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Abstract: 

Metamorphosis is a crucial life-history event that can change an organism's form, function, behavior, and 

ecological interactions. In the Mollusca, several neurotransmitters and neuromodulators play inductive or 

inhibitory roles in the pathways that govern larval metamorphosis. Nitric oxide (NO) has been implicated in 

developmental processes in vertebrates and arthropods, but not previously in molluscs. We determined that NO 

donors block pharmacologically induced metamorphosis in the mud snail Ilyanassa obsoleta, whereas injections 

of inhibitors of nitric oxide synthase (NOS) allow competent larvae to become juveniles. We describe a new 

developmental role for NO, as an endogenous inhibitor of molluscan metamorphosis. 

 

Article: 

Introduction 

Marine molluscs are an ecologically and economically significant group of organisms, yet the regulatory 

mechanisms underlying their metamorphosis, a key developmental process, are still poorly understood. 

Environmental factors that influence or directly induce metamorphosis in physiologically competent larvae are 

known for a handful of species, but often not in specific molecular detail (Hadfield and Pennington, 1990; 

Pawlik, 1992; Morse, 1994; Zimmer-Faust and Tamburri, 1994). The downstream neuroendocrine actions that 

control the events of larval metamorphosis have been studied in some of these same organisms, but in no 

instance are the molecular mechanisms that sub-serve an entire pathway understood. The actions of several 

neurotransmitters in this process have been investigated, but no previous report implicates NO as playing a role 

in molluscan development. Early reports of this work have been published only in abstract format (Froggett and 

Leise, 1996; 1997). 

 

Several neuroactive compounds are known to be involved in the induction of metamorphosis in marine 

molluscs. For example, catecholamines, such as norepinephrine and dopamine, regulate metamorphosis in 

oysters of the genus Crassostrea (Coon and Bonar, 1986; Bonar et al., 1990) and in the nudibranch Phestilla 

sibogae (Pires et al., 1996, 1997). Elevated levels of endogenous serotonin (5-HT) also activate metamorphosis 

in the prosobranch gastropod Ilyanassa obsoleta (Couper and Leise, 1996). Immunocytochemical and high 

performance liquid chromatographic studies have demonstrated that these neurotransmitters and others, such as 

FMRFamide and the small cardioactive peptides, are present in the central nervous systems (CNSs) of several 

marine gastropods during larval development (Coon and Bonar, 1986; Bonar et al., 1990; Barlow and Truman, 

1992; Kempf et al., 1992, 1997; Marois and Carew, 1997). 

 

Lin and Leise (1996b) used NADPH diaphorase (NAD-PHd) histochemistry to describe a gradual increase in 

the occurrence of NOS (Dawson et al., 1991) in the CNS of Ilyanassa during larval development. During 

metamorphosis, NADPHd staining in all ganglia drops dramatically, particularly in the apical ganglion. This 

ganglion, also de-scribed as the apical or cephalic sensory organ (Bonar, 1978; Lin and Leise, 1996a; Marois 

and Carew, 1997), innervates the velum, the larval swimming and feeding organ. During post-metamorphic 

development, juvenile NADPHd levels increase to produce a different staining pattern in all ganglia but the 

apical one. This ganglion is lost by the fourth day after metamorphic induction (Lin and Leise, 1996a). The 
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distinct changes in NADPHd staining patterns observed by Lin and Leise suggested that NO might play an 

important role in the regulation of metamorphosis in Ilyanassa and are consistent with three hypotheses: (a) that 

NO promotes metamorphosis, (b) that NO is necessary for the maintenance of the larval state, or (c) that NO is 

uninvolved in metamorphosis, having other larval and juvenile actions. To distinguish between these 

possibilities, we employed nitrergic reagents that allowed us to manipulate the function of the NOS enzyme and 

larval exposure to NO. 

 

Materials and Methods 

Detailed experimental protocols have previously been published (Couper and Leise, 1996). Briefly, in bath 

application experiments, competent larvae were placed in 2 ml of solution in wells of 24-well plastic Falcon 

tissue culture plates, at 10 larvae/well. In all experiments, Instant Ocean, filtered to 0.2 μm (FIO), and 10
-4

 M 5-

HT served as negative and positive controls, respectively. In most cases, experimental and control conditions 

were simultaneously replicated three times, yielding a typical sample size of 30 larvae for each treatment. 

Graphs with more than 30 animals per treatment indicate additional experimental replications. Larvae in 

experimental treatments and control groups were usually obtained from one culture. If more than one culture 

was used, animals from both cultures were distributed among all conditions, but in separate wells so that any 

significant differences resulting from culture conditions could be detected. The number of larvae and 

metamorphosed individuals were counted at 24 and 48 h in all experiments. In all treatments in which 

metamorphosis was induced, some animals became juveniles by the end of the experiment (2 days after 

induction). However, even in a natural inducer (Leise et al., 1996) or 10
-4 

M 5-HT, all larvae do not begin 

metamorphosis simultaneously. As a result, specific criteria that indicated the initiation of this irreversible 

process were used to evaluate larval response to each treatment. Metamorphosis was determined by an 

examination of the morphology of each larva. Animals that had partially or totally lost velar cilia or the velar 

lobes were scored as having metamorphosed. 

 

Nitrergic reagents were obtained from Cayman Chemical Co., Tocris Cookson, Inc., or Sigma Chemical Co. 

and prepared just before use. During the bath experiments, mortality in control solutions was insignificant, but it 

was near 10% in the higher concentrations of SNAP. 

 

Direct injection of compounds into the larval hemocoel allowed us to avoid confounding factors, such as 

metabolism of reagents in the seawater bath or variable uptake across the larval epidermis, that can occur in 

bath application experiments (Couper and Leise, 1996). To prepare competent larvae for injection experiments, 

they were rinsed with FIO four times, then decalcified in Ca
2+

-free seawater for 12 h (Pires and Hadfield, 1993). 

Decalcified larvae were then embedded in 1% low melting point agarose (Type VII, Sigma Chemical Co.) in 

FIO to impede movement. Larvae were freed from the agarose and pressure injected with approximately 6 nl of 

experimental solution delivered subepidermally through a glass micropipette connected to a Picospritzer II 

(General Valve Corp). Larvae were then placed in FIO at a density of 10 larvae/2 ml. Controls always included 

bath applications and injections of FIO and 10
-4

 M 5-HT. 

 

Animals that died during experiments were not scored. Numbers of animals (n = X) on the graphs indicate 

numbers at the beginning of an experiment for all concentrations unless otherwise indicated in the legend. 

Injection experiments had variable rates of mortality, from 2.5% to 30%, but occasionally higher (40% in L-

NAME experiments). Mortality rates in Carboxy-PTIO solutions were relatively low (0%-7%). In all instances 

of higher mortality, rates were similar in experimental and control groups, suggesting that larval death occurred 

because the nervous system was inadvertently damaged during the injection procedure. 

 

Results from each experiment were pooled and tested for statistical significance (P = 0.05) in 2-way chi-square 

contingency tables (Zar, 1974; Sokal and Rolf, 1981). We used the Bonferroni method to correct for multiple 

comparisons (Bland, 1995). If the corrected α level fell between published values, we rounded down to the 

nearest α value. Raw percentage data were normalized by an arcsine transform, and standard deviations were 

calculated on the transformed data. Data were transformed back to percentages for graphing. Graphs were 

produced with Deltagraph 4.0 software. 



Results 

Initial bath experiments utilized either S-nitroso-N-acetyl-D,L-penicillamine (SNAP) or 3-morpholino-sydnoni-

mine (SIN-1), both NO donors, alone or in combination with the metamorphic inducer 5-HT, to determine 

whether metamorphosis was affected by exogenously generated NO. SIN-1 or SNAP alone in bath solutions did 

not significantly affect the percentage of larvae undergoing metamorphosis (Fig. 1). 

 

Bath application of the NO-donors SIN-1 and SNAP at high concentrations reduced the ability of 5-HT to 

induce metamorphosis (Fig. 2). Because of these results, NOS inhibitors were injected into competent larvae to 

determine whether experimentally manipulated levels of endogenous NO would promote metamorphosis in the 

absence of any known inducer. 

 

Injections of the NOS inhibitors N-nitro-L-arginine methyl ester (L-NAME) and N-methyl-L-arginine acetate 

(L-NMMA), or the NO scavenger 1H-imidazol-yloxy,2-(4- carboxyphenyl )- 4,5 - dihydro- 4,4,5,5 - tetramethyl 

-3-oxide (Carboxy-PTIO) directly into the larval hemocoel allowed us to determine how a decrease in 

endogenous levels of NO affects metamorphosis. Both L-NAME and L-NMMA induced significant levels of 

metamorphosis by 24 h when injected in the absence of 5-HT (Figs. 3, 4). Injections of the inactive isomer D-

NAME did not significantly affect the percentage of larvae undergoing metamorphosis (Fig. 3B). In a final set 

of experiments, we attempted to induce metamorphosis by injecting Carboxy-PTIO into competent larvae (Fig. 

5). These results were insignificant after application of Bonferroni's method. 

 
Discussion 

All of our pharmacological data support the idea that NO acts to inhibit metamorphosis in Ilyanassa. Injections 

of NOS inhibitors into competent larvae allowed metamorphosis to proceed. Active concentrations of the NO 

reagents that we used were similar to or lower than those found to be active on other molluscan neural 

preparations (Gelperin, 1994a, b; Jacklet and Gruhn, 1994; Elphick et al., 1995; Huang et al., 1998). Unlike the 

NOS inhibitors, Carboxy-PTIO was not effective (Fig. 5). The levels of metamorphosis detected after injections 

of Carboxy-PTIO were significantly different from those obtained with 5-HT but not from those in the FIO 

controls, suggesting that the concentrations we used may have incompletely scavenged the available NO. 

Results with injections of the NOS inhibitors L-NAME and L-NMMA were more robust; a range of 

concentrations of both reagents was effective by 24 h (Figs. 3, 4). Interestingly, the FIO controls in the L-

NMMA injection experiments (Fig. 4) showed unusually high levels of metamorphosis, especially by 48 h. 

Larvae in cultures older than 3 weeks will normally begin to metamorphose spontaneously (Leise et al., 1996; 

unpubl. data), and the high levels of metamorphosis seen in the FIO controls at 48 h in the L-NMMA 

experiments (Fig. 4) suggested that spontaneous metamorphosis was occurring. In these experiments, bath 

application of 5-HT elicited nearly 100% metamorphosis by 24 h, suggesting that the 48-h results were 



irrelevant; most metamorphosis that would occur had done so within 24 h. In the field, Ilyanassa larvae are 

probably induced to metamorphose by diatoms or associated organisms that occur naturally in their littoral 

habitats (Leise et al., 1996), but we have no understanding of the time course for metamorphosis in that 

situation. Our results have led us to hypothesize that NO production is necessary for the maintenance of the 

larval state until an appropriate metamorphic cue is detected. Preliminary data from experiments on Phestilla 

sibogae suggest that NO may be active in the metamorphic pathway in this species as well (Meleshkevitch et 

al., 1997). The ubiquity of NO in molluscan metamorphosis and its specific actions in this process remain to be 

determined. 

           
 

Although the tranformations that invertebrate larvae un-dergo in reaction to metamorphic cues are among their 

most well known activities (Pawlik, 1992), unsuitable habitats can also elicit distinctly negative responses from 



some larvae, such as those of the polychaetes Nereis vexillosa and Capitella sp. (Woodin, 1991). We recently 

found a similar effect on Ilyanassa larvae from one species of benthic diatom. Extracts of cultures of a sheathed 

pennate diatom species that were isolated from sediments obtained at Myrtle Grove, North Carolina, inhibit 

spontaneous metamorphosis in older (>3 weeks in culture) Ilyanassa larvae (Leise et al., 1996; unpubl. data). 

Such negative metamorphic actions and the uncertainty of larval encounters with appropriate juvenile habitats 

suggest that the maintenance of the larval life-history phase is an integral component of the metamorphically 

competent state. For Ilyanassa, the production of NO by competent larvae appears to be necessary for this 

purpose. However, maintenance of the larval state is likely to depend upon more than one inhibitory compound. 

For example, Pires et al. (1996) suggested that norepinephrine might inhibit the circuits controlling 

metamorphosis in the slipper limpet Crepidula fornicata. We do not yet know how Ilyanassa larvae utilize 

dopamine or other catecholamines. 

           
 

Developing nervous systems in vertebrates and arthropods express NO transiently in a variety of areas (Bredt 

and Snyder, 1994; Truman et al., 1996; Gibbs and Truman, 1998; Scholz et al., 1998). NO has been reported to 

cause growth cone collapse (Renterfa and Constantine-Paton, 1996) and may act in the regulation of neuronal 

proliferation (Peunova and Enikolopov, 1995; Kuzin et al., 1996), affecting the ability of axons to reach 

appropriate targets and initiate synaptogenesis (Bredt and Snyder, 1994; Wu et al., 1994; Truman et al., 1996; 

Gibbs and Truman, 1998; Scholz et al., 1998). Comparable roles for this molecule in molluscs are just 

beginning to come under investigation. 



How NO exerts its effects in larval Ilyanassa is still unknown. Typically, NO binds to guanylyl cyclase, 

stimulating the formation of cyclic guanosine 3',5' monophosphate (cGMP) (Murad et al., 1978); the 

biochemistry of the nitrergic signaling pathway appears to remain applicable to both vertebrate and invertebrate 

systems (Dawson et al., 1991; Elphick et al., 1993; Elofsson et al., 1993; Huang et al., 1998). Recent work on 

the growth and survival of cultured neurons suggests that NO may also affect cGMP-independent intracellular 

signaling pathways (Gonzalez-Zulueta et al., 1997). We cannot yet distinguish between these two mechanisms 

in our experimental animal. At present, we suggest that NO is produced within the developing molluscan 

nervous system and diffuses to its target cells to activate guanylyl cyclase, thereby increasing intracellular levels 

of cGMP. We hypothesize that high levels of cGMP are necessary for the maintenance of larval tissues. We 

anticipate that neuronal somata in the apical ganglion—the brain region that governs key larval functions—will 

express high levels of NOS. In the presence of a natural metamorphic inducer, nitrergic neurons are probably 

inhibited, either directly by serotonergic neurons or by feedback from activated NO targets. Activation of 

serotonergic neurons and the resultant inhibition of NOS activity would decrease levels of cGMP, allowing 

metamorphosis to proceed. Investigations into the downstream actions of NO are just beginning. 

 

Given its widespread occurrence in behaviorally significant neural circuits throughout the animal kingdom, NO 

would appear to be a relatively ancient neurotransmitter. In adult molluscs, NO functions as an intercellular 

messenger in behaviorally important circuits. NO appears to be necessary for learning in cephalopods (Chichery 

and Chichery, 1994; Robertson et al., 1994, 1995, 1996), olfaction in pulmonates (Gelperin, 1994a, b; Gelperin 

et al., 1996), and feeding in several gastropods (Moroz et al., 1993; Elphick et al., 1995; Teyke, 1996). Our 

understanding of the importance of this molecule in developing organisms is still relatively immature, but the 

growing literature indicates that this molecule can be differentially activated to coordinate specific 

developmental events occurring throughout a field of maturing neural tissue (Edelman and Gally, 1992; Bredt 

and Snyder, 1994; Wu et al., 1994; Peunova and Enikolopov, 1995; Kuzin et al., 1996; Renteria and 

Constantine-Paton, 1996; Truman et al., 1996; Gibbs and Truman, 1998; Scholz et al., 1998). In larvae of 

marine molluscs, nitrergic pathways may have been exploited to regulate diverse target tissues, much as the 

ecdysteroids coordinate activity during insect metamorphosis (Riddiford and Truman, 1993). Ecdysteroid 

synthesis is inhibited in crustaceans by molt-inhibiting hormone (reviewed in Fingerman, 1997), which may 

have a molluscan analog in NO. Our comprehension of the mechanisms that drive molluscan metamorphosis 

will be aided by further explorations of this pathway. 
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