Metal Casting - 1

Outline

- Casting basics
- Patterns and molds
- Melting and pouring analysis
- Solidification analysis
- Casting defects and remedies

Casting Basics

 A casting is a metal object obtained by *pouring* molten metal into a mold and allowing it to solidify.

Gearbox casting

Aluminum manifold

Cast wheel

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton

Magnesium casting

Casting: Brief History

- 3200 B.C. Copper part (a frog!) cast in Mesopotamia. Oldest known casting in existence
- 233 B.C. Cast iron plowshares (in China)
- 500 A.D. Cast crucible steel (in India)
- 1642 A.D. First American iron casting at Saugus Iron Works, Lynn, MA
- 1818 A.D. First cast steel made in U.S. using crucible process
- 1919 A.D. First electric arc furnace used in the U.S.
- Early 1970's Semi-solid metalworking process developed at MIT
- 1996 Cast metal matrix composites first used in brake rotors of production automobile

Complex, 3-D shapes

- Near net shape
- Low scrap
- Relatively quick process
- Intricate shapes
- Large hollow shapes
- No limit to size
- Reasonable to good surface finish

Capabilities

- Dimensions
 - sand casting as large as you like
 - small 1 mm or so
- Tolerances
 - 0.005 in to 0.1 in
- Surface finish
 - die casting 8-16 micro-inches (1-3 μ m)
 - sand casting 500 micro-inches (2.5-25 μ m)

Processes

- Sand
- Shell
- Plaster
- Ceramic
- Investment
- Lost foam
- Pressure
- Vacuum

- Die
- Centrifugal
- Squeeze
- Semi-solid
- Single crystal
- Directional solidification
- Slush
- Continuous

Metals processed by casting

- Sand casting 60%
- Investment casting 7%
- Die casting 9%
- Permanent mold casting 11%
- Centrifugal casting 7%
- Shell mold casting 6%

Casting: Basic Steps

- Basic steps in casting are:
 - Preparation of pattern(s), core(s) and mold(s)
 - Melting and pouring of liquefied metal
 - Solidification and cooling to room temperature
 - Removal of casting shakeout
 - Inspection (for possible defects)

Pattern Making

- Pattern is a replica of the exterior surface of part to be cast – used to create the mold cavity
- Pattern materials wood, metal, plaster

Pattern Making

- Pattern usually larger than cast part Allowances made for:
 - Shrinkage: to compensate for metal shrinkage during cooling from freezing to room temp Shrinkage allowance = $\alpha L(T_f - T_0)$ expressed as *per unit length* for a given material α = coeff. of thermal expansion, T_f = freezing temp T_0 = room temp
 - e.g. Cast iron allowance = 1/96 in./ft aluminum allowance = 3/192 in./ft

Pattern Making

- Pattern allowances made for:
 - Machining: excess dimension that is removed by machining; depends on part dimension and material to be cast

e.g. cast iron, dimension 0-30 cm, allowance = 2.5 mm; aluminum, allowance = 1.5 mm

 Draft: taper on side of pattern parallel to direction of extraction from mold; for ease of pattern extraction; typically 0.5~2 degrees

Mold Making: Sand Casting

Mold Making: Sand Casting

Mold Making: Sand Casting

Casting video: http://www.designinsite.dk/htmsider/pb0211wmv.htm

Sand Casting

- Green sand mold:
 sand + clay + water + additives
- Typical composition (by wt.):
 - 70-85% sand, 10-20% clay, 3-6% water, 1-6% additives
- Important properties of molding sand:
 - Strength
 - Permeability
 - Deformation
 - Flowability
 - Refractoriness

Melting

 For a pure metal: total heat energy required, *H* = energy to raise temp of metal to melting point, *T_m* + heat of fusion, *H_f* + energy to raise temp of liquid metal to pouring temp, *T_p*

$$H = \rho V [c_s(T_m - T_0) + H_f + c_l(T_p - T_m)]$$

- Heat required for alloys more complex
- Gas fired, electric arc and induction furnaces
 used to melt metal

Melting

- Solubility of gases (hydrogen and nitrogen) in molten metal an issue
- Solubility of H₂, S:

$S = C \exp \left[-E_s/(k\theta)\right]$

 E_s = heat of solution of 1 mol of H₂ θ = absolute temp, *C* and *k* are constants e.g. 1 atm pressure, liquid solubility of H₂ in iron = 270 cc/kg; in aluminum = 7 cc/kg

Melting Furnaces

Induction Heating

Pouring

 An important step in casting since it impacts mold filling ability and casting defects

Pouring

- Key aspects of pouring
 - Pouring rate
 - Too slow \rightarrow metal freezes before complete mold filling
 - Too fast \rightarrow inclusion of slag, aspiration of gas, etc.
 - Reynolds number: Laminar versus turbulent flow

$$\operatorname{Re} = \frac{\rho V D}{\eta}$$

 ρ = density of liquid, *V* = mean flow velocity, *D* = tube diameter, η = dynamic viscosity of liquid

- Most steels reach mildly turbulent flow conditions easily (Re > 3500)
- Superheat ~ $(T_p T_m)$; T_p = pouring temp
 - Too high \rightarrow increased gas solubility \rightarrow porosity problems

 Fluid flow in sprue/gating/mold can be analyzed using energy balance i.e. Bernoulli's theorem

$$h_1 + \frac{V_1^2}{2g} + \frac{P_1}{\rho g} + F = const.$$

- Assumptions of analysis
 - Incompressible fluid
 - Negligible frictional losses
 - Entire mold is at atmospheric pressure

Top Gated Mold

Bottom Gated Mold

 Design of sprue and gating system (runners + gates) based on Bernoulli's theorem

 Applying energy balance between points 1 and 3

$$h_1 + \frac{V_1^2}{2g} + \frac{P_1}{\rho g} = h_3 + \frac{V_3^2}{2g} + \frac{P_3}{\rho g}$$

 $V_3 \approx \sqrt{2gh_t}$

Assuming entire mold is at atmospheric pressure and velocity of melt at point 1 ~ 0

Top Gated Mold

Pouring Analysis (Sprue Design)

 Consider the geometry of freely falling liquid from the pouring basin; also assume permeable walls (e.g. sand mold)

$$V_2 \approx \sqrt{2gh_a} \qquad V_3 \approx \sqrt{2gh_t}$$

 Assuming continuity of fluid flow, flow rate at point 2 = flow rate at point 3:

$$A_2 V_2 = A_3 V_3 \implies \left| \begin{array}{c} \frac{A_3}{A_2} = \frac{V_2}{V_3} = \sqrt{\frac{h_a}{h_t}} \right|$$

Pouring Analysis (Sprue Design)

• Result suggests a parabolic shape for sprue

 A straight sprue can lead to aspiration of gases from the mold (for a permeable mold) into the molten metal → porous castings

 As metal is poured into mold, the effective "head" decreases

Bottom Gated Mold

$$V_3 \approx \sqrt{2g(h_t - h)}$$

Mold Filling Analysis

- <u>Bottom gated mold</u>: In time dt increase in volume of metal in mold = $A_m dh$, where A_m = cross-section of the mold cavity
- Volumetric flow rate of metal delivered to mold at point 3 (gate) = A_3V_3
- Volume balance at point 3:

$$A_m dh = A_3 \sqrt{2g(h_t - h)} dt$$

• Mold filling time, t_f $=\frac{A_3}{4}\int dt \left| \Rightarrow t_f \right|$

Mold Filling Analysis

• Mold filling time, t_f

$$\frac{1}{\sqrt{2g}} \int_{0}^{h_m} \frac{dh}{\sqrt{h_t - h}} = \frac{A_3}{A_m} \int_{0}^{t_f} dt \Longrightarrow \left[t_f = \frac{2A_m}{A_3\sqrt{2g}} \left(\sqrt{h_t} - \sqrt{h_t - h_m} \right) \right]$$

Mold filling time for top gated mold

$$t_{f} = \frac{Mold \ Volume}{Flow \ Rate} = \frac{A_{m}h_{m}}{A_{g}V_{g}}$$

Above calculations represent the <u>minimum</u> time necessary

Example Problem 1

Given a top gated mold with the following: Sprue height, $h_t = 20$ cm Cross-section of sprue base, $A_3 = 2.5$ cm² Volume of mold cavity, V = 1560 cm³

Find:

a) Flow velocity at sprue baseb) Flow rate of metal into mold cavityc) Mold filling time

Example Problem 1 (contd)

Solution:

a) Velocity at sprue base

$$V_3 = \sqrt{2gh_t} = \sqrt{2(981)(20)} = 198.1 \text{ cm/s}$$

b) Flow rate, $Q = A_3 V_3 = (2.5)(198.1) = 495 \text{ cm}^3/\text{s}$

c) Mold filling time

$$t_f = \frac{1560}{495} = 3.2 \text{ s}$$

Example Problem 2

 Consider the sand mold shown below. You wish to pour molten iron so that the flow into the mold cavity is not very turbulent. Determine the diameter of the date for the given problem data.

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton

Example 2 (contd.)

Data for problem:

- Iron data:
 - density = 7860 kg/m³
 - viscosity at pouring temp. = 2.25×10^{-3} N.s/m²
- Sprue height (including pouring cup) = 2 in. or
 0.051 m
- Assume that the runners and gates are µniform in cross-section; ignore riser

Solidification

- Pure metals
 - Solidify at approx. constant temperature
 - Initiation of solidification requires undercooling

Solidification

- Alloys
 - Solidify over a temperature range
 - Composition and microstructure determined by phase diagram of alloy

Shrinkage

- Shrinkage: most metals shrink when cooled from the liquid state
 - Liquid shrinkage
 - Solidification shrinkage
 - Solid shrinkage

Metal	Solidification Shrinkage (%)	Coeff. Thermal Exp.	Solid Shrinkage (%)
Aluminum alloys	7	25x10 ⁻⁶	6.7
Cast iron	1.8	13x10 ⁻⁶	4
Steel	3	14x10 ⁻⁶	7.2
Copper alloys	5.5	17x10 ⁻⁶	6

Heat Transfer During Solidification

- Casting: non-steady state heat flow
- Consider the 1-d solidification of a pure metal

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton

- Insulating mold example: sand mold
- Solidification rate for such molds depends primarily on the thermal properties of the mold
- Assumptions of analysis:
 - One dimensional heat transfer
 - Uniform thickness of solidified metal
 - No thermal resistance at mold-metal interface
 - No temperature gradient within solid and liquid metal
 - Mold is semi-infinite in size
 - Mold thermal properties are uniform
 - Zero superheat
 - Pure metal

Implications of assumptions on instantaneous temperature distribution across mold

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton

- Governing equation of transient heat transfer:
 - α_m = thermal diffusivity of mold = $k_m/(\rho_m c_m)$
 - k_m = thermal conductivity of mold
 - c_m = specific heat of mold

 ρ_m = density of mold

• For the assumed boundary conditions, the general solution to (1) is:

(2)

$$\frac{T - T_m}{T_0 - T_m} = erf\left(\frac{-x}{2\sqrt{\alpha_m t}}\right)$$

 $\frac{\partial T}{\partial t} = \alpha_m \frac{\partial^2 T}{\partial x^2} \qquad (1)$

where *erf*() = Gaussian error function

 Note that Eq. (2) can be differentiated to obtain <u>temperature gradient within the mold</u>

Solution to 1D heat conduction eqn

$$T(x,t) = T_{m} + (T_{o} - T_{m}) \cdot erf\left(\frac{-x}{2\sqrt{\alpha_{m}t}}\right)$$

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} exp(-z^{2}) dz = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^{3}}{3 \cdot 1!} + \frac{x^{5}}{5 \cdot 2!} + \frac{x^{7}}{7 \cdot 3!} + \dots\right)$$
(3)

differentiating to obtain the temperature gradient

$$\frac{\partial T}{\partial x} = \frac{T_m - T_0}{\sqrt{\pi \alpha_m t}} exp\left(\frac{-x^2}{4\alpha_m t}\right)$$

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton (4)

- Quantity of practical interest: solidification time
- Can be obtained from energy balance at mold-solid interface
- Rate of heat flow into mold at mold-solid interface:

$$\dot{Q}\Big|_{x=0} = -k_m A \frac{\partial T}{\partial x}\Big|_{x=0}$$
 (5) $A = \text{area of mold-metal interface}$

$$\dot{Q}\Big|_{x=0} = -A_{\sqrt{\frac{k_m \rho_m c_m}{\pi t}}} \left(T_m - T_0\right) \quad (6)$$

if the metal is cast at its melting temperature, then the heat entering the mold is the latent heat of fusion

$$\frac{dQ}{dt} = \rho_{casting} \Delta H_f \frac{dV}{dt} = \rho_{casting} \Delta H_f A \frac{dS}{dt} \quad (7)$$

- ΔH_f = latent heat of fusion
- *V* = volume of solidified metal
- A = area of mold-metal interface
- S = thickness of solidified metal (x)

• Corresponding heat flux

 heat flux away from mold-metal interface = heat flux to moldmetal interface due to solidification

• so
$$\left(\frac{q}{A}\right)_{mold_{x=0}} = \left(\frac{q}{A}\right)_{casting}$$
 (9)

$$\sqrt{\frac{k_m \rho_m c_m}{\pi t}} \left(T_m - T_0\right) = \rho_{casting} \Delta H_f \frac{dS}{dt} \quad (10)$$

Integrating from S = 0 and t = 0 to S = S and t = t

$$S = \frac{2}{\sqrt{\pi}} \left(\frac{T_m - T_0}{\rho_{casting}} \Delta H_f \right) \sqrt{k_m \rho_m c_m t}$$
(11)
Air
Also, S = V/A
Air
Solid
Solid
Solid
Specific heat

5

Solidification time

$$t = \left[\frac{\pi}{4} \left(\frac{\rho_{casting} \Delta H_f}{T_m - T_0}\right)^2 \frac{1}{k_m \rho_m c_m}\right] \left(\frac{V}{A}\right)^2 \quad (12)$$

- Subscripts
 m = mold
- ΔH_f = latent heat of solidification
- T_m = metal melting temperature
- T_0 = initial mold temperature

- You are sand casting a magnesium part with dimensions of 10 cm by 10 cm by 2.5 cm. The environment temperature is 25°C.
- Determine the time for the part to solidify if the metal is poured at its melting point.
- Determine the time for the part to solidify if the metal is poured at 50°C above its melting point, so as to alleviate the potential problem of short shots.

Material	Specific heat (kJ/kg-ºC)	Density (kg/m³)	Thermal conductivity (W/m-K)
Sand (solid)	1.16	1500	0.6
Magnesium (solid)	1.07	1700	154
	Melting point (°C)	Latent heat of solidification (kJ/kg)	Specific heat (kJ/kg-K)
Magnesium (liquid)	650	384	1.38

- N.B. solidification is a phase change that occurs at the melting point
- Insulating mold:
 - $k_{mold} = 0.6 << k_{casting} = 154 \text{ W/m-K}$
 - α_{mold} = 3.4 x 10⁻⁷ << $\alpha_{casting}$ = 6.6 x 10⁻⁵ m²/s
- Solidification time:

$$t = \left[\frac{\pi}{4} \left(\frac{\rho_c \Delta H_f}{T_m - T_0}\right)^2 \frac{1}{k_m \rho_m c_m}\right] \left(\frac{V}{A}\right)^2$$

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton

- $\Delta H_f = 384 \text{ kJ/kg}$
- $\rho_c = 1700 \text{ kg/m}^3$
- $T_m = 650^{\circ}C$
- $T_o = 25^{\circ}C$
- $k_m = 0.6 \times 10^{-3} \text{ kW/m-K}$
- $\rho_{\rm m} = 1500 \text{ kg/m}^3$
- $c_m = 1.16 \text{ kJ/kg-K}$

- V = 0.1 x 0.1 X 0.025 = $2.5 \times 10^{-4} \text{ m}^3$
- A = 2 x (0.1 x 0.1) + 4 X (0.1 x 0.025) = 0.03
 m²
- (V/A)² = 6.94 x 10⁻⁵ m²

• So

$$t = \left[\frac{\pi}{4} \left(\frac{1700 \times 384}{650 - 25}\right)^2 \frac{1}{0.6 \times 10^{-3} \times 1500 \times 1.16}\right] (6.94 \times 10^{-5})$$

• t = 57 s

- Now, we have to take into account cooling the liquid from (650 + 50)°C to 650°C
- So, the latent heat of solidification (ΔH_f) will be increased by $c_p \Delta T$

• For liquid magnesium

$$-c_{p} = 1.38 \text{ kJ/kg-K}$$

$$- \Delta T = 50^{\circ}C$$

$$\Delta H_{f} = H_{f} + c_{p} \Delta T$$

• So

$$t = \left[\frac{\pi}{4} \left(\frac{1700 \times 453}{650 - 25}\right)^2 \frac{1}{0.6 \times 10^{-3} \times 1500 \times 1.16}\right] (6.94 \times 10^{-5})$$

t = 79 s (a bit slower)

 Replacing S with (V/A), where V = volume of metal solidified at time t and re-arranging

$$t = \left[\frac{\pi}{4} \left(\frac{\rho_{casting} \Delta H_f}{T_m - T_0}\right)^2 \frac{1}{k_m \rho_m c_m}\right] \left(\frac{V}{A}\right)^2$$
(13)

$$t = C_m \left(\frac{V}{A}\right)^2$$
 (14) \implies Chvorinov's Rule

 Chvorinov's rule can be used for more complex castings to provide a first approximation of solidification time

Riser Design

- Riser design is based on Chvorinov's rule
- Function of riser: to feed the mold cavity with molten metal in order to compensate for shrinkage

$$t_{riser} \ge t_{mold} \implies \left(\frac{V_{riser}}{A_{riser}}\right)^2 \ge \left(\frac{V_{mold}}{A_{mold}}\right)^2 \implies \left(\frac{V_{riser}}{A_{riser}}\right) \ge \left(\frac{V_{mold}}{A_{mold}}\right)$$

 Design and place risers so that solidification begins in the casting and ends in the riser → shrinkage defects such as voids, porosity are limited to the riser

Riser Design Example

An open cylindrical riser must be designed for a sand mold. The part to be cast is a 125 mm x 125 mm x 25 mm plate. The foundryman knows from past experience that the total solidification time for casting this part is 2 min. It is required that the height-to-diameter ratio of the riser be 1. Find the dimensions of the riser so that its total solidification time is 30% longer than the casting.

Volume of casting, $V_c = 125 \times 125 \times 25 = 390625 \text{ mm}^3$ Surface area of casting, $A_c = 2 \times 125 \times 125 + 4 \times 125 \times 25 = 43750 \text{ mm}^2$ For defect-free casting it is required that $t_{riser} \ge t_{casting}$ Volume of riser, $V_r = \pi D^2 h/4 = \pi D^3/4$ Surface area of riser across which heat transfer takes place, $A_r = \pi Dh + \pi D^2/4$ (Note: no heat transfer across riser-casting boundary)

Problem states that $t_{riser} = 1.3 t_{casting}$ $(V_r/A_r)^2 = 1.3(V_c/A_c)^2 \rightarrow D = h = 50.74 \text{ mm}$

Casting Defects

ME 206: Manufacturing Processes & Engineering Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton

Casting Defects

- Metallic projections
 - Flash: excess metal solidified outside mold cavity
 - Causes: insufficient clamping force, improper parting line
- Cavities (voids)
 - Shrinkage cavities: voids inside casting
 - Causes: contraction during solidification
 - Remedies: use similar (V/A) ratios, use gradually increasing section modulus toward riser, proper gating/riser design, use of chills
 - Blowholes: void on surface of casting
 - Causes: excessive gas entrapment, lack of adequate venting
 - Remedies: de-gas melt, add vents

Defects - Hot Tears

Casting Defects

- Discontinuities
 - Hot tears: intercrystalline failure in casting that occurs at a high temperature within mold; usually forms in sections that solidify last and where geometrical constraints are present
 - Causes: large differences in section thickness, abrupt changes in section thickness, too many branching/connected sections, mold has high hot strength and stiffness
 - Remedies: through casting and mold redesign
 - Cold shut: incomplete fusion of two molten metal flows that meet inside the mold from opposite directions
 - Causes: insufficient superheat, inadequate risers
 - Remedies: increase superheat, add additional risers

Casting Defects

- Defective surface
 - Scabs: thin layer of molten metal that enters gaps in mold and solidifies
 - Causes: improper mold design
- Incomplete castings
 - Misrun: incomplete casting
 - Cause: insufficient superheat
 - *Remedy*: increase superheat
- Inclusions
 - *Remedy*: clean melt before pouring, improve strength of mold

