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Agenda

● Puppet Labs’ testing environment
● Conventional methods for scaling Jenkins
● Motivations for re-architecting CI
● Breaking up the Jenkins monolith
● Demo, outcomes, and future work
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Intro to Mesos

● General-purpose cluster manager
● Represent many machines as a single entity
● Advertise resources directly to applications



Intro to Marathon

● Mesos framework that provides private PaaS
○ Manages long-running tasks

● Easily scale apps to N instances
● Automatically restarts failed app instances



Intro to Jenkins

● Distributed, open source CI tool
● Repeatable build/test of software projects
● Large community, rich plugin ecosystem



Puppet Labs’
Testing Environment



Testing at Puppet Labs

● 4k to 5k builds/day across 75 platforms
● 15 Jenkins clusters

○ Loosely based on team, project, function
○ ~ 1,300 executors across ~ 240 build machines

● Tooling: Beaker, vmpooler



Testing at Puppet Labs

● Configuration management
○ Most job configs and scripts stored in Jenkins
○ Infrastructure managed by Puppet

● Reporting
○ Jenkins UI ( x15! )
○ Clockin, Waylon



Conventional Methods 
for Scaling Jenkins



● Two common deployments
○ Single Jenkins master with many jobs
○ Master per team, project, or function

● Not highly available
● Can’t load balance across masters
● Static partitioning kills overall utilization

Scaling Jenkins



Scaling Jenkins
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Scaling Jenkins

What can we do about it?

On-demand resources!



Scaling Jenkins
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Motivations for
Re-architecting CI



User Stories

As a $role,

I { want, need } $something,

so that $outcome



User Stories

As a Developer, I want tests to be run against pull 
requests, so that I have confidence in the code 

about to be merged



User Stories

As a Developer, I don't want to worry about the 
underlying infrastructure of the CI system



User Stories

As a CI consumer, I want a central location to view all 
CI activity, so that I don’t have to visit multiple URLs



User Stories

As a QE, I want slaves to be on-demand, so that 
infrastructure resources are used more efficiently



Motivation

● Reduce friction in dev workflows
● Event (and data)-driven system
● Improve reporting and user experience
● Scale to meet growing demand



Breaking Up
The Monolith



The Jenkins Monolith
Jenkins Master
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Build Info and Results
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(Executors)
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Breaking Up The Monolith

● Job configurations
● Build trigger
● Build history
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Jenkins on Marathon

● Marathon as a private PaaS
● Scale Jenkins masters horizontally
● Deploy updates, config changes, plugins
● Continuous deployment of CI ?!



Jenkins on Marathon
 Mesos
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Reporting

● Unique IDs for each event (in Redis)
● Webhooks and build data (in Elasticsearch)
● Query and visualize system activity (in Kibana)
● Build our own reporting app?



Reporting



Demo

      rji/mesoscon-2015-demo



Outcomes
and

Future Work



Outcomes

● Single Git-based workflow
● Standardized, stateless Jenkins masters
● Jenkins slaves provisioned on-demand
● Bonus: private PaaS (Marathon)



Future Work

● Adoption
● Single reporting dashboard (with API)
● Intelligent job queueing and throttling
● Job DSL plugin abstraction and templates
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