling Jenkins

FOSS Jenkins . . .

Mesos Slave 1

Mesos Slave 4

Mesos Slave N

PE Jenkins

Mesos Slave 2

Mesos Slave 5

Project X Jenkins

Mesos Slave 3

Mesos Slave 6

. . .

Mesos Master



Motivations for
Re-architecting CI



User Stories

As a $role,

I { want, need } $something,

so that $outcome



User Stories

As a Developer, I want tests to be run against pull 
requests, so that I have confidence in the code 

about to be merged



User Stories

As a Developer, I don't want to worry about the 
underlying infrastructure of the CI system



User Stories

As a CI consumer, I want a central location to view all 
CI activity, so that I don’t have to visit multiple URLs



User Stories

As a QE, I want slaves to be on-demand, so that 
infrastructure resources are used more efficiently



Motivation

● Reduce friction in dev workflows
● Event (and data)-driven system
● Improve reporting and user experience
● Scale to meet growing demand



Breaking Up
The Monolith



The Jenkins Monolith
Jenkins Master

Web UI HTTP API

Disk

Configuration Management

Job Trigger (polling, cron)

Plugins

 Scheduler Build Queue

Remoting (master / slave coordination)

Build Info and Results

Jenkins Slave
(Executors)

GitHub
Project Repo



The Jenkins Monolith
Jenkins Master

Web UI HTTP API

Disk

Configuration Management

Job Trigger (polling, cron)

Plugins

 Scheduler Build Queue

Remoting (master / slave coordination)

Build Info and Results

Jenkins Slave
(Executors)

GitHub
Project Repo

Devs



Breaking Up The Monolith

● Job configurations
● Build trigger
● Build history



GitHub
Project Repo

Hook Processor

Jenkins

Mesos Master

Reporting 
Application HTTP API

Build Info 
and

Results

Job Config

Breaking Up The Monolith

Mesos Slave(s)

Jenkins Slave(s)

Builds



Hook Processor

Jenkins

Mesos Master

Reporting 
Application HTTP API

Build Info 
and

Results

Mesos Slave(s)

Jenkins Slave(s)

Builds

Breaking Up The Monolith
Devs

Build Info 
and

Results

GitHub
Project RepoJob Config



Jenkins on Marathon

● Marathon as a private PaaS
● Scale Jenkins masters horizontally
● Deploy updates, config changes, plugins
● Continuous deployment of CI ?!



Jenkins on Marathon
 Mesos

 Marathon Marathon

Jenkins Master 
1

Jenkins Master 
2

Jenkins Master 
n

Jenkins
Slave(s)

Jenkins
Slave(s)

Jenkins
Slave(s)

Redis + Elasticsearch, Logstash, Kibana (ELK)



GitHub Webhook Processor

Marathon

Jenkins Master

Logstash and
Elasticsearch

Seed Job

Dynamic Job

Dynamic Job

Webhook 
Listener

Redis

Job Config



Reporting

● Unique IDs for each event (in Redis)
● Webhooks and build data (in Elasticsearch)
● Query and visualize system activity (in Kibana)
● Build our own reporting app?



Reporting



Demo

      rji/mesoscon-2015-demo



Outcomes
and

Future Work



Outcomes

● Single Git-based workflow
● Standardized, stateless Jenkins masters
● Jenkins slaves provisioned on-demand
● Bonus: private PaaS (Marathon)



Future Work

● Adoption
● Single reporting dashboard (with API)
● Intelligent job queueing and throttling
● Job DSL plugin abstraction and templates



Q & A

@rogerignazio


