Extracted from:

Metaprogramming Ruby 2
Program Like the Ruby Pros

This PDF file contains pages extracted from Metaprogramming Ruby 2, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pragmatic

Programmers

Second
Edition

U

Program Like
the Ruby Pros

Metapro %amming

Paolo Perrotta

Edited by Lynn Beighley

.

< ’(.a -

The Facets £@8® of Ruby Series

Metaprogramming Ruby 2
Program Like the Ruby Pros

Paolo Perrotta

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Lynn Beighley (editor)

Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-212-6

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2014

http://pragprog.com
rights@pragprog.com

I was thirteen, and I was tired of hanging
out at the local toy shop to play Intellivision
games. I wanted my own videogame console.
I'd been bugging my parents for a while,
with no success.

Then I found an alternative: I could play
games on a computer as well. So I asked my
parents to buy me one of those new 8-bit
computers—you know, to learn useful stuff.
My dad agreed, and my mom took me to the
shop and bought me a Sinclair ZX Spectrum.

Mom, Dad... Here is something that I should've

told you more often in my life: thank you. This

book is dedicated to the two of you. I'm hoping

it will malke you proud, just like your once-kid
is proud of you. And while I'm here, I have

something to confess about that life-changing
day thirty years ago: I didn’t really want to

learn stuff. I just wanted to play.

In fact, that’s what I've been doing
all these years.

Will write code that writes code that writes code for food.

Martin Rodgers

Introduction

Metaprogramming...it sounds cool! It sounds like a design technique for high-
level enterprise architects or a faddish buzzword that has found its way into
press releases.

In fact, far from being an abstract concept or a bit of marketing-speak,
metaprogramming is a collection of down-to-earth, pragmatic coding tech-
niques. It doesn’t just sound cool; it is cool. Here are some things you can do
with metaprogramming in the Ruby language:

¢ Say you want to write a Ruby program that connects to an external system
—maybe a web service or a Java program. With metaprogramming, you
can write a wrapper that takes any method call and routes it to the
external system. If somebody adds methods to the external system later,
you don’t have to change your Ruby wrapper; the wrapper will support
the new methods right away. That’s magic.

e Maybe you have a problem that would best be solved with a programming
language that’s specific to that problem. You could go to the trouble of
writing your own language, custom parser and all. Or you could just use
Ruby, bending its syntax until it looks like a specific language for your
problem. You can even write your own little interpreter that reads code
written in your Ruby-based language from a file.

* You can aggressively remove duplication from your Ruby code while
keeping it elegant and clean. Imagine twenty methods in a class that all
look the same. How about defining all those methods at once, with just
a few lines of code? Or maybe you want to call a sequence of similarly
named methods. How would you like a single short line of code that calls
all the methods whose names match a pattern—like, say, all methods
that begin with test?

* You can stretch and twist Ruby to meet your needs, rather than adapt to
the language as it is. For example, you can enhance any class (even a
core class like Array) with that method you miss so dearly, you can wrap

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

Introduction ® viii

logging functionality around a method that you want to monitor, you can
execute custom code whenever a client inherits from your favorite
class...the list goes on. You are limited only by your own, undoubtedly
fertile, imagination.

Metaprogramming gives you the power to do all these things. Let’s see how
this book will help you learn about it.

About This Book

Part I, Metaprogramming Ruby, is the core of the book. Chapter 1, The M Word,

following chapters tell the story of a week in the life of a newly hired Ruby
programmer and his or her more experienced colleague:

¢ Ruby’s object model is the land in which metaprogramming lives. Chapter

This chapter introduces you to the most basic metaprogramming tech-
niques. It also reveals the secrets behind Ruby classes and method lookup,
the process by which Ruby finds and executes methods.

¢ Once you understand method lookup, you can do some fancy things with
methods: you can create methods at runtime, intercept method calls,
route calls to another object, or even accept calls to methods that don’t
exist. All these techniques are explained in Chapter 3, Tuesday: Methods,

e Methods are members of a larger family also including entities such as
blocks and lambdas. Chapter 4, Wednesday: Blocks, on page ?, is your
field manual for everything related to these entities. It also presents an
example of writing a domain-specific language, a powerful conceptual tool
that Ruby coders tend to love. This chapter also comes with its own share
of tricks, explaining how you can package code and execute it later or

how you can carry variables across scopes.

e Speaking of scopes, Ruby has a special scope that deserves a close look:
the scope of class definitions. Chapter 5, Thursday: Class Definitions, on

powerful weapons in a metaprogrammer’s arsenal. It also introduces
singleton classes, the last concept you need to make sense of Ruby’s most
perplexing features.

¢ Finally, Chapter 6, Friday: Code That Writes Code, on page ?, puts it all

together through an extended example that uses techniques from all the

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

About This Book ® ix

previous chapters. The chapter also rounds out your metaprogramming
training with two new topics: the somewhat controversial eval method and
the callback methods that you can use to intercept events in the object
model.

Part II of the book, Metaprogramming in Rails, is a case study in metaprogram-
ming. It contains short chapters that focus on different areas of Rails, the
flagship Ruby framework. By looking at Rails’ source code, you'll see how
master Ruby coders use metaprogramming in the real world to develop great
software, and you’ll also understand how some metaprogramming techniques
evolved in the last few years.

Three appendixes close the book. Appendix 1, Common Idioms, on page ?,

is a grab-bag of common techniques that are not explained anywhere else in
the book. Appendix 2, Domain-Specific Languages, on page ?, is a quick look

with code examples.

“Wait a minute,” I can hear you saying. “What the heck are spells?” Oh, right,
sorry. Let me explain.

Spells

This book contains a number of metaprogramming techniques that you can
use in your own code. Some people might call these patterns or maybe idioms.
Neither of these terms is very popular among Rubyists, so I'll call them spells
instead. Even if there’s nothing magical about them, they do look like magic
spells to Ruby newcomers.

You'll find references to spells everywhere in the book. I reference a spell with
the convention Class Macro (?) or String of Code (?), for example. The
number in parentheses is the éége where the spell receives a name. If you
need a quick reference to a spell, you'll find it in Appendix 3, Spell Book, on

Quizzes

Every now and then, this book also throws a quiz at you. You can skip these
quizzes and just read the solution, but you’ll probably want to solve them on
your own just because they're fun.

Some quizzes are traditional coding exercises; others require you to get off
your keyboard and think. All include a solution, but most quizzes have more
than one possible answer. Please, feel free to go wild and experiment.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

Introduction ® x

Notation Conventions

This book is chock full of code examples. To show you that a line of code
results in a value, I print that value as a comment on the same line:

-1.abs # =1

If a code example is supposed to print a result rather than return it, I show
that result after the code:

puts 'Testing... testing...'

{ Testing... testing...

In most cases, the text uses the same code syntax that Ruby uses: My-
Class.my_method is a class method, MyClass::MY_CONSTANT is a constant defined
within a class, and so on. There are a couple of exceptions to this rule. First,
I identify instance methods with the hash notation, like the Ruby documen-
tation does (MyClass#my method). This is useful to distinguish class methods
and instance methods. Second, I use a hash prefix to identify singleton
classes (#MySingletonClass).

Ruby has a flexible syntax, so few universal rules exist for things like inden-
tation and the use of parentheses. Programmers tend to adopt the syntax
that they find most readable in each specific case. In this book, I try to follow
the most common conventions. For example, I skip parentheses when I call
a method without parameters (as in my string.reverse), but I tend to use paren-
theses when I pass parameters (as in my_string.gsub("x", "y")).

Some of the code in this book comes straight from existing open-source
libraries. Some of these are standard Ruby libraries, so you should already
have them. You can install the others with the gem command. For example,
if I show you a piece of code from Builder 3.2.2, and you want to install the
entire library to explore its source by yourself, then you can use gem install
builder -v 3.2.2. Be aware of the version, because the code might have changed
in more recent versions of Builder.

To avoid clutter (and make the code easier to understand in isolation), I'll
sometimes take the liberty of editing the original code slightly. However, I'll
do my best to keep the spirit of the original source intact.

Unit Tests

This book follows two developers as they go about their day-to-day work. As
the story unfolds, you may notice that these two characters rarely write tests.
Does this book condone untested code?

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

About This Book ® xi

Please rest assured that it doesn’t. In fact, the original draft of this book
included unit tests for all code examples. In the end, I found that those tests
distracted from the metaprogramming techniques that are the meat of the
book, so the tests fell on the cutting-room floor. This doesn’'t mean you
shouldn’t write tests for your own metaprogramming endeavors.

On those occasions where I did show test code in this book, I used the test-
unit library. Until Ruby 2.1, test-unit was a standard library. From Ruby 2.2
onward, you need to install it as a gem, with the command gem install test-unit.

Ruby Versions

Ruby is continuously changing and improving. However, this very fluidity
can be problematic when you try a piece of code on the latest version of the
language, only to find that it doesn’t work anymore. This is not overly common,
but it can happen with metaprogramming, which pushes Ruby to its limits.

This book is written for Ruby 2. As I write, Ruby 2.1 is the most recent stable
version of the language, and it's mostly compatible with Ruby 2.0. Some
people still run older versions of Ruby, which miss a few important features
from 2.x—notably, Refinements and Module#prepend. In the text, I'll refer to
Ruby 2.x, and I'll tell you which features were introduced either in Ruby 2.1
or in Ruby 2.0.

When I talk about Ruby versions, I'm talking about the “official” interpreter
(sometimes called MRI for Matz’s Ruby Interpreterl). There are many alternate
Ruby implementations. Two of the most popular ones are JRuby, which runs
on the Java Virtual Machine,” and Rubinius.? Alternate implementations
usually take a few versions to catch up with MRI — so if you use one of them,
be aware that some of the examples in this book might not yet work on your
interpreter.

Book Editions

The first edition of this book focused on Ruby 1.8, which has since been
deprecated. I updated the text to reflect the new features in Ruby, especially
the ones that have been introduced by Ruby 2.x.

The chapters in Part II use the Rails source code as a source of examples.
Rails has changed a lot since the first edition, so these chapters are almost
a complete rewrite of the first edition’s content.

1. http://www.ruby-lang.org

2. http://jruby.codehaus.org

3. http://rubini.us/

« Click HERE to purchase this book now. discuss

http://www.ruby-lang.org
http://jruby.codehaus.org
http://rubini.us/
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

Introduction * xii

Apart from the changes in the language and the libraries, some of my personal
opinions also changed since the first edition of this book. I learned to be wary
of some techniques, such as Ghost Methods (?), and fonder of others, such
as Dynamic Methods (?). Parts of the new text reflect these changes of heart.

Finally, this second edition is a general cleanup of the first edition’s text. I
updated many examples that were using gems and source code that have
been forgotten or changed since the previous book; I added a few spells and
removed a few others that don’t seem very relevant anymore; I toned down
the “story” in the text when it was adding too many words to long technical
explanations; and I went through every sentence again, fixing things that
needed fixing and addressing errata and suggestions from the readers.
Whether you're a new reader or a fan of the first edition, I hope you like the
result.

About You

Most people consider metaprogramming an advanced topic. To play with the
constructs of a Ruby program, you have to know how these constructs work
in the first place. How do you know whether you're enough of an “advanced”
Rubyist to deal with metaprogramming? Well, if you can understand the code
in the very first chapter without much trouble, then you are well equipped to
move forward.

If you're not confident about your skills, you can take a simple self-test. Which
kind of code would you write to iterate over an array? If you thought about
the each method, then you know enough Ruby to follow the ensuing text. If
you thought about the for keyword, then you’re probably new to Ruby. In the
second case, you can still embark on this metaprogramming adventure—just
take an introductory Ruby text along with you, or take the excellent interactive
tutorial at the Try Ruby! site.*

Are you on board, then? Great! Let’s start.

4. http://tryruby.org

« Click HERE to purchase this book now. discuss

http://tryruby.org
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

