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Method of Finite Elements I

• Held by Prof. Dr. E. Chatzi, Dr. P. Steffen
• Assistant: Adrian Egger, HIL E 13.3
• Lectures homepage: 

http://www.ibk.ethz.ch/ibk/ibk/ch/education/femi/index_EN
• Course book: “Finite Element Procedures” by K.J. Bathe
• Performance assessment

Method of Finite Elements I
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Method of Finite Elements I

Course Overview

• 22.02.2016 – Introductory Concepts
Matrices and linear algebra - short review.

• 2.02.2016– The Direct Stiffness Method
• 07.03.2016 – Demos and exercises in MATLAB
• 14.03.2016 – The Variational Formulation.
• 16.03.2016 – Isoparametric finite element matrices
• 21.03.2016 – Computer Lab 1
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Course Overview
• 04.04.2016 – 1D Elements (truss/beam)
• 11.04.2016 – 2D Elements (plane stress/strain)
• 25.04.2016 – Practical application of the MFE

Practical Considerations
• 02.05.2016 – Results Interpretation
• 09.05.2016 - Demo Session: 

Integration/Conditioning/Error Estimators
• 23.05.2016 – Computer Lab 2
• 30.05.2016 – Project Presentations

A Real Test Case is modelled and analyzed
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Today’s Lecture

• An overview of the MFE I course
• MFE development
• Introduction to the use of Finite Elements
• Modelling the physical problem
• Finite elements as a tool for computer-aided 

design and assessment
• Basic mathematical tools – a review
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FE Analysis in brief…

Object: A Solid with known mechanical 
properties. (a skyscraper; a shaft; bio tissue 
…) 

Main Features

• Boundary: The surface enclosing the 
geometry 
• Solid: Interior + Boundary 
• Boundary conditions: prescribed 
displacements/tractions on the boundary

FEA was originally developed for solid mechanics applications. 
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FE Analysis in brief…
Problem Statement

undeformed deformed?
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How does it work?

Physical Model
Describe the problem: 

Simplify a real engineering 
problem into a problem that 

can be solved by FEA

FE model
Discretize/mesh the solid, 
define material properties, 
apply boundary conditions

Theory
Choose approximate 

functions, formulate linear 
equations, and solve 

equations

Results
Obtain, visualize and 

explain the results

Pre-processor

Post-processor Solver

Source: http://www.colorado.edu/MCEN/MCEN4173/chap_01.pdf
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MFE development
The MFE is the confluence of three ingredients: matrix structural analysis, 
variational approach and a computer

Theoretical Formulation
1. “Lösung von Variationsproblemen” by W. Ritz in 1908
2. “Weak formulation” by B. Galerkin in 1915
3. “Mathematical foundation” by R. Courant ca. 1943
Formulation & First Applications (1950s and 1960s)
1. 1950s, M.J. Turner at Boeing (aerospace industry in general): Direct 

Stiffness Method 
2. Matrix formulation of structural analysis by Agyris in 1954
3. Term ‚Finite Element‘ coined by Clough in 1960
4. First book on EM by Zienkiewicz and Cheung in 1967
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MFE development
Commercial Software (since 1970s)

1. General purpose packages for main frames (Abaqus..) in 1970s
2. Special purpose software for PCs in 1980s

During this class, the following software packages will be used:
ABAQUS, ANSYS, CUBUS, SAP2000
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FEM is a big success story, because it…

1. can handle very complex geometry
2. can handle a wide variety of engineering problems

- mechanics of solids & fluids
- dynamics/heat/electrostatic problems…

3. can handle complex restraints & loading
4. is very well suited for computers
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• Within the framework of continuum mechanics 
dependencies between geometrical and physical 
quantities are formulated on a differentially small 
element and then extended to the whole continuum

• As a result we obtain differential, partial differential or 
integral equations for which, generally, an analytical 
solution is not available – they have to be solved using 
some numerical procedure

• The MFE is based on the physical discretization of the 
observed domain, thus reducing the number of the 
degrees of freedom; moreover the governing equations 
are, in general, algebraic 

Introduction to the Use of  Finite Elements



Institute of Structural Engineering Page 14

Method of Finite Elements I



Institute of Structural Engineering Page 15

Method of Finite Elements I

Steps in the MFE
• The continuum is discretized using a mesh of finite 

elements.
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Steps in the MFE
• The continuum is discretized using a mesh of finite 

elements.

• These elements are connected at nodes located on the 
element boundaries.

e 
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Steps in the MFE
• State of deformation, stresses, etc. in each element is described by 

interpolation (shape) functions and corresponding values in the nodes; 
these nodal values are the basic unknowns of the MFE.

The way in which these three steps are approached has a great 
influence on the results of the calculations .
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• The MFE is only a way of solving the mathematical model 
• The solution of the physical problem depends on the quality 

of the mathematical model – the choice of the mathematical 
model is crucial

• The chosen mathematical model is reliable if the required 
response can be predicted within a given level of accuracy 
compared to the response of a very comprehensive (highly 
refined) mathematical model

• The most effective mathematical model for the analysis is 
the one that gives the required response with sufficient 
accuracy and at the lowest computational toll

Modelling of the Physical Problem
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Complex physical problem modelled by a simple 
mathematical model

Simple Example
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Detailed reference model – 2D plane stress model

Simple Example
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• Choice of mathematical model must correspond to desired 
response

• The most effective mathematical model delivers reliable answers 
with the least amount of effort

• Any solution (including MFE) of a mathematical model is limited 
to information contained in or fed into the model: bad input – bad 
output (garbage in – garbage out)

• Assessment of accuracy is based on comparisons with the results 
from very comprehensive models – but in practice it has to be 
based on experience (experiments…)

• The engineer (user) should be able to judge the quality of 
the obtained results (i.e. for plausibility)

Considerations
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Seismic Analysis of a Concrete Gravity 
Dam in ABAQUS
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Analysis of a Wind Turbine Structure in ANSYS
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Chapter 1 

Fundamental Mathematical Concepts
(short review)
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Matrices

A matrix is an array of ordered numbers. A general matrix 
consists of m·n numbers arranged in m rows and n columns, 
thus the matrix is of order m x n (m by n). When we have 
only one row (m = 1) or one column (n = 1), A is also called a 
vector
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Matrices
When dealing with systems of linear equations, a matrix
formulation proves highly advantages:

This results in an equation Ax=b, where A is matrix of 
coefficients, x is a vector of unknowns and b a vector of known 
quantities. 

A x b
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Basic Matrix Operations

Scalar multiplication:

A matrix A is multiplied by a scalar value c such that cA. This is achieved by
multiplying each entry of A by c:

Addition:

Two matrices A and B may be added to each other iff they possess
the same order. The sum A+B is calculated entry wise:

where 1 ≤ i ≤ m and 1 ≤ j ≤ n𝑐𝑐𝑨𝑨 𝑖𝑖𝑖𝑖 = 𝑐𝑐 � 𝑨𝑨𝑖𝑖𝑖𝑖

𝑨𝑨 + 𝑩𝑩 𝑖𝑖𝑖𝑖 = 𝑨𝑨𝑖𝑖𝑖𝑖 + 𝑩𝑩𝑖𝑖𝑖𝑖
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Basic Matrix Operations
Transposition:

The transpose of a matrix A denoted by AT is obtained by interchanging
The rows and columns pf a matrix:

Multiplication:

Two matrices A and B may be multiplied iff A is m-by-n and B is n-by-p 
such that the resulting matrix will be of order m-by-p. The matrix product 
AB is given by the dot product of the corresponding row of A and the 
column of B.

𝑨𝑨𝑇𝑇 𝑖𝑖𝑖𝑖 = 𝑨𝑨𝑖𝑖𝑖𝑖

𝑨𝑨𝑩𝑩 𝑖𝑖𝑖𝑖 = �
𝑟𝑟=1

𝑛𝑛

𝐴𝐴𝑖𝑖𝑟𝑟𝐵𝐵𝑟𝑟𝑖𝑖
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• Commutative law does not hold, i.e. AB ≠ BA

• Distributive law does hold, i.e. E = (A+B)C = AC+BC

• Associative law does hold, i.e. G = (AB)C =A(BC) = ABC

• AB = CB does not imply that A = C

• Special rule for the transpose of matrix product:

(AB)T = BTAT

Rules of Matrix Operations
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Special Square Matrices
Square matrix:

A matrix is said to be square if m = n

Identity matrix:

The identity matrix is a square matrix with entries on the diagonal equal to 1 
while all others are equal to 0. Any square matrix A multiplied by the identity 
matrix I of equal order returns the unchanged matrix A.

𝐼𝐼3 =
1 0 0
0 1 0
0 0 1



Institute of Structural Engineering Page 31

Method of Finite Elements I

Diagonal Matrix D:

All other entries but those on the diagonal equal to zero

Upper Triangular Matrix U:

• All entries below the diagonal equal to zero
• Entries on the diagonal equal to one

Lower Triangular Matrix L:

• All entries above the diagonal equal to zero
• Entries on the diagonal equal to one

Special Square Matrices
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Special Matrices
Symmetric Matrix:

A symmetric matrix is a square matrix the satisfies AT = A

Sparse Matrix:

A matrix with mostly/many zero entries

Rotation Matrix R:

• Used to rotate quantities about a certain point
• In 2D it is given as follows:

𝑅𝑅 𝜃𝜃 = cos(𝜃𝜃) −sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃)
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• For symmetric banded matrix A we have aij = 0 for j > i+mA, 2mA+1 being the 
bandwidth

• If the half-bandwidth, mA, of a matrix is zero, we have nonzero elements only 
on the diagonal of the matrix and denote it as a diagonal matrix (for 
example, unit matrix).

14 0   4 1 2A Aa j m m= = > + → =

2 1 2 2 1 5Am + = ⋅ + =

Special Matrices
Banded Matrix:

mA
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Matrix Inversion

If a matrix is invertible then there is

AA-1 = A-1A = I

and A is said to be non-singular.

The inverse of a matrix A is denoted as A-1 
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Inversion: AA-1 = A-1A = I

Matrix Inversion
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• Matrices can be subdivided to facilitate matrix 
manipulations 
• Partitioning lines must run completely across the original 
matrix

Sub Matrices
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The Trace of a Matrix

( ) ∑
=

=
n

i
iiatr

1

A

• The trace of a matrix A is defined only if A is a square 
matrix (nxn)

• The trace of a matrix is a scalar value:

• Some rules:
tr(A+B) = tr(A) + tr(B)

tr(cA) = c tr(A)
tr(AB) = tr(BA)
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• The trace of a matrix A, tr(A) = 4+6+8+12=30 

The Trace of a Matrix
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The Determinant of a Matrix

( )1 1 1
1

det( ) 1 det
n

j
j j

j
a+

=

= −∑A A

• The determinant of a matrix A is defined only if A is a 
square matrix (nxn)
• The determinant of a matrix is a scalar value and is 
obtained by means of the recurrence formula:

• where A1j is the (n-1)x(n-1) matrix obtained by eliminating 
the 1st row and the jth column from the matrix A

• if A=[a11] then detA=a11



Institute of Structural Engineering Page 40

Method of Finite Elements I

The determinant of a matrix is a scalar value and is obtained 
by means of the recurrence formula:

The Determinant of a Matrix

( )1 1 1
1

det( ) 1 det
n

j
j j

j
a+

=

= −∑A A
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The determinant of a matrix using the recurrence formula 
along the first row (2 1 0):

The Determinant of a Matrix

( )1 1 1
1

det( ) 1 det
n

j
j j

j
a+

=

= −∑A A
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det(AB) = det(A) det(B) 

det(A-1) = 1/det(A)

det(I) = 1

Some useful operations with determinants:

The Determinant of a Matrix
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• It is convenient to decompose a symmetric matrix A by so 
called LDL decomposition (Cholesky): A=LDLT

• L is a lower triangular matrix with all diagonal elements 
equal to 1 and D is a diagonal matrix with components dii

• Thus the determinant of matrix A (nxn) can be obtained as:

∏
=

=
n

i
iid

1

det A

21

31 32

1 0 0
1 0

1
L l

l l

 
 =  
  

The Determinant of a Matrix
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LDL decomposition: A=LDLT

The Determinant of a Matrix
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Tensors
• A set of quantities that obey certain transformation laws 
relating the bases in one generalized coordinate system to 
those of another
• A tensor consists of an array of a certain order (for 
example: tensor of order 0 is a scalar, tensor of order 1 is a 
vector)
•Each tensor has a transformation law detailing the 
response of a change of basis (or ‘frame of reference’).
• Bathe: An entity is called a second-order tensor if it has 
nine components tij, i=1,2,3 and j=1,2,3 in the unprimed 
frame and nine components t’ij in the primed frame and if 
these components are related by the characteristic law 
t’ij=pikpjltkl, P being a rotation matrix
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A graphical representation of a tensor is possible using 
Mohr’s circles (for example: plane stress state shown on 
figure above)

Stress Tensors
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• Variational operator − δ
• Variations (of deformation) are small enough not to disturb 
the equilibrium and are consistent with the geometric constraint 
of the system
• Some rules:

Variational Calculus

( )u
dx
d

dx
du δδ =
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