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The DE

Our DE is L[y ] = x2 d
2y

dx2
+ x2p(x)dy

dx
+ x2q(x)y = 0.

We will assume that the singular point x = 0 is a regular

singular point.

Since x = 0 is a R.S.P., we know that we can expand xp(x)
and x2q(x) as convergent Taylor series about x = 0.

We set y = ∑
∞
n=0 anx

n+r , a0 6= 0.
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Inserting the Series into the DE

We compute the �rst two derivatives of y = ∑
∞
n=0 anx

n+r in

the usual way. We then use the Taylor series for the

coe�cients to obtain

L[y ] =
∞

∑
n=0

(n+ r)(n+ r −1)anx
n+r +

(
∞

∑
m=0

pmx
m

)
·[

∞

∑
n=0

(n+ r)anx
n+r

]
+

(
∞

∑
m=0

qmx
m

)(
∞

∑
n=0

anx
n+r

)
=[r(r −1)+p0r +q0]a0x

r+

{[(1+ r)r +p0(1+ r)+q0]a1 +(rp1 +q1)a0}x r+1 + · · ·
+{[(n+ r)(n+ r −1)+p0(n+ r)+q0]an+

n−1

∑
k=0

[(k + r)pn−k +qn−k ]ak

}
xn+r + · · ·

L. Nielsen, Ph.D. Method of Frobenius
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Simpli�cation

The expression for L[y ] on the previous slide can be simpli�ed

by letting

F (r) = r(r −1)+p0r +q0.

Then

L[y ] = a0F (r)tx r +[a1F (1+ r)+(rp1 +q1)a0]x
1+r + · · ·

+anF (n+ r)xn+r +

{
n−1

∑
k=0

[(k + r)pn−k +qn−k ]ak

}
xn+r

+ · · ·

We now set the coe�cient of each power of x equal to zero.

The results are...

L. Nielsen, Ph.D. Method of Frobenius
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Coe�cients

We have, �rst of all,

F (r) = r(r −1)+p0r +q0 = 0,

the indicial equation.

Also, we have

F (n+ r)an =−
n−1

∑
k=0

[(k + r)pn−k +qn−k ]ak , n ≥ 1

Note that the indicial equation is a quadratic equation in r .

It's roots determine the values r1 and r2 for which there may

be solutions. The second equation shows that, in general, an
depends on r and all of the preceding coe�cients.

L. Nielsen, Ph.D. Method of Frobenius
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The Recurrence Relation

We can solve the recurrence relation

F (n+ r)an =−∑
n−1
k=0[(k + r)pn−k +qn−k ]ak for an provided

that F (1+ r),F (2+ r), . . . ,F (n+ r) are not zero.

If F (n+ r) vanishes for some positive integer n, then n+ r

must be a root of the indicial equation.

Hence, if the indicial equation has two real roots r1, r2 with

r1 > r2 and r1− r2 not equal to an integer, then our DE has

two solutions; one corresponding to each value of r obtained

from the indicial equation.

It can be shown that these solutions converge wherever the

series for xp(x) and x2q(x) converge.

What happens when the roots to the indicial equation di�er by

a positive integer or are equal?

L. Nielsen, Ph.D. Method of Frobenius
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Equal Roots

When the roots to the indicial equation are equal, we have

only one solution of the form

y1(x) = x r1
∞

∑
n=0

an(r1)x
n.

One can show that there is a second linearly independent

solution of the form

y2(x) = y1(x) lnx + x r1
∞

∑
n=0

bnx
n

where the coe�cients bn need to be calculated - a sometimes

di�cult problem.

We remark, however, that the second solution is often rejected

on the grounds that there is a logarithmic singularity at x = 0 -

many physical applications don't want such a singularity.

L. Nielsen, Ph.D. Method of Frobenius
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Roots Di�ering by a Positive Integer

Here we have r1 = r2 +N for some positive integer N. In this

case we have a solution y1(x) = x r1 ∑
∞
n=0 an(r1)x

n, but it may
not be possible to find a second solution of this form when
r = r2.

Why? It is because F (r2 +N) = F (r1) = 0 and the recurrence

relation becomes

0 ·aN =−
n−1

∑
k=0

[(k + r)pn−k +qn−k ]ak

when n = N. This equation cannot be satis�ed for any choice

of aN , if the right side of this equation is nonzero. In this case,

the second solution has the form

y2(x) = y1(x) lnx + x r2
∞

∑
n=0

bnx
n

L. Nielsen, Ph.D. Method of Frobenius
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Roots Di�ering by a Positive Integer, II

What if −∑
n−1
k=0[(k + r)pn−k +qn−k ]ak = 0? Then it's clear

that aN is arbitrary and we can obtain a second solution of the

form

y = x r2
∞

∑
n=0

bnx
n.

This can be seen via the example on the next slide(s).

L. Nielsen, Ph.D. Method of Frobenius
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Example: Roots Di�ering by a Positive Integer

Example

Use the method of Frobenius to solve

x2 d
2y

dx2
− x dy

dx
− (x2 +5/4)y = 0.

Solution: It is clear that x = 0 is a R.S.P. (Check!)

We let y = ∑
∞
n=0 anx

n+r and we obtain the following, after

computing the derivatives and adjusting the series:

Indicial Equation: r2−2r − 5

4
= 0, so that r1 = 5

2
and r2 =− 1

2
.

These roots di�er by a positive integer.

We also obtain the condition
[
(r +1)r − (r +1)− 5

4

]
a1 = 0 and

the recurrence relation[
(n+ r)(n+ r −1)− (n+ r)− 5

4

]
an−an−2 = 0.

We will always be able to �nd a solution corresponding to the

larger root and we proceed to do this next.

L. Nielsen, Ph.D. Method of Frobenius
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Example, Continued

Let r = 5
2 . Then

4a1 = 0 and so a1 = 0.

The recurrence relation is

an =
an−2

n(n+3)
, n ≥ 2.

We obtain, via induction, that all of the odd indexed

coe�cients vanish and that

a2n =
a0

2nn! [5 ·7 ·9 · · ·(2n+3)]
, n ≥ 1.

Our solution is therefore

y1(x) = a0x
5/2

[
1+

∞

∑
n=1

x2n

2nn! [5 ·7 ·9 · · ·(2n+3)]

]
.

L. Nielsen, Ph.D. Method of Frobenius
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Example, Continued

We now consider r =−1
2 . Let us assume (hopefully, but

without justi�cation!) that there is a second solution of the

standard form. Letting r =−1
2 results in −2a1 = 0 and

an =
an−2

n(n−3)
, n ≥ 2, n 6= 3.

Some thought shows that a3 is arbitrary! Also, we have

a2 =−a0/2,

a2n =
−a0

2nn! [3 ·5 ·7 · · ·(2n−3)]
, n ≥ 3

and

a2n+1 =
a3

2n−1(n−1)! [5 ·7 ·9 · · ·(2n+1)]
, n ≥ 2.

L. Nielsen, Ph.D. Method of Frobenius
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Example, Continued

Our solution in this case is therefore

y2 = a0x
−1/2

{
1− x2

2
− x4

2 ·4
−

∞

∑
n=3

x2n

2nn! [3 ·5 ·7 · · ·(2n−3)]

}
+

a3x
−1/2

{
x3 +

∞

∑
n=2

x2n+1

2n−1(n−1)! [5 ·7 ·9 · · ·(2n+1)]

}
It turns out that we are free to take a3 = 0 (remember, it's

arbitrary) and so we are left with only the �rst series for the

second solution. However, it can be seen that we can �nd two

linearly independent solutions to the DE by using the smaller

root alone.

A good rule of thumb is to work out the solution

corresponding to the smaller root �rst, in the hope that this

smaller root by itself may lead directly to the general solution.

Keep in mind, though, that this won't always work.

L. Nielsen, Ph.D. Method of Frobenius
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A Second Example

Example

We consider the DE t2 d
2y
dt2

+ t dy
dt

+(t2−1/4)y = 0.

Proceeding using the method of Frobenius we �nd the following:

[r(r −1)+ r − 1
4 ]a0 = (r2− 1

4)a0 = 0 - here we get r1 = 1/2
and r2 =−1/2.

[(1+ r)2− 1
4 ]a1 = 0

[(n+ r)2− 1
4 ]an = an−2, n ≥ 2

L. Nielsen, Ph.D. Method of Frobenius
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Second Example, Larger Root

We set r = 1/2 to obtain a1 = 0 and �nd that the recurrence

relation is

an =
−an−2
n(n+1)

, n ≥ 2.

This relation along with a1 = 0, tells us that all of the odd

coe�cients vanish and that

a2n =
(−1)n

(2n)!(2n+1)
.

(We've set a0 = 1.) We obtain from this recurrence relation that

y1 =
sin t√

t
.

L. Nielsen, Ph.D. Method of Frobenius
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Second Example, Smaller Root

Setting r =−1/2, we see that, since 1+(−1/2) = 1/2, we cannot

�nd any value for a1 - it is arbitrary. Set a1 = 0, then. This causes

all of the odd coe�cients to be zero and the recurrence relation,

an =
−an−2
n(n−1)

, n ≥ 2,

gives us that

a2n =
(−1)n

(2n)!
.

Our second solution is therefore

y2 =
cos t√

t
.

L. Nielsen, Ph.D. Method of Frobenius
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Frobenius Theorem

Let r1 and r2 be roots of the indicial equation with r1 ≥ r2 if they

are real. Then the di�erential equation has two linearly independent

solutions on the interval (0,ρ) (ρ is determined by the radius of

convergence of the series for tp(t) and t2q(t)) of the following

form:

If r1− r2 is not a positive integer, then

y1(t) = tr1
∞

∑
n=0

an(r1)t
n, y2(t) = tr2

∞

∑
n=0

an(r2)t
n.

If r1 = r2, then

y1(t) = tr1
∞

∑
n=0

an(r1)t
n, y2(t) = y1(t) ln t + tr1

∞

∑
n=0

bnt
n.

L. Nielsen, Ph.D. Method of Frobenius
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Last Conclusion

If r1 = r2 +N, a positive integer, then for some constant a

(possibly zero),

y1(t) = tr1
∞

∑
n=0

an(r1)t
n, y2(t) = ay1(t) ln t + tr2

∞

∑
n=0

bnt
n.
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Calculation of Coe�cients with Equal Roots

We run into trouble if the indicial equation has equal roots r1 = r2
because our DE then only has one solution in the form

y = ∑
∞
n=0 ant

n+r . The method of �nding a second solution goes as

follows. Let us rewrite the series solution as follows:

y(t) = y(t, r) =
∞

∑
n=0

an(r)t
n+r (1)

to emphasize that the solution y(t) depends on our choice of r .

Then, using notation developed above in our general discussion of

the method,

L[y ](t, r) = a0F (r)tr+

∞

∑
n=1

{
an(r)F (n+ r)+

n−1

∑
k=0

[(k + r)pn−k +qn−k ]ak

}
tn+r .

L. Nielsen, Ph.D. Method of Frobenius
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Calculation of Coe�cients with Equal Roots

We now think of r as a continuous variable and determine an as a

function of r by requiring that the coe�cient of tn+r be zero for

n ≥ 1. Thus

an(r) =
−∑

n−1
k=0[(k + r)pn−k +qn−k ]ak

F (n+ r)
. (2)

With this choice of an(r), we see that

L[y ](t, r) = a0F (r)tn+r . (3)

In the case of equal roots, F (r) = (r − r1)
2, so that equation (3)

can be written in the form

L[y ](t, r) = a0(r − r1)
2tr .

L. Nielsen, Ph.D. Method of Frobenius
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Calculation of Coe�cients with Equal Roots

Since L[y ](t, r1) = 0, we obtain one solution

y1(t) = tr1

(
a0 +

∞

∑
n=1

an(r1)t
n

)
.

Observe now, that

∂

∂ r
L[y ](t, r) =L

[
∂y

∂ r

]
(t, r)

=
∂

∂ r
a0(r − r1)

2tr

= 2a0(r − r1)t
r +a0(r − r1)

2(ln t)tr

(4)

also vanishes when r = r1.

L. Nielsen, Ph.D. Method of Frobenius
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Calculation of Coe�cients with Equal Roots

Thus the second solution is

y2(t) =
∂

∂ r
y1(t, r)|r=r1

=
∂

∂ r

[
∞

∑
n=0

an(r)t
n+r

]
r=r1

=

{
∞

∑
n=0

an(r1)t
n+r1

}
ln t +

∞

∑
n=0

dan

dr
(r1)t

n+r1

= y1(t) ln t +
∞

∑
n=0

dan

dr
(r1)t

n+r1

(5)

L. Nielsen, Ph.D. Method of Frobenius
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Calculation of Coe�cients when Roots Di�er by an Integer

Here we suppose that the zeros of the indicial equation, r1 > r2, are

such that r1− r2 = N ∈ N. It may be the case that there are two

solutions of the form

x r
∞

∑
n=0

anx
n. (6)

However, there is always a solution of the form

y = x r1
∞

∑
n=0

anx
n. (7)

A second solution of this form for the other zero of the indicial

equation will exist if the recursion relation is well�de�ned for all n

when using the second (smaller) zero r2. If the recursion relation is

not well�de�ned for the second root, there is a second solution of

the form
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y2(x) = ay1(x) lnx + x r2
∞

∑
n=0

d

dr
[(r − r2)an(r)]r=r2

xn. (8)

The constant a may or may not be zero but we won't pursue how

to calculate its value here.
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