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L What are rare events data?

motivation

» recent debate on the safety of the diabetes drug rosiglitazone
» meta-analysis (MA) by Nissen and Wolski (2007, 2010)

» number of papers Shuster et al. (2007), Tian et al. (2009),
Dahabreh (2008), Friedrich et al. (2009), Mannucci et al.
(2009), Kaul and Diamond (2011)

» Bohning, Mylona, Kimber (2014) focus on existing
methodology to adapt to MA of rare event trials
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L What are rare events data?

Table: Study data of meta—analysis on rare events in Rosiglitazone and
control arm; MI refers to the myocardial infarction deaths, CV to
cardiovascular deaths, n is the size of the respective study arm and
'duration’ refers to the study period at risk (in weeks)

treatment arm control arm

ID  study label n Ml CV n Ml CV duration

1 49653/011 357 2 1 176 0 0 24

2 49653/020 391 2 0 207 1 0 52

3 49653/024 774 1 0 185 1 0 26

4 49653/093 213 0 0 109 1 0 26
53 49653/452 26 0 0 24 0 0 24
54 DREAM 2635 15 12 2634 9 10 156
55 ADOPT19 1456 27 2 2895 41 5 208
56 RECORD 2220 64 60 2227 56 71 260
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LWhat are rare events data?

a second example

>

NiEl-Weise et al. (2007) did a MA on the effect of
anti-infective-treated central venous catheters on
catheter-related bloodstream infection (CRBSI) in the acute

care setting

» meta-analysis involved 18 clinical trials

» control group is standard catheter
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L What are rare events data?

Table: Meta—analysis on rare evidence data on the effect of
anti-infective-treated catheter in compariosn to standard catheter; CRBSI
refers to catheter-related bloodstream infection events, n is the size of

the respective study arm

control arm | treatment arm
study ID | CRBSI  n | CRBSI n
1 3 117 0 116
2 3 35 1 44
3 9 195 2 208
4 7 136 0 130
5 6 157 5 151
6 4 139 1 98
7 3 177 1 174
8 2 39 1 74
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LWhat are rare events data?

control arm | treatment arm
study ID | CRBSI  n | CRBSI n
9 19 103 1 97
10 2 122 1 113
11 7 64 0 66
12 1 58 0 70
13 5 175 3 188
14 11 180 6 187
15 0 105 0 118
16 1 262 0 252
17 3 362 1 345
18 1 69 4 64
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LWhat are rare events data?

a definition

MA of rare events trials deals with MA of trials which includes
single-zero or double-zero trials.

A single-zero trial is a trial in which at least one arm are has no

events. A double-zero trial is a trial in which both arms have no
events.
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LWhat are the problems with rare events trials?

popular effect measures

» risk difference RD: risk in treatment arm — risk in control
arm estimated by (x number of events and P is person-time)

@:XT/PT—XC/PC

» risk ratio RR: risk in treatment arm / risk in control arm
estimated by

xT/PT

xC¢/PC

» odds ratio OR: odds in treatment arm / odds in control arm
estimated by

RR =

X THPT —xT)  xT(PC _xC
Ok = XC?E'DC _ XC)) - XC((pT _ XT;
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LWhat are the problems with rare events trials?

problems can occur on two levels with zero-studies

effect measure itself

» no problem for the risk difference
RD = xT/PT —x€/pPC

» risk ratio and odds ratio: it might be useless (0), infinite (c0),

or undefined (0/0)
<T/pT T T
[P and OR = X /(PT=x])

"R = e RG]
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LWhat are the problems with rare events trials?

uncertainty assessment

problems can occur on two levels with zero-studies
» risk difference

T C
—~ X X
var(RD) ~ T2 + pC?
» risk ratio 1 1
log RR) ~ — + —
var(log RR) T T ¢
» odds ratio
— 1 1 1 1
var(log OR) ~ — + T T +
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LWhat are the problems with rare events trials?
:

>

problems can occur on two levels with zero-studies
disturbances with weighted average computation

log RR =

Do wilog RR;
» where

i Wi
1
w; =

var(l@—R\R)
» in a similar way for RD and OR
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LEffect estimation using Mantel-Haenszel

strategies to cope with zero-studies

pooling all studies:
>

o~

(S PT)
RRerude = (S50 /(S, PO)

» disadvantage: potentially strong confounding effect by
ignoring study factor
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LEfFect estimation using Mantel-Haenszel

Mantel-Haenszel

where P; = P¢ + P
» advantage: estimator is not sensitive to zero-studies
» is also a weighted estimator

>, wiRR;
Do Wi

using the weights w; = X,-CP,-T/Pi
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LEfFect estimation using Mantel-Haenszel

Table: Mantel-Haenszel estimate in the rare events meta—analysis of
Rosiglitazone

method estimate confidence interval
Ml
crude 1.2561 0.9928 — 1.5911
MH  1.2782 1.0125 - 1.6137
cv
crude 1.1281 0.8496 — 1.4987
MH  1.0257 0.7760 — 1.3557
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L Effect estima

n using Mantel-Haenszel
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LE\‘Tect estimation using Mantel-Haenszel

Wain |iin | Weights | Options
onTime, by. : s . B
onTimesby.. ¥ 2se variable osed variable:
onTime, by... 4 e kv treatment

Personime varable:
PersonTime [=]

Cancel

Command

‘Submit
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L Effect estima

n using Mantel-Haenszel
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Testbased cort. intervals
study
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LEffect estimation using Mantel-Haenszel

Mantel-Haenszel for OR

ORypy = 20X

i

1

ZIX'C(PiT
where P; = P,-C +PT

» is also a weighted estimator

>l wi
using the weights w; = x* (P — x")/P;

T(PE —xE)/P;

XiT)/Pi’
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LEffect estimation using Mantel-Haenszel

Mantel-Haenszel for RD

—~

(xT PS¢ — xEPT)/P;
RDMH — ZI(XI 1 XI 1 )/

where P; = P,-C + P,-T

)

Zi(PiTPiC/Pi)

» is also a weighted estimator

>, wiRD;
Zi Wi

using the weights w; = (P,-TP,-C)/Pi
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LEffect estimation using Mantel-Haenszel

testing homogeneity of effect

major difficulties with Mantel-Haenszel lies in establishing
homogeneity of effect

" (I&ﬁi’i—Iogl$\,‘-'\’|\/||_|>2

var(log RR;)

2
Xk—1 =
i
where k is the number of studies
» this statistic will not work in the case of zero-studies

» this question needs to be approached in a modelling
framework
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LPoisson with fixed and random effects

Poisson regression

» consider number of events X as a Poisson count with mean
E(X)=puP

» clearly, u = E(X)/P is the incidence risk

> write in study /
E(Xy) = 1P

for j = 1 (treatment) and j = 0 (control)
» so that again RR = pu1/po
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LPoisson with fixed and random effects

Poisson regression

» in study /
E(Xj) = 1Py

» take logarithms on both sides
log E(Xjj) = log Pjj + log j1j = log Pjj +a+ 3 x j

» so that § = log(u1/wo) is the log-risk ratio

> log Pjj enters as a covariate with known coefficient into the
model: an offset
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L poi

son with fixed and random effects

00 1.000 0
0.976 .0599727
P 352 poisson - Poisson regrassion
onTime, by... 3 5.1, Il | Model [by/it/in | Weights | SE/Robust | Reporting | Max options.
onTime, by... a
Dependent variable: Independent variables:
+, exposure.. d 1.60e ov reatment
Hment =ip; Suppress constart tem
tment, exp.
nent i.studh Options
® Exposure variable: Offset variable:
nent istudi. FamonTins
nent i.studi. - 7 %
£ ot I B Constraints:
Keep collinear vaniables {farely used)
=
3 Command
-t ¢

279/ AY



Meta-Analysis of Rare Events

LPoisson with fixed and random effects

Poisson regression with random study effect

taking into account the study effect:

» the effect homogeneity model

|ogE(X,J-) = |ogP,-J-—|-oz,- —i—ﬂ Xj
» the effect heterogeneity model

log E(Xjj) = log Pjj + i + Bi % j

ISR N e



Meta-Analysis of Rare Events

LPoisson with fixed and random effects

Poisson regression with random study effect

two options:

» fixed effects model: «; and (3; are treated as fixed
parameters

» disadvantage: many studies — many parameters

» Neyman-Scott problem (sample size and number of
parameters connected)

» random effects model: «o; and (; are treated as random
quantities:

ai ~ N(a,03) and Bj ~ N(8B,03)

Y/ A8
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LPoisson with fixed and random effects

Poisson regression with random study effect

this leads to the following different likelihoods (in the example of
the homogeneity model )

» fixed effects model:

H [PO(X,'()‘P;O exp(a,-)) X PO(X,'1’P,'1 exp(a,- + 6))] y (1)
i
» random effects model:

H/[PO(X;0|P,'0 exp(a;))

x Po(x1|Pj1 exp(aj + B))]é( il v, 03) dav.
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LPoisson with fixed and random effects

Poisson regression with random study effect

likelihood in the example of the heterogeneity model
» random effects model:

H/PO(XiO|Pi0 exp(a))x

[ / Po(xa | P expl(ars + B.))6(3:10,03)d 1| d(aler, 02)das
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Poisson regression with random study effect

integrals have no closed form solution:

» Laplace approximation

» Gauss-Hermite quadrature

2258
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L Poisson with fixed and random effects
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LPoisson with fixed and random effects

Testing homogeneity with the likelihood ratio test

» random effects model M;:
L = H/Po(x,-o|P,-o exp(a;))Po(xi1| Pi1 exp(ai+3))b(ai|0, o2 )da;
i

» NO random effects Mj:

Lo = H [Po(xio| Pio exp(ar)) x Po(xj1|Pi1 exp(a + 3))]

likelihood ratio
Iog)\ = 2|0gL1/L0

is x2 with 1 df under the My
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I—Pcnisson with fixed and random effects

Testing homogeneity with the likelihood ratio test

» variance estimates cannot be negative :

A2
6,>0
» hence: distribution of 62 cannot be normal

2058
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I—Pcnisson with fixed and random effects

0.4+

o
w
1

normal density
o
b

0.14

0.0+

-1 0 1 2
variance estimator of random effect
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LPoisson with fixed and random effects

Testing homogeneity with the likelihood ratio test
» asymptotic distribution:
P(52/s.e.(62) < x) = 0.5 + 0.50(x)

where ®(x) is the CDF of a standard normal distribution

» similarly for the asymptotic distribution of the likelihood ratio
log A = 2log L1 /Lo ~ 0.5+ 0.5x7,

» in practice, conventionally computed P-values need only be
divided by 2 since:

P(log A > log Agp) = 1-[0.5+0.5{1—P(log A > log Agps 1d)}]

= 0.5P(log A > log Aops o1d)
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L Poisson with fixed and random effects

Table: Poisson regression estimates in the rare events meta—analysis of

Rosiglitazone; Log-L stands for the maximised log-likelihood

Poisson model estimate confidence interval Log-L

Ml

treatment  1.2561 0.9991 — 1.5793  -174.2054

treatment  1.2634 1.0006 — 1.5952  -137.9558
o2 0.6346

treatment  1.2634 1.0006 — 1.5952  -137.9558
o2 0.6346
0[23 0.
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L Poisson with fixed and random effects

Table: Poisson regression estimates in the rare events meta—analysis of

Rosiglitazone; Log-L stands for the maximised log-likelihood

Poisson model estimate confidence interval Log-L

cv

treatment  1.1281 0.8579 —1.4835 -172.0216

treatment  1.0192 0.7737 — 1.3426  -100.3095
o2 1.2294

treatment  1.0192 0.7737 — 1.3426  -100.3095
o2 1.12294
0[23 0.
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L Poisson with fixed and random effects

model evaluation

>

for model assessment we will use criteria that compromise
between model fit and model complexity

Akaike information criterion
AIC = —-2logL+2p
Bayesian Information criterion

BIC = —2log L+ plogk

» where p is the number of parameters in the model

» and k is the number of trials in the meta-analysis

we seek a model for which AIC and/or BIC are small

A1/ 68
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LSensitivity analysis: the effect of excluding zero-studies

sensitivity analysis:

how does the effect estimate of the risk ratio depend on the
exclusion/inclusion of
» double-zero (DZ)

> single-zero (SZ)
studies?




Meta-Analysis of Rare Events

LSensitivity analysis: the effect of excluding zero-studies

Table: Poisson random effects regression estimates of the risk ratio: the
effect of excluding double-zero (DZ) and single-zero (SZ) studies and
none excluded (NONE); number of studies included is given in brackets

in the first column

excluding (k)  RR SE Z  P-value 95% Cl

Mi
NONE(56) 1.2633 0.1503 1.96 0.049 1.0006 — 1.5952
DZ(41) 1.2634 0.1503 1.97 0.049 1.0008 — 1.5955
SZ(15) 1.2101 0.1512 153 0.127 0.9473 — 1.5458

cv
NONE(56) 1.0193 0.1433 0.14 0.892 0.7738 —1.3426
DZ(27) 1.0246 0.1441 0.17 0.863 0.7778 — 1.3497
SZ(8) 0.9427 0.1395 -0.40 0.690 0.7054 — 1.2599
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LZero—ianation models

Zero-inflation models

count data with many zeros lead to the question:
> is there an excess of zero counts relative to the Poisson model

» an excess in zero-counts is called zero-inflation

Pr[X =0] = T+ (1 —7)Po(0|u) (2)
PriX =x] = (1 —m)Po(x|u) for x =1,2,... (3)

AR/ A
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|—Zero-inflation models

Zero-inflation models

Lambert (1992) extended the simple ZIP-model to covariates

logujj = logPj+a+p3xj
logit mjj = log lf’ﬂu =

(4)
o + 6 .
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- Zero-infla
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LLogistic regression modelling

Logistic regression

let Yj; denote the binary outcome for an event (Yj; = 1) in study i
and treatment arm j (j = 0,1)

>
mjj = P(Yjj = 1) probability of an event

» logistic transformation

log -=a+3xj

mij
1—mj

» so that 3 is the log-odds ratio

51/ AY
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|—Loglstlc regression modelling

Logistic regression model

» each trial arm within each study contributes a binomial
likelihood
>

("u) (1= )9
» where

Iogl_ =a+p[xj

25N
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|—Logistic regression modelling

Logistic likelihood

>

i
» where

L= )

log i =a+fBxj
1—my
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|—Logistic regression modelling

Logistic regression with random intercept effect for
study

>

Ioglza;—i-ﬁxj
1—m;

» where a; ~ N(a, 02) is a random intercept effect
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I—Logistic regression modelling

Mixed Logistic Likelihood

(L= )0y do
» where ¢(«;) is a normal density with mean « and variance o,
» and

=TI

2

[e%

Ioglza;—i-ﬁxj
1—mj
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I—Logistic regression modelling

Logistic regression with random intercept effect for
study

>

ij
log —

o+ i xj
i
» where a; ~ N(a,02) is a random intercept effect

» and 5 ~ N(j3, aé) is a random slope (treatment) effect
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LLogistic regression modelling

Mixed Logistic Likelihood

>

L= H/ / H (ZZ) i (L= )i g(5:)dB; | ¢(ei)da

» where ¢(«;) is a normal density with mean « and variance o,

N o

» where ¢(/3;) is a normal density with mean /3 and variance o3

» and

log —oe,+ﬂ,><1

]__
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LLogistic regression modelling

Mixed-effects logistic regression Number of obs = 36
Binomial variable: n

Group variable: study 02 Number of groups = 18

Obs per group: min = 2

avg = 2.0

max = 2

Integration method: mvaghermite Integration points = 7

Wald chi2(1) = 16.16

Log likelihood = -78.215149 Prob > chi2 = 0.0001

x 0dds Ratio Std. Err. z P>|z| [95% Conf. Interval]

Treat_bin .2458528 .0857953 -4.02 0.000 .1240598 .4872135

_cons .0310596 .0077302 -13.95 0.000 .0190698 .0505877

study_02

var (Treat_~n) .6187426 .5829695 .0976161 3.921919

var (_cons) .7717062 .3642633 .3059603 1.946431

LR test vs. logistic regression: chi2 (2) 50.11 Prob > chi2 = 0.0000
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LLogistic regression modelling

Table: Logistic regression estimates in the rare evidence meta—analysis of
CRBSI; Log-L stands for the maximised log-likelihood

logistic model estimate confidence interval  Log-L

treatment 0.30 0.20 — 0.47 -103.27

treatment 0.29 0.19-0.46 -79.70
o2 074 0.30 - 1.87

treatment 0.25 0.12-0.49 -78.22
o2 077 0.31-1.95
o5 0.62 0.10 - 3.92

RO /A8
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|—Conditional logistic regression modelling

recall:

let RR = ul/,uo and X; = Xi1 + Xio

> in study i, for treatment

E(Xi1) = n1Pin
for control

E(Xio) = poPio
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I—Conditional logistic regression modelling

it follows:

» then E(X,'1 + X,'o) = u1Pj1 + poPjo so that

Pi
E(Xa|X;) = X;— 11

=X
"u1Pi + poPio

RR 52

"1+ RRp2
depends only on RR, the parameter of interest
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LConditionaI logistic regression modelling

Table: Layout for conditional logistic regression in study 7

treatment control | margin
events Xi Xi X;
person time P; P; P;
>

P; RREL
Xi1|X; ~ Bin(q;, X;i) with g; = H1Fi1 — P'OP-
fPin+poPio 1+ RREE
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I—Conditional logistic regression modelling

furthermore:

> let RR = exp(3)

i
RRP_,-(I,
qi
>

1+ RRRZ

exp[3 + Iog(g—fé)]

1+ exp[8+ Iog(ﬁ—%)]
_4q
1—gq;

ol )

s(i%)

Pi1
- log( 'L
a0 B+ log( 5

i0

8y
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LConditionaI logistic regression modelling

hence:

P
I log
og(l_ ) B+ (P,o
» we find RR as logistic regression with intercept only and
offset Iog(g—%)
>

note that 3 is a log-risk ratio
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LConditional logistic regression modelling

Table: Meta—analysis on rare evidence data on the effect of

anti-infective-treated catheter in compariosn to standard catheter; CRBSI
(Xi1, Xio) refers to catheter-related bloodstream infection events, nj1, njo
is the size of the respective study arm

control arm | treatment arm | conditional
study ID | X; N;o X; ni1 X; n,-1/n,-o
1] 3 117 0 116 3 116/117
2 3 35 1 44 4 44/35
319 195 2 208 11 208/195
41 7 136 0 130 7 130/136
51 6 157 5 151 11 151/157
6| 4 139 1 98 5 98/139
71 3 177 1 174 4 174177
8| 2 39 1 74 3 74/39
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LConditionaI logistic regression modelling

. melogit xt, offset(log_ratio) binomial (xsum) or

Iteration 0 log likelihood = -26.454133
Iteration 1: log likelihood = -26.199518
Iteration 2: log likelihood -26.199183
Iteration 3: log likelihood = -26.199183
Logistic regression Number of obs = 18
Binomial variable: xsum
Wald chi2(0) =
Log likelihood = -26.199183 Prob > chi2 =
xt Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_cons .3072359 .0678268 -5.35 0.000 .1993228 .4735732
log_ratio 1 (offset)
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LConditionaI logistic regression modelling

can be easily extend to random effects model
og 9
1—g

with 3; ~ N(8,03)

Pi1
i + log( P,-o)

Mixed-effects logistic regression Number of obs = 18
Binomial variable: xsum
Group variable: study_short Number of groups = 18
Obs per group: min = 1
avg = 1.0
max = 1
Integration method: mvaghermite Integration points = 7
Wald chi2(0) =
Log likelihood = -24.794429 Prob > chi2 =
xt | odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_cons .2718073 .0920478 -3.85 0.000 .1399591 .527863
log_ratio 1 (offset)
study_short
var (_cons) .6007426 .5915841 .0871894 4.139168
LR test vs. logistic regression: chibar2(01) = 2.81 Prob>=chibar2 = 0.0469
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