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Method of Finite Elements I

Today’s Lecture Contents:

• Introduction

• Differential formulation

• Principle of Virtual Work

• Variational formulations

• Approximative methods

• The Galerkin Approach
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Method of Finite Elements I

FE across different dimensions

The lectures so far have deal with the Structural Approach to 
Finite Elements, namely the Direct Stiffness Method. These 
were elements serving specific loading conditions (truss
axial loads / beam  bending)

However, the Finite Elements family includes further and 
usually more generic members, each one typically suited for a 
particular domain (1D, 2D or 3D) and intended for solution of 
problems, as these are specified by their governing equations.
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Method of Finite Elements I

FE across different dimensions

©Carlos Felippa

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch06.d/IFEM.Ch06.Slides.d/IFEM.Ch06.Slides.pdf
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Method of Finite Elements I

Different Elements demonstrate a different degree of complexity

Truss element
2nodes, 2DOFs

Tri-cubic brick element
64nodes, 192DOFs@

C.
 F

el
ip

pa

FE across different dimensions

No wonder we will here use the truss element for demonstration!

https://www.colorado.edu/engineering/Aerospace/CAS/courses.d/IFEM.d/
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Method of Finite Elements I

The differential form of physical processes
The governing laws of physical processes are usually expressed in a 
differential form:

• The Laplace equation in two 
dimensions:

(e.g. the heat conduction problem)

• The isotropic slab equation:

• The axially loaded bar equation:
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Method of Finite Elements I

The differential form of physical processes
1D: The axially loaded bar example.
Consider a bar loaded with constant end load R.

Given: Length L, Section Area A, Young's modulus E
Find: stresses and deformations.

Assumptions:
The cross-section of the bar does not change after loading.
The material is linear elastic, isotropic, and homogeneous.
The load is centric.
End-effects are not of interest to us.

Strength of Materials Approach

Equilibrium equation

( )( ) Rf x R x
A

σ= ⇒ =
x

R

R

L-x

f(x)

Constitutive equation (Hooke’s Law)

( )( )
x Rx

E AE
σ

ε = =

Kinematics equation

( ) ( )xx
x
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( ) Rxx
AE

δ =
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Method of Finite Elements I

The differential form of physical processes

The Mechanics of Materials approach exemplified in the 
previous slide, is an approach that is not easily 
generalizable. 

Instead, we would like to follow an approach, which 
initiates from a generic infinitesimal volume of our given 
structure. 

For the 1D case, as in the employed bar example, the 
infinitesimal volume degenerates to an infinitesimal length 
Δx (see next slide)

This is the so-called differential approach, which establishes
a continuous differential equation as the governing
equation of the problem, termed the strong form.
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Method of Finite Elements I

The differential form of physical processes
1D: The axially loaded bar example.
Consider and infinitesimal element of the bar:

Given: Length L, Section Area A, Young's modulus E
Find: stresses and deformations.

Assumptions:
The cross-section of the bar does not change after loading.
The material is linear elastic, isotropic, and homogeneous.
The load is centric.
End-effects are not of interest to us.

The Differential Approach
Equilibrium equation

Constitutive equation (Hooke’s Law)
Eσ ε=

Kinematics equation
du
dx

ε =



0
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x

dA A A A
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σ σσ σ σ
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∆
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Method of Finite Elements I

The differential form of physical processes

Definition

The strong form of a physical process is the well posed 
set of the underlying differential equation with the 
accompanying  boundary conditions.

1D: The axially loaded bar example. The Differential Approach

2

2

(0) 0              

    

0         

x L

Strong Form

Eu
duAE R
dx

d uAE
dx

ssential BC

Natural BC
=

=

=

=

x

R
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Method of Finite Elements I

The differential form of physical processes

Analytical Solution: 

1 2 1
( )( )  & !( )h

du xu x u C x C x constC
dx

ε= = =+ = =

 This is a homogeneous 2nd order ODE with known solution:

1D: The axially loaded bar example. The Differential Approach

2

2

(0) 0              

    

0         

x L

Strong Form

Eu
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Natural BC
=

=

=

=

x

R

Let’s attempt to find the solution to this problem:
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Method of Finite Elements I

The differential form of physical processes
1D: The axially loaded bar example. The Differential Approach

Analytical Solution: 

(0) 0
1 2

2

1
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0

x L

u
h du R
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u x u C x C
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EA
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Strong Form
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duAE R
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d uAE
dx

ssential BC

Natural BC
=

=

=

=

( ) Rxu x
AE

⇒ =  Same as in the mechanical approach!

x

R

To fully define the solution (i.e., to evaluate the values of parameters              ) 
we have to use the given boundary conditions (BC):
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Method of Finite Elements I

The differential form of physical processes

However, determination of the problem solution via an 
analytical approach is not always straightforward nor 
feasible.

Beyond the very simple example employed herein, actual 
problems are far more complex, with more members, and 
more complex loads and boundary conditions involved.

Let’s examine for example what the problem looks like 
when we go to the 2D or 3D domains:
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Method of Finite Elements I

The Strong form – 2D case
A generic expression of the two-dimensional strong form is:

and a generic expression of the accompanying set of boundary conditions:

: Essential or Dirichlet BCs

: Natural or von Neumann BCs

Disadvantages

The analytical solution in such equations is 
i. In many cases difficult to be evaluated
ii. In most cases CANNOT be evaluated at all. Why?

• Complex geometries
• Complex loading and boundary conditions
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Method of Finite Elements I

The differential form of physical processes

Instead of trying to solve the problem analytically, we 
would like to do it in an approximate, i.e., numerical way.

To this end, let us first consider what are the possible ways 
in which the system is allowed to deform.

Let’s consider this for instance, for the example we have on 
the bar problem (next slide), and let’s see what are the 
kinematically admissible ways for the system to deform 
from a state u(x) to a state u(x)+δu(x)

Solution by approximation
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Method of Finite Elements I

Admissible Displacements δu(x)

©Carlos Felippa

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch06.d/IFEM.Ch06.Slides.d/IFEM.Ch06.Slides.pdf
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Method of Finite Elements I

The differential form of physical processes

All kinematically admissible deformations are candidates 
for our system to deform. However, only one of these 
possible paths u*(x) will be the true one under a given set of 
loads.

Which one is the true deformation u*(x)?

It is the one satisfying the well-established principle of
virtual work

Solution by approximation
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Method of Finite Elements I

Principle of Virtual Work

The virtual work of a system of equilibrium forces vanishes when 
compatible virtual displacements δu(x) are imposed:

f f

f

S T ST T B iT i
C

iV V S

dV dV dS= + +∑∫ ∫ ∫ε τ U f U f U R

Internal Virtual Work External Virtual Work
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Method of Finite Elements I

Principle of Virtual Work

The virtual work of a system of equilibrium forces vanishes when 
compatible virtual displacements δu(x) are imposed:

f f

f

S T ST T B iT i
C

iV V S

dV dV dS= + +∑∫ ∫ ∫ε τ U f U f U R

Stresses in equilibrium with applied loads

Virtual strains corresponding to virtual displacements

Internal Virtual Work External Virtual Work
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Method of Finite Elements I

The Minimum Potential Energy (MPE) Principle

For elastic systems subject to conservative forces (which is the case of 
systems we are dealing with), the principle of Virtual Work is equivalent 
to principle of minimum total potential energy (MPE).

The MPE principle states that the actual displacement solution u*(x), out 
of possible trial solutions, that satisfies the governing equations is the 
one which renders the Total Potential Energy functional Π stationary:

       0             *U W iff u uδ δ δΠ = − = =

©Carlos Felippa

Internal energy (= strain energy)

External work

1 1
2 2

0 0

l l du duU EA dx EA dx
dx dx

ε ε= = =∫ ∫

0

( )
l

W qudx Ru L= + =∫
conc. load

distr. load

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch06.d/IFEM.Ch06.Slides.d/IFEM.Ch06.Slides.pdf
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Method of Finite Elements I

Variational Formulation

• By utilizing the previous variational formulation, it is 
possible to obtain a formulation of the problem, which is 
of lower complexity than the original differential form 
(strong form). 

• This is also known as the weak form, which however can 
also be attained by following an alternate path (see 
Galerkin formulation).

• For approximate solutions, a larger class of trial solutions 
u(x) can be employed than in the differential formulation; 
for example, the trial functions need not satisfy the 
natural boundary conditions because these boundary 
conditions are implicitly contained in the functional – this 
is extensively used in MFE.
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Method of Finite Elements I

Approximative Methods
Instead of trying to find the exact solution of the continuous 
system, i.e., of the strong form, try to derive an estimate of what 
the solution should be at specific points within the system.

The procedure of reducing the physical process to its discrete 
counterpart is the discretisation process.
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Method of Finite Elements I

Variational Methods 
approximation is based on the 
minimization of a functional, as those 
defined in the earlier slides.

• Rayleigh-Ritz Method

Weighted Residual Methods 
start with an estimate of the the solution and 
demand that its weighted average error is 
minimized 

• The Galerkin Method

• The Least Square Method

• The Collocation Method

• The Subdomain Method

• Pseudo-spectral Methods

Approximative Methods

Here, we focus on this approach
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Method of Finite Elements I

Bar Problem: Strong Form
Focus: Now assume the axially loaded bar BUT with distributed load:

Analytical Solution: 

3
(0) 0

1 2
0 2
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2 6
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x

To fully define the solution (i.e., to evaluate the values of parameters              ) 
we have to use the given boundary conditions (BC):

1 2,C C

ax



Institute of Structural Engineering Page 25

Method of Finite Elements I

Bar Problem: Strong Form
Focus: The axially loaded bar with distributed load deformation and strain plots:

x
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Method of Finite Elements I

If we imagine there were forces (virtual forces) inside and outside 
of the bar, then the virtual work generated by these 'virtual forces' 
should conserve energy. For the bar, this principle can be stated as:

Therefore, the weak form of the problem is defined as

Find such that:

Observe that the weak form involves derivatives of a lesser order than the 
original strong form.

x

The Weak Form from the PVW
Let’s now examine the same problem, and let us use the Principle of Virtual 
Work:

ax

( )
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int
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Method of Finite Elements I

The method uses an arbitrary weighting 
function w that satisfies the essential 
conditions and additionally: 

If then,

x

Approximating the Strong Form
The Galerkin Method

( )

2

2

(0) 0              
0

      

0   

   

 
x L

d uAE ax
dx

Strong Form

Boundary Conditions (BC)
Essentu

L

duAE
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ial BC
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σ

=

=

= ⇒

=

= −
ax Let us look at an 

alternative 
approximation:
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Method of Finite Elements I

Multiplying the strong form by w and integrating over L:

Integrating by parts, the following relation is derived:

x

Weighted Residual Methods
Focus: The axially loaded bar with distributed load example.

ax
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Method of Finite Elements I

Elaborating a little bit more on the relation:

x

Weighted Residual Methods
Focus: The axially loaded bar with distributed load example.

ax
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Method of Finite Elements I

Elaborating a little bit more on the relation:

why?

Therefore, the weak form of the problem is defined as
Find such that:

why?

This result is equivalent to the result obtained via the PVW

x

Weighted Residual Methods
Focus: The axially loaded bar with distributed load example.

ax
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Method of Finite Elements I

Weighted Residual Methods

The steps performed using the Galerking method, actually
lead to the same kind of weak formulation we would have
obtained via the principle of Virtual work or the MKE 
(remember slide). This is just an alternative.

However, how do we now solve the resulting weak
formulation?

Well, we introduce the FE method steps

The Galerkin method
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Method of Finite Elements I

Theory – Consider the general case of a 
differential equation:

Example – The axially loaded bar:

Try an approximate solution to the 
equation of the following form

where are test functions (input) and 
are unknown quantities that we need 
to evaluate. The solution must satisfy 
the boundary conditions.

Since is an approximation, substituting
it in the initial equation will result in 
an error:

Choose the following approximation

Demand that the approximation 
satisfies the essential conditions:

The approximation error in this case is:

The Galerkin Method
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Method of Finite Elements I

Weighted Residual Methods

Notice how we chose an approximate solution which is a 
3rd degree polynomial. Indeed, in the approximate solution
chosen here, the trial functions are

N1 = 1, N2 = x, N3 = x2, N4 = x3

This implies that we made a good guess, since we already
know that the true solution is a 3rd order polynomial!

(see slide)

We will show later that we try to form the trial functions so 
as to force the coefficients ui to coincide with the values of
the deformation at the nodes of the element. This is not the
case here however, where we deliberatley chose high order
test functions. 

Comments
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Method of Finite Elements I

Assumption 1: The weighted average error of the approximation should 
be zero 

The Galerkin Method
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Method of Finite Elements I

Assumption 1: The weighted average error of the approximation should 
be zero 

Therefore once again integration by parts leads to

But that’s the Weak 
Form!!!!!

The Galerkin Method
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Method of Finite Elements I

Assumption 1: The weighted average error of the approximation should 
be zero 

Therefore once again integration by parts leads to

But that’s the Weak 
Form!

Assumption 2: The weight function is approximated using the same 
scheme as for the solution

Remember that the 
weight function must 

also satisfy the BCs

Substituting the approximations for both and in the weak form, 

The Galerkin Method
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Method of Finite Elements I

The following relation is retrieved: 

where: 

The Galerkin Method
Remember that the 
weight function is 
(almost) arbitrary! 

Therefore, the only way 
this holds for any w(x) is:

dx

dx

dx
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Method of Finite Elements I

Performing the integration, the following relations are established: 

The Galerkin Method
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Method of Finite Elements I

Or in matrix form: 

that’s a linear system of equations: 

and that’s of course the exact solution. Why?

The Galerkin Method
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Method of Finite Elements I

What is we do not make such a good guess, i.e., a 3rd order polynomial and instead try 
the following (suboptimal) approximation: 

The weight function assumes the same form: 

Which again needs to satisfy the essential BCs, therefore: 

Substituting now into the weak form: 

Wasn’t that much easier? But….is it correct?

The Galerkin Method

( )( )
2

2 2 20
0

3
L Lw EAu x ax dx u

EA
α− = ⇒ =∫
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Method of Finite Elements I

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2
Length (m)

Strong Form Galerkin-Cubic order Galerkin-Linear

The Galerkin Method

Our 1st order approximation is only 
accurate at the boundaries of the element!

How to improve accuracy, while still using only a 1st order approximation?
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Method of Finite Elements I

We saw in the previous example that the Galerkin method is based on the 
approximation of the  strong form solution using a set of basis functions. 
These are by definition absolutely accurate at the boundaries of the 
problem. So, why not increase the boundaries?

Instead of seeking the solution of a single bar we chose to divide it into 
three interconnected and not overlapping elements

1 2 3

The Galerkin Method

element: 1 element: 2
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Method of Finite Elements I

1 2 3

element: 1

The Galerkin Method
element: 2

We still have 1st order 
polynomials, but they are as 
many as the sub-elements, 
i.e., 4 unknown coefficients ui
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Method of Finite Elements I

1 2 3

The Galerkin Method
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Method of Finite Elements I

Summarizing, the weak form of a continuous problem was 
derived in a systematic way:

This part involves only the 
solution approximation

This part only involves the 
essential boundary 
conditions a.k.a. loading

The Galerkin Method
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Method of Finite Elements I

And then an approximation was defined for the displacement field, for example

The weak form also involves the first derivative of the approximation

Strain field

Displacement 
field

The Galerkin Method
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where u1,u2 are so far random coefficients. Instead, we can choose to write the same 
relationship using a different basis N(x):

Vector of 
degrees of 
freedom

Shape Function 
Matrix

Displacement 
field

The Galerkin Method

In this case we express u in term of the degrees of freedom, i.e., the 
displacements at the ends of the bar:

Substituting in our initial displacement approximation we obtain:

𝑑𝑑 = 𝑢𝑢(𝑥𝑥 = 0)
𝑢𝑢(𝑥𝑥 = 𝐿𝐿) =

𝑢𝑢0
𝑢𝑢𝐿𝐿 = 1 0

1 𝐿𝐿
𝑢𝑢1
𝑢𝑢2 ⇔

𝑢𝑢1
𝑢𝑢2 = 1 0

1 𝐿𝐿

−1 𝑢𝑢0
𝑢𝑢𝐿𝐿

𝑢𝑢 = 1 𝑥𝑥 1 0
1 𝐿𝐿

−1 𝑢𝑢0
𝑢𝑢𝐿𝐿 = 𝐿𝐿 − 𝑥𝑥

𝐿𝐿
𝑥𝑥
𝐿𝐿

𝑢𝑢0
𝑢𝑢𝐿𝐿 ⇒ 𝑁𝑁(𝑥𝑥) = 𝐿𝐿 − 𝑥𝑥

𝐿𝐿
𝑥𝑥
𝐿𝐿

[ ]{ }( )u N x d=
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[ ]{ } [ ]{ }( )
 
d N x

d B d
dx

ε = =

Then:

The weak form also involves the first derivative of the approximation

Strain field

The Galerkin Method

[ ] [ ] [ ]( ) 1 1 1
d N x

B
dx L

= = −where

Strain 
Displacement 
Matrix

Vector of 
degrees of 
freedom

Displacement 
field

[ ]{ }( )u N x d=
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Therefore if we return to the weak form :

The following FUNDAMENTAL FEM expression is derived

and set:

or even better
Why??

The Galerkin Method
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EA has to do only with material and cross-sectional 
properties

We call The Finite Element  stiffness Matrix

Ιf E is a function of {d} 

Ιf [B] is a function of {d} 

Material Nonlinearity

Geometrical Nonlinearity

The Galerkin Method
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The Galerkin Method

[ ] [ ]

[ ]

[ ]

[ ]

0
0

2

11 1 1 1
1

11 1 1 1 1
1

1 1
1 1

L
L T k EA dxk B EA B dx L L

B EA LL L L

EAk
L

− 
= − ⇒  =   ⇒

−−   =  = − ⇒    
 

− 
=  − 

∫∫

Indeed, if we use the proposed formulation for [N], [B]:

bar 
stiffness!
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