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What are rare events data?

motivation

I recent debate on the safety of the diabetes drug rosiglitazone

I meta-analysis (MA) by Nissen and Wolski (2007, 2010)

I number of papers Shuster et al. (2007), Tian et al. (2009),
Dahabreh (2008), Friedrich et al. (2009), Mannucci et al.
(2009), Kaul and Diamond (2011)

I Böhning, Mylona, Kimber (2014) focus on existing
methodology to adapt to MA of rare event trials
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What are rare events data?

Table: Study data of meta–analysis on rare events in Rosiglitazone and
control arm; MI refers to the myocardial infarction deaths, CV to
cardiovascular deaths, n is the size of the respective study arm and
’duration’ refers to the study period at risk (in weeks)

treatment arm control arm
ID study label n MI CV n MI CV duration

1 49653/011 357 2 1 176 0 0 24
2 49653/020 391 2 0 207 1 0 52
3 49653/024 774 1 0 185 1 0 26
4 49653/093 213 0 0 109 1 0 26

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
53 49653/452 26 0 0 24 0 0 24
54 DREAM 2635 15 12 2634 9 10 156
55 ADOPT19 1456 27 2 2895 41 5 208
56 RECORD 2220 64 60 2227 56 71 260
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What are rare events data?

a second example

I NiËl-Weise et al. (2007) did a MA on the effect of
anti-infective-treated central venous catheters on
catheter-related bloodstream infection (CRBSI) in the acute
care setting

I meta-analysis involved 18 clinical trials

I control group is standard catheter
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What are rare events data?

Table: Meta–analysis on rare evidence data on the effect of
anti-infective-treated catheter in compariosn to standard catheter; CRBSI
refers to catheter-related bloodstream infection events, n is the size of
the respective study arm

control arm treatment arm

study ID CRBSI n CRBSI n

1 3 117 0 116
2 3 35 1 44
3 9 195 2 208
4 7 136 0 130
5 6 157 5 151
6 4 139 1 98
7 3 177 1 174
8 2 39 1 74
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What are rare events data?

control arm treatment arm

study ID CRBSI n CRBSI n

9 19 103 1 97
10 2 122 1 113
11 7 64 0 66
12 1 58 0 70
13 5 175 3 188
14 11 180 6 187
15 0 105 0 118
16 1 262 0 252
17 3 362 1 345
18 1 69 4 64
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What are rare events data?

a definition

MA of rare events trials deals with MA of trials which includes
single-zero or double-zero trials.

A single-zero trial is a trial in which at least one arm are has no
events. A double-zero trial is a trial in which both arms have no
events.
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What are the problems with rare events trials?

popular effect measures

I risk difference RD: risk in treatment arm − risk in control
arm estimated by (x number of events and P is person-time)

R̂D = xT/PT − xC/PC

I risk ratio RR: risk in treatment arm / risk in control arm
estimated by

R̂R =
xT/PT

xC/PC

I odds ratio OR: odds in treatment arm / odds in control arm
estimated by

ÔR =
xT/(PT − xT )

xC/(PC − xC )
=

xT (PC − xC )

xC (PT − xT )
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What are the problems with rare events trials?

problems can occur on two levels with zero-studies

effect measure itself

I no problem for the risk difference

R̂D = xT/PT − xC/PC

I risk ratio and odds ratio: it might be useless (0), infinite (∞),
or undefined (0/0)

R̂R =
xT/PT

xC/PC
and ÔR =

xT/(PT − xT )

xC/(PC − xC )
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What are the problems with rare events trials?

problems can occur on two levels with zero-studies

uncertainty assessment

I risk difference

var(R̂D) ≈ xT

PT 2
+

xC

PC 2

I risk ratio

var( ̂log RR) ≈ 1

xT
+

1

xC

I odds ratio

var( ̂log OR) ≈ 1

xT
+

1

PT − xT
+

1

xC
+

1

PC − xC
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What are the problems with rare events trials?

problems can occur on two levels with zero-studies

disturbances with weighted average computation:

I

log RR =

∑
i wi

̂log RRi∑
i wi

I where

wi =
1

var( ̂log RR)

I in a similar way for RD and OR
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Effect estimation using Mantel-Haenszel
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Effect estimation using Mantel-Haenszel

strategies to cope with zero-studies

pooling all studies:

I

R̂Rcrude =
(
∑

i x
T
i )/(

∑
i P

T
i )

(
∑

i x
C
i )/(

∑
i P

C
i )

I disadvantage: potentially strong confounding effect by
ignoring study factor
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Effect estimation using Mantel-Haenszel

Mantel-Haenszel

I

R̂RMH =

∑
i x

T
i PC

i /Pi∑
i x

C
i PT

i /Pi
,

where Pi = PC
i + PT

i

I advantage: estimator is not sensitive to zero-studies

I is also a weighted estimator∑
i wi R̂R i∑

i wi

using the weights wi = xC
i PT

i /Pi
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Effect estimation using Mantel-Haenszel

Table: Mantel-Haenszel estimate in the rare events meta–analysis of
Rosiglitazone

method estimate confidence interval

MI
crude 1.2561 0.9928 – 1.5911

MH 1.2782 1.0125 – 1.6137

CV
crude 1.1281 0.8496 – 1.4987

MH 1.0257 0.7760 – 1.3557
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Effect estimation using Mantel-Haenszel
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Effect estimation using Mantel-Haenszel
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Effect estimation using Mantel-Haenszel
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Effect estimation using Mantel-Haenszel

Mantel-Haenszel for OR

I

ÔRMH =

∑
i x

T
i (PC

i − xC
i )/Pi∑

i x
C
i (PT

i − xT
i )/Pi

,

where Pi = PC
i + PT

i

I is also a weighted estimator∑
i wi ÔR i∑

i wi

using the weights wi = xC
i (PT

i − xT
i )/Pi
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Effect estimation using Mantel-Haenszel

Mantel-Haenszel for RD

I

R̂DMH =

∑
i (x

T
i PC

i − xC
i PT

i )/Pi∑
i (P

T
i PC

i /Pi )
,

where Pi = PC
i + PT

i

I is also a weighted estimator∑
i wi R̂D i∑

i wi

using the weights wi = (PT
i PC

i )/Pi
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Effect estimation using Mantel-Haenszel

testing homogeneity of effect

major difficulties with Mantel-Haenszel lies in establishing
homogeneity of effect

I

χ2
k−1 =

∑
i

(
̂log RR i − log R̂RMH

)2

var( ̂log RR i )

where k is the number of studies

I this statistic will not work in the case of zero-studies

I this question needs to be approached in a modelling
framework
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Poisson with fixed and random effects
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Poisson with fixed and random effects

Poisson regression

I consider number of events X as a Poisson count with mean

E (X ) = µP

I clearly, µ = E (X )/P is the incidence risk

I write in study i
E (Xij) = µjPij

for j = 1 (treatment) and j = 0 (control)

I so that again RR = µ1/µ0
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Poisson with fixed and random effects

Poisson regression

I in study i
E (Xij) = µjPij

I take logarithms on both sides

log E (Xij) = log Pij + log µj = log Pij + α + β × j

I so that β = log(µ1/µ0) is the log-risk ratio

I log Pij enters as a covariate with known coefficient into the
model: an offset
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Poisson with fixed and random effects
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Poisson with fixed and random effects

Poisson regression with random study effect

taking into account the study effect:

I the effect homogeneity model

log E (Xij) = log Pij + αi + β × j

I the effect heterogeneity model

log E (Xij) = log Pij + αi + βi × j
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Poisson with fixed and random effects

Poisson regression with random study effect

two options:

I fixed effects model: αi and βi are treated as fixed
parameters

I disadvantage: many studies → many parameters

I Neyman-Scott problem (sample size and number of
parameters connected)

I random effects model: αi and βi are treated as random
quantities:

αi ∼ N(α, σ2
α) and βi ∼ N(β, σ2

β)
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Poisson with fixed and random effects

Poisson regression with random study effect

this leads to the following different likelihoods (in the example of
the homogeneity model )

I fixed effects model:∏
i

[Po(xi0|Pi0 exp(αi ))× Po(xi1|Pi1 exp(αi + β))] , (1)

I random effects model:∏
i

∫
[Po(xi0|Pi0 exp(αi ))

×Po(xi1|Pi1 exp(αi + β))]φ(αi |α, σ2
α)dαi .
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Poisson with fixed and random effects

Poisson regression with random study effect

likelihood in the example of the heterogeneity model
I random effects model:∏

i

∫
Po(xi0|Pi0 exp(αi ))×

[∫
Po(xi1|Pi1 exp(αi + βi ))φ(βi |0, σ2

β)dβi

]
φ(αi |α, σ2

α)dαi .
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Poisson with fixed and random effects

Poisson regression with random study effect

integrals have no closed form solution:

I Laplace approximation

I Gauss-Hermite quadrature
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Poisson with fixed and random effects
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Poisson with fixed and random effects

Testing homogeneity with the likelihood ratio test

I random effects model M1:

L1 =
∏
i

∫
Po(xi0|Pi0 exp(αi ))Po(xi1|Pi1 exp(αi+β))φ(αi |0, σ2

α)dαi

I NO random effects M0:

L0 =
∏
i

[Po(xi0|Pi0 exp(α))× Po(xi1|Pi1 exp(α + β))]

likelihood ratio
log λ = 2 log L1/L0

is χ2 with 1 df under the M0
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Poisson with fixed and random effects

Testing homogeneity with the likelihood ratio test

I variance estimates cannot be negative :

σ̂2
α ≥ 0

I hence: distribution of σ̂2
α cannot be normal
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Poisson with fixed and random effects
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Poisson with fixed and random effects

Testing homogeneity with the likelihood ratio test

I asymptotic distribution:

P(σ̂2
α/s.e.(σ̂2

α) < x) = 0.5 + 0.5Φ(x)

where Φ(x) is the CDF of a standard normal distribution

I similarly for the asymptotic distribution of the likelihood ratio

log λ = 2 log L1/L0 ∼ 0.5 + 0.5χ2
(1)

I in practice, conventionally computed P-values need only be
divided by 2 since:

P(log λ > log λobs) = 1−[0.5+0.5{1−P(log λ > log λobs,old)}]

= 0.5P(log λ > log λobs,old)
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Poisson with fixed and random effects

Table: Poisson regression estimates in the rare events meta–analysis of
Rosiglitazone; Log-L stands for the maximised log-likelihood

Poisson model estimate confidence interval Log-L

MI
treatment 1.2561 0.9991 – 1.5793 -174.2054

treatment 1.2634 1.0006 – 1.5952 -137.9558
σ2

α 0.6346

treatment 1.2634 1.0006 – 1.5952 -137.9558
σ2

α 0.6346
σ2

β 0.
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Poisson with fixed and random effects

Table: Poisson regression estimates in the rare events meta–analysis of
Rosiglitazone; Log-L stands for the maximised log-likelihood

Poisson model estimate confidence interval Log-L

CV
treatment 1.1281 0.8579 – 1.4835 -172.0216

treatment 1.0192 0.7737 – 1.3426 -100.3095
σ2

α 1.2294

treatment 1.0192 0.7737 – 1.3426 -100.3095
σ2

α 1.12294
σ2

β 0.
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Poisson with fixed and random effects

model evaluation

I for model assessment we will use criteria that compromise
between model fit and model complexity

I Akaike information criterion

AIC = −2 log L + 2p

I Bayesian Information criterion

BIC = −2 log L + p log k

I where p is the number of parameters in the model

I and k is the number of trials in the meta-analysis

I we seek a model for which AIC and/or BIC are small
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Sensitivity analysis: the effect of excluding zero-studies
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Sensitivity analysis: the effect of excluding zero-studies

sensitivity analysis:

how does the effect estimate of the risk ratio depend on the
exclusion/inclusion of

I double-zero (DZ)

I single-zero (SZ)

studies?
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Sensitivity analysis: the effect of excluding zero-studies

Table: Poisson random effects regression estimates of the risk ratio: the
effect of excluding double-zero (DZ) and single-zero (SZ) studies and
none excluded (NONE); number of studies included is given in brackets
in the first column

excluding (k) RR SE Z P-value 95% CI

MI
NONE(56) 1.2633 0.1503 1.96 0.049 1.0006 – 1.5952

DZ(41) 1.2634 0.1503 1.97 0.049 1.0008 – 1.5955
SZ(15) 1.2101 0.1512 1.53 0.127 0.9473 – 1.5458

CV
NONE(56) 1.0193 0.1433 0.14 0.892 0.7738 – 1.3426

DZ(27) 1.0246 0.1441 0.17 0.863 0.7778 – 1.3497
SZ(8) 0.9427 0.1395 -0.40 0.690 0.7054 – 1.2599
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Zero-inflation models
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Zero-inflation models

Zero-inflation models

count data with many zeros lead to the question:

I is there an excess of zero counts relative to the Poisson model

I an excess in zero-counts is called zero-inflation

Pr [X = 0] = π + (1− π)Po(0|µ) (2)

Pr [X = x ] = (1− π)Po(x |µ) for x = 1, 2, ... (3)
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Zero-inflation models
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Zero-inflation models

Zero-inflation models

Lambert (1992) extended the simple ZIP-model to covariates:

log µij = log Pij + α + β × j (4)

logit πij = log
πij

1−πij
= α′ + β′ × j . (5)
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Zero-inflation models
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Logistic regression modelling
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Logistic regression modelling

Logistic regression

let Yij denote the binary outcome for an event (Yij = 1) in study i
and treatment arm j (j = 0, 1)

I

πij = P(Yij = 1) probability of an event

I logistic transformation

log
πij

1− πij
= α + β × j

I so that β is the log-odds ratio
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Logistic regression modelling

Logistic regression model

I each trial arm within each study contributes a binomial
likelihood

I (
nij

xij

)
π

xij

ij (1− πij)
nij−xij

I where
log

πij

1− πij
= α + β × j
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Logistic regression modelling

Logistic likelihood

I

L =
∏
i

∏
j

(
nij

xij

)
π

xij

ij (1− πij)
nij−xij

I where
log

πij

1− πij
= α + β × j
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Logistic regression modelling

Logistic regression with random intercept effect for
study

I

log
πij

1− πij
= αi + β × j

I where αi ∼ N(α, σ2
α) is a random intercept effect
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Logistic regression modelling

Mixed Logistic Likelihood

I

L =
∏
i

∫
αi

∏
j

(
nij

xij

)
π

xij

ij (1− πij)
nij−xij φ(αi )dαi

I where φ(αi ) is a normal density with mean α and variance σ2
α

I and
log

πij

1− πij
= αi + β × j
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Logistic regression modelling

Logistic regression with random intercept effect for
study

I

log
πij

1− πij
= αi + βi × j

I where αi ∼ N(α, σ2
α) is a random intercept effect

I and βi ∼ N(β, σ2
β) is a random slope (treatment) effect
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Logistic regression modelling

Mixed Logistic Likelihood

I

L =
∏
i

∫
αi

∫
βi

∏
j

(
nij

xij

)
π

xij

ij (1− πij)
nij−xij φ(βi )dβi

 φ(αi )dαi

I where φ(αi ) is a normal density with mean α and variance σ2
α

I where φ(βi ) is a normal density with mean β and variance σ2
β

I and
log

πij

1− πij
= αi + βi × j
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Logistic regression modelling

 
LR test vs. logistic regression:     chi2(2) =    50.11   Prob > chi2 = 0.0000

                                                                              

   var(_cons)    .7717062   .3642633                      .3059603    1.946431

var(Treat_~n)    .6187426   .5829695                      .0976161    3.921919

study_02      

                                                                              

       _cons     .0310596   .0077302   -13.95   0.000     .0190698    .0505877

   Treat_bin     .2458528   .0857953    -4.02   0.000     .1240598    .4872135

                                                                              

           x   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -78.215149                     Prob > chi2        =    0.0001

                                                Wald chi2(1)       =     16.16

Integration method: mvaghermite                 Integration points =         7

                                                               max =         2

                                                               avg =       2.0

                                                Obs per group: min =         2

Group variable:        study_02                 Number of groups   =        18

Binomial variable:            n

Mixed-effects logistic regression               Number of obs      =        36
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Logistic regression modelling

Table: Logistic regression estimates in the rare evidence meta–analysis of
CRBSI; Log-L stands for the maximised log-likelihood

logistic model estimate confidence interval Log-L

treatment 0.30 0.20 – 0.47 -103.27

treatment 0.29 0.19 – 0.46 -79.70
σ2

α 0.74 0.30 – 1.87

treatment 0.25 0.12 – 0.49 -78.22
σ2

α 0.77 0.31 – 1.95
σ2

β 0.62 0.10 – 3.92
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Conditional logistic regression modelling
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Conditional logistic regression modelling

recall:
let RR = µ1/µ0 and Xi = Xi1 + Xi0

I in study i , for treatment

E (Xi1) = µ1Pi1

for control
E (Xi0) = µ0Pi0
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Conditional logistic regression modelling

it follows:

I then E (Xi1 + Xi0) = µ1Pi1 + µ0Pi0 so that

E (Xi1|Xi ) = Xi
µ1Pi1

µ1Pi1 + µ0Pi0
= Xi

RR Pi1
Pi0

1 + RR Pi1
Pi0

depends only on RR, the parameter of interest
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Conditional logistic regression modelling

Table: Layout for conditional logistic regression in study i

treatment control margin

events Xi1 Xi0 Xi

person time Pi1 Pi0 Pi

I

Xi1|Xi ∼ Bin(qi ,Xi ) with qi =
µ1Pi1

µ1Pi1 + µ0Pi0
=

RR Pi1
Pi0

1 + RR Pi1
Pi0
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Conditional logistic regression modelling

furthermore:

I let RR = exp(β)

qi =
RR Pi1

Pi0

1 + RR Pi1
Pi0

I

=
exp[β + log(Pi1

Pi0
)]

1 + exp[β + log(Pi1
Pi0

)]

qi

1− qi
= exp[β + log(

Pi1

Pi0
)]

log

(
qi

1− qi

)
= β + log(

Pi1

Pi0
)
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Conditional logistic regression modelling

hence:

I

log

(
qi

1− qi

)
= β + log(

Pi1

Pi0
)

I we find R̂R as logistic regression with intercept only and
offset log(Pi1

Pi0
)

I note that β is a log-risk ratio
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Conditional logistic regression modelling

Table: Meta–analysis on rare evidence data on the effect of
anti-infective-treated catheter in compariosn to standard catheter; CRBSI
(Xi1, Xi0) refers to catheter-related bloodstream infection events, ni1, ni0

is the size of the respective study arm

control arm treatment arm conditional

study ID Xi0 ni0 Xi1 ni1 Xi ni1/ni0

1 3 117 0 116 3 116/117
2 3 35 1 44 4 44/35
3 9 195 2 208 11 208/195
4 7 136 0 130 7 130/136
5 6 157 5 151 11 151/157
6 4 139 1 98 5 98/139
7 3 177 1 174 4 174/177
8 2 39 1 74 3 74/39
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Conditional logistic regression modelling

                                                                               

   log_ratio            1  (offset)

       _cons     .3072359   .0678268    -5.35   0.000     .1993228    .4735732

                                                                              

          xt   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -26.199183                     Prob > chi2        =         .

                                                Wald chi2(0)       =         .

Binomial variable:         xsum

Logistic regression                             Number of obs      =        18

Iteration 3:   log likelihood = -26.199183  

Iteration 2:   log likelihood = -26.199183  

Iteration 1:   log likelihood = -26.199518  

Iteration 0:   log likelihood = -26.454133  

. melogit xt, offset(log_ratio) binomial(xsum) or
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Conditional logistic regression modelling

can be easily extend to random effects model

log

(
qi

1− qi

)
= βi + log(

Pi1

Pi0
)

with βi ∼ N(β, σ2
β)

 LR test vs. logistic regression: chibar2(01) =     2.81 Prob>=chibar2 = 0.0469

                                                                              

   var(_cons)    .6007426   .5915841                      .0871894    4.139168

study_short   

                                                                              

   log_ratio            1  (offset)

       _cons     .2718073   .0920478    -3.85   0.000     .1399591     .527863

                                                                              

          xt   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -24.794429                     Prob > chi2        =         .

                                                Wald chi2(0)       =         .

Integration method: mvaghermite                 Integration points =         7

                                                               max =         1

                                                               avg =       1.0

                                                Obs per group: min =         1

Group variable:     study_short                 Number of groups   =        18

Binomial variable:         xsum

Mixed-effects logistic regression               Number of obs      =        18
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